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Abstract. Piccolo is a 64-bit block cipher suitable for the constrained
environments such as wireless sensor network environments. In this pa-
per, we propose differential fault analysis on Piccolo. Based on a random
byte fault model, our attack can recover the secret key of Piccolo-80 by
using an exhaustive search of 224 and six random byte fault injections
on average. It can be simulated on a general PC within a few seconds.
In the case of Piccolo-128, we require an exhaustive search of 240 and
eight random byte fault injections on average. This attack can be simu-
lated on a general PC within one day. These results are the first known
side-channel attack results on them.
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1 Introduction

Recently, the research on ultra-lightweight block ciphers suitable for the efficient
implementation in constrained hardware environments such as RFID tags and
sensor nodes has been studied. As a result, KATAN/KTANTAN [2], PRINTci-
pher [7], LED [4] and Piccolo [9] were proposed.

A 64-bit block cipher Piccolo proposed in CHES 2011 supports 80- and 128-
bit secret keys. According to the length of the secret key, they are denoted by
Piccolo-80 and Piccolo-128, respectively. The number of rounds of Piccolo-80
and Piccolo-128 is 25 and 31, respectively. The iterative structure of Piccolo is a
variant of generalized Feistel network. Until now, several cryptanalytic results on
them were proposed. First, the designers of them evaluated the security of Piccolo
by various attacks and attacked Piccolo-80 to 17 rounds and Piccolo-128 to 21
rounds by using related-key attacks [9]. The best result of actual single-key attack
is 3-Subset Meet-in-the-Middle(MITM) attacks on a 14-round reduced Piccolo-
80 and a 21-round reduced Piccolo-128 without whitening keys. On the other
hand, Wang et al. introduced a biclique cryptanalysis of the full round Piccolo-80
without postwhitening keys and a 28-round Piccolo-128 without prewhitening
keys [11]. These attacks are respectively with data complexity of 248 and 224

chosen ciphertexts, and with time complexity of 278.95 and 2126.79 encryptions.
To our knowledge, there is no cryptanalytic results on them based on side-channel
attacks.
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Differential fault analysis (DFA), one of the side channel attacks, was first
proposed by Biham and Shamir on DES in 1997 [1]. This attack exploits faults
within the computation of a cryptographic algorithm to reveal the secret infor-
mation. So far, DFAs on many block ciphers such as AES [10], ARIA [8], SEED
[6], CLEFIA [3] and LED [5] have been proposed. It means that DFA poses a
major threat to the security on block ciphers.

In this paper, we propose a differential fault analysis on Piccolo. Our attack
is based on the random byte fault model. To recover the secret key of Piccolo-80,
it is assumed that several random byte faults are injected to the input register
of round 23. Thus, the number of possible fault positions is 8. We can compute
the exact fault position by checking the corresponding ciphertext differences.
As simulation results, this attack requires an exhaustive search of 224 and six
random byte faults on average. It can be simulated on a general PC within a
few seconds. Similarly, we can the secret key of Piccolo-128 with an exhaustive
search of 240 and eight random byte fault injections on average. As simulation
results, this attack can be simulated on a general PC within one day. These
results are the first known side-channel attack results on them.

This paper is organized as follows. In Section 2, we briefly introduce the
structure of Piccolo. Our attacks on Piccolo-80/128 are presented in Section 3
and Section 4, respectively. Finally, we give our conclusion in Section 5.

2 Description of Piccolo

In this section, we briefly present the structures of Piccolo-80 and Piccolo-128.
Throughout this paper, the following notations are used.

– P = (P0, P1, P2, P3): a 64-bit plaintext.
– C = (C0, C1, C2, C3): a 64-bit ciphertext.
– Ir = (Ir,0, Ir,1, Ir,2, Ir,3): a 64-bit input value of round r.
– (rk2r, rk2r+1): a round key of round r.
– (wk0, wk1, wk2, wk3): a whitening key.

Piccolo-80/128 is a 64-bit block cipher and supports 80- and 128-bit secret
keys. As shown in Figure 1, the structure of Piccolo-80/128 is a variant of gen-
eralized Feistel network. Here, the number of rounds r is 25 for Piccolo-80 and
31 for Piccolo-128. First, with a 64-bit plaintext P = (P0, P1, P2, P3) and a
prewhitening key (wk0, wk1), the input value I0 = (I0,0, I0,1, I0,2, I0,3) of round
0 is computed as follows.

I0,0 = P0 ⊕ wk0, I0,1 = P1, I0,2 = P2 ⊕ wk1, I0,3 = P3.

To generate Ii+1 from Ii (i = 0, · · · , r−2), each round is made up of a function
F : {0, 1}16 → {0, 1}16 and a round permutation RP : {0, 1}64 → {0, 1}64.
Figure 2 presents the structure of F function. Since our attack do not use the
property of 4× 4 S-box S and 4× 4 matrix M , we omit the descriptions of them
in this paper. See [9] for the detailed descriptions of them. As shown in Figure
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Fig. 1. The structure of Piccolo.
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3, a round permutation RP takes a 64-bit input value X = (x0, x1, x2, x3) and
generates a 64-bit output value Y = (y0, y1, y2, y3). Here, a 16-bit xi is divided
into (xL

i , x
R
i ).
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Fig. 2. F function of Piccolo.
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Fig. 3. Round permutation RP of Piccolo.

A 64-bit ciphertext C = (C0, C1, C2, C3) is generated as follows.

C0 = Ir−1,0 ⊕ wk2, C1 = F (Ir−1,0)⊕ Ir−1,1 ⊕ rk2r,

C2 = Ir−1,2 ⊕ wk3, C3 = F (Ir−1,2)⊕ Ir−1,3 ⊕ rk2r+1.

The keyschedule of Piccolo-80 is simple. First, the 80-bit secret key K is
computed as follows. Here, kj = (kLj , k

R
j ) (j = 0, 1, 2, 3, 4).

K = (k0, k1, k2, k3, k4).

Four whitening keys (wk0, wk1, wk2, wk3) and 25 round keys (rk2i, rk2i+1) are
generated as follows (i = 0, 1, · · · , 24). Here, (con80

2i , con
80
2i+1) is a 16-bit round

constant. See See [9] for the detailed descriptions of them.
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– Whitening key

wk0 = kL0 ∥kR1 , wk1 = kL1 ∥kR0 ,
wk2 = kL4 ∥kR3 , wk3 = kL3 ∥kR4 .

– Round key

(rk2i, rk2i+1) = (con80
2i , con

80
2i+1)⊕

 (k2, k3), (i mod 5) ≡ 0 or 2,
(k0, k1), (i mod 5) ≡ 1 or 4,
(k4, k4), (i mod 5) ≡ 3.

Table 1. The partial secret key used in each round key

Piccolo-80 Piccolo-128

Round i Partial secret key Round i Partial secret key

0 (k2, k3) 0 (k2, k3)

1 (k0, k1) 1 (k4, k5)
...

...
...

...

22 (k2, k3) 28 (k0, k7)

23 (k4, k4) 29 (k6, k3)

24 (k0, k1) 30 (k2, k5)

Table 1 presents the partial secret key used in each round key. For example, the
round key (rk48, rk49) of round 24 includes the partial secret key (k0, k1).

The keyschedule of Piccolo-128 is similar to that of Piccolo-80. By using the
128-bit secret key K = (k0, k1, · · · , k7), four whitening keys and 31 round keys
are generated as follows (See Table 1).

– Whitening key

wk0 = kL0 ∥kR1 , wk1 = kL1 ∥kR0 ,
wk2 = kL4 ∥kR7 , wk3 = kL7 ∥kR4 .

– Round key (i = 0, 1, · · · , 61)
• if ((i+ 2) mod 8 ≡ 0) then

(k0, k1, k2, k3, k4, k5, k6, k7) = (k2, k1, k6, k7, k0, k3, k4, k5).

• rki = k(i+2) mod 8 ⊕ con128
i .

3 DFA on Piccolo-80

Our proposed fault assumption includes the following assumptions.
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– The attacker has the capability to choose one plaintext to encrypt and obtain
the corresponding right/faulty ciphertexts.

– The attacker can induce random byte faults to the input register of round
23.

– The location and value of faults are both unknown.

3.1 Computation of the exact fault position

First, we present the method to compute the exact fault position by using the
difference between right/faulty ciphertext pairs (C,C∗). According to our fault
assumption, a random byte fault can be induced to the input byte register Ij23,i
of round 23 (i = 0, 1, 2, 3 and j = L,R). Thus, the number of all possible fault
positions is 8. For the simplicity of notations, we denote each case by Ej

23,i. For

example, EL
23,0 means an event that a random byte fault is injected to IL23,0.

E23,0 We assume that a random byte fault was injected to I23,0, that is an
event EL

23,0 or ER
23,0 was occurred. Fig. 4 presents the differential propagation

under this assumption. In this figure, blue lines mean an event EL
23,0 and red

lines mean an event ER
23,0.

F rk46 F

F rk48 F rk49

I23,0 I23,1 I23,2 I23,3

rk47

I24,0 I24,1 I24,2 I24,3

wk2 wk3

ΔC0=(α1,0) ΔC1=? ΔC2=(0,α2) ΔC3=?

Fig. 4. Event E23,0.

Under E23,0, the difference ∆I23,0 for I23,0 has the pattern of (α, 0) or (0, α).
Here, α means a nonzero byte value. Then, according to the property of F
function, the output difference of F function of round 23 has the pattern of (β, γ)
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(β ̸= 0, γ ̸= 0). As shown in Fig. 4, we cannot distinguish EL
23,0 and ER

23,0. Under
two events, the difference ∆C between right/faulty ciphertext pairs (C,C∗) has
the following pattern. Here, α1 and α2 are nonzero byte values and ‘?’ means an
unknown byte value.

– E23,0: ∆C = (α1∥0, ?∥?, 0∥α2, ?∥?).

EL
23,1 and ER

23,1 It is assumed that a random byte fault was injected to I23,1,

that is an event EL
23,1 or ER

23,1 was occurred. Fig. 5 presents the differential
propagation under this assumption. In this figure, blue lines mean an event
EL

23,1 and red lines mean an event ER
23,1.

F F

F F

I23,0 I23,1 I23,2 I23,3

I24,0 I24,1 I24,2 I24,3

rk46 rk47

wk2 wk3

(β1,0) (0,β4)(β2,β3) (β5,β6)

rk48 rk49

Fig. 5. Event E23,1.

As depicted in Fig. 5, we can distinguish EL
23,1 and ER

23,1. In each case, the
ciphertext difference has the following pattern. Here, βj means a nonzero byte
value (j = 1, · · · , 6).

– EL
23,1: ∆C = (β1∥0, β2∥β3, 0∥0, 0∥0).

– ER
23,1: ∆C = (0∥0, 0∥0, 0∥β4, β5∥β6).

E23,2 It is assumed that an event EL
23,2 or E

R
23,2 was occurred. That is, a random

byte fault was injected to I23,2. Fig. 6 presents the differential propagation under
this assumption. In this figure, blue lines mean an event EL

23,2 and red lines mean

an event ER
23,2.
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I23,0 I23,1 I23,2 I23,3

I24,0 I24,1 I24,2 I24,3

rk46 rk47

wk2 wk3

rk48 rk49

(γ2,0)?(0,γ1) ?

Fig. 6. Event E23,2.

As depicted in Fig. 6, we cannot distinguish EL
23,2 and ER

23,2 similarly to
E23,0. In this case, the ciphertext difference has the following pattern. Here, γ1
and γ2 mean nonzero byte value and ‘?’ means an unknown byte value..

– E23,2: ∆C = (0∥γ1, ?∥?, γ2∥0, ?∥?).

EL
23,3 and ER

23,3 We assume that an event EL
23,3 or ER

23,3 was occurred. Fig. 7
presents the differential propagation under this assumption. In this figure, blue
lines mean an event EL

23,3 and red lines mean an event ER
23,3.

As depicted in Fig. 7, we can distinguish EL
23,3 and ER

23,3 similarly to E23,1.
In each case, the ciphertext difference has the following pattern. Here, δj means
a nonzero byte value (j = 1, · · · , 6).

– EL
23,3: ∆C = (0∥0, 0∥0, δ4∥0, δ5∥δ6).

– ER
23,3: ∆C = (0∥γ1, γ2∥γ3, 0∥0, 0∥0).

Under the above events, the ciphertext differences are summarized in Table
2. We can compute the exact fault position by using Table 2.

3.2 Computation of the secret key under each event

Second, we show how to compute candidates of the secret key of Piccolo-80 under
each event. Recall that round keys are computed by using round constants and
the secret key. Since round constants are known values, we can easily compute
the partial secret key related to it when we get a round key. Thus, we do not
consider round constants in this paper.
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(0,δ1) (δ4,0)(δ2,δ3) (δ5,δ6)

Fig. 7. Event E23,3.

Table 2. Ciphertext differences for the positions of fault injections

Fault position Ciphertext difference

E23,0 (α1∥0, ?∥?, 0∥α2, ?∥?)
EL

23,1 (β1∥0, β2∥β3, 0∥0, 0∥0)
ER

23,1 (0∥0, 0∥0, 0∥β4, β5∥β6)

E23,2 (0∥γ1, ?∥?, γ2∥0, ?∥?)
EL

23,3 (0∥0, 0∥0, δ4∥0, δ5∥δ6)
ER

23,3 (0∥γ1, γ2∥γ3, 0∥0, 0∥0)
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E23,0 Under E23,0, we can obtain 216 candidates of 48-bit (kR0 , k
L
1 , k3, k4). The

attack procedure is as follows.

1. Guess 16-bit wk2
(
= kL4 ∥kR3

)
and compute the output difference of the left F

function in round 24 (see Fig. 4). Then check that the 8 most significant bits
of this value are equal to the 8 most significant bits of ∆C1. The probability
passing this test is 2−8. Thus, we can obtain 28 candidates of

(
kR3 , k

L
4

)
.

2. Guess 16-bit wk3
(
= kL3 ∥kR4

)
and compute the output difference of the right

F function in round 24 (see Fig. 4). Then check that the 8 least significant
bits of this value are equal to the 8 least significant bits of ∆C3. Since the
filtering probability is 2−8, we can compute 28 candidates of

(
kL3 , k

R
4

)
.

3. Guess the 8 least significant bits of rk48
(
= con80

48 ⊕ k0
)
and the 8 most signif-

icant bits of rk49
(
= con80

49 ⊕ k1
)
. By using 216 candidates of (k3, k4) passing

Step 1 and Step 2, check that the guessed value satisfy the input/output
differences of the left F function in round 23 (see Fig. 4). The probability
passing this test is 2−16, we can get 216 candidates of (kR0 , k

L
1 , k3, k4).

With the above attack procedure, we can obtain 216 candidates of 48-bit
(kR0 , k

L
1 , k3, k4) by using one random byte fault.

EL
23,1 and ER

23,1 Under EL
23,1 or ER

23,1, we can get the right (kR3 , k
L
4 ) (under

EL
23,1) or (k

L
3 , k

R
4 ) (under E

R
23,1), respectively. The attack procure is as follows.

– EL
23,1

• Guess 16-bit wk2
(
= kL4 ∥kR3

)
and compute the output difference of the

left F function in round 24 (see Fig. 5). Then check that this value is
equal to ∆C1. The probability passing this test is 2−16. Thus, we can
obtain the right

(
kR3 , k

L
4

)
.

– ER
23,1

• Guess 16-bit wk3
(
= kL3 ∥kR4

)
and compute the output difference of the

right F function in round 24 (see Fig. 5). Then check that this value is
equal to ∆C3. Since the filtering probability is 2−16, we can compute the
right

(
kL3 , k

R
4

)
.

E23,2 From the following attack procedure, we can obtain 216 candidates of
48-bit (kL0 , k

R
1 , k3, k4) by using one random byte fault.

1. Guess 16-bit wk2
(
= kL4 ∥kR3

)
and compute the output difference of the left F

function in round 24 (see Fig. 6). Then check that the 8 least significant bits
of this value are equal to the 8 least significant bits of ∆C1. The probability
passing this test is 2−8. Thus, we can obtain 28 candidates of

(
kR3 , k

L
4

)
.

2. Guess 16-bit wk3
(
= kL3 ∥kR4

)
and compute the output difference of the right

F function in round 24 (see Fig. 6). Then check that the 8 most significant
bits of this value are equal to the 8 most significant bits of ∆C3. Since the
filtering probability is 2−8, we can compute 28 candidates of

(
kL3 , k

R
4

)
.
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3. Guess the 8 most significant bits of rk48
(
= con80

48 ⊕ k0
)
and the 8 least signif-

icant bits of rk49
(
= con80

49 ⊕ k1
)
. By using 216 candidates of (k3, k4) passing

Step 1 and Step 2, check that the guessed value satisfy the input/output
differences of the right F function in round 23 (see Fig. 6). The probability
passing this test is 2−16, we can get 216 candidates of (kL0 , k

R
1 , k3, k4).

EL
23,3 and ER

23,3 Finally, under EL
23,3 or ER

23,3, we can get the right (kL3 , k
R
4 )

(under EL
23,3) or (kR3 , k

L
4 ) (under ER

23,3), respectively. The attack procure is as
follows.

– EL
23,3

• Guess 16-bit wk3
(
= kL3 ∥kR4

)
and compute the output difference of the

right F function in round 24 (see Fig. 7). Then check that this value is
equal to ∆C3. Since the filtering probability is 2−16, we can compute the
right

(
kL3 ∥kR4

)
.

– ER
23,3

• Guess 16-bit wk2
(
= kL4 ∥kR3

)
and compute the output difference of the

left F function in round 24 (see Fig. 7). Then check that this value is
equal to ∆C1. The probability passing this test is 2−16. Thus, we can
obtain the right

(
kR3 ∥kL4

)
.

3.3 DFA on Piccolo-80

Now, we are ready to propose DFA on Piccolo-80. Our attack consists of the
following two substpes: we first compute the exact fault position by using the
ciphertext difference, and then the partial secret key of Piccolo-80 is obtained
according to the computed fault position.

The attack procedure on Piccolo-80 is as follows.

1. [Collection of right ciphertext] Choose a plaintext P and obtain the
corresponding right ciphertext C = (C0, C1, C2, C3).

2. [Collection of faulty ciphertext] After inducing an i-th random byte
fault to the input register I23 = (I23,0, I23,1, I23,2, I23,3) of round 23, obtain
the corresponding faulty ciphertext Ci∗ = (Ci∗

0 , Ci∗
1 , Ci∗

2 , Ci∗
3 ) (i = 1, · · · , n).

3. [Computation of fault positions] Compute ∆Ci by using (C,Ci∗) and
then compute the exact fault positions from Table 2.

4. [Computation of candidates of (k0, k1, k3, k4)] According to fault posi-
tions computed in Step 3, compute candidates of (k0, k1, k3, k4) by using the
method in Section 3.2.

5. [Recovery of the 80-bit secret key] Guess 16-bit k2 for each candidate
of (k0, k1, k3, k4) and then recover the 80-bit secret key by using one trial
encryption.

We simulated our attack on a general PC 10, 000 times. As simulation results,
we can obtain about 28 candidates of (k0, k1, k3, k4) by using six fault injections
on average. Thus, we do an exhaustive search for 224(= 28 · 216) candidates of
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(k0, k1, k2, k3, k4). Since the filtering probability is 2−64, the expected number of
wrong secret keys passing our attack algorithm is 2−40(= 224 · 2−64). It means
that the possibility that a wrong key can pass our attack algorithm is very low.
As simulation results, we can always recover the 80-bit secret key of Piccolo-80
within a few seconds by using six fault injections on average.

4 DFA on Piccolo-128

In this section, we propose DFA on Piccolo-128. Our attack on Piccolo-128 is
similar to that on Piccolo-80. Our fault assumption is as follows.

– The attacker has the capability to choose one plaintext to encrypt and obtain
the corresponding right/faulty ciphertexts.

– The attacker can induce random byte faults to the input register of round
28 and 29, respectively.

– The location and value of faults are both unknown.

4.1 The main idea

We first recover the right wk2(= kL4 ∥kR7 ) and wk3(= kL7 ∥kR4 ) by injecting the
input register of round 29. The attack procedure of this step is similar to that on
Piccolo-80. In detail, under events E29,0, E29,1, E29,2 and e29,3, we compute them.
Note that we compute only (wk2, wk3). As simulation results, we can always
obtain the right (wk2, wk3) by using only two random fault injections. Note that
our attack on Piccolo-80 can compute about 28 candidates of (k0, k1, k3, k4) by
using six fault injections on average.

Second, we assume that random byte faults are injected to the input register
of round 28, that is E28,0, E28,1, E28,2 and E28,3. Thus, the number of all possible
fault positions is 8. By using the recovered (wk2, wk3) in the previous step, we can
distinguish them. According to each fault position, we can compute candidates
of the partial secret key similarly to DFA on Piccolo-80.

4.2 E28,0

It is assumed that we know the right (wk2, wk3). Under EL
28,0 or ER

28,0, the
differential propagation is depicted in Fig. 8. In this figure, blue lines mean an
event EL

28,0 and red lines mean an event ER
28,0.

Since we know (wk2, wk3), we can compute the input difference (∆I30,0,
∆I30,1, ∆I30,2,∆I30,3) of round 30. As shown in Fig. 8, we cannot distinguish
EL

28,0 and ER
28,0. Under two events, (∆I30,1,∆I30,3) has the following pattern.

Here, α1 and α2 are nonzero byte values.

– E28,0: (∆I30,1,∆I30,3) = (0∥0, α1∥α2).

Under E28,0, we can obtain 216 candidates of 48-bit
(
k2, k

L
3 , k5, k

R
6

)
. The

attack procedure is as follows.
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F rk56 F rk57
Round

28

F F

Round

29

F F

Round

30

I29,0 I29,1 I29,2 I29,3

I30,0 I30,1 I30,2 I30,3

I28,0 I28,1 I28,2 I28,3

wk2 wk3

rk60 rk61

rk58 rk59

Fig. 8. Event E28,0.

1. Guess 16-bit (rkR60(= kR2 ⊕ con128R
60 ), rkL61(= kL5 ⊕ con128L

61 )) and compute
the output difference of the left F function of round 29 (see Fig. 8). Then
check that the 8 most significant bits of this value are equal to ∆IL30,0. The
probability passing this test is 2−8. Thus, we can obtain 28 candidates of(
kR2 , k

L
5

)
.

2. Guess 16-bit (rkL60(= kL2 ⊕ con128L
60 ), rkR61(= kR5 ⊕ con128R

61 )) and compute
the output difference of the right F function of round 29 (see Fig. 8). Then
check that the 8 least significant bits of this value are equal to ∆IR30,0. The
probability passing this test is 2−8. Thus, we can obtain 28 candidates of(
kL2 , k

R
5

)
.

3. Guess 16-bit (rkR58(= kR6 ⊕ con128R
58 ), rkL59(= kL3 ⊕ con128L

59 )) and compute
the output difference of the left F function of round 28 for each candidate
of (k2, k5) (see Fig. 8). Then check that this value is equal to ∆I30,3. The
probability passing this test is 2−16. Thus, we can obtain 216 candidates of(
k2, k

L
3 , k5, k

R
6

)
.

4.3 EL
28,1 and ER

28,1

It is assumed that we know the right (wk2, wk3). Under EL
28,1 or ER

28,1, the
differential propagation is shown in Fig. 9. In this figure, blue lines mean an
event EL

28,1 and red lines mean an event ER
28,1. As depicted in Fig. 9, under each
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event, (∆I30,1,∆I30,3) has the following pattern. Here, β1 and β2 are nonzero
byte values.

– EL
28,1: (∆I30,1,∆I30,3) = (0∥0, β1∥0).

– ER
28,1: (∆I30,1,∆I30,3) = (0∥0, 0∥β2).

F F
Round

28

F F

Round

29

F F

Round

30

I29,0 I29,1 I29,2 I29,3

I30,0 I30,1 I30,2 I30,3

I28,0 I28,1 I28,2 I28,3

wk2 wk3

rk60 rk61

rk58 rk59

rk56 rk57

Fig. 9. Event E28,1.

Under EL
28,1 or ER

28,1, we can get the right (kR2 , k
L
5 ) (under E

L
28,1) or (k

L
2 , k

R
5 )

(under ER
28,1), respectively. The attack procure is as follows.

– EL
28,1

• Guess 16-bit (rkR60(= kR2 ⊕ con128R
60 ), rkL61(= kL5 ⊕con128L

61 )) and compute
the output difference of the left F function of round 29 (see Fig. 9). Then
check that this value is equal to (∆IL30,0∥∆IR30,2). The probability passing

this test is 2−16. Thus, we can obtain the right
(
kR2 , k

L
5

)
.

– ER
28,1

• Guess 16-bit (rkL60(= kL2 ⊕ con128L
60 ), rkR61(= kR5 ⊕ con128R

61 )) and compute
the output difference of the right F function of round 29 (see Fig. 9).
Then check that this value is equal to (∆IL30,2∥∆IR30,0). The probability

passing this test is 2−16. Thus, we can obtain the right
(
kL2 , k

R
5

)
.
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4.4 E28,2

It is assumed that we know the right (wk2, wk3). Under EL
28,2 or ER

28,2, the
differential propagation is shown in Fig. 10. In this figure, blue lines mean an
event EL

28,2 and red lines mean an event ER
28,2. As depicted in Fig. 10, we cannot

distinguish EL
28,2 and ER

28,2 similarly to E28,0. Under each event, (∆I30,1,∆I30,3)
has the following pattern. Here, γ1 and γ2 are nonzero byte values.

– E28,2: (∆I30,1,∆I30,3) = (γ1∥γ2, 0∥0).

F F
Round

28

F F

Round

29

F F

Round

30

I29,0 I29,1 I29,2 I29,3

I30,0 I30,1 I30,2 I30,3

I28,0 I28,1 I28,2 I28,3

wk2 wk3

rk60 rk61

rk58 rk59

rk56 rk57

Fig. 10. Event E28,2.

From the following attack procedure, we can obtain 216 candidates of 48-bit
(k2, k

R
3 , k5, k

L
6 ) by using one random byte fault.

1. Guess 16-bit (rkR60(= kR2 ⊕ con128R
60 ), rkL61(= kL5 ⊕ con128L

61 )) and compute
the output difference of the left F function of round 29 (see Fig. 10). Then
check that the 8 least significant bits of this value are equal to ∆IR30,2. The
probability passing this test is 2−8. Thus, we can obtain 28 candidates of(
kR2 , k

L
5

)
.

2. Guess 16-bit (rkL60(= kL2 ⊕ con128L
60 ), rkR61(= kR5 ⊕ con128R

61 )) and compute the
output difference of the right F function of round 29 (see Fig. 10). Then
check that the 8 most significant bits of this value are equal to ∆IL30,2. The
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probability passing this test is 2−8. Thus, we can obtain 28 candidates of(
kL2 , k

R
5

)
.

3. Guess 16-bit (rkL58(= kL6 ⊕ con128L
58 ), rkR59(= kR3 ⊕ con128R

59 )) and compute
the output difference of the right F function of round 28 for each candidate
of (k2, k5) (see Fig. 10). Then check that this value is equal to ∆I30,1. The
probability passing this test is 2−16. Thus, we can obtain 216 candidates of(
k2, k

R
3 , k5, k

L
6

)
.

4.5 EL
28,3 and ER

28,3

It is assumed that we know the right (wk2, wk3). Under EL
28,3 or ER

28,3, the
differential propagation is shown in Fig. 11. In this figure, blue lines mean an
event EL

28,3 and red lines mean an event ER
28,3. As depicted in Fig. 11, under each

event, (∆I30,1, ∆I30,3) has the following pattern. Here, δ1 and δ2 are nonzero byte
values.

– EL
28,3: (∆I30,1,∆I30,3) = (δ1∥0, 0∥0).

– ER
28,3: (∆I30,1,∆I30,3) = (0∥δ2, 0∥0).

F F
Round

28

F F

Round

29

F F

Round

30

I29,0 I29,1 I29,2 I29,3

I30,0 I30,1 I30,2 I30,3

I28,0 I28,1 I28,2 I28,3

wk2 wk3

rk60 rk61

rk58 rk59

rk56 rk57

Fig. 11. Event E28,3.

Under EL
28,3 or ER

28,3, we can get the right (kL2 , k
R
5 ) (under E

L
28,3) or (k

R
2 , k

L
5 )

(under ER
28,3), respectively. The attack procure is as follows.
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– EL
28,3

• Guess 16-bit (rkL60(= kL2 ⊕ con128L
60 ), rkR61(= kR5 ⊕ con128R

61 )) and compute
the output difference of the right F function of round 29 (see Fig. 11).
Then check that this value is equal to (∆IL30,2∥∆IR30,0). The probability

passing this test is 2−16. Thus, we can obtain the right
(
kL2 , k

R
5

)
.

– ER
28,3

• Guess 16-bit (rkR60(= kR2 ⊕ con128R
60 ), rkL61(= kL5 ⊕con128L

61 )) and compute
the output difference of the left F function of round 29 (see Fig. 11).
Then check that this value is equal to (∆IL30,0∥∆IR30,2). The probability

passing this test is 2−16. Thus, we can obtain the right
(
kR2 , k

L
5

)
.

Under the above events, (∆I30,1,∆I30,3) are summarized in Table 3. Since
we know (wk2, wk3), we can compute the exact fault position by using Table 3.

Table 3. Ciphertext differences for the positions of fault injections

Fault position (∆I30,1,∆I30,3)

E28,0 (0∥0, α1∥α2)

EL
28,1 (0∥0, β1∥0)

ER
28,1 (0∥0, 0∥β2)

E28,2 (γ1∥γ2, 0∥0)
EL

28,3 (δ1∥0, 0∥0)
ER

28,3 (0∥δ2, 0∥0)

4.6 DFA on Piccolo-128

The attack procedure on Piccolo-128 is as follows.

1. [Collection of right ciphertext] Choose a plaintext P and obtain the
corresponding right ciphertext C = (C0, C1, C2, C3).

2. [Collection of faulty ciphertext] After inducing an i-th random byte
fault to the input register I29 = (I29,0, I29,1, I29,2, I29,3) of round 29, obtain
the corresponding faulty ciphertext Ci∗ = (Ci∗

0 , Ci∗
1 , Ci∗

2 , Ci∗
3 ) (i = 1, · · · , n).

3. [Recovery of (wk2, wk3)] Recover the right (wk2, wk3) under events E29,0,
E29,1, E29,2 and E29,3 similarly to E23,0, E23,1, E23,2 and E23,3 in DFA on
Piccolo-80.

4. [Collection of faulty ciphertext] After inducing an i-th random byte
fault to the input register I28 = (I28,0, I28,1, I28,2, I28,3) of round 28, obtain
the corresponding faulty ciphertext Ci∗ = (Ci∗

0 , Ci∗
1 , Ci∗

2 , Ci∗
3 ) (i = 1, · · · , n).

5. [Computation of candidates of (k2, k3, k4, k5, k6, k7)] According to com-
puted fault positions, compute candidates of (k2, k3, k4, k5, k6, k7) by using
the method in the previous subsections.
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6. [Recovery of the 128-bit secret key] Guess 32-bit (k0, k1) for each candi-
date of (k2, k3, k4, k5, k6, k7) and then recover the 128-bit secret key by using
one trial encryption.

We simulated our attack on a general PC 10, 000 times. As simulation results,
we can obtain about 28 candidates of (k0, k1, k3, k4) by using eight fault injections
on average. Thus, we do an exhaustive search for 240(= 28 · 232) candidates of
(k0, k1, k2, k3, k4, k5, k6, k7). Since the filtering probability is 2−64, the expected
number of wrong secret keys passing our attack algorithm is 2−24(= 240 · 2−64).
It means that the possibility that a wrong key can pass our attack algorithm is
very low. As simulation results, we can always recover the 128-bit secret key of
Piccolo-128 within one day by using eight fault injections on average.

5 Conclusion

In this paper, we have presented DFA on Piccolo. Our attack on Piccolo-80 is
executed within a few seconds by using six random byte faults. And our attack
on Piccolo-128 needs eight random byte faults and is executed within one day.
They are first known side-channel attack results on Piccolo.
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