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Abstract

In this paper, by modifying a subclass of bent functions in PS ap, we construct another subclass of bent functions in
PS + with maximum algebraic degree. We demonstrate that the algebraic immunity of the constructed functions is
maximum. The result is proved by using the well known conjecture proposed by Tu and Deng (Des. Codes Cryptogr.
60(1), pp. 1-14, 2011) which has been proved recently by Cohen and Flori (http://eprint.iacr.org/ 2011/400.pdf).
Finally, we identify a class of D0 type bent functions constructed by modifying Dillon functions whose lower bound
on second-order nonlinearity is very high.

Keywords: Boolean function, bent function, algebraic immunity, Dillon functions,D0 type bents, second-order
nonlinearities.

1. Introduction

The Boolean functions with desirable cryptographically significant properties is used in various fields and play a
prominent role in the security of cryptosystems. One of the most vital roles in cryptography of Boolean functions is
to be used as filter and combination generators of stream ciphers based on linear feedback shift registers (LFSRs).
Thus, the study of the cryptographic criteria of Boolean functions (mainly balancedness, high algebraic degree, high
nonlinearity, correlation immunity and algebraic immunity) is important because of the connections between known
cryptanalytic attacks and these criteria.

The first-order nonlinearity, one of the most significant cryptographic property of a Boolean function f (the min-
imum of Hamming distances of f to all the affine Boolean functions) is related to the immunity of f against best
affine approximation attacks and fast correlation attacks, when f is used as a combiner function or a filter function
in a stream cipher. The relationship between nonlinearity and explicit attack on symmetric cipher was discovered by
Matsui [23]. The higher-order nonlinearities of a Boolean function is the measure of the resistance of the function
against various low-order approximation attacks, see e.g. [20, 12, 21]. Unlike first-order nonlinearity there is no
efficient algorithm to compute second-order nonlinearities for n > 11. Most efficient algorithm due to Fourquet and
Tavernier [17] works for n ≤ 11 and, upto n = 13 for some special functions.

In recent years algebraic attack (that uses cleverly over defined systems of multivariate nonlinear equations to
recover the secret key) has become an important method in cryptographic analyzing stream and block cipher systems,
see e.g. [1, 3, 11, 10, 14]. A new cryptographic property, the algebraic immunity that measure the ability of the
designed Boolean functions to resist this kind of attack, has been introduced and studied in [2, 11, 3, 14, 15, 24]. The
core of the analysis is to find low degree annihilators of f or of 1 ⊕ f . One needs only low-degree annihilators (rather
than one) of f or of 1 ⊕ f to mount algebraic attack easily, e.g. [11, 24]. Several constructions of Boolean functions
with optimal algebraic immunity were found subsequently in [2, 4, 14, 15]. Unfortunately, most of the function do
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not present high nonlinearity where as the others are unbalanced. Further constructions with high nonlinearity were
found in [9, 30, 27, 25, 29].

Bent functions were introduced by Rothaus [26] and later extensively studied in many articles, e.g. [16, 8, 4]. Even
though bent functions (exists only for even n) achieve the maximum possible nonlinearity 2n−1 − 2n/2−1, they are not
suitable for a direct cryptographic use due to their statistical bias. More precisely, bent functions are unbalanced and
therefore possess certain statistical weakness if such a function is used in some standard cryptographic applications.
Nevertheless, a classification of bent functions has been extremely dynamic research area for more than 30 years, see
e.g. [8, 16]. Recently, a series of construction methods for Boolean functions fulfilling several cryptographic criteria,
based on some modifications of a certain class of bent functions called partial spreads [16], has been proposed, see
e.g. [30, 27]. The main idea behind the constructions of such type of functions is the use of a particular subclass
of functions from PS ap and extend the support set, that is, the domain set of these functions so that it would give a
rise to some new classes of Boolean functions which possess in particular, an optimal resistance to standard algebraic
cryptanalysis (it may possibly not to fast algebraic cryptanalysis). This property is closely related to the algebraic
properties of the bent function used in the construction.

In connection to the above discussion it is both of theoretical and of practical importance to classify bent functions
in terms of their algebraic properties. In this paper, by modifying a subclass of bent functions in PS ap, we construct
a subclass of bent functions in PS + with maximum algebraic degree and demonstrate that the algebraic immunity of
the constructed functions is maximum. We further obtain the lower bound of second-order nonlinearity of D0 type
bent functions constructed by modifying Dillon functions of the form Trm

1 (αxy2m−2), α ∈ F∗2m .
The rest of this paper is organized as follows. In Section 2 some basic definitions and notions are introduced.

In Section 3, the algebraic immunity and nonlinearity of the constructed function is derived. In Section 4, second-
order nonlinearity ofD0 type bent functions constructed by modifying Dillon functions is obtained. Some concluding
remarks are given in Section 5.

2. Preliminaries

Let F2n be the finite field consisting of 2n elements. The group of units of F2n , denoted by F∗2n , is a cyclic group
consisting of 2n − 1 elements. Every generator of the multiplicative group F∗2n is said to be a primitive element of
F2n . An element in x ∈ F2n can be uniquely associated to an element x = (x1, x2, . . . , xn) ∈ Fn

2 once a basis of F2n

is fixed and therefore Fn
2 is isomorphic to F2n as F2-vector spaces. Thus, any function from F2n or Fn

2 to F2 is said
to be a Boolean function on n variables. Let us denote Bn be the set of all Boolean functions on n variables. The
truth-table of f ∈ Bn is a binary string of length 2n as [ f (0, . . . , 0, 0), f (0, . . . , 0, 1), f (0, . . . , 1, 0), . . . , f (1, . . . , 1, 1)].
Let Z be the set of integers. The additions in both Z and F2n are denoted by ‘+’, whereas ‘⊕’ denotes the addition in
Fn

2. The Hamming weight of an element x ∈ Fn
2 is defined by wH(x) :=

∑n
i=1 xi, where the sum is over Z. The binary

representation of an integer d ∈ Z is

d = dm−12m−1 + dm−22m−2 + . . . + d12 + d0, (1)

where d0, d1, . . . , dm−1 ∈ {0, 1}. Once the order in which the exponents of 2 appear in (1) is fixed the finite sequence
(dm−1, . . . , d0) is referred to as the binary representation of d. The Hamming weight of an integer d is wH(d) =

∑m−1
i=0 di.

The algebraic normal form (ANF) of f ∈ Bn is defined by

f (x1, x2, . . . , xn) =
⊕

a=(a1,...,an)∈Fn
2

µa

 n∏
i=1

xai
i

 , µa ∈ F2. (2)

The algebraic degree of f as represented in (2), is defined by deg( f ) := max{wH(a) : µa , 0, a ∈ Fn
2}. Every Boolean

function h : F2m × F2m → F2 can be expressed in terms of a polynomial of two variables on F2m as

h(x, y) =

2k−1∑
i=0

2k−1∑
j=0

hi, jxiy j, where hi, j ∈ F2k . (3)

The algebraic degree, denoted by deg(h), of h ∈ B2m, as represented in (3), is the largest positive integer w for
which wH(i) + wH( j) = w and hi, j , 0. The Hamming distance between f and g in Bn is defined by dH( f , g) =
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|{x ∈ F2n | f (x) , g(x)}|, where |S | is the cardinality of any set S . The support of a Boolean function f ∈ Bn is
supp( f ) = {x ∈ F2n : f (x) = 1}. The weight of f is wH( f ) = |{x ∈ F2n : f (x) = 1}|. It is easily observed that
dH( f , g) = wH( f + g) = 2n−1 − 1

2
∑

x∈F2n (−1) f (x)+g(x).
A Boolean function g ∈ Bn is said to be an annihilator of f ∈ Bn if and only if g is not identically zero and

g(x) f (x) = 0 for all x ∈ F2n (g , 0 and g f = 0, in short). LetAN( f ) be the set of all annihilators of f ∈ Bn, that is

AN( f ) = {g ∈ Bn : g , 0, g f = 0}.

Definition 2.1. The algebraic immunity,AI( f ), of f ∈ Bn is defined as

AI( f ) = min{deg(g) : g ∈ AN( f ) ∪AN( f̄ )},

where f̄ denotes the complement of the function f .

Suppose g f = h where deg(g) and deg(h) both are at most d, and g , h. Then by [24, Proposition 1] f has an
annihilator with algebraic degree at most d and henceAI( f ) ≤ d. Since f̄ f = 0 is it trivial thatAI( f ) ≤ deg( f ).

Proposition 2.1. [11, Theorem 6.0.1] Let f ∈ Bn. Then there is a Boolean function g ∈ Bn with g , 0 of degree at
most d n

2 e such that g f is of degree at most d n
2 e.

Thus, for any f ∈ Bn, we have

AI( f ) ≤ min
{
deg( f ),

⌈n
2

⌉}
. (4)

A trace function Trn
1 : F2n → F2 is defined by Trn

1(x) =
∑n−1

i=0 x2i
, for all x ∈ F2n . The functions (x, y) 7→ Trn

1(xy)
and (x, y) 7→ x · y = ⊕n

i=1xi yi are both inner products on F2n and Fn
2, respectively. The Walsh–Hadamard transform

(WHT) of f ∈ Bn at λ ∈ F2n is defined by

W f (λ) =
∑

x∈F2n

(−1) f (x)+Trn
1(λx). (5)

For f : F2m × F2m → F2, the WHT at (λ, µ) ∈ F2m × F2m is

W f (λ, µ) =
∑

(x,y)∈F2m×F2m

(−1) f (x,y)+Trm
1 (λx+µy).

The multiset [W f (λ) : λ ∈ F2n ] is said to be the Walsh–Hadamard spectrum of the Boolean function f . The Walsh–
Hadamard spectrum of f ∈ Bn satisfies Parseval’s identity∑

λ∈F2n

W2
f (λ) = 22n. (6)

The nonlinearity of f ∈ Bn in terms of WHT is given by

nl( f ) = 2n−1 −
1
2

max
λ∈F2n

|W f (λ)|. (7)

For any even positive integer n = 2m ∈ Z, there exist Boolean functions with “flat” Walsh–Hadamard spectra. These
functions are said to be bent functions and as a consequence of (6), a function f ∈ Bn (for n = 2m) is bent if and
only if |W f (λ)| = 2m for all λ ∈ F2n . The dual, f̃ , of a bent function f ∈ B2m is defined by W f (x) = (−1) f̃ (x)2m for all
x ∈ F22m , is again bent. It is known that the bent functions provide maximum resistance to linear approximations and
therefore play a major role in construction of cryptographic Boolean functions.

Definition 2.2. The derivative of f ∈ Bn with respect to a ∈ F2n is defined as

Da f (x) = f (x) + f (x + a) for all x ∈ F2n .

Suppose a, b ∈ F2n are F2-linearly independent and generate a two-dimensional subspace V in F2n . The function

DV f (x) = DaDb f (x) = f (x) + f (x + a) + f (x + b) + f (x + a + b) for all x ∈ F2n

is said to be the second-derivative of f with respect to the subspace V . It can be checked that DV f is independent of
the choice of the basis of V . This notion can be further generalized. For more details we refer to [7].
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2.1. Higher-order nonlinearities of Boolean functions

The set of all Boolean functions in Bn with algebraic degrees less than or equal to r is said to be the Reed–Muller
code of order r and length 2n and denoted by RM(r, n).

Definition 2.3. The rth-order nonlinearity of f ∈ Bn is defined as

nlr( f ) = min
h∈RM(r,n)

dH( f , h) = 2n−1 −
1
2

max
h∈RM(r,n)

|
∑

x∈F2n

(−1) f (x)+h(x)|.

The sequence of values {nlr( f )}n−1
r=1 is said to be the nonlinearity profile of f . The first order nonlinearity of f is nl1( f ),

is the nonlinearity nl( f ) of f .
A vectorial Boolean function Finv : F2n → F2n defined by Finv(x) = x2n−2 is called an inverse function. It is a

permutation because of gcd(2n−2, 2n−1) = gcd(2n−1−1, 2n−1) = 2gcd(n,n−1)−1 = 1. Let us denote gα(x) = Trn
1(αx2n−2),

α ∈ F∗2n . Then all the Boolean functions gα, α ∈ F∗2n , are affine equivalent to each other. Thus, the nonlinearity profiles
of these functions are same. The following proposition is due to Carlet [5].

Proposition 2.2. [5] The nonlinearity of an inverse function gα(x) = Trn
1(αx2n−2), where α ∈ F∗2n is lower bounded by

2n−1 − 2
n
2 or equivalently

|Wgα (u)| ≤ 2
n+2

2 , for all u ∈ F2n .

The nonlinearity of the first derivative of a Dillon function at every point (a, b) ∈ F2m ×F2m , and hence its second-order
nonlinearity due to Carlet [6] is provided in the following

Proposition 2.3. [6, Lemma 1] Every derivative D(a,b) fα, a ∈ F2m , b ∈ F∗2m , of the Dillon function has first-order
nonlinearity at least 22m−1 −2m+1. Every derivative D(a,0) fα, a ∈ F∗2m has first-order nonlinearity at least 22m−1 −2

3m
2 −

2m.

Proposition 2.4. [6] The second-order nonlinearity of a Dillon function, fα(x, y) = Trm
1 (αxy2m−2), for all x, y ∈ F2m ,

where α ∈ F∗2m is

nl2( fα) ≥ 22m−1 − 2
3m
2 . (8)

In the following proposition Garg and Gangopadhyay [19] obtained the lower bound of second-order nonlinearities of
cubic Niho bent functions.

Proposition 2.5. [6] Let f (x) = Trn
1(α1xd1 + α2xd2 ), where α1, α2 ∈ F2n , with α1 + α1 = ||α2||, e be a positive integer

such that n = 2e, and d1 = (2e − 1) 1
2 + 1 and d1 = (2e − 1) 1

4 + 1 are Niho exponents. Then

nl2( f ) ≥ 2n−1 − 2
3n+e−3

4 .

Following proposition is due to Carlet [5] for the computation of lower bounds on nonlinearity profiles of Boolean
functions in a recursive framework which we use to compute our bound.

Proposition 2.6. [5, Proposition 3] Let f ∈ Bn and r be a positive integer (r < n), then we have

nlr( f ) ≥ 2n−1 −
1
2

√
22n − 2

∑
a∈F2n

nlr−1(Da f ).
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3. Bent functions with optimal algebraic immunity in PS

Throughout this section n = 2m. The partial spreads (PS ) class of bent functions has been introduced by Dillon [16],
and the properties of this class have been studied in many recent works. This class is divided into two subclasses,
namely PS − and PS + depending on the size of the supports. A function f ∈ B2m is in the PS − class if its support is
a collection of 2m−1 “disjoint” m-dimensional subspaces of F22m with the additive identity 0 ∈ F22m discarded, where
“disjoint” means that any pair of these subspaces intersects only in 0. In a similar way, a function in the PS + class
is constructed by selecting 2m−1 + 1 “disjoint” m-dimensional subspaces of F2m

2 (with the 0 ∈ F22m included). It is
to be noted that, depending on the choice of these m-dimensional flats it might be the case that the support of a bent
function f in PS − (or in PS +) is such that f̄ is not in PS + (or in PS −).

There are some fundamental differences between the two subclasses. It is well known that the degree of any
function f ∈ B2m in PS − class is always equal to m whereas this is not the case for functions in PS + whose degrees
may be less than m, see e.g. [16, 28]. The algebraic representation of the bent functions in the PS class appears to be
hard. Dillon [16] exhibits one explicit representation of a subclass of PS −, denoted by PS ap, consisting of functions
defined as follows:

f : F2m × F2m → F2 (9)
f (x, y) = g(xy2m−2), x, y ∈ F2m ,

where g ∈ Bm is any balanced Boolean function such that g(0) = 0. It was shown [27] that the selection of the support
of g is of great importance. Indeed, if we consider a balanced g : F2m → F2 defined by

supp(g) = {αs, αs+1, . . . , αs+2m−1−1} = 4(say), (10)

for some integer s ≥ 0 and a primitive element α ∈ F2m , thenAI( f ) = m [27, Construction 1]. This result was proved
using the famous BCH bound and a conjecture (given below) proposed by Tu and Deng [27] which has been proved
quite recently [13].
Conjecture 1. [27, Tu and Deng] For any t ∈ Z2m−1 \ {0}, if

S t = {(a, b) ∈ Z2m−1 × Z2m−1, a + b = t mod (2m − 1),wH(a) + wH(b) ≤ m − 1},

then |S t | ≤ 2m−1.
The definition of BCH bound as well as BCH code in coding theory [22], provided below

Theorem 3.1. (The BCH bound) Let α be a primitive n-root of unity. Let Φ be a cyclic code of length n and with a
generator polynomial g(x) such that for some integers b ≥ 0, δ ≥ 1

g(αb) = g(αb+1) = . . . = g(αb+δ−2) = 0,

that is, the code has string of δ − 1 consecutive powers of α as zeroes, then the minimal distance of Φ is at lest δ.

The BCH code is defined as follows:

Definition 3.1. A cyclic code of length n over Fq is a BCH code of designed distance δ if, for some integer b ≥ 0

g(x) = lcm{m(b)(x),m(b+1)(x), . . . ,m(b+δ−2)(x)},

that is, g(x) is the lowest degree monic polynomial over Fq having αb, αb+1, . . . , αb+δ−2 as zeroes, when m(i) is the
minimal polynomial of αi over Fq.

A natural question whether there exist a class of bent functions in PS + having maximum algebraic immunity. We
answer this in affirmative by considering a subclass of bent functions as mentioned in the following section.
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3.1. Algebraic immunity of bent functions obtained by modifying Dillon functions
In this section, we construct a subclass of functions by modifying functions in PS ap and demonstrate that these
functions are bent functions belonging to PS + having maximum algebraic immunity.
Construction 1 Let n = 2m and α be a primitive element of F2m . Let g ∈ Bm and 4 are same as in (10). If the support
of the Boolean function f : F2m × F2m → F2 is defined as

supp( f ) = {(0, y) : y ∈ F2m } ∪ {(γy, y) : y ∈ F∗2m , γ ∈ 4}.

Then f is bent andAI( f ) = m.

Theorem 3.2. Let f ∈ Bn as defined in Construction 1, thenAI( f ) = m.

Proof 3.1. To prove that f have algebraic immunity m, it is sufficient to prove that both f and f̄ have no annihilators
of algebraic degrees less than m.

Let us suppose h ∈ B2m be a non zero function as expressed in (3) with deg(h) < k and f h = 0, then we will show
that h = 0. By assumption, we have h(x, y) = 0 for all (x, y) ∈ supp( f ) = {(0, y) : y ∈ F2m } ∪ {(γy, y) : y ∈ F∗2m , γ ∈ 4},
and hi, j = 0 if wH(i) + wH( j) ≥ m.

h(0, y) = 0 for all y ∈ F2m implies that h0,t = 0 for all 0 ≤ t ≤ 2m − 1. Also, h(γy, y) = 0 for all y ∈ F∗2m and γ ∈ 4.

h(γy, y) =

2m−1∑
i=0

2m−1∑
j=0

hi, j(γy)iy j =

2m−1∑
i=0

2m−1∑
j=0

hi, jγ
iyi+ j = h0,0 +

2m−1∑
t=0

ht(γ)yt,

where

ht(γ) =

t∑
i=0

hi,t−iγ
i +

2m−1∑
i=t

hi,2m−1+t−iγ
i.

It is observed from [27] that wH(i) + wH(2m − 1 − i) = m which implies that h2m−1 = 0 and ht,2m−1 = h2m−1,t = 0 for all
t. Using these values in the above equation, we have

ht(γ) =

t∑
i=0

hi,t−iγ
i +

2m−2∑
i=t+1

hi,2m−1+t−iγ
i,

which implies that

h(γy, y) = h0,0 +

2m−2∑
i=1

ht(γ)yt.

For some fixed γ ∈ 4, since h(γy, y) = 0 for all y ∈ F∗2m , it follows that

h0,0 = 0 and ht(γ) = 0, 1 ≤ t ≤ 2m − 1, for all γ ∈ 4.

By the definition of BCH code, (h0,t, h1,t−1, . . . , ht,0, ht+1,2m−2, . . . , h2m−2,t+1) be a codeword in some BCH code of length
2m − 1 over F2m , having the elements in 4 as zeros and with designed distance 2m−1 + 1. If this codeword is nonzero,
then by definition of BCH bound the weight should be greater than or equal to 2m−1 + 1. Further, from Conjecture 1
and h0,t = 0, the weight should be strictly less than 2m−1, leads a contradiction. Hence, h = 0. It means that there exist
no annihilator of f having algebraic degree strictly less than m.

Now, we will prove that f̄ also have no annihilator of algebraic degree strictly less than m.
Let us suppose h : F2m × F2m → F2 be a non zero function with deg(h) < m and f̄ h = 0, then we will show that

h = 0. It can be easily observed that

supp( f̄ ) = {(γy, y) : y ∈ F∗2m , γ ∈ F∗2m \ 4} ∪ {(x, 0) : x ∈ F∗2m }.

h(x, 0) = 0 for all x ∈ F∗2m which implies that ht,0 = 0 for all 1 ≤ t ≤ 2m − 1. Similarly h(γy, y) = 0 for all y ∈ F∗2m

and γ ∈ F∗2m \ 4. It follows that h0,0 = 0 and ht(γ) = 0, 1 ≤ t ≤ 2m − 2 for all γ ∈ F∗2m \ 4. Thus we can see that
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(h0,t, h1,t−1, . . . , ht,0, ht+1,2m−2, . . . , h2m−2,t+1) be a codeword in some BCH code of length 2m − 1 over F2m , having the
elements in F∗2m \4 = {α2m−1

, α2m−1+1, . . . , α2m−2} as zeros and with designed distance 2m−1. If this codeword is nonzero,
then by definition of BCH bound the weight should be greater than or equal to 2m−1. Further, from Conjecture 1 and
ht,0 = 0, the weight should be strictly less than 2m−1, leads a contradiction, this implies that h = 0.

Thus, we have neither f nor f have an annihilator of degree strictly less than m. This completes the theorem.

Theorem 3.3. The function f (x, y) as defined in Construction 1 is bent and its dual f̃ is given by

supp( f̃ ) = {(x, γx) : x ∈ F∗2m , γ ∈ 4} ∪ {(x, 0) : x ∈ F2m }.

Proof 3.2. Since supp( f ) = {(0, y) : y ∈ F2m } ∪ {(γy, y) : y ∈ F∗2m , γ ∈ 4}. Therefore, wH( f ) = 2m + 2m−1(2m −

1) = 22m−1 + 2m−1 which implies that W f (0, 0) = −2m. Let (a, b) ∈ F2m × F2m such that both a and b are not zero
simultaneously. We compute,

W f (a, b) =
∑

(x,y)∈F2m×F2m

(−1) f (x,y)+Tr(ax+by) = −2
∑

(x,y)∈supp( f )

(−1)Tr(ax+by)

= −2
∑

y∈F2m

(−1)Tr(by) − 2
∑
γ∈4

∑
y∈F∗2m

(−1)Tr((aγ+b)y)

= −2m+1δ0(b) − 2
∑
γ∈4

 ∑
y∈F2m

(−1)Tr((aγ+b)y) − 1


= −2m+1δ0(b) + 2m − 2

∑
γ∈4

∑
y∈F2m

(−1)Tr((aγ+b)y)

= −2m+1δ0(b) + 2m − 2m+1
∑
γ∈4

δ0(aγ + b)

Consider the following cases
Case 1. If b = 0 and a , 0 then aγ , 0 for all γ ∈ 4 which implies that δ0(aγ) = 0 for all γ ∈ 4. Therefore,
W f (a, 0) = −2m+1 + 2m = −2m for all a ∈ F∗2m .
Case 2. If a = 0 and b , 0, clearly δ0(b) = 0. Therefore, W f (0, b) = 2m for all b ∈ F∗2m .
Case 3. If a, b ∈ F∗2m . Now, consider the following two subcases.

(i) If (a, b) ∈ F∗2m × F∗2m such that aγ = b for some γ0 ∈ 4, then aγ0 + b = 0, that is δ0(aγ + b) = 1 if γ = γ0 which
implies that W f (a, b) = 2m − 2m+1 = −2m.

(ii) If (a, b) ∈ F∗2m ×F∗2m such that there exists no element γ ∈ 4 so that aγ = b, then aγ+b , 0, that is δ0(aγ+b) = 0
for all γ ∈ 4. This implies that W f (a, b) = 2m.

Thus, we have W f (a, b) = 2m(−1) f̃ (a,b) for all (a, b) ∈ F2m × F2m , where the support of f̃ is given by

supp( f̃ ) = {(x, γx) : x ∈ F∗2m , γ ∈ 4} ∪ {(x, 0) : x ∈ F2m }.

This completes the theorem.

Corollary 3.1. The algebraic degree of the Boolean function f as defined in Construction 1 is deg( f ) = m.

Proof 3.3. It is well known that deg( f ) ≥ AI( f ) for all the Boolean functions. Since the algebraic immunity of
f ∈ B2m as defined in Construction 1 is AI( f ) = m and therefore deg( f ) ≥ m. Moreover, since f is bent which
implies that deg( f ) = m.

Remark 3.1. The Boolean function f as defined in Construction 1 is represented by

f (x, y) = g(xy2m−2) +

m∏
j=1

(x j ⊕ 1),

where g ∈ Bm be a balanced Boolean function with g(0) = 0.
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4. Second-order nonlinearities ofD0 type functions

A function f : F2m × F2m → F2 defined as f (x, y) = Trm
1 (xπ(y)) + `(y) for all (x, y) ∈ F2m × F2m , where π is a

permutation on F2m and ` is any function on F2m , is bent. The collection of bent functions of this type is called the
Maiorana-McFarland class, denoted byM. Carlet [8] constructed a class of bent functions referred to as the class D
by modifying the functions of the classM. Further Carlet constructed a subclassD0 ofD which is defined below.

Definition 4.1. A Boolean function h : F2m × F2m → F2 belongs toD0 if and only if

h(x, y) = Trm
1 (xπ(y)) + g(x) for all (x, y) ∈ F2m × F2m ,

where π be a permutation on F2m and g(x) =
∏m

i=1(xi ⊕ 1).

For details we refer [8].
The following proposition is due to Gangopadhyay and Singh [18] which we use to obtain our bound.

Proposition 4.1. [18, Theorem 3.1] Suppose h(x, y) = f (x, y) +
∏m

j=1(x j ⊕ 1), for all x, y ∈ Fm
2 , where f (x, y) =

Trm
1 (xπ(y)), for some permutation π on F2m . Then

|WD(a,b)h(µ, η)| ≤ |WD(a,b) f (µ, η)| + 4|Wa·π(η)|.

Using Proposition 4.1, Gangopadhyay and Singh obtained the lower bounds on second-order nonlinearities of two
classes [18, Theorem 3.3, 3.4] of D0 type bent functions constructed by modifying the cubic Maiorana-McFarland
type bent functions. It is observed that even the constructed functions are bent having maximum algebraic degree
and good second-order nonlinearities but their algebraic immunity is still remain at most 4 for all n, and therefore,
could not be improved. In the following section we obtain the lower bound of second-order nonlinearities ofD0 type
functions by modifying Dillon functions of the form Trm

1 (αxy2m−2), α ∈ F∗2m .

4.1. Functions obtained by modifying Trm
1 (αxy2m−2)

The lower bounds of nonlinearities of the derivatives of the constructed functions at every point (a, b) ∈ F2m × F2m is
provided in the following

Lemma 4.1. Let hα : F2m × F2m → F2 be a Boolean function defined as

hα(x, y) = fα(x, y) +

m∏
j=1

(x j ⊕ 1), for all x, y ∈ F2m ,

where fα(x, y) = Trm
1 (αxy2m−2) and α ∈ F∗2m . Then every derivative, D(a,b)hα, (a, b) ∈ F2m × F2m of the function hα has

first-order nonlinearity at least
nl(D(a,b) fα) − 2 max

β∈F2m
|Wa·gα (β)|,

where gα(y) = Trm
1 (αy2m−2). Therefore,

nl(D(a,b)hα) ≥


22m−1 − 2

3m
2 − 2m − 2

m+4
2 , if a ∈ F∗2m , b = 0,

22m−1 − 2m+1, if a = 0, b ∈ F∗2m ,

22m−1 − 2m+1 − 2
m+4

2 , if a, b ∈ F∗2m .

(11)

Proof 4.1. By Proposition 4.1, the nonlinearity of D(a,b)hα is

nl(D(a,b)hα) = 2n−1 −
1
2

max
(λ,µ)∈F2m×F2m

|WD(a,b)hα |

≥ (22m−1 −
1
2

max
(λ,µ)∈F2m×F2m

|WD(a,b) fα |) − 2 max
µ∈F2m

|Wa·gα (µ)|

= nl(D(a,b) fα) − 2 max
µ∈F2m

|Wa·gα (µ)|.
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Using Proposition 2.2 and Proposition 2.3 in the above equation, we have

nl(D(a,b)hα) ≥


22m−1 − 2

3m
2 − 2m − 2

m+4
2 , if a ∈ F∗2m , b = 0,

22m−1 − 2m+1, if a = 0, b ∈ F∗2m ,

22m−1 − 2m+1 − 2
m+4

2 , if a, b ∈ F∗2m .

Theorem 4.1. Let hα(x, y) = Trm
1 (αxy2m−2) +

∏m
j=1(x j ⊕ 1), for all x, y ∈ F2m , where n = 2m and α ∈ F∗2m , then

nl2(hα) ≥ 22m−1 −
1
2

√
23m+2 + 10(2

5m
2 − 2

3m
2 ) − 22m − 2m+1.

Proof 4.2. Using (11) we have∑
a,b∈F2m

nl(D(a,b)hα) = nl(D(0,0)hα) +
∑

b∈F∗2m

nl(D(0,b)hα) +
∑

a∈F∗2m

nl(D(a,0)hα) +
∑

a,b∈F∗2m

nl(D(a,b)hα)

≥ (2m − 1)(22m−1 − 2m+1) + (2m − 1)(22m−1 − 2
3m
2 − 2m − 2

m+4
2 )

+ (2m − 1)(2m − 1)(22m−1 − 2m+1 − 2
m+4

2 )

= (2m − 1)(22m−1 − 2
3m
2 − 2m + 23m−1 − 22m+1 − 2

3m+4
2 )

= 24m−1 + 22m−1 − 5(2
5m
2 − 2

3m
2 ) − 23m+1 + 2m

Using Proposition 2.6 we have

nl2(hα) ≥ 22m−1 −
1
2

√
24m − 2(24m−1 + 22m−1 − 5(2

5m
2 − 2

3m
2 ) − 23m+1 + 2m)

= 22m−1 −
1
2

√
23m+2 + 10(2

5m
2 − 2

3m
2 ) − 22m − 2m+1. (12)

From Table 1, it is observed that the lower bounds of second-order nonlinearities of fα and hα as represented in (8)
and (12) respectively, are asymptotically equal.

Table 1: Comparison of the values of lower bounds of second-order nonlinearities D0 and associated Dillon functions and the functions obtained
in [19]

n = 2m 8 10 12 14 16 18 20
Bounds obtained in Theorem 4.1 48 297 1464 6595 28367 118868 490270
The bound obtained in [19] 51 256 1187 5296 23027 98304 414071
The bound obtained in [6] 64 331 1536 6744 28672 119487 491520
Hamming Distance in [17] 84 400 1760 7416 −− −− −−

Open problem: The lower bounds of rth-order nonlinearities for r > 2 of the constructed functions, hα as represented
in Theorem 4.1, is still a challenging problem.

5. Conclusion

In this paper, we construct a subclass of PS + type bent functions modifying bent functions in PS ap class. By using
the conjecture proposed in [27], we demonstrate that the constructed functions have maximum algebraic immunity
and hence algebraic degree. Further, using the technique proposed in [18, Theorem 3.1], we deduce a sharper lower
bound on second-order nonlinearities someD0 type bent functions constructed by modifying Dillon functions [6].

From Table 1, we observed that the bound of second-order nonlinearity the functions considered in Theorem 4.1
is improved upon the bound obtained by Garg and Gangopadhyay [19] for all n > 8. Moreover, the bounds are
asymptotically equal to the associated Dillon functions. Thus we identify a class of bent functions with maximum
algebraic degree and high possible second-order nonlinearities.
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