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Abstract

A secret-sharing scheme realizes a graph if every two esrttonnected by an edge can reconstruct
the secret while every independent set in the graph doesat@tny information on the secret. Similar
to secret-sharing schemes for general access structuees are gaps between the known lower bounds
and upper bounds on the share size for graphs. Motivateddyuestion of what makes a graph “hard”
for secret-sharing schemes (that is, require large shamesytudy very dense graphs, that is, graphs
whose complement contains few edges. We show that if a gréhhawertices containzﬁg) —nlth
edges for some constaiit< g < 1, then there is a scheme realizing the graph with total shiaeeo$
O(nb/4+36/4) . This should be compared ©@(n?/ logn) — the best upper bound known for the share
size in general graphs. Thus, if a graph is “hard”, then tlaphand its complement should have many
edges. We generalize these results to nearly complammogeneous access structures for a constant
k. To complement our results, we prove lower bounds for sedtrating schemes realizing very dense
graphs, e.g., for linear secret-sharing schemes we proveer bound of(n'*#/2) for a graph with
() — n'** edges.

Key words. Secret sharing, share size, graph access structuresaksmag cover number.

1 Introduction

A secret-sharing scheme, introduced by [9, 45, 32], is a auklly which a dealer, which holds a secret
string, can distribute strings, called shares, to a set iggzants, enabling only predefined subsets of par-
ticipants to reconstruct the secret from their shares. ©Heation of predefined subsets authorized to recon-
struct the secret is called the access structure. We consédiect schemes, in which any unauthorized set
of participants should learn nothing about the secret fitwgir tombined shares (even if they have unlimited
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fPartly supported by the Spanish Government through psjeBi201127076-C03-01, 2010 CSD2007-00004, and by the
Catalan Government through grant 2009 SGR 1135. Most of bik was done while at Ben Gurion University.



power). Secret-sharing schemes are useful cryptograpfiiding blocks, used in many secure protocols,
e.g., multiparty computation [7, 17, 19], threshold crypaphy [25], access control [41], attribute-based
encryption [31, 53], and oblivious transfer [46, 52].

For a scheme to be efficient and be useful for the above memtiapplications, the size of the shares
should be small (i.e., polynomial in the number of partiaigd There are access structures that have
efficient schemes, e.g., the threshold access structurehich the authorized sets are all sets containing
at least/ participants (for some threshol) [9, 45]. For every access structure there exist secratrgha
schemes realizing it [32]. However, the best known schemiegdneral access structures, e.g., [8, 47, 13,
35], are highly inefficient, that is, for most access strtetuthe size of shares 2™) wheren is the
number of parties in the access structure. The best lowerdkiown on the total share size for an explicit
or implicit access structure &(n?/logn) [21]. Thus, there exists a large gap between the known upper
and lower bounds. Bridging this gap is one of the most immbrtaestions in the study of secret-sharing
schemes. We lack sufficient methods for proving lower bowrdshe share size. Furthermore, we lack
the sufficient understanding of which access structureshamel”, that is, which access structures require
large shares (if any). In contrast to general secret-shpastiemes, super-polynomial lower bounds are
known forlinear secret-sharing schemes, that is, for schemes where thessdrar generated using a linear
transformation. That is, there exists an explicit accesgtire such that the total share size of any linear
secret-sharing scheme realizing iti€(°s™) [3, 29, 30]. Linear secret-sharing schemes are important as
most known secret-sharing schemes are linear and manygrapthic applications require that the scheme
is linear. For more background on secret sharing see [4].

In this paper we consider a special family of access strasfun which all minimal authorized sets are
of size2. These access structures can be described by a graph, velobreagticipant is represented by a
vertex and each minimal authorized set is represented bgga eGraph access structures are useful and
interesting and have been studied in, e.g., [10, 12, 14,2242, 26, 38, 49, 51]. Some of the results found
for graph access structures, using graph theory, weredatended to apply to all access structurea. This is
illustrated by the next example.

Examplel.1 Blundo et al. [12] proved that the best share size of a scheme graph access structures is

either the size of the secret or at least 1.5 times larger tansize. This was generalized later to many
other families of access structures. Marti-Farré and@ 9] proved that the share size of every access
structure that is nanatroidalis at least 1.5 times larger than the size of the secret.

Other results on graph access structures have been extenldechogeneous access structures [37, 43, 48],
which are access structures whose minimal authorized wsubse of the same size, and access structures
described by simple hypergraphs [20, 50].

Every graph access structure can be realized by a secratgisaheme in which the total share size
is O(n?/logn) [15, 11, 27]; this scheme is linear. The best lower boundHertotal share size required
to realize a graph access structure by a general secrétgisaheme i$)(nlogn) [26, 10, 22]. The best
lower bound for the total share size required to realize algaccess structure by a linear secret-sharing
scheme i$)(n%/2) [6]. Although the gap between the lower and upper bounds ilenthan that of general
access structures, studying this gap might reveal newtingigt could be applied to the share size of general
access structures.

There are 3 main techniques for proving lower bounds on the ai shares in linear secret-sharing
schemes, namely, the self-avoiding criterion [6], Gafitecion [29], and Gal and Pudlak’s criterion [30].
Mintz [40] studied the limitations of these technigues fooying lower bounds for linear secret-sharing
schemes realizing graphs. He proved that the criteria cdufil][30] cannot prove lower bounds better than
Q(n%/?), and Gal's criterion [29] cannot improve upon this loweubd under some restriction (namely,



using rank 1 matrices). All applications of Gal's criteriare under this restriction. The conclusion from
Mintz’s results is that proving a lower bound better tifam?3/2) for graph access structures requires some
new ideas.

1.1 Our Results

In this work we study a natural family of graphs — the very @gegiaphs. These are graphs that h@@& l
edges forr < n? (wheren is the number of vertices in the graph). The motivation fas thiork is trying
to understand which graphs are “hard”, that is, which graphaire total share size 6f(n?/ polylog n) (if
any). For example, if a graph contaif®dges, then it can be realized by a trivial secret-sharinghich
the total share size & times the size of the secret [32]. Thus, if there exists adhgraph then it has to
have()(n?/ polylogn) edges. We are interested in the question if these “hard’ngrapn be very dense.
Our results show that this is not possible.

Our main result is that if a graph h&%) — n'™ edges for some < 3 < 1, then it can be realized by a
secret-sharing scheme in which the total share siz&ig/*135/4):1 this scheme is linear. In particular, if
B is a constant smaller thal the total share size ig n?, that is, these are not “hard” graphs as discussed
above. Similarly, if3 < 1/3, then the share size i§n>/?); thus, these graphs are easier than the graphs for
which [6] proved their lower bounds for linear secret-shgrschemes. As a corollary of our main result we
prove that if a graph haf)) — ¢ edges, wheré < n/2, then it can be realized by a scheme in which the
share size is. + O(£°/4). Thus, if¢ < n*/®, then the total share sizesist o(n), which is optimal up to an
additive factor ofo(n).

We extend the techniques used in this result to the study @faiditional problems. First, we consider
the following scenario: we start with a graph and remove felges from it. The question is how much
the share size of a secret-sharing scheme realizing thé geapgrow as a result of the removed edges. If
we add edges, then trivially the share size grows at mosiriyén the number of added edges. We show
that also when removing edges, the share size does not$ectea much. We study this problem also for
general access structures, considering the removal ofmalrauthorized subsets for any access structure.
We show that for certain access structures the share sizenwéncrease too much either. Second, we
study the removal of minimal authorized subsets frokout-of-» threshold access structures. We present
a construction with total share siz&¢n) for k < n.

To complement our results, we prove lower bounds on the siaeecof secret-sharing schemes real-
izing very dense graphs. For graph access structures, thenklower bounds for general secret-sharing
schemes [26, 10, 22] and linear secret-sharing schemeségs$parse graphs withnlogn) edges and
0(n%/?) edges, respectively. Using the above lower bounds, we goover bounds of2(3n log n) and
Q(n!/25/2) for general and linear secret-sharing schemes respscfivesome graphs witlf}) — n'*#
edges. In addition, we prove lower bounds:ef ¢ for graphs With(g) —( edges, wheré < n/2. Our lower
bounds are not tight, however, they prove, as can be expdbsgdor linear secret-sharing schemes the to-
tal share size grows as a function of the number of excludgésdThe lower bounds for linear schemes
are interesting as most known secret-sharing schemeagdinglthe schemes constructed in this paper, are
linear.

We use the) notation which ignores polylogarithmic factors.



1.2 Techniques

Brickell and Davenport [14] proved that a connected grapharaideal scheme (that is, a scheme in which
the total share size istimes the size of the secret) if and only if the graph is a cetepiultipartite grapf.

To construct a scheme realizing a very dense graph, we dowgraph by complete multipartite graphs (in
particular, cliques), that is, we construct a sequence dfipartite graphsG,, G, . . ., G, such that each
graphG; is a subgraph of7 and each edge aF is an edge in at least one graph. We next, for every,
share the secret independently using the ideal secratghsmrheme realizing:;. The total share size in the
resulting scheme is the sum of the number of vertices in thplgG1, Go, . . . , G,.. This idea of covering a
graph was used in previous schemes, e.g., [11, 12]. Theiloatidn of this paper is how to find a “good”
cover for every dense graph.

Our starting point is constructing a scheme for graphs irctwigivery vertex is adjacent to nearly all
other vertices, that is, graphs where the degree of evetgxan the complement graph is bounded by
somed <« n. We cover such graphs by equivalence graphs, that is, gmpleh are union of disjoint
cliques. Alon [1] proved, using a probabilistic proof, tleatery such graph can be covered®gd? log n)
equivalence graphs. We improve on this result, and provegwsdifferent probabilistic proof, that every
such graph can be covered bYd log n) equivalence graphs. The total share size of the resultingnse is
O(dn).

We use the above scheme to realize very dense graphs. Weofiestall vertices whose degree in the
complement graph is “big”. There are not too many such v&stio the complement graph, and the share
size in realizing each star (namely, a vertex and its adjeexdges) is at most. Once we removed all edges
adjacent to vertices whose degree is “big”, we use the coy@qgbivalence graphs to cover the remaining
edges. To achieve a better scheme, we first remove vertidaglotiegree using stars, then use covers of
bipartite graphs of [34] to further reduce the degree of #irtices in the complement graph, and finally use
the cover by equivalence graphs.

Additional Related Work. Sun and Shieh [50] consider access structures that are didfjneforbidden
graph, where each party is represented by a vertex,2qpatties are an unauthorized set iff their vertices are
connected by an edge. They give a construction with infaonaatio ofn /2. In [50], every set of siz8 can
reconstruct the secret. Our problem is much harder as evdepéendent set in the graph is unauthorized.

2 Preliminaries

In this section we define secret-sharing schemes and preuithe background material used in this work.
We present a definition of secret-sharing as given in [18, 5].

2.1 Secret Sharing

Definition 2.1. Let P = {py,...,p,} be a set of parties. A collectioh C 2 is monotonef B € T" and
B C Cimply thatC € I'. Anaccess structurie a monotone collectiofl C 27 of non-empty subsets &%
Sets inl" are calledauthorizedand sets not if" are calledunauthorized The family of minimal authorized
subsets is denoted hyinI.

2A graph is a complete multipartite if its vertices can be ifiarted into disjoint sets, called parts, such that therenisdge
between two vertices iff they are from different parts. Fdditional graph terminology used in the rest of this sectsse Sec-
tion 2.2.



A distribution schemé& = (II, ) with domain of secret# is a pair, wherey is a probability distri-
bution on some finite sdt called the set of random strings artlis a mapping fromK x R to a set of
n-tupleskK; x Ks x --- x K,, whereK is called thedomain of shareef p;. A dealer distributes a secret
k € K according toX by first sampling a random string € R according tou, computing a vector of
sharedI(k,r) = (s1,...,sn), and privately communicating each shargeto party p;. For a setA C P,
we denotdl(s,r) 4 as the restriction ofll(s,r) to its A-entries. The (normalizedptal share sizef a
distribution scheme i3, ;. log |K;;|/log | K|.

Definition 2.2 (Secret Sharing)Let K be a finite set of secrets, wheflg| > 2. A distribution scheme
(I1, ) with domain of secret¥ is a secret-sharing schemealizing an access structuie if the following
two requirements hold:

CORRECTNESS The secret: can be reconstructed by any authorized set of parties. Thdbr any set
B = {pi,...,piz}t €T, there exists aeconstruction functioieconp : K;, x ... x Kj , — K such
that for everyk € K,

Pr [ReconB <H(k‘,7“)3> = k‘} = 1. (1)

PRIVACY. Every unauthorized set cannot learn anything about thestéirr the information theoretic sense)
from their shares. Formally, for any sét¢ T, for every two secrets, b € K, and for every possible vector
of shares(s;)p,er,

PI‘[ H(a7 7G)T - <Sj>pj€T ] = PI‘[ H(b7 T)T - <Sj>pj€T ] (2)

Remarks2.3. There is an alternative definition of secret-sharing sclsefagy., [36, 16]) using the entropy
function. For this definition, it is assumed that there is sdmown probability distribution on the domain
of secrets and require that the secret and the shares of every unazgti@ubset are independent random
variables (this can be formulated, e.g., using the entrapgtfon). The two definitions are equivalent [4].

In this work we mainly consider graph access structures. (GLet (V, E) be an undirected graph.
We consider the graph access structure, where the paréetheuvertices of the graph and the minimal
authorized sets are the edges. In other words, a set ofe®iten reconstruct the secret iff it contains an
edge. In the rest of the paper we will not distinguish betwihergraph and the access structure it describes
and we will not distinguish between vertices and parties.

2.2 Graph Terminology

We define the graph terminology that we use throughout thpepd hedegreeof a graph is the maximum
degree of vertices in a graph. A graph = (V' E') is asubgraphof a graphG = (V, E) if V! C V and
E' C E. We next define covers of graphs, which is used for our coctstm of secret-sharing schemes.

Definition 2.4. LetG = (V, E) be a graph. We say that a collection of graghs = (V1, E1),...,G, =
(V;, E;) coverG if eachG; is a subgraph off and E = U]_, E;.

A k-partite graphG = (V4,..., Vi, E), whereVy, ..., V; are disjoint, is a graph, whose vertices are
V = Ui-“:le, such that if(u, v) € E, then there are indiceis# j such thatu € V; andv € Vj (that is,
there are edges only between vertices in different partg)pArtite graph isompletef it contains all edges
between vertices in different parts. A graph imaltipartite graph if it is k-partite for some:. For example,
a clique is a completé-partite graph, wheré is the number of vertices in the clique. A bipartite graph in
which |V;| = 1 is called astar; the vertex inV; is thecenterand the ones i, are theleaves
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2.3 Graphs and Secret Sharing

Brickell and Davenport [14] proved that a connected graphlmarealized by an ideal scheme (that is, by a
scheme with total share sizg iff the graph is a complete multipartite graph. As we useitleal scheme
for multipartite graphs we describe it below.

Theorem 2.5([14]). LetG = (V4,..., Vi, E) be a complete multipartite graph and > & be a prime.
There is a linear secret-sharing realizing where the domain of secrets and the domain of shares of each
party are{0,...,p — 1}.

Proof. Lets € {0,...,p — 1} be the secret. We first generate shares in Shatist-of-k scheme [45] for
the secres. Thatis, we choose € {0, ...,p — 1} at random with uniform distribution and we compute the
shares; = a-i+ s mod p for 1 < i < k. Next, we gives; to all vertices inV;. Two vertices from different
parts, sayl; andV;, can reconstruct the secret as follows= (js; — is;)/(j — ) (where the arithmetic is
in I, — the finite field withp elements). On the other hand, if a §ets unauthorized, then it is contained in
someV; and all the vertices ifi"’ hold the same share in Shamir's scheme and do not have amgnaifon

on the secret, that is, this share is uniformly distribute¢d, ... ,p — 1}. O

Remarks2.6. The total share size in the above scheme.idHowever, it requires that > k. In the rest

of the paper we assume that> n, thus, we can realize every multipartite subgraph of a gi@phith n
vertices. This is a reasonable requirement that assumiethéhaumber of bits in the secret is at lekgin.
We will not mention the size of the secret in the rest of thegpamd only consider the total share size of
the scheme.

In the rest of the paper we will construct schemes, where wes# subgraphs @f which are multi-
partite, and share the seceeihdependently for each subgraph. The following is a weltskn lemma.

Lemma 2.7. LetG = (V, E) be a graph and7, = (V4, E4),...,G, = (V,, E,) be a cover of7 such that
eachG, is a complete multipartite graph. Assume that we share asedndependently for eacty; using
the multipartite scheme. Then, the resulting scheme essffawith total share sizé";_, |Vj|.

Proof. First, let(u,v) € E be aminimal authorized set. Then, there exists at leastsuneh thatu, v) € E;
andu, v can reconstruct the secret from the shares of the schen@ngal;.

On the other hand, |4t be an unauthorized set @, that is,T" is an independent set . SinceE; C E
for everyi, the parties ifl” get at most one different share in the scheme reali@dngAs in each scheme
we share the secratindependently (i.e., chooseindependently), the unauthorized §egets at most
random elements independent of each other, thus, they loavéonmation on the secret.

For everyi, in the scheme realizing’; we give each party iv; a share whose size is the size of the
secret, thus, the total share size to realize all the graptieicoverisy"._, |V;|. O

2.4 Description of the Problem

In this work we study the problem of realizing a graph accésgire, where the graph has few excluded
edges. Specifically, le = (V, E) be an undirected graph witl'| = n and|E| = (}) — ¢ for some
0 < ¢ < (5). We consider the complement graph= (V, E), wheree € E iff ¢ ¢ E. We callG the
excluded graptand call its edges thexcluded edgesln the rest of the paper, the excluded graplis a

sparse graph witkg (g) edges.



Example2.8 Assumel = 1, that is, there is one excluded edge, §ay_1, v, ). In this case, the graph can
be realized by an ideal scheme as the graph is the completel )-partite graph, where,,_;, v,, are in the
same part.

Example2.9. Assumel = 2, and there are two adjacent excluded edges,(8ays, v,) and (v,—1,v,).

In this case, the grapty¥ is not a complete multipartite graph, hence it cannot bezedlby an ideal
scheme [14]. However, it can be realized by a scheme in wldch ef the parties, ..., v,_3,v, gets a
share whose size is the size of the secretignd, v,,_1 get a share whose size is twice the size of the secret.
Thus, the total share sizens+ 2.

The scheme is as follows: Generate shares according to #mih2-out-of{n — 2) secret-sharing
scheme, and give party theith share in Shamir's scheme for< i < n — 2. In addition give tov,,_; and
v, the (n — 2)th share in Shamir’'s scheme. Using the above shares everpfgzarties, except for pairs
contained in{v,,—2, v,—1, v, }, Can reconstruct the secret. As the only authorized pdiv,ins, v,—1,v,} is
(Un—2,vn—1), We give them additional shares: we choose two random stringndr, whose exclusive-or
is the secret, and givg to v,_s andry to v,,_1.

The above scheme is a special case of the complete muligpadver scheme, where we cover the
graphG by two graphs: A graplé’; = ({vp—2,vn-1}, {(vn—2,vn—1)}) (that is,G; contains two parts and
one edge), and an — 2 complete multipartite graph where every for 1 < i < n — 3, is a part, and
{vn—2,vn_1,vy,}is a part.

By [11], the total size of shares to reali¢éis at least: + 2. That is, the above scheme is optimal.

3 Constructions for Bounded Degree Excluded Graphs

If the excluded graph contains few edges, then the averagreaef its vertices is small. We first construct
a scheme for graphs such that the degree of all vertices exdlsided graph is bounded by somie In
Section 4 we show how we can use this construction for anyhgrath few excluded edges.

The construction of a secret-sharing scheme for a géapihose excluded grapf has bounded degree
uses a cover ofr by cliques such that each vertex is contained in a relatiselgll number of cliques. This
is useful as cliques have an ideal scheme. To constructdkier gve use colorings of the excluded graph.

Definition 3.1. An equivalence grapfs a vertex-disjoint union of cliques. Aequivalence coveof G =
(V,E)isacoverGy = (V, Ey),...,G, = (V, E,) of G such that eacld; is is an equivalence graph.

Acoloringof a graphG = (V, E) with c colors is a mapping: : V — {1, ..., c} such thatu(u) # pu(v)
for every(u,v) € E.

Lemma 3.2. LetG = (V, E) be a graph such that the degree of every vertex in its exclgdaeh G is at
mostd. Then there exists an equivalence covetzafith » = 16d In n equivalence graphs.

Furthermore, there exists an equivalence cove6olvith r = 64dInn equivalence graphs such that
each(u,v) € Eis an edge in at leadh n graphs in the cover.

Proof. An equivalence cover aff can be described by a coloring 6fand vice versa: given a coloring
of G we construct an equivalence gragh = (V, E’), which is a subgraph of/, where two vertices iz’
are connected if they are colored by the same color, th@'is; {(u,v) : u(u) = u(v)}. For every color,
the set of vertices colored by such color is an independeiim €& hence a clique .

The existence of an equivalence covel®bf sizer is proved by using therobabilistic methodsee,
e.g., [2]). We choose random colorings:1, . . ., s, of G with 4d colors. That is, each coloring is chosen
independently with uniform distribution among all colasof G with 4d colors. For every coloring;,



we consider the equivalence grafih as described above. We next prove that with probability adtl@alf
G4, ...,G, is an equivalence cover df.

Let (u,v) € E. We first fixi and compute the probability thatandv have the same color in the random
coloring ;. Fix an arbitrary coloring of all vertices except ferandv. We prove that conditioned on this
coloring, the probability that. andv are colored in the same color is at leas{8d): The number of colors
not used by the neighbors afandv is at leas®d, thus, the probability thai is colored by such color is at
least half, and the probability that in this cases colored in the same color ass at leastl /(4d). That is,
with probability at least /(8d), the edgdu, v) is covered by the grap@;.

The probability that an edge:, v) is not covered by the random equivalence graplis, ..., G, is at

most
1 1 T< T 1
- — e = —.
8d ) — n2

Thus, the probability that there exists an edgev) € E that is not covered by therandom equivalence
graphsGy, ..., G, is at most(g) /n? < 1/2. In particular, such cover with equivalence graphs exists.
Furthermore, assume that we take= 64dInn random colorings. For an edde,v) € E, define a
Boolean random variabl&;, whereX; = 1 iff in the ith coloringu andv are colored in the same color, and
X; = 0 otherwise. Let¥ = $"%4"" X, Notice thatE(X) > 64dInn/8d = 81nn. By a Chernoff bound

Pr[X < Inn] < Pr[X < E(z)/8] < e BN-1/82/2 o g=2Inn _ 1 /2.

Thus, there exists a sequencedd In n colorings such that, for evelfy:, v) € E, in at leasin n colorings
u andv are colored in the same color. O

Remarks3.3 The existence of the equivalence cover in Lemma 3.2 is naitnactive as we need to choose a
random coloring of a graph of bounded degree. Such coloande chosen with nearly uniform distribution
in polynomial time using a Markov process [33, 44]. Given Bemion of equivalence graphs, it is easy to
check that for every edge:, v) € E there is at least one graph in the collection that coyers). If this

is not the case we repeat the process of choosiramdom colorings until we find a good collection. The
expected number of collections of colorings that have tohuesen before finding a good one$1). Thus,
we get a randomized polynomial-time algorithm to consttbetequivalence cover.

Alon [1] observed that the size of the smallest equivalenmeerc of a graphGG is smaller than the
smallest clique cover afi. He further proved that if the degree of every vertexirs at most/, thenG can
be covered by)(d? Inn) cliques. We directly analyze the size of the smallest edgmae cover and get an
equivalence cover of siz@(dInn). To the best of our knowledge such bound was not known priouto
work.

Lemma 3.4. Let G = (V, E) be a graph such that the maximum vertex degre€ is- (V, E) is less or
equal tod. Then,G can be realized by a secret-sharing scheme in which the $btake size i$)(nd).

Proof. Consider a collection of = 16d In n equivalence graphs that cov&r(as guaranteed by Lemma 3.2).
We realize the access structure of each equivalence g#aphthe collection by an ideal scheme: For every
clique C in G;, generate shares in Shami2=sout-of{C| secret-sharing scheme, and distribute the shares
among the parties af'.

For every excluded edde:, v) ¢ E, the vertices, andv are in different cliques in eadfi; (asG; is a
subgraph of7). Thus, in the above schemeandv do not get any information. On the other hand, every
edge(u,v) € E is covered by at least one graph, that is,u andv are in the clique inG;, thus,u andv
can reconstruct the secret. As in each grapeach party gets one share, the total share size of the regulti

scheme isir = O(dnlnn) = O(nd). O



Remarks3.5. We can save a factor @P(lnn) by using Stinson decomposition techniques [49]. Assume
that the secret is ifi* with A = Inn andF a field with|F| > n. By Lemma 3.2, there exists an equivalence
coverGy,...,G, with r = O(dInn) such that each edde,, v) € E is covered by\ graphs in the cover.
SinceGy, ..., G, is aA-decomposition of7 (see [49] for more details), we can construct a scheme with
total share siz€(nd).

3.1 Constructions for Bipartite Graphs with Bounded Degree

As a step in constructing a secret-sharing scheme real&grgph with few excluded edges, we will need
to realize certain bipartite graphs. In this section we show to realize them using bipartite covers.

Definition 3.6 (Complete-bipartite cover and bipartite complement¢t H# = (U,V, E) be a bipartite
graph. Acomplete-bipartite covesf H = (U,V, E) is a coverH, = (U1, V1, E1),...,H, = (U, V., E;)
of H such that eaclH; is a complete bipartite graph.

Thebipartite complementf a graph H is the bipartite graphl = (U, V, E), where every, € U and
v € V satisfy(u,v) € Eiff (u,v) ¢ E.

Note that the bipartite complement of a bipartite graph igpartite graph and it differs from the com-
plement of the bipartite graph. We next quote a lemma of JyBApon the existence of small bipartite
covers. For completeness we present the proof of this lemma.

Lemma 3.7 (Jukna [34, Theorem 1])Let H = (U, V, E) be a bipartite graph such that/| < |V'| and the
degree of every vertex i in the bipartite complement grapH is at mostd. Then there exists a cover of
H with O(d1n n) complete bipartite graphs, whef&| = n.

Proof. Letp = 1/d andr = In(2|E|)/(p(1 — p)?) = O(dInn). We choose the graphd,..., H, as
follows. Choose a sdt; C U such that for every. € U we addu to U; with probability p independently
of all other choices. We construt} as the set of all vertices iV that are adjacent to everye U; (that is,
v € V;iff (u,v) € E for everyu € U;).
Fix (u,v) € E andl < i < r. The edggu, v) is in E; if u € U; and all neighbors of in H are not in
U;. Thus,
Pr[(u,v) € E;] > p(1 — p)°.

As we choose complete bipartite graphs independently,

1 In(2[EY) 1

Pri(u) ¢ U Bl < (L=p(=p))7 ) < g

By the union bound, the probability that there is an edge neered by the: complete bipartite graphs is
less thanl /2. O

Note that in the above process, the construction of the fitpgraphs is efficient. As we can efficiently
check if a sequence of bipartite graphs cokerwe can repeat the process again if the bipartite graphs that
we choose do not covéi. The expected number of times that we need to repeat thiegsas at mos2.

Lemma 3.8. Letd < nand H = (U, V, E) be a bipartite graph such that/| = &, |V| = n > k, and the
degree of every vertex i in H is at mostd. Then,H can be realized by a secret-sharing scheme in which
the total share size i®(n + k3/2d). If k = (n/d)?/?, the total share size i©(n).



Proof. Let D = {v € V : J,cp such that(u,v) € E}. As the degree of every vertex thin H is at most
d, the size ofD is at mostik. Furthermore, the complete bipartite grafgh= (U,V \ D,U x (V\ D)) isa
subgraph off. We realizeH; by an ideal scheme in which the total share size is less|thpn|V| = O(n).

Now, defineDy = {v € D : The degree of in H is at Ieast\/E}. As H contains at mosik edges,

|Dy| < dVk. Let Hy = (U, Do, EN (U x Ds)). The number of edges il is less thanU || D,| < k3/2d,
thus, we can realizél, by a secret-sharing scheme in which the total share si2ék$/2d).

Finally, letVs = D\ Dy, andHs = (U, V5, E N (U x V3)). The degree of each vertex Ify in the
graphHs is at mostv/k, thus, by Lemma 3.7H3 can be covered by = O(vkInn) complete bipartite
graphs. We realize each such complete bipartite graph bglesat scheme in which the total share size is
at most|U| + |V3| < k + kd = O(kd). Thus, we realizé{, by a scheme in which the total share size is
O(rkd) = O(k*/?dInn). As H;, Hy, andH3 cover H, we constructed a scheme realizifigin which the
total share size i€ (n + k3/2d). Takingk = (n/d)?/3, the total share size 8(n). O

4 Constructions for Excluded Graph with Few Edges

We next show how to use the schemes of Lemma 3.4 and Lemma 3d@iline excluded graphs with
¢ = n'*tP edges, wheré < 3 < 1. We will start with a simple approach and then use more carafgi
constructions to achieve better upper bounds. We congtircscheme in steps, where in each step: (1)
We choose a set of verticds C V. (2) We give shares to the partiesif and the rest of the parties,
such that each edge adjacent to a party’frcan reconstruct the secret, and all other pairs of parties (i
unauthorized pairs containing partiesiinand all pairs not adjacent #¢') get no information on the secret.
(3) We remove the vertices ivi’ and all their adjacent edges from the graph. We repeat tleniioly step
until all vertices inG have small degree and then use the equivalence coverinmedaféSection 3 to realize
the remaining graph. In this process we will ensure thatdled share size remains relatively small. In the
following, n will always refer to the number of vertices in the originahgh.

Our first step is removing all vertices whose degre€'iis “high”.

Lemma 4.1. LetG be a graph such that its excluded gra@hcontains at most!+# edges, wheré < 5 <
1. Then, for everyl < n, we can give shares of siggn>*? /d) and remove a set of vertices fraghand all
adjacent edges and obtain an induced subgréplof G such thatG’ contains at most!*# edges and the
degree ofG’ is at mostd.

Proof. We choose a vertex whose degree i/ is greater thanl and consider the star whose centerp is
and its leaves are all neighbors®fn G. We realize this star using an ideal scheme and remaued its
adjacent edges from¥. The total share size in this step is at most

We choose another vertex whose degre€/iis greater thanl and do the same until no vertices with
degree greater thahexist inG. As in the beginning there areé"+? edges inG and in each step we remove
at leastd edges from, the number of steps is at mast*”/d. Thus, the total share size of the resulting
scheme for the removed verticesd$nn !4 /d). O

We can combine the constructions of Lemma 4.1 and Lemma 3t i$, we choose some < n,
remove vertices with degree higher tham G, and then apply the equivalence cover construction to the
remaining graphty, where the degree @ is d. Thus, the total share size of the resulting scheme (inotudi
the scheme from of Lemma 3.4)@&(n>*? /d + dn). To minimize the share size we tale= v/n!*5 and
get a scheme in which the total share siz&{s'57/2).
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Using Lemma 4.1 we decrease the degree of the verticés instead of applying the construction of
Lemma 3.4 to the resulting graph, we will apply some inteniatedsteps to further reduce the degree and
only then use the construction of Lemma 3.4.

Lemma 4.2. Leta’ < o < 1 such thata > 0.25 andG = (V, E) be a graph such that the degree@fis
at mostn® and G contains/ edges. Then, we can remove a set of vertices and all adjadgesdrom the
graph and obtain a grapl&’ such that the degree & is at most:®’, the graphG’contains? — ¢’ excluded
edges for somé > 0, and the total share size for the removed edge3(ién!/3+2/3-a"),

Proof. Letd = n® andd’ = n®. We remove the vertices of degree larger thaim steps. In each step we
choose an arbitrary sét of k = (n/d)?/® vertices of degree at leadtin G (if the number of vertices of
degreed’ is smaller thark, then we take the remaining vertices of degieand put them in’). Consider
all edges between vertices Bf there are less that? = n*/3/d*/3 < n such edges (sinaé> n'/4). Next
consider the bipartite grapi = (F,V \ F, EN(F x (V' \ F))). By Lemma 3.8, we can realizg with a
scheme in which the total share siz&lén). Thus, we can remove the verticeshinand all edges adjacent
to them, and the total share size in the scheme for every s@fi).

Let ¢ the total number of edges we removed fréiin these steps until the degree@fis at mostd’.
As each vertex we remove has degree at ldaist G, the number of vertices we remove is at mégt!’. In
each step, except for the last, we remove asefith (n/d)Q/3 vertices, thus, the number of sets we remove
is at mostl + ¢/ /(d'(n/d)*/?) = O(£'d?/3 /(d'n*/?)). As in each step the share siz&lén), the total share
size for the edges we removed frahis O (¢'n!/3d%/3 /d') = O('n1/3+2/3="), O

We next show how to construct secret-sharing schemes fphgraith few excluded edges using the
three building blocks presented so far: (1) initial degreductions using stars, (2)(loglogn) steps of
degree reduction using complete bipartite graphs and stags(3) using the equivalence cover construction
on the graph with reduced degree.

Theorem 4.3.LetG = (V, E) be a graph withV| = n and |E| = (}) — n!*# for some) < 8 < 1. There
exists a secret-sharing scheme realizigvith total share siz€(n>/4+38/4),

Proof. Let ap be a constant to be determined later. We first apply Lemma #tildv= n“ and obtain a
graphG such that the degree 6f is at mostd. The total share size in this step is

Om*Pd) = Om>th0). (3)

Next definea; = (3 — 2(2/3))ag — 2 + 2(2/3)* for 1 < i < loglogn. We choose these constants
such thata; /3 — a; 11 = 2/3 — ag. We next repeatedly apply the degree reduction of Lemma 4e2; w
apply itloglogn times. In theith invocation of the lemma, whefe< i < loglogn, we takea = «; and
o’ = aj;1. The cost of each invocation is

~ 1, 20 ~
O <€in3+3—(xi+1> _ O(&nlfao),

where/; is the number of edges removed fra@in theith invocation. As the number of edges removed in
all invocations is at most!*#, the total share size in all these invocations is

O(n”ﬁnl*ao) = O~(n2+670‘0). 4)
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After the log log n invocations of Lemma 4.2, the degree of each verte®'iis at mostn®eslosn —
O(n?*~2). In the final stage we use Lemma 3.4 and realize the graph withsbare size

O(nn3*0=2) = O(n3~1). (5)

The total share of realizing (by (3), (4), and (5)) i€ (n?+#=20) 4+ O (n?+#=20) 4+ O(n3*~1). To minimize
this expres~sion, we require that- 5 — ap = 3o — 1, thus,ag = 3/4 + 5/4 and the total share size in the
scheme i€ (n®/41+30/4), O

Remarkst.4. It can be checked that the construction of the coveF tfy multipartite graphs, as done in the
above scheme, can be done by a probabilistic algorithm iaagd polynomial time. Thus, the computation
of the dealer and the parties in our scheme is efficient.

In Theorem 4.3 we showed how to realize a graph where the nuphbgcluded edges is small, however
it is at leastn. We next show how to realize graphs where the number of ezdledges is less than

Corollary 4.5. LetG = (V, E) be a graph withV| = n and |[E| = () — ¢ for somel < n/2. There exists
a secret-sharing scheme realiziggwith total share size. + O (¢%/4).

Proof. Let V' C V be the set of vertices adjacent to excluded edges. As thereexcluded edges, the
size of V' is at most2¢. Without loss of generality, let” = {vy,...,v,} andV’ = {v,...,v,} for some
t > n — 2¢. We first execute Shamirz-out-of+ secret-sharing scheme and give the shkate partyv; for

1 <i < t, and give the sharg to v; fort <i < n.

Let V” be such that’’ C V" and|V”| = 2¢. Furthermore, let’ = (V" E’) be the subgraph af
induced byl’”. The graphG’ hasn’ = 2/ vertices and’ < n’ excluded edges, thus, by Theorem 4.3 (with
B = 0), it can be realized by a scheme in which the total share siz&°/*). The total share size in
realizingG is, thereforep + O(£°/%). O

5 Constructions for Homogeneous Access Structures

In this section we extend the techniques used in the conistnuof graph secret-sharing schemes to the
construction of schemes for homogeneous access structunich are access structures whose minimal
authorized subsets are of the same size. EXenpmogeneous access structure has a monotone formula
of size O(n*/logn) (see [54, Theorem 7.3]), thus, by [8], it can be realized bgaet-sharing scheme
with total share siz€&(n*/logn). Other upper bounds for hypergraphs are presented in [3A830];
however they are useful for sparse access structures. drsdiation, we present constructions for dense
k-homogeneous access structures for a conataWe will describe these access structures by hypergraphs.
A hypergraphis a pairH = (V, E) whereV is a set of vertices an& C 2V \ {(}} is the set of
hyperedgesin this work we only consider hypergraphs in which no hypggeeproperly contains any other
hyperedge. A hypergraph isuniformif |e| = k for everye € E. A k-uniform hypergraph isomplete
if £ = (‘;) = {e CV : |e] = k}. For anyk-uniform hypergraph we define tle@mplemenhypergraph
H = (V,E), with E = (}) \ E. Observe that there is a one-to-one correspondence betwenm
hypergraphs and homogeneous access structures, and itialets hypergraphs correspond to threshold
access structures.
By analogy to graphs, we define aquivalence:-hypergraph as a vertex-disjoint union of complete
k-uniform hypergraphs, and the equivalence cover éfumiform hypergraphd = (V, E) as a collec-
tion of equivalence:-hypergraphs; = (V, E4),...,H, = (V,E,) with E; C Efori =1,...,r and
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Ui<i<rE; = E. A weakcoloring with ¢ colors of a hypergraptf = (V, E) is a mappinge : V. —
{1,...,¢} such that for every € E there existu, v € e with p(u) # u(v).

Lemmab5.1. LetH = (V, E) be ak-uniform hypergraph such that the degree of every vertetsiexicluded
hypergraph is at most d. Then there exists an equivalencer @f\H with r = 2¥k*d*~! In n equivalence
hypergraphs.

Proof. The proof of this lemma is similar to the one of Lemma 3.2, andl$o based on the probabilistic
method. Given a coloring of H we construct an equivalendehypergraphH’ = (V, E’), which is the
sub-hypergraph off, where{vy, ..., v} C Visin E' ifand only if pu(v;) = p(v;) for1 <i < j < k. For
every color, the set of vertices colored by such a colorfisumiform complete sub-hypergraph &f.

We chooser random coloringsu1, . . ., s, of H with 2kd colors, and for each coloring we consider
the equivalence hypergraph as described above. With pitipal least halfH+, . .., H, is an equivalence
cover of H:

Lete = (v1,...,v;) € E. Following arguments analogous to the ones in Lemma 3.2, bterothat
for eachy; the hyperedge is monochromatic with probability at IeaW. The probability that an

edgee € E is not covered by the random equivalence hypergrapHs, . .., H, is at mostl /n*. Thus, the
probability that there exists an edgeAhnot covered by the random equivalence hypergraphs is less than
half. O

Lemma 5.2. Let H = (V, E) be ak-uniform hypergraph such that the maximum vertex degred of
(V,E) is less or equal tal. There exists a secret-sharing scheme realizihgh which the total share size
is O(2Fk*dF—1n).

Proof. Take the equivalence cover &f of sizer = 2¢k*d*~!Inn guaranteed by Lemma 5.1. Now, we
realize each equivalence hypergraphin the collection by an ideal scheme: For every complete tgypph
C'in H;, generate shares in Shamik'sout-of-{C| secret-sharing scheme. Using arguments similar to the
ones used in the proof of Lemma 3.4, this scheme realizasd the total share size of the resulting scheme
isnr = O(2FEFd*1n). O

In Theorem 5.4 below, we construct a secret-sharing schemevéry excluded hypergraph with few
edges. For this purpose, we use a recursive argument bagbd oconstruction illustrated in the following
example.

Example5.3 Let H = (V, E) be a hypergraph and lete V be a vertex satisfying that € ¢ for every

e € E. Consider the hypergrapi’ = (V/, E’) with V' =V \ {v} andE’ = {e\ {v} : e € E}. Ifthere
exists a secret-sharing scheme realiziffgwith total share size, then we can construct a scheme realizing
H with total share size + 1 as follows. In order to share a secsethe dealer chooses at randemand s,
satisfyings = s1 + s, sendss; to v, and shares; amongV’’ using the scheme realizing’.

Theorem 5.4. Let H = (V, E) be ak-hypergraph withV| = n and|E| = (}) — n!** for somed < 3 <
k — 1. There exists a secret-sharing scheme realiihgith total share siz& (2~ kFn?*5),

Proof. By induction onk, we prove that for everyi = (V, ) satisfying the hypothesis there exists a secret-
sharing scheme with total share si2¢2*k*¢'~=n), where/ = n'*? ande, is defined by the equation
i1 = 7= ande; = 1. By Theorem 4.3 this property is satisfied for= 2. Let H = (V,E) be a

1
k-hypergraph withk > 2. Defined = £+~ 1*<k-1,
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We choose a vertex adjacent to/; > d excluded hyperedges. By the hypothesis, there is a secret
sharing scheme with total share s+~ (k— 1)’“*163_5’“‘%) for the (k—1)-hypergraph’ = (V', E'),
with V' =V \ {v} andE’' = {e € (k‘fl) : eU{v} € E}. Following Example 5.3, we construct a scheme
for the sub-hypergraph determined by all hyperedges adjagoes. Then we remover and its adjacent
hyperedges front. We choose another vertekadjacent ts > d excluded hyperedges and do the same
until no vertices with degree greater thém H exist.

Since in the beginning there af@xcluded hyperedges, and in each step we remoxed hyperedges,
the number of steps is at mdstd. Thus, the total share size of the resulting scheme is

O <2k71(k‘ . 1)k71n zf/d £1*€k71) .

1=1"1

(2
the scheme i©)(2°~ ! (k — 1)F~'nl/do-1).
Finally, since the degree df is at mostd, we use Lemma 5.1 to construct a secret-sharing scheme
realizing H with total share sizé&(28k*d*~1n). O

As Z@l £; < ¢, the above expression is maximized whign= - -- = Q/d = d, and the total share size of

Corollary 5.5. LetH = (V, E) be ak-hypergraph withV | = nand|E| = (}.) — ¢ for somelk < n. There
exists a secret-sharing scheme realizitignith total share sizer + O(2FkF+2¢2).

Proof. DefinelV C V as the set of vertices of degree zeraAn Sincelk < n, |W| > 0. Consider the
k-hypergraphH’ = (V,E') with E' = {e € (}) : |en W| > 1}. Observe thati’ C H. By [42],
there exists an ideal secret-sharing scheme realidihdNow it remains to find a secret-sharing scheme for
H \ H', a hypergraph defined dni \ W whose complement has at mdstvertices and hyperedges. The
proof is completed by using Theorem 5.4. O

Remarks5.6. By [28], the scheme constructed in the first step of the préd@@arollary 5.5 can be con-
structed over any finite fiell with [F| > (™).

6 Removing Few Authorized Sets from Access Structures

Our main result (Theorem 4.3) shows that if we start with thmplete graph and remove “few” edges,
then the share size required to realize the new graph is aotbfig”. We then generalize these results to
complete homogeneous hypergraphs. In this section we sslthre effect of removing few authorized sets
from other access structures. We first consider arbitraaplyaccess structures and then consider access
structures where the minimal authorized sets are smallfan@ach party, we remove few sets containing
the party (this generalizes the case where the complemaph d¢ras constant degree).

6.1 Removing Few Edges from an Arbitrary Graph

We show that if we start with any graph and remove “few” ed¢fes) the total share size required to realize
the new graph is not much larger than the total share sizeregbuo realize the original graph.

Theorem 6.1. LetG = (V, E) andG’ = (V, E’) be two graphs wittE” C E, |E \ E'| = ¢, and|V| = n.
AssuméZ can be realized by a scheme in which the total share size (slearly, m < (’2‘)) If £ > m/n,

thenG’ can be realized by a scheme in which the total share sig&&/mn). If £ < m/n, thenG’ can be
realized by a scheme in which the total share size is 2/n < 3m.
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Proof. Let > be a secret-sharing scheme realiziigith total share size:. Suppose that > m /n. Define
d = \/tn/m. LetG" = (V, E") be the graph satisfying thatc E” if and only ife € E'\ E’ (that is,G”
is the graph of the excluded edges, @flis its complement).

First we construct a scheme similar to the one describedeiptbof of Lemma 4.1. For every party
adjacent to at least excluded edges, we consider the star whose centearisl its leaves are all neighbors
in G’. We realize this star using an ideal scheme and we remewl its adjacent edges frof¥f and from
G”. The total share size in this step is at mestVe do the same process until all vertices have lessdhan
excluded vertices. The total share size of the resultingreehisO(n¢/d).

Now the degree of every vertexd#’ is at mostl. By Lemma 3.2 there exists an equivalence cover'of
with O(d) equivalence graphs. For every equivalence graph, and éoy eliqueC in it, we independently
share the secret among the parties id' using ¥, that is, we generate sharesfising¥ and give the
shares only to the participants 6f. In this way, an edge contained @ is authorized if and only if it is
contained inE. SinceE” N E = E, the resulting scheme realiz€$. The total share size of realizing each
equivalence graph i (since each participant is in a single clique), thus, thal ltare size of realizing all
graphs in the cover i©(md).

If £ < m/n,we first execut& and give shares to parties not adjacent to excluded edgedoih share
size in this step is less than. For every partyy adjacent to at least one excluded edge, we construct a
secret-sharing scheme realizing the star whose centeansl the leaves are thosec V' with (u,v) € E'.

As there are at mogt/ such vertices, the total share size in realizing the staesisthar/n. The total
share size in both stepsiis + 2¢n < 3m. O

In the interesting case in Theorem 6.1 when m /n, the total share size i9(v/¢/mn). This is better
than the trivial scheme giving shares of total si2@?) only when/ is not too large, namely, < n3/m.

6.2 Construction for General Access Structures

In the previous sections we studied access structures iohvthe minimal subsets are of the same size.
In this section we use some of these techniques to study a geoeral scenario: we start with an access
structure and we delete some minimal authorized subsets Ti¢ question is how much the share size of
the schemes realizing the access structure grow as a rétiudt emoved subsets.

We next consider removing authorized sets from more gere@dss structures. We say that access
structurerl is of degreed if for everyp € P there are at most subsets imin I" containingp.

Theorem 6.2. LetT’; andT'; be two access structures dhwith minI's C min I’y satisfying that A| < k

for everyA € minT'y. If 'y is of degreel and there exists a scheme realizifig with total share sizen,
then the access structure determinednhiy: I'; \ min I's can be realized by a secret-sharing scheme with
total share sizeD(2¥k*d*—1m).

Proof. Let H = (P, E) andH' = (P, E’) be the hypergraphs defined hyin I'; andmin Iy, respectively.
By the hypothesis, the hyperedgestfare of size smaller or equal thanandH’ is a sub-hypergraph of
H of degree less or equal tb Let X be a the scheme realizirig, and letH” = (P, E”) be the hypergraph
with E = E\ E”, which is the hypergraph associated witin I'; \ min I's. We construct a scheme realizing
H".

Definer = 2*k¥d*~11nn. Following the arguments in the proof of Lemma 5.1, it is clrat there
exists a family ofr weak coloringsuy, . . ., . of H' with 2kd colors satisfying the following property: For
everye € E” there exists € {1,...,r} with p;(u) = p;(v) for everyu,v € e.
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At this point, we can describ&” as follows: A sete C (Z) isin £” if and only if e € E/ and there

exists a coloringu; for which e is monochromatic. Hence, we can construct a secret-shadngme for
H" by sharing the secret independently, for every coloyingnd for every coloyj € {1,...,2kd}, with
¥ restricted toV; ; = {u € P : p;(u) = j}. The total share size of the resulting schemenis =
O(2FkFdF—1m). O

Observe that it < n, the removal of minimal authorized subsets from an accesstste does not
increase so much the share size. Thereforek far n, access structures close to an access structure realized
by an efficient scheme are not “hard”.

7 Lower Bounds for Very Dense Graphs

In this section we show lower bounds on the total share sizeefdizing very dense graphs. Recall that the
best lower bound on the total share size for realizing a gisphin logn) [26, 10, 22] and the best lower
bound on the total share size for realizing a graph by a liseheme i£2(n3/2) [6]. However, these lower
bounds use sparse graphs wittin logn) and Q(n3/2?) edges respectively. In this section we will show
how to use these sparse graphs to prove lower bounds for e@isedgraphs. In particular, we show that
there exists a graph with!? excluded edges such that in every linear secret-shaririginggit, the total
share size i§)(n!5/2) (for every0 < 8 < 1). This lower bound shows that the total share size grows as
a function of 3. However, there is still a gap between our upper and lowenteuWe start with a lower
bound for graphs with less thanexcluded edges.

Theorem 7.1. For everyn and every2 < ¢ < n/2, there exists a graph with vertices and/ excluded
edges such that the total share size of every secret-shegaiging it is at least: + /.

Proof. We construct a graptiy = (V, E) with n > 2¢ + 1 vertices. We denote the vertices of the graph
byV ={a,bo,...,by_1,c0,...,Co—1,V2042,-..,0,}. The graphG has all edges except for the followirig
excluded edgesty = {(a,¢;) : 0 <i < £ —1}.

For every0 < i < { — 1, consider the graptv restricted to the vertices b;, ¢;, ¢(; 1) mod ¢- ThiS graph
has two excluded edgés, ¢;) and (a, ¢(i11) mod ¢)- Blundo et al. [11] proved that in any secret-sharing
realizing this graph, the sum of the sizes of the shardg ahdc; is at leas times the size of the secret.
Thus, in any secret-sharing realizig§ the sum of the sizes of the share®péndc; is at leasB times the
size of the secret. By [36], the size of the share of each padyy secret-sharing realizing any graph with
no isolated vertices is at least the size of the secret. Thagtptal share size in any secret-sharing realizing
G is at least + /. O

Theorem 7.2. For every 3, where0 < 3 < 1, there exists a graph with vertices and less than!'*5
excluded edges, such that the total share size iniaegr secret-sharing realizing it i€ (n!*%/2).

Proof. By [6], for everyn there exists a graph with vertices such that the total share size in any linear
secret-sharing realizing it i€(n%/2). We use this graph to construct a dense grapk= (V, E) with n
vertices. We partition the vertices 6f into n'—# disjoint sets of vertice¥7, ..., V,1-s, where|V;| = n”

for 1 < i < n'~#. We construct the edges as follows: First, for eve@merticesu, andv such thatu € V;
andv € V; for i # j, we add the edgéu, v) to E, i.e., there is an edge connecting every 2 vertices from
different parts. Second, for eveiywherel < i < n'~#), we construct a copy of the graph from [6] with
n? vertices among the vertices Bf. We denote this graph by,;.
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Since all excluded edges in the above construction are betwertices in the same part, the number
of excluded edges is at mo@’f)nkﬁ < n't8. The total share size of any linear secret-sharing scheme
realizing G; (for 1 < i < n'=P)is Q((n?)%?) = Q(n®%/?). Thus, the total share size of any linear
secret-sharing scheme realizigs at leas(n!~#n?%/2) = Q(n!+4/2), O

Theorem 7.3. For every 3, where0 < § < 1, there exists a graph with vertices and less than't?
excluded edges such that the share size of any secret-ghsfreme realizing it iQ(8n log n).

Proof. We use the construction from the proof of Theorem 7.2, whereveryl < i < n'~# we setG;
to be alog n’-dimensional cube. By [22], any secret-sharing schemézieglG; has a total share size
of Q(pn”logn). Thus, any secret-sharing scheme realizihgiust have a total share size @f(n' %) -
Bnflogn)) = Q(Bnlogn). O
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