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Abstract. We introduce the notion of Cross-Unlinkability for group sig-
nature schemes. Considering groups organized in a tree structure, where
belonging to the parent group is required to join a new group, Cross-
Unlinkability enables a cascade revocation process that takes into ac-
count the underlying tree structure, while ensuring anonymity for non-
revoked users, in particular, towards the managers of the other groups.
We show how to achieve Cross-Unlinkability using the Verifier-Local Re-
vocation group signature scheme of Bringer and Patey at Secrypt 2012,
by exploiting its property of Backward Unlinkability.
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1 Introduction

Group signatures [9] enable authorized users to sign anonymously on behalf of a
group. We consider in the following the case of VLR (Verifier-Local Revocation)
group signatures. The VLR property [5] guarantees that only the public param-
eters and a revocation list RL are required to check a signature. Concretely,
when a user is revoked, a revocation token that is derived from his signing key
is added to RL. This token is used by verifiers to prevent revoked users from
further signing.

In this paper we consider a scenario where users have access to several groups,
equipped with group signatures, that have some dependencies between them: the
set G of these groups is partially ordered and can be represented as a tree. When
one wants to apply for new signing keys in a group Gl, one has to own valid signing
keys for the parent group Gk in the tree G. This organization also requires that
it should be possible to revoke automatically across different groups. To this
aim, the new signing key is derived from the key of the same member for Gk in

? This work is partially funded under the European FP7 FIDELITY project (SEC-
2011-284862). All information is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The European Commission
has no liability in respect of this document, which merely represents the authors
view.

?? This is the extended version of the article presented at EuroPKI 2012.



order to maintain a link. One important issue in our model is then to ensure the
privacy of this link.

This scenario and the associated security properties are particularly adapted
to identity management systems. In this setting, a user owns several identities
derived from a strong identity (e.g. the national identity) while maintaining
privacy and unlinkability between the different identities, even towards to the
providers of the other identities.

We address this problem of derivation of group signatures keys from other
group signature keys with privacy properties in mind. We in particular want to
ensure that a given group manager cannot retrieve – except in case of revocations
– the link between a signature in his group and a signature, issued by the same
user, in any of his children groups. Our goal is to parallelize several instances of
VLR group signatures while fulfilling the following additional requirements:

– A user registered into a given group should be able to sign anonymously on
behalf of this group;

– When a user asks for registering to a new group, he has to prove that he can
sign on behalf of the parent group, and the new keys delivered by the group
manager should be derived from the pre-required keys;

– The derivation process should be compatible with a revocation process that
echoes downwards, i.e. when a user Mi is revoked from a given group Gl, he
must also be revoked from all the groups that are below Gl in the tree G.

– Despite these revocation and derivation processes, only the manager of a
given group Gl (and the signer) can learn information on the signer when
looking at a signature for the group Gl, provided this signer is not revoked
from Gl. Particularly, the other group managers learn nothing more than any
observer and thus cannot link the signer to the members of their groups.
This property, that we name Cross-Unlinkability, is an essential feature of
our proposition.

Recall that, when a user is revoked, a revocation token that is derived from his
signing key is added to RL. It enables to reject the further signatures of this user
but it may also give a way to identify his previously made signatures. To prevent
this, some VLR group signatures (e.g. [8,15–17,19]) enjoy an additional property
called Backward Unlinkability (BU). The usual mechanism to enable BU is to
split the time into several periods and derive revocation tokens associated to
each period so that two revocation tokens for the same user for different periods
are unlinkable.

We here adapt the derivation process for revocation tokens, no longer to
enjoy BU, but to derive keys between the different group signature schemes.
In our context defined above, the direction of the derivation is from a parent
group Gk to a child group Gl in G. In a sense, such a child group is seen as
a time period for the VLR signature with BU associated to Gk, unlinkability
between different time periods in the original schemes with BU is transformed
into unlinkability between the different children. We adapt the BU derivation
process so that the new keys are not known by the parent group manager, while



satisfying the requirement for the revocation process to be echoed to the lower
levels.

For instance, consider the group tree described in Figure 1. We assume that
a science faculty sets up a system using groups signatures, used for instance
for access control. In this example, applying for a key for the Bioinformatics
Team requires to previously own a key for the Computer Science Department.
We also wish that, when one signs on behalf of, e.g., the Mechanics Department,
anonymity of the signer is guaranteed against the managers of all other groups,
including the managers of the parent group (Science Faculty), the children groups
(Fluid Dynamics and Solid Mechanics) or the sibling groups (Computer Science
Dept.).

Science Faculty

Mechanics Department

Solid MechanicsFluid Dynamics

Computer Science Department

Bioinformatics Cryptology

Fig. 1. An example of a group tree G

Other settings with several parallel group signatures have already been in-
troduced. Multi-group signatures [1, 3] enable a user to sign on behalf of either
a single group or several groups to which he belongs. The notion of hierarchy
between group signatures has been introduced in [14], where having a key for an
upper group allows to sign on behalf of lower groups. Hierarchical Group Sig-
natures [18] define a group organization that is close to ours: the managers are
organized in a tree structure, but all of them do not manage signers, some only
manage groups of managers; anonymity and (a weaker notion of) unlinkability
between the users of different groups are considered but there is no possibil-
ity of revocation. Attribute-based group signatures [12, 13], anonymous proxy
signatures [11] and delegatable credentials [2] are also related notions. None of
the above constructions however considers at the same time group hierarchy,
unlinkability across the groups and revocation through the groups.

The process described in this paper is instantiated with the Bringer and
Patey group signature [8] for a better readability but it can easily be adapted
to other group signature schemes enjoying BU (e.g. [15–17,19]).

In [6], Bringer et al. introduce the concept of cross-unlinkability for anony-
mous authentications, adapting the biometric-based remote authentication pro-
tocol of [7] to the hierarchical setting. In this paper, we formalize further this
concept with the model of cross-unlinkable group signatures. We detail a con-



struction and give its security properties. We finally prove that our construction
satisfies these properties.

2 VLR Group Signatures

Group signatures [9] are a particular case of digital signatures where authorized
members of a group are allowed to sign anonymously on behalf of the group.
The anonymity can only be ended by the Group Manager who can also revoke
misbehaving users (or users wanting to leave). In the particular case of Verifier-
Local Revocation (VLR) [5], anyone knowing the public parameters of the group
can verify the signatures (including revocation checks). Groups involved in VLR
group signatures are dynamic: users can be revoked (voluntarily or not) at any
time. The revocation process consists in adding revocation tokens to a public
revocation list which is taken into account by the verifiers when they check a
signature.

2.1 Components

The following algorithms are the components of a VLR group signature scheme
with Backward Unlinkability. In the context of group signatures with BU, time
is divided into time periods j ∈ [1, . . . , T ]. We denote by G the group associated
to the group signature. If the signature does not enable BU, then the algorithms
do not depend on time periods.

KeyGenGS: Generates the public parameters for the system and the pub-
lic/secret keys of the group manager GM. It takes as input a security param-
eter µ and outputs the secret key msk of GM, its public counterpart mpk,
an empty global revocation list RL and empty period revocation lists RLj ’s,
for j ∈ [1, . . . , T ], and the public parameters gpk. msk is kept secret by the
GM, the other elements are published.

JoinGS: Creates keys for a new user Mi and allows him to produce group sig-
natures. It outputs the user key ski and the corresponding revocation tokens
rti (global revocation token) and rtij (period), for all j ∈ [1, . . . , T ]. ski is
stored by the user and GM stores a part of ski and revocation tokens.

SignGS: Takes as input a message m, a time period j and a signer’s key ski.
Returns a signature σ of user Mi on the message m at period j.

VerifyGS: Takes as input a time period j, a message m, a signature σ and the
public parameters gpk of the system and the current Revocation Lists RL
(global) and RLj (period). Checks if the message has been well-signed by an
unrevoked group member without revealing the signer’s identity.

OpenGS: Takes a signature σ as input and reveals the identity of the signer.
Can only be performed by the GM, since it requires to know the revocation
tokens of all users.

RevokeGS: Revokes a user Mi from the group at a time period j. His revocation
token rtij is added to RLj . (For a global revocation, the same process is
executed with rti and RL.)



2.2 Security properties

We describe the security properties that can be required from a VLR group
signature scheme with BU. Our description is a slight variant of the one of [8]
but it is also fulfilled by the [8] scheme. In particular, we do not require the
games to follow a chronological order, since it is not necessary in the proofs of
security of [8].

Correctness: Every check of a well-formed signature returns valid if the user
who has issued it is not revoked.

The Traceability property ensures that no attacker (or group of attackers) is
able to forge a signature that can not be traced to one of the corrupted users
which participated in its forgery.

Traceability: Let us consider the following Traceability game played by an
adversary A.
Setup: The challenger C runs the KeyGen algorithm, playing the role of
the GM. He obtains gpk, mpk and msk. He provides A with gpk and mpk.
Queries: A can make the following queries to the challenger, provided that
it well specifies the time period j:
– Join: A requests the enrolment of a member Mi to G. C obtains the

keys for Mi for G. A obtains nothing.
– Sign: A requests that a member Mi of G signs a message m for the

current period j. The challenger computes the signature σ of Mi on m
for j. A obtains σ.

– Corruption: A requests the corruption of a given registered member Mi.
He obtains the secret key of Mi for G. The member Mi is revoked at all
time periods.

– Revocation: A requests the revocation of a user Mi from G for period j.
He learns the revocation token of Mi that is disclosed during this phase.

Output: A outputs a challenge message m, a period j and a signature σ on
m and wins if:
1. VerifyGS(m,σ,j,gpk,mpk,RLj)=valid
2. A did not obtain σ by making a Sign Query on m.

The scheme is said to satisfy Traceability if no polynomial probabilistic ad-
versary is able to win the above game with a non-negligible probability.

The Backward Unlinkability property is an extension of the notion of Selfless-
Anonymity [5] to the multi-period setting. Selfless-Anonymity implies that only
the signer and the Group Manager learn information on the producer of a given
signature, provided that the signer is not revoked. Backward Unlinkability more-
over ensures that valid signatures remain anonymous even after the signer’s re-
vocation. Revoked users can also come back after their revocation into the group
and use their previous keys without any loss of anonymity. That is why we re-
quire time to be divided into several periods so that the signer uses different
parameters for the different periods.



However notice that when one is revoked at a given period, he loses anonymity
on all his signatures issued at this particular period, even if they were produced
before the revocation. Anonymity is only guaranteed on the signatures made at
previous periods where the user was not revoked.

The Selfless-Anonymity definition can be obtained from the definition of
Backward Unlinkability by applying it to the case where only one time period
is available.

Backward Unlinkabilty: Let us consider the following BU game played by an
adversary A:
Setup: The challenger C runs the KeyGen algorithm, playing the role of
the GM. He obtains gpk, mpk and msk. He provides A with gpk and mpk.
Queries: A can make the following queries to the challenger, provided that
it well specifies the time period j:
– Join: A requests the enrolment of a member Mi to G. C obtains the

keys of Mi for G. A obtains nothing.
– Sign: A requests that a member Mi of G signs a message m for the

current period j. The challenger computes the signature σ of Mi on m
for j. A obtains σ.

– Corruption: A requests the corruption of a given registered member Mi.
He obtains the secret key of Mi for G.

– Revocation: A requests the revocation of a user Mi from G for period j.
He learns the revocation token of Mi that is disclosed during this phase.

Challenge: A outputs a challenge message m, a period j and two different
members M0 and M1, such that:
1. M0 and M1 are both registered to G;
2. A corrupted neither M0 nor M1;
3. M0 and M1 are not revoked from G at period j
C chooses a random bits b ∈R {0, 1} and runs SignGS for Mb at period j
using message m. The obtained signature σ∗ is transmitted to A.
Restricted Queries: A can make the same queries as in the Queries phase,
as long as this does not contradict the above requirements 1 to 3 of the
Challenge phase.
Output: A outputs a guess β ∈ {0, 1} on b.
The scheme satisfies Backward-Unlinkability if the probability |Pr(β = b)−
1/2| is negligible.

Exculpability Nobody, even the Group Manager, is able to produce another
user’s signature.
(This property is not always satisfied by VLR group signature schemes. We
refer the reader to [8,10] for a formal definition that is adapted to the schemes
used in the following.)

2.3 The CL and BP Schemes

As an example and for a better understanding, we use the scheme of Bringer
and Patey [8], that we denote by BP, that fulfils all the above security require-
ments. Particularly, it enables Backward Unlinkability using the usual technique



of dividing the time into several periods and deriving revocation tokens for the
members that depend on the time and on the secret key of the user but that
cannot be linked with each other. We moreover use the patched version of the
scheme of Chen and Li [10], also described in [8], that we denote by CL, and
that is merely the BP scheme without BU. In particular, we can use the same
parameters and keys for both schemes.

We first describe the CL scheme. Notice that, since it does not enable BU,
algorithms are independent of the time period.

KeyGenCL(µ) Choose bilinear groups G1, G2, GT of order a µ-bit prime num-
ber p that is safe, a prime number q and a pairing e : G1 × G2 → GT . Let
g1, g2 be generators of G1 and G2. Choose a hash function H : {0, 1}∗ → Zp
. Choose g̃1, ĝ1 ∈R G1, γ ∈R Z∗p, and compute w = gγ2 . Compute T1 =
e(g1, g2), T2 = e(g̃1, g2), T3 = e(ĝ1, g2) and T4 = e(ĝ1, w). Output: gpk =
(G1, G2, GT , e, p, g1, g2, g̃1, ĝ1, w, H, T1, T2, T3, T4 and msk = γ.

JoinCL(Mi,msk, gpk,mpk) GM sends a nonce ni ∈ {0, 1}k to Mi. Mi chooses

fi ∈R Zp and computes Fi = g̃fi1 . He chooses rf ∈R Zp and computes
R = g̃

rf
1 . He computes c = H(gpk||Fi||R||ni) then sf = rf + cfi. Mi sends

comm = (Fi, c, sf ) to GM. GM computes R′ = g̃
sf
1 F−ci and checks that

sf ∈ Zp and c = H(gpk||F ||R′||ni). He chooses xi ∈R Zp and computes Ai =
(g1Fi)

1/(xi+γ). GM sends (Ai, xi) to Mi, using a secure channel. Mi checks

that e(Ai, wg
xi
2 ) = e(g1g̃

fi
1 , g2) and outputs ski = (fi, xi, Ai). The global

revocation token for Mi is rti = xi. GM outputs xi, Ai and the revocation
tokens.

SignCL(m, ski, gpk,mpk) Choose B ∈R G1 and compute J = Bfi , K = Bxi .
Choose a ∈R Zp, compute b = axi and T = Aiĝ

a
1 . Choose rf , rx, ra, rb ∈R Zp.

Compute R1 = Brf , R2 = Brx , R4 = KraB−rb , R3 = e(T, g2)−rxT
rf
2 T rb3 T ra4 .

Compute c=H(gpk||B||J ||K||T ||R1||R2| |R3||R4||m). Compute sf = rf +
cfi, sx = rx+cxi, sa = ra+ca and sb = rb+cb. Output: σ = (B, J,K, T, c, sf ,
sx, sa, sb, s1, . . . , sλ).

VerifyCL(m,σ, gpk,mpk,RL) 1. Signature Check:

Check that B, J,K, T ∈ G1 and sf , sx, sa, sb, s1, . . . , sλ ∈ Zp. Compute
R′1 = BsfJ−c, R′2 = BsxK−c, R′3 = e(T, g2)−sxT

sf
2 T sb3 T sa4 T c1 e(T,w)−c

and R′4 = KsaB−sb . Check that c=H(gpk||B||J ||K||T ||R′1||R′2||R′3||R′4|
|m).

2. Revocation Check: Check that ∀rti ∈ RL,K 6= Brti . Output valid if all
checks succeed. Otherwise output invalid.

RevokeCL(RL, rti) Add the member’s revocation token rti to the current re-
vocation list RL and publish the thus updated RL.

OpenCL(σ, gpk,mpk,msk, {rti|Mi is in the group}) For every member Mi ∈
G, use the Revocation Check algorithm on the signature σ with a revocation
list set as RL = {rti}. When the test fails, output the corresponding Mi.

We now describe the BP scheme. Notice that, since it enables BU, algorithms
depend on the time period.



KeyGenBP (µ) Run KeyGenCL(µ). Furthermore, choose a security parameter
λ for the proofs of knowledge involving double logarithms. Pick h1, . . . , hT ∈R
Z∗q and add λ and the hj ’s to gpk

JoinBP (Mi,msk, gpk,mpk) Run JoinCL(Mi,msk, gpk,mpk). Moreover, the re-
vocation token for Mi at period j is rtij = hxi

j .

SignBP (m, j, ski, gpk,mpk) Run the SignCL(m, ski, gpk,mpk) algorithm with

some adaptations: in addition to B, J and K, compute L = Bh
xi
j and add

j and L in the input of the hash function to compute c. Moreover, pick

r1, . . . , rλ ∈R Zp. Compute Vl = Brl and Wl = Bh
rl
j , ∀l = 1 . . . λ. Com-

pute d = H(c||(Vl,Wl)l=1...λ). ∀l = 1 . . . λ, let bl be the lth bit of d. Set
sl = rl − blx. Add L, d, s1, . . . , sλ to the output.

VerifyBP (m,σ, j, gpk,mpk,RL,RLj) 1. Signature Check:

Run the Signature Check of VerifyCL(m,σ, gpk,mpk,RL) with some
adaptations: check that L ∈ G1 and that s1, . . . , sλ ∈ Zp, and add j and
L in the input of the hash function to compute c. ∀l = 1 . . . λ, let bl be

the lth bit of d.. Compute V ′l = BslKbl and W ′l = (B1−blLbl)h
sl
j . Check

that d = H(c′||(V ′l ,W ′l )l=1...λ).

2. Revocation Check:

Run the Revocation Check of VerifyCL(m,σ, gpk,mpk,RL). Moreover,
check that ∀rtij ∈ RLj , L 6= Brtij . Output valid if all checks succeed.
Otherwise output invalid.

RevokeBP (j, RL,RLj , rti, rtij) For a global revocation, run RevokeCL(RL, rti).
For a period revocation, add the member’s revocation token rtij to the cur-
rent revocation list RLj and publish the thus updated RLj .

OpenBP (σ, j, gpk,mpk,msk, {rtij |Mi is in the group}) For every member Mi

∈ G, use the Revocation Check algorithm on the signature σ with a revocation
list set as RLj = {rtij}. When the test fails, output the corresponding Mi.

Notice that the RevokeGS and OpenGS are standard procedures of VLR
group signature schemes and are not specific to the BP and CL schemes.

We recall the security results given in [8, 10], where DDH refers to the De-
cisional Diffie-Hellman assumption, DL to the Discrete Logarithm assumption
and q-SDH refers to the q-Strong Diffie-Hellman assumption [4]. The adapted
DHH is an adaptation of the DDH assumption described in [8].

Theorem 1 (Security of the BP and CL Schemes).

In the random oracle model, the CL scheme described above achieves Cor-
rectness, Selfless Anonymity (under the DDH assumption), Exculpability (under
the DL assumption) and Traceability (under the q-SDH assumption).

In the random oracle model, the BP scheme described above achieves Correct-
ness, Backward Unlinkability (under the adapted DDH assumption), Exculpabil-
ity (under the DL assumption) and Traceability (under the q-SDH assumption).



3 Our Model of Cross-Unlinkable Hierarchical Group
Signatures

We here describe our model for a hierarchical group signature setting where
groups follow a tree hierarchy. Our goal is to constrain that, when one wants to
acquire a group signature key for a group Gk, one has to prove that one belongs
to the parent group in the tree G. Our model does not change much the way
the members of a particular group use group signatures. It focuses on the way
the member keys for the different groups are linked to enable at the same time
a cascade derivation process and unlinkability between signatures issued by the
same user for different groups, in particular towards the group managers. In
our model, only the signer and the group manager of the concerned group (and
particularly not the other GM’s) are able to identify the producer of a given
signature. We also precise that, within a group, the way we use signatures does
not enable us to enjoy BU. Nevertheless, we achieve Selfless-Anonymity [5] as
for usual VLR group signature schemes, where, still, only the signer and the GM
are able to tell who produced a particular signature but where, once a member
has been revoked, he loses his anonymity on all his signatures.

3.1 Setting

We assume that there are several groups Gk organized as a tree G with a root
G0. Each group Gl has a group manager GMl and we will denote by k a l the
fact that the group Gk is a parent of the group Gl. The functionalities of our
protocol are the following.

KeyGen is an extension of the KeyGenGS algorithm to the hierarchical
group setting, it specifies how the parameter choices of the different group man-
agers should be related.

KeyGen(λ): This is run by the GM’s. It takes as input a security parameter
λ. GM0 first returns the public parameters gpk for all the group signatures.
Then each GMl creates a secret/public key pair (mskl,mpkl) and publishes
mpkl.

The Enrolment algorithm specifies how a group manager GMl and a user
Mi applying to join Gl interact to provide Mi with a key for Gl. If Gl 6= G0, this
algorithm calls the Derivation algorithm, that we describe next.

Enrolment(Mi,Gl): For a group Gl, this algorithm is jointly run by the group
manager GMl and a user Mi. The input for GMl is his secret key mskl, it
also requires the result of the Derivation algorithm if Gl 6= G0. It outputs
a key skli for member Mi for the group signature of Gl and the associated
revocation token rtli.

The Derivation algorithm is a key step of our setting. A member Mi ap-
plying to a group Gl, child of Gk in G, interacts with the manager GMl of Gl.



Mi proves that he owns keys for Gk and, if the proof has been successful, the
interaction enables Gl to derive a key for Mi for Gl that depends on his key for
Gk (but without learning the latter key). Using the thus derived key, GMl can
finalize the Enrolment algorithm and provides Mi with his new key.

Derivation(Mi,Gk,Gl): For a group Gl such that k a l, this algorithm is jointly
run by a user Mi requiring to get group signature keys for the group Gl and
the group manager GMl of Gl. The input for Mi is his group signature key
for the parent group Gk of Gl in G and the input for GMl is his secret key
mskl. It returns a new secret key for Mi for Gl if Mi successfully proves to
GMl that he is a non revoked member of Gk.

The Sign and Verify algorithms perform the same functionalities as the
SignGS and VerifyGS algorithms for a given group Gl, using group signatures
without Backward Unlinkability, such as the CL scheme for instance. Notice that
there are no time periods and the signatures are consequently independent of
the time.

Sign(Mi,m,Gl): For a group Gl, this is run by a user Mi. The input of Mi is
his secret skli and a message m. It returns a group signature σ issued by Mi

on behalf of the group Gl.
Verify(σ,m,Gl): For a group Gl, this is run by anyone knowing gpk and mpkl.

The inputs are a signature σ and a message m. It checks if σ is a legitimate
signature of m by an unrevoked member of Gl.

The Revocation algorithm answers to what we expect from our cascade
revocation capability. The goal of the downwards revocation process it to ensure
that once a user has been revoked from a given group Gl, this user is also revoked
from all groups that are children of Gl in G, the children of these children, and so
on. The optional upwards revocation is there to give the possibility for a group
manager to report to the parent group manager that a user has been revoked.
If this is not executed, GMk does not learn anything on the identity of the user
revoked by GMl.

Revocation(Mi,Gl): This recursive algorithm is run by the group manager
GMl of Gl who wants to revoke a member Mi of Gl. It takes as input the
revocation token rtli of the user Mi and the revocation list RLl of Gl.
1. Local Revocation: It returns an updated RLl where the revocation token
rtli of Mi for Gl has been added.

2. Downwards Revocation (compulsory): The newly published revocation
token rtli is sent to the GM ’s of the groups Gm that are children of Gl,
that then run the Revocation(Mi,Gm) algorithm, after a computation
enabling them to retrieve rtmi from rtli.

3. Upwards Revocation (optional): GMl sends an information rtkali to the
GMk of the group Gk that is the parent of Gl, who can then decide to
revoke (in that case we will say that the upwards revocation has been
accepted) or not the user, using rtkali to retrieve the user’s revocation
token rtki for Gk.



3.2 Requirements

We here describe the security properties that we expect from cross-unlinkable
group signatures. Correctness is the same property as in the mono-group setting.
Traceability and Cross-Unlinkability are adaptations of Traceability and Selfless-
Anonymity to our hierarchical group signature setting, with privacy issues in
mind.

Correctness: The signature of a member Mi who is registered to the group Gl
and who is not revoked from this group, using the Sign algorithm is accepted
by any verifier that follows the protocol.

Traceability ensures that if a signature σ for the group Gl is checked as valid,
then the manager GMl of Gl is able to find who made σ, and it is impossible to
mislead him.

Traceability: Setup: The challenger C runs the KeyGen algorithm, playing
the role of all the GM’s. He obtains gpk and (mpkl,mskl), for each Gl. He
provides A with all the mpkl’s and gpk.
Queries: A can make the following queries to the challenger:
– Enrol to G0: A requests the enrolment of a member Mi to G0. C obtains

the keys for Mi for G0. A obtains nothing.
– Derivation: A requests the enrolment of a member Mi to Gl, provided

that Mi is already registered to the parent group Gk of Gl. C obtains the
keys forMi for the group Gl. A obtains the keys only ifMi is corrupted. A
also obtains all the informations that were exchanged on public channels
during the derivation process.

– Sign: A requests that a member Mi of a group Gl signs for Gl using a
chosen challenge message m. The challenger computes the signature σ
of Mi on m. A obtains σ.

– User Corruption: A requests the corruption of a given member Mi. He
obtains all the secret keys of Mi for all the groups to which he is reg-
istered. Mi is revoked from G0, and, through Downwards Revocation,
from every group to which he belongs.

– GM Corruption: A requests the corruption of the manager GMl of a
group Gl. He obtains the secret keymskl ofGMl, and all the informations
stored by GMl: enrolment informations and the keys (and consequently
the revocation tokens rtli) of the members of Gl.

– Revocation: A requests the revocation of a user Mi from a group Gl
(and consequently, from all group under Gl in G, through Downwards
Revocation). He learns all the revocation tokens of Mi that are disclosed
during this phase. He can optionally request upwards revocations and,
in this case, he learns the informations sent by GMl to the managers of
the parent group. If he wants, he can then do a Revocation request on
this user for this parent group.

Output: A outputs a challenge message m, a signature σ and a group Gl such
that GMl has not been corrupted. A wins the game if:



1. Verify(σ,m,Gl)=valid;
2. A did not obtain σ by making a signing query on m.

The scheme is said to satisfy Traceability if no polynomial probabilistic ad-
versary is able to win the above game with a non-negligible probability.

The Cross-Unlinkability property is an extension of the Selfless-Anonymity
property to the hierarchical group setting. It is not an extension of the Backward
Unlinkability property, since we only use one period in the Sign algorithm.

The CU property ensures that a signature issued for the group Gl remains
anonymous even for the GM’s of other groups, for instance the parent or the
sibling groups in G.

We also insist on the fact that, in case of a revocation, if GMl does not inform
the manager GMk of the parent group Gk of Gl that a given user is revoked from
Gl, the manager of Gk is not able to know about the identity of this user.

Cross-Unlinkability: Consider the following CU game played by an adversary
A:
Setup: The challenger C runs the KeyGen algorithm, playing the role of
all the GM’s. He obtains gpk and (mpkl,mskl), for each Gl. He provides A
with all the mpkl’s and gpk.
Queries: A can make the following queries to the challenger:
– Enrol to G0: A requests the enrolment of a member Mi to G0. C obtains

the keys for Mi for G0. A obtains nothing.
– Derivation: A requests the enrolment of a member Mi to Gl, provided

that Mi is already registered to the parent group Gk of Gl. C obtains
the keys of Mi for the group Gl. A obtains these keys only if Mi is
corrupted. A also obtains all the informations that were exchanged on
public channels during the derivation process.

– Sign: A requests that a member Mi of a group Gl signs for Gl using a
chosen challenge message m. The challenger computes the signature σ
of Mi on m. A obtains σ.

– User Corruption: A requests the corruption of a given member Mi. He
obtains all the secret keys of Mi for all the groups to which he is regis-
tered.

– GM Corruption: A requests the corruption of the manager GMl of a
group Gl. He obtains the secret keymskl ofGMl, and all the informations
stored by GMl: enrolment informations and the keys (and consequently
the revocation tokens rtli) of the members of Gl.

– Revocation: A requests the revocation of a user Mi from a group Gl
(and consequently, from all group under Gl in G, through Downwards
Revocation). He learns all the revocation tokens of Mi that are disclosed
during this phase. He can optionally request upwards revocations and,
in this case, he learns the informations sent by GMl to the managers of
the parent group. If he wants, he can then do a Revocation request on
this user for this parent group.

Challenge: A outputs two challenge messages m and m′, two different mem-
bers M0 and M1 and two groups Gk and Gl. They must be such that:



1. M0 and M1 are registered to both Gk and Gl;
2. A corrupted neither M0 nor M1;
3. A corrupted at most one among GMk and GMl. And none is corrupted

if Gk = Gl;
4. M0 and M1 are revoked from at most one (and the same for both) group,

and, if this is the case, the GM of the other group is not corrupted. If
Gk = Gl, neither M0 nor M1 is revoked from Gk.

This implies in particular that in the case where M0 or M1 is revoked from
Gl (resp. Gk) and if Gk is the parent of Gl (resp. l a k), upwards revocation
should not be executed and accepted by the parent group manager.
C chooses two random bits b, b′ ∈R {0, 1} and signs for Mb on behalf of
Gk using message m and for Mb′ on behalf of Gl using message m′. The
respective signatures σ∗ and σ′∗ are transmitted to A
Restricted Queries: A can make the same queries as in the Queries phase, as
long as he does not contradict the above requirements 1 to 4 of the Challenge
phase.
Output: A outputs a guess β′ ∈ {0, 1} on the boolean β = (b == b′).
The scheme is said to satisfy Cross-Unlinkability if the probability |Pr(β =
β′)− 1/2| is negligible.

We can also define a multi-group version of Exculpability, as a straightfor-
ward transposition of the definition of Exculpability for VLR group signatures
(see [8, 10]) to our hierarchical setting.

4 A Construction of Hierarchical Cross-Unlinkable
Group Signatures

In this section we describe our proposal for cross-unlinkable group signatures
that follows the model described in the previous section and fulfils the required
properties. This proposal is presented using the CL and BP schemes [8] but
could use any VLR group signature satisfying Backward Unlinkability such as
[15–17, 19]. We also give the proofs that our construction meets the security
requirements described in Section 3.2.

4.1 The Protocol

We recall that groups are organized as a tree G with a root G0. We use the BP
construction with the requirement that each group signature linked to a group
Gk to have one period per child Gl of Gk in G, called the “k a l” period, that
will be used in the Derivation process, but never in the Sign algorithm, where
we use a CL signature with the same parameters.

KeyGen(λ) GM0 runs the KeyGenCL algorithm to generate the public pa-
rameters gpk0 = gpk. Then each GMl, including GM0, creates a CL/BP
group key pair (mpkl, mskl) using the same group parameters gpkl = gpk.



The mskl’s are kept secret by the GM’s. gpk and all the mpkl’s are pub-
lished. Moreover, all GMl’s agree on a random choice of period tokens. In
every group Gk,one token hkal per child Gl is required for the “k a l” periods.
All theses tokens are made public.

For the Enrolment phase, we assume that Mi has fulfilled all the conditions
to acquire a key for Gl. We distinguish two cases of enrolments, either a first
enrolment to a group of G, or an enrolment taking place after a derivation
process.

Enrolment(Mi,Gl) Mi and GMl jointly run the JoinBP (Mi,msk
l,gpk,mpkl)

algorithm of the BP group signature of Gl, following two cases:
– Enrolment to G0: GM and Mi follow the BP protocol, in particular x0i

is randomly chosen by GM. It outputs a secret key sk0i = (f0i , x
0
i , A

0
i ), a

global revocation token rt0i = x0i and period revocation tokens rt0ami =

(h0am)x
0
i , for each child Gm of G0 in G.

– Enrolment after a Derivation: GM uses the output of the Derivation
as the choice for xli. It outputs a secret key skli = (f li , x

l
i, A

l
i), a global

revocation token rtli = xli and period revocation tokensrtlami = (hlam)x
l
i ,

for each child Gm of Gl in G.
At the end of this algorithm, GMl stores xli, A

l
i, rt

l
i and the period revocation

tokens. Mi gets skli = (f li , x
l
i, A

l
i). This phase is partially done in a secure

way so that no eavesdropper can learn the keys (xli, A
l
i) that are sent by GMl

to Mi.

We now explain how to derive signing keys. Let Gk be the parent group of
Gl in G and let us assume that a user Mi owns keys for Gk and wants to acquire
keys for the group Gl. Mi has to engage a specific authentication process with
the group manager GMl of Gl.

First, the user authenticates to GMl by signing on behalf of Gk, parent of Gl
in G, to prove that he is allowed to join Gl. This signature is associated to the
period “k a l”, dedicated to the derivation from Gk to Gl. In addition, Mi sends
his revocation token rtkali associated to the “k a l” period.

The group manager GMl then acts as a verifier for the group signature of Gl
and first checks the validity of the signature and the fact that Mi is not revoked
by executing VerifyCL (see Section 2.3) on the signature, using the revocation
list RLk containing the global revocation tokens of all the revoked members of
Gk. He then checks that the revocation token rtkali is the one associated to Mi

for the period “k a l” by executing VerifyBP on the signature using a period
revocation list set as {rtkali }; if the Revocation Check fails, then rtkali is valid.

Then, a key derivation is executed in such a way that the expected revo-
cation mechanisms would apply while satisfying the requirements defined in
Section 3.2. We are in fact exploiting the BU property, without introducing pe-
riods that really represent time. We only use the BU part to the purpose of
Cross-Unlinkability while ensuring the possibility of later downwards and up-
wards revocations. Indeed, the group Gl will be in a sense seen as a time period
for the group signature associated to Gk.



Once GMl is sure that Mi is an unrevoked member of Gk, Mi and GMl

can run the enrolment procedure for the group Gl with one requirement: xli
is derived from rtkali using a hash function and the secret key mskl of GMl:
xli =Hash(mskl||rtkali ). This will be used by our cascade revocation process,
since xli is also the revocation token rtli of Mi for the group Gl. As said before,
this enrolment phase must be partially executed in a secure environment.

This derivation process is described in Figure 2.

User Mi Group Manager GMl

challenge message m

Derivation Phase

m

σ =SignBP (m, k a l, skki , gpk,mpkk)
σ, rtkal

i =(hkal)
rtki

Check that VerifyCL(m,σ, gpk,mpkk, RLk) succeeds

Check that VerifyBP (m,σ, k a l, gpk,mpkk, {}, {rtkal
i }) fails

Derive xli = rtli =Hash(mskl||rtkal
i )

JoinBP (Mi, msk
l,gpk,mpkl) using xli

Enrolment Phase

Store skli Store (rtkal
i , rtli, x

l
i, A

l
i) in DBGk

Fig. 2. The derivation process

Derivation(Mi,Gk,Gl) GMl sends a message m. Mi signs the challenge mes-
sage m by executing SignBP (m, k a l, skki , gpk, mpkk). He also sends his
associated revocation token rtkali .
GMl checks the signature by executing VerifyCL(m, σ, gpk, mpkk, RLk).
In addition, he checks that rtkali has been used in the signature, by checking
that the revocation check of VerifyBP (m,σ, k a l, gpk,mpkk, {}, {rtkali })
fails.
Mi and GMl run the Enrolment(Mi,Gl) algorithm using the Enrolment
after a Derivation setting with xli =Hash(mskl||rtkali ) as input.
GMl stores in a dedicated database DBGl the couple (rtkali , rtli), which will
be used for the revocation process.

The Sign and Verify algorithms are direct applications of the CL scheme
algorithms. The CL scheme is dedicated to the signature and is not used for
derivation. We will also see in the Revocation description that we only use re-
vocation lists made of global revocation tokens. Therefore, we use the VerifyCL



algorithm as Verify algorithm, VerifyBP being only used in the derivation pro-
cess.

Sign(Mi,m,Gl) Mi runs the SignCL algorithm of the group signature associ-
ated to Gl , i.e. he executes SignCL(m,skli,gpk,mpkl).

Verify(σ,m,Gl) The verifier runs VerifyCL(m, σ, gpk, mpkl,RLl).

Let us assume that the group manager GMl of Gl wants to revoke a member Mi.
He proceeds as follows.

Revocation(Mi,Gl) Local Revocation: GMl runs the RevokeCL(RLl, rt
l
i)

algorithm. The updated RLl is published.
Downwards Revocation: This direction is automatic. All managers for

the children groups (Gm)m∈M of Gl in G learn the revocation token rtli.

They all compute (hlam)rt
l
i and look in their databases DBGm ’s if this

token is present. If it is, they start the Revocation(Mi,Gm) algorithm
for the associated user, using the revocation token rtmi associated to the

couple containing (hlam)rt
l
i in DBGm .

Upwards Revocation: We recall that this part of the Revocation algo-
rithm is optional. GMl can report to the manager of the parent group
Gk of Gl the user Mi if he thinks that GMk should revoke him too. He
sends to GMk the item rtkali associated to Mi in DBGl . If GMk wishes to

discover to whom it corresponds, he computes (hkal)
rtk

i′ for all the Mi′ ’s

that belong to Gk. When (hkal)
rtk

i′ = rtkali , the associated user Mi′ is the
user Mi that was revoked by GMl. GMk can then, if he desires, revoke
Mi′ from Gk.

Notice that, when GMk does not revoke Mi, if other GM’s, for instance the
siblings of Gl in G, have access to the token rtkali sent by GMl, they cannot
link the corresponding member to one of their users, thanks to BU, since
rtkali is only a period revocation token and thus cannot be linked to the
revocation token of the same user for another period.

4.2 Security Analysis

We now prove that our construction satisfies the requirements defined in Sec-
tion 3.2. We rely on the fact that the BP scheme satisfies the properties de-
fined in Section 2.2, i.e. Correctness, Backward-Unlinkability, Exculpability and
Traceability, as stated in Theorem 1. Therefore, our construction also relies on
the q-Strong Diffie-Hellman [4], the adapted Diffie-Hellman [8] and the Discrete
Logarithm assumptions.

Theorem 2. The protocol defined in Section 4.1 achieves Correctness.

The proof of Correctness is straightforward, as it only requires that all the
underlying BP group signatures achieve Correctness.

Theorem 3. In the random oracle model and under the adapted DDH assump-
tion, the protocol defined in Section 4.1 achieves Cross-Unlinkability.



Proof (Cross-Unlinkability). Let us assume that there is an adversary A that
is able to win the CU game with non-negligible probability, we describe how to
build an adversary B that is able to win the BU game of the BP group signature
with non negligible probability. Let G∗ be the group considered in the BP BU
game, the challenger C considered in the following is the challenger of the BU
game and we use a BU notation to denote a step of the BU game. We model the
hash function Hash as a random oracle. When B uses it, he picks a uniformly
random number while preserving consistency.

B proceeds as follows to play the BU game with A.
Setup: The challenger C runs the KeyGenCL algorithm, playing the role

of the GM GM∗ of G∗. He obtains gpk∗, mpk∗ and msk∗. He provides B with
gpk∗ and mpk∗. B then builds a group tree G and picks a random node of this
tree to be the one for G∗. He fixes the public parameters for G to be the public
parameters mpk∗ of G∗, then chooses secret and public keys for the other groups
and provides A with the public keys.

We assume that the number of period of the group signature of the BU is
bigger than the number of children of G∗ in G. We use, in addition to the k a l
periods, another period called “0”.

B answers to the Queries of A in the following way:

– Enrol to G0: If G0 6= G∗, B follows the protocol. Otherwise, he makes a
JoinBU request to C for the considered user Mi.

– Derivation: When B requests the enrolment of a member Mi to Gl, provided
that Mi is already registered to the parent group Gk of Gl, if Gl 6= G∗ and
Gk 6= G∗, B follows the protocol.

• If Gk = G∗, B makes a SignBU request to C on Mi for the period “k a l”.
He then makes a RevocationBU query onMi for the same period to obtain
rtkali . (This revocation does not impact the sequel, since the user signs
at most once for the derivation from Gk to Gl. Moreover, thanks to BU,
there is no impact on anonymity.) He sends both signature and periodic
revocation token to A and enrols Mi to Gl following the protocol.

• If Gl = G∗, B follows the protocol to issue the signature and the periodic
revocation token. He then makes a JoinBU request to C on Mi. As the
hash function used to derive keys is modelled as a random oracle, it is
impossible for A to distinguish between the random choice xi of C and
what should have been really issued with msk and rtkali . Moreover, con-
sistency of the random oracle is preserved with overwhelming probability
(it is almost impossible that B also invokes it on msk||rtkali ).

– Sign: If Gl 6= G∗, B follows the protocol. Otherwise, B makes a SignBU

request to C for period 0 and member Mi and, after having removed the
BU part (the items in bold font in the description of Section 2.3), sends the
obtained signature σ to A.

– User Corruption: B sends to A all the secret keys of Mi for all the groups
(6= G∗) to which Mi is registered. If Mi belongs to G∗, B also makes a
CorruptionBU request on Mi to GM∗, obtains the key of Mi for G∗ and
sends it to A.



– GM Corruption: If Gl 6= G∗, B follows the protocol. Otherwise, he aborts.
– Revocation: B follows the protocol as far as G∗ is not concerned by the

revocation process. If it is, B requests the global revocation token of the
user from C and publishes it. For the Upwards Revocation case, B follows
the protocol (he is able to do it, since he knows all derivation informations).

Challenge: A outputs two challenge messages m and m′, two different mem-
bers M0 and M1 and two groups Gk and Gl fulfilling the conditions mentioned in
the CU game. If Gk 6= G∗ and Gl 6= G∗, B aborts. Otherwise, we assume w.l.o.g.
that Gk = G∗. B chooses a random bit b′, signs m′ for Mb′ for the group Gl to
obtain σ′∗. He then proceeds to the ChallengeBU phase with C with a choice
m, M0, M1 and period “0”. (It is easy to check that we fulfil the requirements
of the ChallengeBU phase.) B obtains a signature σ∗. Let us denote by b the
random bit chosen by C. σ∗ and σ′∗ are transmitted to A.

Restricted Queries: A and B interact as in the Queries phase, as long as it
does not contradict the requirements of the Challenge phase.

Output: A outputs a guess β′ ∈ {0, 1} on the boolean β = (b == b′). If
(β′ = 1), B outputs b′, else it outputs 1− b′.

We can see that the cases of abortion by B happen with non-overwhelming
probability. Since the advantage of A against the CU game is non negligible,
so is the advantage of B against the BU game, which would contradict the fact
that the BP scheme is backward-unlinkable.

Thus, our protocol achieves Cross-Unlinkability. ut

Theorem 4. In the random oracle model and under the q-SDH assumption, the
protocol defined in Section 4.1 achieves Traceability.

Proof (Traceability). Let us assume that there is an adversary A that is able
to win the Traceability game with non-negligible probability, we describe how
to build an adversary B that is able to win the Traceability game of the BP
group signature with non negligible probability. Let G∗ be the group considered
in the BP Traceability game, the challenger C considered in the following is the
challenger of the BP Traceability game. We model the hash function Hash as
a random oracle. When B uses it, he picks a uniformly random number while
preserving consistency.

We proceed exactly as in the CU proof for the Setup and the Queries phases.
We now explain how to manage the Output phase.

Output:A outputs a messagem, a signature σ and group Gl. If Gl 6= G∗, abort.
Otherwise, B outputs m, σ and period “0” to C. Then, as the requirements for
both considered games are equivalent, if A wins the BP Traceability game, B
wins the Traceability game.

We can see that the cases of abortion by B happen with non-overwhelming
probability. Since the advantage of A against the BP Traceability game is non
negligible, so is the advantage of B against the Traceability game, which would
contradict the fact that the BP scheme is traceable.

Thus, our protocol achieves Traceability. ut



The proof that Exculpability of the underlying BP group signature scheme
implies Exculpability of the protocol is straightforward.

5 Application to Anonymous Authentication

In [7], Bringer et al. suggest to use VLR group signatures to build a biometric
anonymous authentication scheme. Their scheme is based on the [5] scheme but
can easily be instantiated using any VLR scheme. It can also easily be extended
to a non-biometric setting. We describe it with the notations of Section 2.3 for
the users keys.

In the [7] setting, members of a group G authenticate to service providers P
(who are different from GM) while remaining anonymous within G. Moreover,
secret keys of the users are derived from an acquisition of a biometric trait. When
a user Mi applies to join G, an acquisition b of a biometric trait B is made. The
group manager and the user then run the JoinGS algorithm with the additional
requirement that fi = H(b) where H is a hash function. Mi then stores b and
xi, Ai on a device such as a smart-card.

When Mi wants to authenticate to a service provider P , he connects his
device to a trusted sensor. He is acquired a fresh biometric trait b′. The sensor
also gets b and Ai from the device. If b and b′ match, then the sensor signs
a challenge message sent by P using SignGS with fi = H(b), xi and Ai. P
then checks the signature using VerifyGS and accepts the authentication if the
signature is valid. This authentication process is summed up in Figure 3.

Human user H Sensor S Service Provider P

b′ ∼? b, fi = H(b)

σ =SignGS(m, ski, gpk,mpk)

VerifyGS(m,σ, gpk,mpk,RL)

challenge message m
b′ (Scanning)

b, xi, Ai (from card)

σ

Authentication

Fig. 3. The [7] authentication scheme.

We can adapt our hierarchical setting to the [7] setting. In this case, several
hierarchical groups are available to users and they can anonymously authenticate
towards service providers requiring belonging to one or several of these groups.
The group signatures associated to these groups are then cross-unlinkable hier-
archical group signatures as described in this paper. The adaptation is straight-
forward and the use of biometrics does not impact our constructions, since we
had no requirements on the f li parts of the secret keys of the users.



This adaptation of the [7] authentication scheme can for instance be a basis
for an identity management system where the groups are the identity domains
and where users get identities for these domains, which are not linkable to each
other, except in case of revocation.

A more detailed presentation of the adaptation of cross-unlinkable group
signatures to biometric identity management can be found in [6].
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