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Abstract. Designing an ID based signcryption scheme in the standard model is among the most
interesting and important problems in cryptography. However, all the existing systems in the ID based
setting, in the standard model, do not have either the unforgeability property or the indistinguishability
property or both of them. In this paper, we present the first provably secure ID based signcryption
scheme in the standard model with both these properties. The unforgeability property of this scheme is
based on the hardness of Computational Diffie-Hellman problem and the indistinguishability property
of this scheme is based on the hardness of Decisional Bilinear Diffie-Hellman problem. Our scheme is
strongly unforgeable in the strong attack mode called insider security. Moreover, our scheme possess
an interesting property called public verifiability of the ciphertext. Our scheme integrates cleverly, a
modified version of Waters’ IBE and a suitably modified version of the ID based signature scheme in
the standard model proposed by Paterson et al. However, our security reductions are more efficient.
Specifically, while the security reductions for indistinguishability is similar to the bounds of Waters’
scheme, the unforgeability reductions are way better than the bounds for Paterson et al.’s scheme.

Keywords: Provable Security, ID based signcryption, Strong Unforgeability, Standard Model, Public
Ciphertext Verifiability, Insider Security

1 Introduction

Signcryption aims at providing the confidentiality property of encryption and authentication and non-
repudiation properties of signature simultaneously with a cost significantly less than the cost of performing
encryption and signature separately. This notion was introduced by Zheng [31] in 1997. The reduction in
the computational and communication cost makes the scheme more practical and hence it has numerous
real time applications. Fast, compact, secure, unforgeable and non-repudiated key transport, multi-cast,
electronic commerce, authenticated email are some of the areas where signcryption is highly applicable.

ID based cryptography, introduced by Shamir in 1984 [22] suggests the use of user identity, such as his
e-mail address or his telephone number, as his public key rather than using some arbitrary strings which
requires certificates from the Certificate Authority (CA). A Private Key Generator (PKG) is a trusted entity
which when given a user’s identity computes the private key for the corresponding user and returns it to
the user through a secure channel. This method eliminates the need for certificates, which were used in the
conventional public key setting.

The first ID based signcryption scheme was proposed by Malone-Lee [18] in 2002. Many ID based sign-
cryption schemes have been proposed since then, adopting many different strategies, thereby reducing com-
putational cost and also reducing the ciphertext size ([5], [8], [17], [7], [2]).

But all these above schemes were proven secure in the random oracle model. Canetti et al. in 2004 [6]
showed the limitations and challenges of using random oracle model. The instantiation of random oracles
with real world hash functions may result in insecure schemes. So, there is a natural urge to design systems
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that are secure in standard model. It should be noted that the systems that are secure in standard model
are in general computationally more expensive than the systems that are secure in random oracle model. We
need to pay such an extra cost due to more stringent demands of standard models.

The first ID based signcryption scheme without random oracles was proposed by Yu et al. in 2009 [28]
based on Waters’ ID based encryption [26]. But their scheme was shown CPA insecure by Wang et al. [24],
Zhang et al. [30] and Zhang [29]. Zhang [29] also showed that [28] is SUF-insecure. Meanwhile, Ren and
Gu [27] proposed a Signcryption scheme based on Gentry’s IBE [9] but it was shown by Wang et al. [25]
that it has neither confidentiality nor existential unforgeability. An improved semantically secure scheme was
proposed by Jin, Wen and Du [11] again based on Waters IBE but Li et al. [13] showed that the scheme in [11]
satisfies neither IND-CCA2 property nor EUF-CMA property. Zhang [29] also proposed a new scheme. But Li
et al. in 2011 [15] showed that Zhang’s scheme [29] did not have IND-CPA property and they proposed a new
scheme claiming it to have both IND-CCA2 and EUF-CMA properties. But the new scheme in [15] satisfies
neither IND-CCA2 property nor EUF-CMA property as shown by Selvi et al. in [21]. Li et al. [14] proposed
another scheme based on IBE proposed by Kiltz et al. [12] and IBS proposed by Paterson et al. [20]. But
Selvi et al. [21] have also shown that there are inconsistencies in the proof of security of [14], thus concluding
that all the ID based signcryption schemes proposed till now for the standard model are not provably secure.
Selvi et al. [21] have also concluded that achieving a provably secure ID based signcryption scheme in the
standard model through direct combination of an ID based signature scheme and an ID based encryption
scheme can only be done by the Sign then Encrypt approach. However, for any Sign then Encrypt scheme,
cost of signcryption = cost of signature+cost of encryption. But our objective of designing a signcryption
scheme is to have a scheme that has cost of signcryption < cost of signature + cost of encryption [31].
Hence we need to take a fresh look at the design of the signcryption protocol and arrive at an efficient
customized scheme of signcryption. In the subsequent section we present one such novel scheme and formally
prove its security.

Hea An, Dodis and Rabin in 2002 [1] introduced the notion of strong unforgeability, to avoid the problems
due to malleability. If a scheme is malleable, then an adversary can produce a valid signature on a message
when another valid signature on the same message is available. So, they proved the unforgeability property
of their signcryption scheme using this strong notion. A signature scheme becomes non-malleable when it
satisfies this property. There are several transformations available in literature to convert an EUF-CMA
secure scheme to a SUF-CMA secure scheme for signature schemes. Some of the transformations available
for the standard model are the transformations proposed by Boneh et al. [4], Bellare et al. [3], Teranishi et
al. [23] and Huang et al. [10].

The public ciphertext verifiability property of a scheme is very useful in low power devices. This property
allows any third party application, like firewalls, to verify the validity of the sender and ciphertext without
any interaction with the receiver i.e without knowing the receiver’s secret key. This will allow the application
to prevent the ciphertexts, modified by an adversary, from reaching the devices. Only valid ciphertexts can
reach them, thus preventing unnecessary use of their resources for decrypting the invalid ciphertexts. Here,
the important property is that, the third party application while verifying should not obtain any knowledge
about the message that is signcrypted. This property is provided by the signcryption scheme proposed by
Chow et al. [8]. But that scheme was proven secure only in the random oracle model.

1.1 Our Contribution

In this paper we present the first provably secure ID based signcryption scheme without random oracles.
Our scheme is based on the ID based signature scheme in the standard model proposed by Paterson et al.
[20], which in turn is based on the PKI based signature scheme proposed by Waters [26]. We base the IND-
CCIA2 property of our scheme on the hardness of the Decisional Bilinear Diffie Hellman assumption and
the SUF-CMIA property of our scheme on the hardness of the Computational Diffie Hellman assumption.
The property of strong unforgeability is present in our scheme even without using any of the transformations
available to convert an existentially unforgeable scheme to a strongly unforgeable scheme in the standard
model. The proposed scheme also offers insider security with respect to both confidentiality and unforgeability
which ensures that the signcryption scheme is secure even when one among the sender or the receiver colludes
with the adversary against the other. The scheme proposed exhibits the crucial property of public ciphertext
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verifiability. Recall that all the ID based signcryption schemes in the standard model such as [28], [27], [11],
[29] and [15] are completely broken and the most recent scheme proposed by Li et al. [14] has flaws in the
proof. Even if the flaws in the proof of [14] are fixed, our scheme has the following advantages over [14].

– The security of our scheme is based on a harder assumption i.e DBDH, compared to the modified DBDH
(mDBDH) used by [14].

– Our scheme has a tighter security reduction.
– Our scheme is more efficient than the one in [14].

1.2 Organisation

The rest of this paper is organized as follows. In section 2, preliminaries like bilinear pairing, computational
assumptions, a generic ID based signcryption scheme, formal security model for ID based signcryption scheme
are explained. We present our ID based signcryption scheme in section 3. We prove the confidentiality
property and the strong unforgeability property of our scheme in section 4. The efficiency of our scheme is
explained in section 5 and the paper is concluded in section 6.

2 Preliminaries

2.1 Bilinear Pairing

Let G and GT be multiplicative groups of prime order p and let g be generator of G. The bilinear map ê is
admissible only if it satisfies the following conditions:

– Bilinearity. For all g1, g2, g3 ∈ G,
• ê(g1g2, g3) = ê(g1, g3)ê(g2, g3)
• ê(g1, g2g3) = ê(g1, g2)ê(g1, g3)
• ê(ga1 , gb2) = ê(g1, g2)ab for all a, b ∈ Zp.

– Non-Degeneracy. For all g1, g2 ∈ G, ê(g1, g2) 6= IGT , where IGT is the identity element of GT .
– Computability. There exists an efficient algorithm to compute ê(g1, g2) for all g1, g2 ∈ G.

2.2 Computational Assumptions

In this section, we review the computational assumptions relevant to the protocol we propose.

Computational Diffie-Hellman Problem (CDH) Given (g, ga, gb) ∈ G3 for unknown a, b ∈ Zp, the
CDH problem in G is to compute gab.

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the CDH problem
in G is defined as:

AdvCDHA = Pr
[
A(g, ga, gb) = gab | a, b ∈ Zp

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCDHA
is negligibly small.

Decisional Bilinear Diffie-Hellman Problem (DBDH) Given (g, ga, gb, gc, α) ∈ G4×GT for unknown
a, b, c ∈ Zp, the DBDH problem in G is to decide if α = ê(g, g)abc.

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the DBDH problem
in G is defined as:

AdvDBDHA = Pr
[
A(g, ga, gb, gc, ê(g, g)abc) = 1]− Pr

[
A(g, ga, gb, gc, α) = 1

]
| a, b, c ∈ Zp

]
The DBDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvDBDHA
is negligibly small.
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2.3 ID based Signcryption

A generic ID based signcryption scheme consists of the following four algorithms.

– Setup: This algorithm is run by the Private Key Generator (PKG). When given a security parameter
k, this algorithm outputs public parameters params and a master secret key MSK. PKG keeps the
corresponding MSK as its secret value.

– Extract: When given an Identity ID, the PKG runs this algorithm using the params and MSK and
generates the private key du for the user. The PKG then transmits the generated private key to the
corresponding user through a secure channel.

– Signcrypt: This algorithm is run by the sender. It takes as input, the public parameters params, the
private key dA of the sender, the identity of the receiver IDB and the message m to be sent to the
receiver. The signcryption σ is produced as output which is sent to the receiver.

– Unsigncrypt: On receiving the signcryption σ from the sender, the receiver runs this algorithm. The
public parameters params, the identity of the sender IDA, the private key of the receiver dB and
the signcryption σ are given as input to this algorithm. The message m is obtained as output if the
signcryption is valid or ⊥ is given as output.
For the consistency of the signcryption algorithm, if σ = Signcrypt(params, dA, IDB ,m), then m =
Unsigncrypt(params, IDA, dB , σ).

2.4 Security model for ID based signcryption

Indistinguishability In 2002, Malone-Lee [18] proposed the first ID based signcryption scheme. He ex-
tended the semantic security of encryption schemes to signcryption schemes as Indistinguishability of ID
based signcryption under Adaptive Chosen Ciphertext Attack (IND-IBSC-CCA2). Later, Chow et al. [8]
used a stronger notion of security by allowing the adversary to adaptively choose the identities to create a
forgery during the challenge phase. This is similar to the one proposed in [16]. This model was termed as
Indistinguishability of ID based signcryption under Adaptive Chosen Ciphertext and Identity Attack (IND-
IBSC-CCIA2). This is the strongest notion available in the literature for proving the Indistinguishability
property of the signcryption schemes. The formal definition is given below.

A signcryption scheme is semantically secure against chosen ciphertext and identity attack (IND-IBSC-
CCIA2) if no probabilistic polynomial time adversary A has a non-negligible advantage in the following
game.

1. The challenger C runs the Setup algorithm and sends the public parameters to the adversary A
2. Training Phase 1: The adversary A can ask a polynomially bound number of queries to the following

oracles.
– Extract Oracle: When A queries for the private key of an identity ID, the challenger C runs the

Extract algorithm giving the ID and params as input. C forwards the private key du of ID output
by the Extract algorithm to A.

– Signcrypt Oracle: A can ask for the signcryption on any message m from any sender identity IDA

to any receiver identity IDB . When A does so, C runs the Extract algorithm for the sender identity
IDA and gets the private key dA of IDA. C then inputs 〈m, dA, IDB〉 into the Signcrypt algorithm
and forwards its output σ to A.

– Unsigncrypt Oracle: A queries for the unsigncryption of the ciphertext σ by producing the sender
identity IDA and receiver identity IDB . The challenger C runs the Extract algorithm to find the
private key dB of the receiver IDB . C then runs the Unsigncrypt algorithm giving 〈σ, IDA, dB〉 as
input and forwards the output m or ⊥ to A.

During this phase A can produce its queries adaptively i.e every query can be asked dependent on the
output of the previous queries.

3. Challenge Phase At the end of Phase 1, A chooses two plaintext messages m∗0, m∗1 ∈ {0, 1}lm , two
identities i.e. sender identity ID∗A and receiver identity ID∗B on which it wishes to be challenged and sends
them to the challenger C. In this case, A should not have queried the Extract oracle for ID∗B . C takes a
bit b randomly from {0, 1} and runs Signcrypt(m∗b ,d

∗
A,ID∗B), where d∗A is the output of Extract(ID∗A).

C sends the output σ∗ to A as the challenge ciphertext.
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4. Training Phase 2: The adversary A, after receiving σ∗ can ask again for polynomially bound number
of queries on the above mentioned oracles adaptively in the same way as in Phase 1 except that A cannot
ask for the Extract(ID∗B) query and Unsigncrypt query involving 〈σ∗, ID∗A, ID∗B〉.

5. Once this Phase 2 of Training is over, A outputs b′. A wins this game if b′ = b.

The advantage of adversary A in the above game is defined by Adv(A) = (2× Pr(b′ = b)− 1).
The importance of this security model is that the adversary A can ask for the private key d∗A of the

sender whose identity is ID∗A during Phase 2. This captures the insider security model, which means that
A will not have any added advantage in the above game even when the private key of the sender is leaked.

Also, A is allowed to query the Signcrypt oracle with the challenge messages m∗0 or m∗1 with the sender
identity as ID∗A and receiver identity as ID∗B .

Unforgeability Malone-Lee [18] proposed the Existential Unforgeability of ID based signcryption under
Chosen Message Attack (EUF-IBSC-CMA). Later, Chow et al. [8] proposed a stronger notion of security
called Existential Unforgeability of ID based signcryption under Chosen Message and Identity Attack (EUF-
IBSC-CMIA), where the adversary can not only choose the message to attack adaptively but also the
identities on which it is going to attack. This notion is defined by the game between challenger and adversary
as given below.

An ID based signcryption scheme is said to have the property of Existential Unforgeability under Chosen
Message and Identity Attack if no probabilistic polynomial time adversary A has a non-negligible advantage
in the following game.

1. The challenger C runs the Setup algorithm and generates the public parameters and the Master Secret
Key MSK. C then gives the public parameters params to the adversary A

2. Now the adversary A can ask a polynomially bound number of queries to any of the following oracles.

– Extract Oracle: When A queries for the private key of an identity ID, the challenger C runs the
Extract algorithm giving the ID, params and MSK as input. C forwards the output du given by the
algorithm to the adversary A.

– Signcrypt Oracle: A can ask for the signcryption on any message m by the sender identity IDA

for the receiver identity IDB . In this case, C runs the Extract algorithm for the sender identity
IDA and gets the private key dA of IDA as output. C then inputs 〈m, dA, IDB〉 into the Signcrypt
algorithm and forwards its output σ to A.

– Unsigncrypt Oracle: When A queries for the unsigncryption of the ciphertext σ by producing the
sender identity IDA and receiver identity IDB . The challenger C first runs the Extract algorithm for
finding the private key dB of the receiver IDB . C then runs the Unsigncrypt algorithm inputting
〈σ, IDA, dB〉 and forwards its output m to A.

During this phase A can produce its queries adaptively i.e every query is dependant on the previous
queries.

3. At the end this training phase, A outputs the forgery 〈σ∗, ID∗A, ID∗B〉 for some message m∗. This forgery
is valid when ID∗A is not queried to the Extract oracle and if 〈m∗, ID∗A, ID∗B〉 is not already queried to
the Signcrypt oracle.

4. A wins the game if σ∗ is a valid forgery on the message m∗ as signcrypted by the identity ID∗A intended
for the identity ID∗B .

The advantage of adversary A in the above game is defined by

Adv(A) = Pr [Unsigncrypt(σ∗, ID∗A, ID
∗
B) = m∗]

In this security model, the importance is that the adversary can query the Extract oracle for the identity
of the receiver ID∗B in the above game which captures the insider security model for unforgeability. So, even
when the private key of the intended receiver is leaked, the adversary A will not have any added advantage
in producing a valid forgery in the above game. But the restriction here is that 〈m∗, ID∗A, ID∗B〉 should not
have been queried already to the Signcrypt oracle. The work done by Li et al. [14] has used similar security
models which provide insider security.

5



Strong Unforgeability Hea An et al. [1] proposed that there is no necessity for an adversary to produce
forgery on a message that is not already queried. Forgery can also be produced on the message that is
queried already to the Signcrypt oracle with the condition that the forged signcryption on m is not the same
as the one that is output by the Signcrypt oracle for the same message m, with the same sender and the
same receiver as the forgery. This notion is called Strong Unforgeability. Our new scheme satisfies the notion
of Strong Unforgeability of ID based signcryption under Chosen Message and Identity Attack (SUF-IBSC-
CMIA). This is the strongest security notion available for proving the unforgeability property of signcryption
schemes. We state this notion formally as follows.

An ID based signcryption scheme is said to have the property of Strong Unforgeability under Chosen
Message and Identity Attack if there is no probabilistic polynomial time adversary A has a non-negligible
advantage in the game described as follows.

1. The challenger follows the same procedure as EUF-IBSC-CMIA game during the setup and the training
phases.

2. After training is over, the adversary A, produces 〈σ∗, ID∗A, ID∗B〉 for the message m∗, where ID∗A is
not queried to the Extract oracle and σ∗ is not the output of the Signcrypt query asked by A with
〈m∗, ID∗A, ID∗B〉 as input.

3. A wins the game if σ∗ is a valid forgery on the message m∗ as signcrypted from the sender identity ID∗A
to the receiver identity ID∗B .

The advantage of adversary A in the above game is defined by

Adv(A) = Pr [Unsigncrypt(σ∗, ID∗A, ID
∗
B) = m∗]

In the above security model, A can produce any valid 〈σ∗, ID∗A, ID∗B〉 tuple for the message m∗, where
〈m∗, σ∗〉 is not the output of any Signcrypt query with ID∗A and ID∗B as the sender and receiver identities
during the training phase. So, m∗ may have been queried already to the Signcrypt oracle provided that σ∗ is
not the output of the oracle during that query with the sender and receiver identities being the same during
that query and the forgery.

3 Our Scheme

Setup

Consider groups G,GT of prime order p whose size is determined by the security parameter k. Let g be
the generator of the group G. There exists a bilinear map defined by ê : G × G → GT , which is efficiently
computable. Now, choose α ∈ Zp randomly and compute g1 = gα. Randomly pick g2, h2 from G and
compute gα2 , h

α
2 . Also, choose h1, h3 randomly from G. Choose u′, v′,m′ randomly from the group G and

also choose vectors U = (ui) and V = (vi) each of length nu and M = (mi) of length l, whose elements
are randomly chosen from group G. Here, nu is the length of the identity strings that are used. Let nm
be the length of the message sent. There are four one-way, collision resistant cryptographic hash functions
H1 : GT × {0, 1}lτ → {0, 1}nm , H2 : {0, 1}|p|+nu+lτ → {0, 1}l, H3 : G→ Z∗p and H4 : {0, 1}nm+|p|+nu → Z∗p,
where l is large enough that the hash functions are collision resistant and lτ ≈ 40. Note that a typical value
of l could be 256 and a random bit string of length l cannot be guessed in polynomial time. The system
parameter params is given by 〈G,GT , ê, H1, H2, H3, H4, g, g1, g2, h1, h2, h3, u

′, v′,m′,U,V,M〉. The master
secret key of the system is 〈α, gα2 , hα2 〉. The following algorithms define our scheme.

Extract(u, params, MSK)

Let an identity of a user u be represented by IDu which is a bit string of length nu and let IDu[i] be the
ith bit of IDu. Define Ωu ⊆ {1, 2, ..., nu} to be the set of indices i such that IDu[i] = 1. The private key of
a user u is constructed by choosing a random ru ∈ Z∗p and then computing

du = (dS , dUS , dR) = (gα2 (u′
∏
i∈Ωu

ui)
ru , hα2 (v′

∏
i∈Ωu

vi)
ru , gru)
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Signcrypt(params, dA, B, m)

The private key of the sender A with identity IDA as given by the PKG is

dA = (dSA , dUSA , dRA) = (gα2 (u′
∏
i∈ΩA

ui)
rA , hα2 (v′

∏
i∈ΩA

vi)
rA , grA)

whereΩA ⊆ {1, 2, ..., nu} is the set of indices i such that IDA[i] = 1. Now, when given a messagem ∈ {0, 1}nm
signcryption on the message is done by the sender A as follows.

– Choose r ∈ Zp randomly and compute σ1 = gr ∈ G

– Encrypt the message as σ2 = H1(ê (g1, h2)r, τ)⊕m ∈ {0, 1}nm , where τ ∈R {0, 1}lτ

– Compute σ3 = (v′
∏
i∈ΩB vi)

r ∈ G, where ΩB is the set of vertices i such that IDB [i] = 1. Here, B is
the receiver of the message.

– Set σ4 = dRA ∈ G

– Compute λ = H3(σ1), β = H2(σ4, IDA, τ), ρ = H4(σ2, σ3, IDB)

– Compute σ5 = dSA(m′
∏
j∈βmj)

r
(
hλ1h3

)rρ ∈ G, where β ⊆ {1, 2, ..., l} denotes the set of indices j such
that β[j] = 1

The ciphertext σ = 〈σ1, σ2, σ3, σ4, σ5, τ〉 is sent to the receiver.

The size of the ciphertext formed is 4|p|+nm + lτ . Note that this scheme achieves the property of strong
unforgeability without using any of the transformations available to convert an existentially unforgeable
scheme to a strongly unforgeable one.

Unsigncrypt(params, A, dB, σ )

When the receiver B receives the ciphertext σ = 〈σ1, σ2, σ3, σ4, σ5, τ〉, he proceeds as follows.

– The private key dB received from the PKG is

dB = (dSB , dUSB , dRB ) = (gα2 (u′
∏
i∈ΩB

ui)
rB , hα2 (v′

∏
i∈ΩB

vi)
rB , grB )

– Compute λ = H3(σ1), β = H2(σ4, IDA, τ), ρ = H4(σ2, σ3, IDB)

– Then, using β, ρ and λ, check the validity of σ as follows

ê(σ5, g)
?
= ê(g1, g2) ê(u′

∏
i∈ΩA

ui, σ4) ê((m′
∏
j∈β

mj)(h
λ
1h3)ρ, σ1) (1)

where ΩA is the set of indices i such that IDA[i] = 1 and β ⊆ {1, 2, ..., l} denotes the set of indices j
such that β[j] = 1

– If σ is invalid, reject σ and halt.

– If σ is valid, compute ê (g1, h2)r =
ê (dUSB , σ1)

ê (dRB , σ3)

– Obtain the message as m = σ2 ⊕H1(ê (g1, h2)r, τ)

The above verification process stated in equation (1) can be done by any user who has access to σ, because all
the components used in the verification process are either the values in params 〈g, g1, g2, u′,U,m′,M, h1, h3〉,
components of the ciphertext 〈σ1, σ4, σ5〉 or components that are derived from the ciphertext 〈λ, β, ρ〉. and
thus the integrity and validity of the sender and the ciphertext can be verified by anyone. This gives the
property of Public Ciphertext Verifiability to our scheme.
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Correctness of the Unsigncrypt algorithm

When the receiver B receives the ciphertext σ = 〈σ1, σ2, σ3, σ4, σ5, τ〉, he can calculate ê (g1, h2)r using his

Unsigncrypt private key 〈dUSB , dRB 〉 by
ê (dUSB , σ1)

ê (dRB , σ3)
as shown below.

ê (dUSB , σ1)

ê (dRB , σ3)
=
ê (hα2 (v′

∏
i∈ΩB vi)

rB , gr)

ê (grB , (v′
∏
i∈ΩB vi)

r)
=
ê (hα2 , g

r) ê((v′
∏
i∈ΩB vi)

rB , gr)

ê (grB , (v′
∏
i∈ΩB vi)

r)
= ê (g1, h2)r

The correctness of the verification procedure is shown below.

ê(σ5, g) = ê(dSA(m′
∏
j∈βmj)

r(hλ1h3)rρ, g)

= ê (gα2 (u′
∏
i∈ΩA ui)

rA(m′
∏
j∈βmj)

r(hλ1h3)rρ, g)

= ê (gα2 , g) ê ((u′
∏
i∈ΩA ui)

rA , g) ê ((m′
∏
j∈βmj)

r, g) ê((hλ1h3)rρ, g)

= ê (gα, g2) ê (u′
∏
i∈ΩA ui, g

rA) ê (m′
∏
j∈βmj , g

r) ê((hλ1h3)ρ, gr)

= ê(g1, g2) ê(u′
∏
i∈ΩA ui, σ4) ê((m′

∏
j∈βmj)(h

λ
1h3)ρ, σ1)

where the definitions of β and ΩA are as explained in the Unsigncrypt algorithm.

4 Security

4.1 Indistinguishability

We first prove the Indistinguishability property, Indistinguishability of ID based signcryption under Adaptive
Chosen Ciphertext and Identity Attack (IND-IBSC-CCIA2) of our scheme with the following theorem.

Theorem 1. If there exists an IND-IBSC-CCIA2 adversary for our scheme which can distinguish ciphertexts
during the IND-IBSC-CCIA2 game explained above, with a non-negligible probability ε when it runs for a
polynomial time t, asking at most qE extract queries, qS signcrypt queries and qUS unsigncrypt queries, then
there exists another algorithm, which can solve the Decisional Bilinear Diffie-Hellman (DBDH) problem with
probability ε′ in polynomial time t′, where

ε′ ≥ ε

4(qE)(nu + 1)

t′ ≤ t+O((nuqE + (nu + l)(qS + qUS))tm + (qE + qS + qUS)te + (qS + qUS)tp)

where nu is the length of the identity string, tm, te, tp are the time required for each multiplication, each
exponentiation and each bilinear pairing respectively and l is a value large enough such that the hash functions
outputting {0, 1}l in the scheme are collision resistant.

Proof

Let us assume that a (ε, t, qE , qS , qUS)-adversary A for our scheme exists. We will construct another algorithm
B from this adversary A, who can solve the Decisional Bilinear Diffie- Hellman (DBDH) problem with a
non-negligible probability ε′ in polynomial time t′.

The algorithm B receives a DBDH tuple 〈g, ga, gb, gc, T 〉 ∈ G4 × GT , where g is a generator of a prime
order group G of order p. B simulates a challenger for the adversary A to decide whether T is ê(g, g)abc or
not. This simulation is described as follows:
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Setup

The simulator B sets lu = 2(qE), where qE is the number of Extract queries. Here, the values qS and qUS
are not bounded because the Signcrypt and the Unsigncrypt queries do not abort when an Extract query
of the sender or receiver identity, used in any Signcrypt or Unsigncrypt query, aborts. This will be evident
from the explanation for the Signcrypt and the Unsigncrypt oracles. B then chooses an integer ku randomly
such that 0 ≤ ku ≤ nu. For the given values of qE , qS , qUS and nu, we assume that lu(nu + 1) < p. Then,
B chooses x′ ∈ Zlu randomly and also chooses a vector X = (xi) of length nu where the elements of X are
chosen randomly from Zlu . B chooses an integer y′ randomly from Zp and a vector Y = (yi) of length nu,
where the elements of Y are also chosen randomly from Zp.

Here we define a pair of functions for a user with identity IDu as follows:

F (u) = x′ +
∑
i∈Ωu xi − luku J(u) = y′ +

∑
i∈Ωu yi

The simulator now sets the public parameters as follows:

g1 = ga g2 = gd h1 = g
(λ∗)−1

1 h3 = g−11 gθ h2 = gb

where d and θ are chosen randomly from Zp and λ∗ = H3(gc). The values ga, gb, gc are from the DBDH
tuple given to the challenger C.

v′ = hx
′−luku

2 gy
′

vi = hxi2 g
yi v′

∏
i∈Ω vi = h

F (u)
2 gJ(u)

Finally, B chooses two integers e′ and f ′ randomly from Zp and two vectors E = (ei) and F = (fi) of lengths
nu and nm respectively, where the elements of E and F are chosen randomly from Zp.

For any identity IDu,

u′ = ge
′

ui = gei u′
∏
i∈Ωu ui = ge

′
g
∑
i∈Ωu ei = ge

′+
∑
i∈Ωu ei

where Ωu ⊆ {1, 2, .., nu} is the set of indices i where IDu[i] = 1.

For any β got for a message m as explained in the scheme,

m′ = gf
′

mi = gfi m′
∏
i∈βmi = gf

′
g
∑
i∈β fi = gf

′+
∑
i∈β fi

There are four one-way, collision resistant, cryptographic hash functions H1 : GT × {0, 1}lτ → {0, 1}nm ,
H2 : {0, 1}|p|+nu+lτ → {0, 1}l, H3 : G→ Z∗p and H4 : {0, 1}nm+|p|+nu → Z∗p, where l is large enough that the
hash functions are collision resistant and lτ ≈ 40. Note that a typical value of l could be 256 and a random
bit string of length l cannot be guessed in polynomial time.

Training Phase 1

The simulator during this phase answers to the queries from the adversary A as follows.

Extract Queries
The simulator B does not know the master secret key ha2 . So, when the adversary A asks for the private key
of an identity IDu, B responds as follows. B calculates F (u) for the identity IDu. If F (u) = 0 mod p, it
aborts. Otherwise, B randomly chooses ru ∈ Zp and calculates the private key as

du = (dS , dUS , dR) =

(
gd1

(
u′
∏
i∈Ωu

ui

)ru
g
−(e′+

∑
i∈Ωu ei)/F (u)

1 , g
−J(u)/F (u)
1

(
v′
∏
i∈Ωu

vi

)ru
, g
−1/F (u)
1 gru

)

where Ωu ⊆ {1, 2, ..., nu} is the set of indices i such that IDu[i] = 1.
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The correctness of this equation is shown as follows:

dS = gd1
(
u′
∏
i∈Ωu ui

)ru
g
−(e′+

∑
i∈Ωu ei)/F (u)

1

= gad g(e
′+

∑
i∈Ωu ei)rug−a(e

′+
∑
i∈Ωu ei)/F (u)

= ga2
(
u′
∏
i∈Ωu ui

)ru−a/F (u)

dUS = g
−J(u)/F (u)
1

(
v′
∏
i∈Ωu vi

)ru
= ha2 h

−a
2 g

−J(u)/F (u)
1 (h

F (u)
2 gJ(u))ru

= ha2 h
−aF (u)/F (u)
2 g−aJ(u)/F (u)(h

F (u)
2 gJ(u))ru

= ha2

(
h
F (u)
2 gJ(u)

)−a/F (u)

(h
F (u)
2 gJ(u))ru

= ha2
(
v′
∏
i∈Ωu vi

)ru−a/F (u)

Here, we can write ru = ru− a/F (u). Thus the private key generated by the simulator can be written as

du = (dS , dUS , dR) = (ga2 (u′
∏
i∈Ωu

ui)
ru , ha2 (v′

∏
i∈Ωu

vi)
ru , gru)

which is a valid and mathematically consistent private key for the identity IDu queried by A.

Signcrypt Queries
When A queries the Signcrypt oracle for signcryption of a message m by the user with identity IDA as
sender and the user with identity IDB as the intended receiver, B simulates a valid ciphertext as follows.

σ1 = gr, where r ∈ Zp is randomly chosen by B

σ2 = H1(ê(g1, h2)r, τ)⊕m, where τ ∈R {0, 1}lτ

σ3 =
(
v′
∏
i∈ΩB vi

)r
σ4 = grA , where rA is the randomness stored for IDA in the list lr. Otherwise choose rA ∈ Zp randomly

and store it in lr. Note that lr is the list that stores 〈IDu, ru〉 tuples.

β = H2(σ4, IDA, τ), ρ = H4(σ2, σ3, IDB) and λ = H3(σ1)

σ5 = gd1
(
u′
∏
i∈ΩA ui

)rA (
m′
∏
j∈βmj

)r (
hλ1h3

)rρ
= ga2

(
u′
∏
i∈ΩA ui

)rA (
m′
∏
j∈βmj

)r (
hλ1h3

)rρ
where β ⊆ {1, 2, ..., l} denotes the set of indices j such that β[j] = 1. The equation above for σ5 is correct

because gd1 = (ga)d = (gd)a = ga2 .

The ciphertext σ = 〈σ1, σ2, σ3, σ4, σ5, τ〉 is sent to the adversary A. Here, the Signcrypt queries never abort
and they do not need an Extract query for the sender identity IDA within them.

Unsigncrypt Queries
When A queries 〈σ, IDA, IDB〉 i.e the unsigncryption of the ciphertext σ which was signcrypted by the
sender IDA for the intended receiver IDB , to the Unsigncrypt oracle simulated by B, it proceeds as follows.
B does an Extract query for the receiver identity IDB . If the Extract query does not abort, B receives the
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private key for IDB as output from the Extract oracle as

dB = (dSB , dUSB , dRB ) = (ga2 (u′
∏
i∈ΩB

ui)
rB , ha2 (v′

∏
i∈ΩB

vi)
rB , grB )

The simulator uses the private keys dUSB , dRB got from the extract oracle to unsigncrypt the ciphertext σ
using the Unsigncrypt algorithm as given in the Scheme.

If the extract query aborts i.e if F (B) = 0 mod p, the simulator proceeds as follows. The simulator
calculates ∆ as given below.

∆ =
σ5

gd1 σ
(e′+

∑
i∈ΩA

ei)

4 σ
(f ′+

∑
i∈β fi)

1 σθρ1

=
σ5

dSA(u′
∏
i∈ΩA ui)

rA(m′
∏
j∈βmj)rσ

θρ
1

=
(hλ1h3)rρ

σθρ1
= (g

(λ/λ∗)−1
1 )rρ

Then, we calculate ∆∗ = ∆(((λ/λ∗)−1)ρ)−1

= gr1, where λ = H3(σ1).

Now, we can obtain the message as follows.
m = σ2 ⊕H1(ê(∆∗, h2), τ) = σ2 ⊕H1(ê(gr1, h2), τ) = σ2 ⊕H1(ê(g1, h2)r, τ)

This message can be returned if the verification in Eq.(1) is satisfied. Thus, the Unsigncrypt queries never
abort even if the Extract queries for the corresponding receiver identities abort.

Challenge Phase

The adversary A can adaptively ask polynomially bound number of these Extract, Signcrypt and Unsign-
crypt queries to B. When A decides that training is enough, it produces two messages m∗0 and m∗1 along
with the sender identity ID∗A and receiver identity ID∗B adaptively and sends them to the challenger. The
challenger randomly chooses γ ∈ {0, 1} and then simulates the challenge ciphertext as follows.

σ∗1 = gc

σ∗2 = H1(T, τ∗)⊕m∗γ , where gc and T are taken by B from the DBDH tuple given and τ∗ ∈R {0, 1}lτ .

σ∗3 =
(
v′
∏
i∈ΩB vi

)c
= (gc)J(B

∗), where F (B∗) = 0 mod p

σ∗4 = grA , where rA ∈ Zp is randomly chosen

β∗ = H2(σ∗4 , ID
∗
A, τ

∗), ρ∗ = H4(σ∗2 , σ
∗
3 , ID

∗
B) and λ∗ = H3(σ∗1)

σ∗5 = ga2
(
u′
∏
i∈ΩA ui

)rA (
m′
∏
j∈β∗ mj

)c (
hλ
∗

1 h3
)cρ∗

= gd1
(
u′
∏
i∈ΩA ui

)rA
(gc)f

′+
∑
j∈β∗ fi (gc)θρ

∗

where β∗ ⊆ {1, 2, ..., l} denotes the set of indices j such that β∗[j] = 1.

Note that, the simulator will be able to successfully simulate the challenge ciphertext without aborting, as
explained above, only if F (B∗) = 0 mod p. The simulator aborts if F (B∗) 6= 0 mod p as it will not be able
to simulate the component σ3 when F (B∗) 6= 0 mod p. The ciphertext σ∗ = 〈σ∗1 , σ∗2 , σ∗3 , σ∗4 , σ∗5 , τ∗〉 is sent to
the adversary A.

Here, if the simulator B was given a valid DBDH tuple i.e. if T = ê(g, g)abc, then the challenge ciphertext
σ∗ = 〈σ∗1 , σ∗2 , σ∗3 , σ∗4 , σ∗5 , τ∗〉, which is sent to the adversary A, is a valid signcryption on the message m∗γ by
the sender with identity ID∗A for the receiver with identity ID∗B .

Otherwise, if T is a random element in GT , then challenge ciphertext is indistinguishable. So, in this case
the simulator will give no information about the choice of γ that it made.
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Training Phase II

In this phase, the simulator answers to the queries from the adversary A in the same way as it did in the
Training Phase I. Here, A cannot ask for the Unsigncrypt query of the challenge ciphertext σ∗ with sender
identity as ID∗A and receiver identity as ID∗B and the Extract query for the receiver identity ID∗B .

The strength of our scheme is that the adversary can again query the Signcrypt Oracle for the signcryption
of either of the challenge ciphertexts m∗0 or m∗1 with the sender identity as ID∗A and receiver identity as ID∗B ,
during this phase. A can also query the Extract oracle for the sender identity ID∗A, which makes our scheme
insider secure.

Guess Phase

When the adversary A decides the training is enough, A outputs its guess γ′ of γ.

If the guess γ′ = γ, then the simulator outputs that T in the given DBDH tuple is valid i.e T = ê(g, g)abc.
Otherwise B outputs that 〈g, ga, gb, gc, T 〉 is not valid DBDH tuple.

Thus, B simulates a challenger for the adversary A and solves the DBDH problem with a probability ε′

from the forgery produced by A. This concludes the description of the simulation.

Analysis

In this section, we analyse the probability ε′ with which the simulator will be able to solve the hard problem
DBDH, given that the adversary is able to produce a valid forgery with a non-negligible probability ε.
The simulation done is completed without aborting if in all the Extract queries, F (u) 6= 0 mod lu(since
lu(nu + 1) < p, F (u) 6= 0 mod lu =⇒ F (u) 6= 0 mod p ), for the identity IDu during the Training phase
and if F (u∗) = 0 mod p during the Challenge phase. Thus, lu set as 2(qE), sets a bound on the number of
Extract queries to be asked by A, whereas no bound is needed for the number of Signcrypt and Unsigncrypt
queries because the signcryption and the unsigncryption oracles are always simulated without aborting. Let
us assume the events Ai, A

∗ as follows.

Ai : F (u) 6= 0 mod lu ; A∗ : F (u∗) = 0 mod p

Thus, from the analysis done above probability for the simulation not aborting is

Pr[¬Abort] = Pr[

qE∧
i=1

Ai ∧A∗]

Since lu(nu+1) < p, F (u) = 0 mod p implies F (u) = 0 mod lu. For the event A∗ to occur, x′+
∑
i∈Ω xi =

0 mod lu, hence F (u∗) = 0 mod lu. And also, there should be a unique value of ku, where 0 ≤ ku ≤ nu, such
that F (u∗) = 0 mod p. Here, ku is randomly chosen. So, the probability for the event A∗ to occur is

Pr[A∗] = Pr[F (u∗) = 0 mod p ∧ F (u∗) = 0 mod lu]

= Pr[F (u∗) = 0 mod lu]Pr[F (u∗) = 0 mod p|F (u∗) = 0 mod lu]

=
1

lu

1

nu + 1

Since, the adversary cannot produce forgery on a message for which an Extract query is asked, the events
Ai and A∗ are independent. Also, the events Ai and Aj i.e F (ui) = 0mod p and F (uj) = 0mod p are
independent. So,

Pr[

qE∧
i=1

Ai] =

qE∏
i=1

Pr[Ai]
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Thus, the probability for not aborting becomes,

Pr[

qE∧
i=1

Ai ∧A∗] = Pr[

qE∧
i=1

Ai]Pr[A
∗]

≥
(

1− 1

lu

)qE 1

lu

1

nu + 1

≥
(

1− qE
lu

)
1

lu

1

nu + 1

Pr[

qE∧
i=1

Ai ∧A∗] ≥
1

4(qE)(nu + 1)
(∵ lu = 2qE)

Thus, the probability for the challenger to produce a valid forgery ε′ is defined as

ε′ ≥ ε

4(qE)(nu + 1)

The tightness of the security reduction in the proof of CCIA2 security of our scheme is of the order of the
tightness of security reduction of Waters’ scheme [26].

4.2 Unforgeability

We now prove the unforgeability property, Strong Unforgeability under Chosen Message and Identity At-
tack(SUF-CMIA) of our scheme with the following theorem.

Theorem 2. If there exists an SUF-CMIA adversary for our scheme who can create valid ciphertexts during
the SUF-CMIA game explained above, with a non-negligible probability ε when it runs for a polynomial time
t, asking at most qE extract queries, qS signcrypt queries and qUS unsigncrypt queries, then there exists
another algorithm, who can solve the Computational Diffie-Hellman (CDH) problem with probability ε′ in
polynomial time t′, where

ε′ ≥ ε

4κqE(nu + 1)(nm + 1)

t′ ≤ t+O((nuqE + (nu + l)(qS + qUS))tm + (qE + qS + qUS)te + (qS + qUS)tp)

where nu is the length of the identity string and nm is the length of the message, κ is the security parameter,
tm, te, tp are the time required for each multiplication, each exponentiation and each bilinear pairing respec-
tively and l is a value large enough such that the hash functions outputting {0, 1}l in the scheme are collision
resistant.

Proof

Let us assume that a (ε, t, qE , qS , qUS)-adversary A for our scheme exists. We will construct another algorithm
B from this adversary A, who can solve the Computational Diffie- Hellman (CDH) problem with a non-
negligible probability ε′ in polynomial time t′.

The algorithm B receives a CDH tuple 〈g, ga, gb〉, where g is a generator of prime order group G of order
p. B simulates a challenger for the adversary A to calculate gab from the tuple given. This simulation is
described as follows:

Setup

The simulator B sets lu = 2(qE) and lm = κ, where κ is the security parameter. Here, the values of qS and
qUS are not included while calculating lu because the Signcrypt queries do not abort when the Extract query
within them aborts and the Unsigncrypt queries do need an Extract query within them. B then chooses two
integers ku, km randomly such that 0 ≤ ku ≤ nu and 0 ≤ km ≤ nm. For the given values of qE , qS , qUS , nu
and nm, we assume that lu(nu + 1) < p and lm(nm + 1) < p. Then, B chooses the elements x′ ∈ Zlu and
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z′ ∈ Zlm randomly and also chooses two vectors X = (xi) of length nu and Z = (zi) of length l where the
elements of X are chosen randomly from Zlu and the elements of Z are chosen randomly from Zlm , with l
large enough so that the hash functions are collision resistant. B also chooses two integers y′ and w′ randomly
from Zp and two vectors Y = (yi) of length nu and W = (wi) of length l, where the elements of Y and W
are chosen randomly from Zp.

Here we define two pairs of functions for a user with identity IDu and for a value β ∈ {0, 1}l as follows:

F (u) = x′ +
∑
i∈Ωu xi − luku J(u) = y′ +

∑
i∈Ωu yi

K(β) = z′ +
∑
j∈β zj − lmkm L(β) = w′ +

∑
j∈β wi

The simulator now sets the public parameters as follows:

g1 = ga g2 = gb h1 = gθ h3 = gθ
′

h2 = gd

where d, θ and θ′ are chosen randomly from Zp. Here, ga and gb are taken by B from the CDH tuple.

u′ = gx
′−luku gy

′
ui = gxi2 g

yi u′
∏
i∈Ωu ui = g

F (u)
2 gJ(u)

m′ = gz
′−lmkm gw

′
mi = gzi2 g

wi m′
∏
i∈βmi = g

K(β)
2 gL(β)

Finally, B chooses an integer e′ randomly from Zp and a vector E = (ei) of length nu, where the elements of
E are chosen randomly from Zp.

v′ = ge
′

vi = gei v′
∏
i∈Ωu vi = ge

′
g
∑
i∈Ωu ei = ge

′+
∑
i∈Ωu ei

There are four one-way, collision resistant, cryptographic hash functions defined as H1 : GT ×{0, 1}lτ →
{0, 1}nm , H2 : {0, 1}|p|+nu+lτ → {0, 1}l, H3 : G→ Z∗p and H4 : {0, 1}nm+|p|+nu → Z∗p, where lτ ≈ 40.

Training Phase

The simulator during this phase answers to the queries from the adversary A as follows.

Extract Queries
The simulator B does not know the master secret key ga2 . So, when the adversary A asks for the private key
of an identity IDu, B responds as follows. B calculates F (u) for the identity IDu. If F (u) = 0 mod p, the
simulator aborts. Otherwise, B randomly chooses ru ∈ Zp and calculates the private key as

du = (dS , dUS , dR) =

(
g
−J(u)/F (u)
1

(
u′
∏
i∈Ωu

ui

)ru
, gd1

(
v′
∏
i∈Ωu

vi

)ru
g
−(e′+

∑
i∈Ωu ei)/F (u)

1 , g
−1/F (u)
1 gru

)

where Ωu ⊆ {1, 2, ..., nu} is the set of indices i such that IDu[i] = 1.

Signcrypt Queries
When A queries the Signcrypt oracle for signcryption of message m by the identity IDA and with IDB as
the intended receiver, B simulates a valid ciphertext as follows.

B asks for the Extract query of the sender identity IDA. If F (A) 6= 0 mod lu, B follows the Signcrypt
algorithm using the private key dA for identity IDA got from the Extract algorithm to signcrypt the given
message m as done by identity IDA and with IDB as the intended receiver.

Else if F (A) = 0 mod p, B proceeds as follows.

14



1. Choose r ∈ Zp randomly and calculate the following parameters.

2. σ4 = grA , where rA is taken from the list lr corresponding to IDA. If there is no entry for IDA in lr,
then choose rA ∈R Zp and store 〈IDA, rA〉 in lr.

3. β = H2(σ4, IDA, τ), where τ ∈R {0, 1}lτ

4. If K(β) = 0 mod p, repeat the simulation process from Step 3 by choosing a different τ ∈R {0, 1}lτ , else
continue.

5. σ1 = grg
−1/K(β)
1 = gr and λ = H3(σ1)

6. σ2 = H1(ê(g1, h2)r ê(g1, g1)−d/K(β), τ)⊕m = H1(ê(g1, h2)r ê(g1, g
d)−a/K(β), τ)⊕m = H1(ê(g1, h2)r, τ)⊕

m

7. σ3 =
(
v′
∏
i∈ΩB vi

)r
g
−(e′+

∑
i∈ΩB

ei)/K(β)

1 =
(
g
(e′+

∑
i∈ΩB

ei)
)r

g
−(e′+

∑
i∈ΩB

ei)/K(β)

1 =
(
v′
∏
i∈ΩB vi

)r
8. ρ = H4(σ2, σ3, IDB)

9. σ5 =
(
u′
∏
i∈ΩA ui

)rA (
m′
∏
j∈βmj

)r
g
−L(β)/K(β)
1

(
hλ1h3

)rρ
g
−(θλ+θ′)ρ/K(β)
1

=
(
u′
∏
i∈ΩA ui

)rA
ga2

(
m′
∏
j∈βmj

)r−a/K(β) (
hλ1h3

)(r−a/K(β))ρ

= ga2
(
u′
∏
i∈ΩA ui

)rA (
m′
∏
j∈βmj

)r (
hλ1h3

)rρ
where β ⊆ {1, 2, ..., l} denotes the set of indices j such that β[j] = 1. The above steps in the calculation

of σ5 take place similar to the simulation of dS in the Extract algorithm.

10. The ciphertext σ = 〈σ1, σ2, σ3, σ4, σ5, τ〉 is sent to the adversary A.

Here, since β is chosen in such a way that K(β) 6= 0 mod p, this simulation of the signcrypted ciphertext
σ never aborts. Thus, Signcrypt queries never abort.

Unsigncrypt Queries
When A queries 〈σ, IDA, IDB〉 i.e the unsigncryption of the ciphertext σ which was signcrypted by the
sender IDA for the intended receiver IDB , to the challenger simulated by B, it proceeds as follows.

B can directly calculate ê(g1, h2)r as ê(g1, h2)r = ê(g1, g)dr = ê(g1, g
r)d = ê(g1, σ1)d

The calculation of ê(g1, h2)r can also be done as per the Unsigncrypt algorithm first by simulating
〈dUSB , dRB 〉 for the receiver identity IDB as

〈dUSB , dRB 〉 = 〈gd1 (v′
∏
i∈ΩB vi)

rB = ha2 (v′
∏
i∈ΩB vi)

rB , grB 〉

where rB is randomly chosen from Zp and then ê (g1, h2)r =
ê (dUSB , σ1)

ê (dRB , σ3)

Then, in both these cases, m is calculated as m = σ2 ⊕H1(ê(g1, h2)r, τ)

Verification is done as mentioned in the Unsigncrypt algorithm and m is returned if this verification test
is passed, else ⊥ is returned. Note that, the Unsigncrypt queries never get aborted for a valid ciphertext.

Forgery Phase

The adversary A can ask polynomially bound number of these queries to B adaptively. When the adversary
feels that the training is enough, it produces a valid forgery σ∗ = 〈σ∗1 , σ∗2 , σ∗3 , σ∗4 , σ∗5 , τ∗〉, where σ∗ is a valid
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signcrypted ciphertext for the message m∗ by the identity ID∗A for the identity ID∗B who is the intended
receiver. Here, note that as per the security model for SUF-CMIA, the 〈σ∗,m∗, ID∗A, ID∗B〉 given by the
adversary A is valid only when 〈σ∗,m∗〉 is not the output of any Signcrypt Query with ID∗A as the sender
identity and with ID∗B as the intended receiver. But, there is no constraint on the adversary that the forgery
should be on a message m∗ that was not a part of any Signcrypt Query with the sender and receiver identities
as ID∗A and ID∗B respectively. A can also adaptively choose the sender identity ID∗A and receiver identity
ID∗B , irrespective of the Signcrypt queries during the Training phase. A sends 〈σ∗,m∗, ID∗A, ID∗B〉 to B.

When the simulator receives the tuple 〈σ∗,m∗, ID∗A, ID∗B〉, it calculates the solution to the given instance
of the CDH problem as follows.

σ∗5

σ∗
J(A∗)

4 σ∗
L(β∗)

1 σ
(θλ∗+θ′)ρ
1

=
ga2 (g

F (A∗)
2 gJ(A

∗))rA (g
K(β∗)
2 gL(β

∗))r (hλ1h3)rρ)

(grA)J(A∗) (gr)L(β∗)(gr)(θλ∗+θ′)ρ
= ga2 = gab

where λ∗ = H3(σ∗1), ρ = H4(σ∗2 , σ
∗
3 , ID

∗
B) and β∗ = H2(σ∗4 , ID

∗
A, τ

∗)

This can happen only when where F (A∗) = 0 mod p and K(β∗) = 0 mod p. The simulator aborts other-
wise.

Thus, the simulator solves the given instance of the CDH problem with probability ε′, from the forgery
produced by the adversary A, by simulating a challenger for A.

Analysis

Here, we analyse the probability ε′ with which the simulator will be able to solve the instance of the CDH
problem given to the challenger, given that the adversary is able to produce a valid forgery with a non-
negligible probability ε. The simulation done is completed without aborting if for all the Extract queries of
identity IDu, F (u) 6= 0 mod lu and if F (u∗) = 0 mod p and K(β∗) = 0 mod p during the Forgery phase. Let
us assume the events Ai, A

∗ and B∗ as follows.

Ai : F (u) 6= 0 mod lu ; A∗ : F (u∗) = 0 mod p ; B∗ : K(β∗) = 0 mod p

Thus, from the analysis done above, the probability for the simulation not aborting is

Pr[¬Abort] = Pr[

qE∧
i=1

Ai ∧A∗ ∧B∗]

The estimation of Pr[¬Abort] is similar to the one done after the IND-CCIA2 game. The probability for the
challenger to produce a valid forgery ε′ is defined as

ε′ ≥ ε

4κqE(nu + 1)(nm + 1)
(2)

Thus, the probability for the challenger to solve the instance of CDH problem in the unforgeability game
is Θ(2κ) times more for our scheme than [20]. This makes the security reduction of our scheme tighter than
[20].

5 Efficiency

The Signcrypt algorithm of our scheme performs one bilinear pairing operation while calculating ê(g1, h2)r.
But note that ê(g1, h2) can be precomputed before the protocol begins since both g1 and h2 are public
parameters and they are same for all runs of the protocol. The algorithm also performs 5 exponentiations
(4 of elements of group G and one of element of GT ). The unsigncrypt algorithm performs 6 bilinear pairing
operations of which ê(g1, g2) can be precomputed and one exponentiation of an element of group G. Note
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that the calculation of (hλ1h3)ρ involves only one exponentiation according to the well known “square and
multiply” technique explained in [19]. When the number of computations performed by our scheme and
the scheme in Li et al. [14] are compared (excluding the precomputed values), our scheme performs one
exponentiation less than [14] with same number of bilinear pairings.

Since none of the ID based signcryption schemes without random oracles are provably secure in the
literature, we will compare the efficiency of our scheme with the ID based signcryption scheme π that was
conceptually formatted in [21] obtained by the ‘Sign then Encrypt’ approach. Note that π is the most efficient
signcryption scheme that can be got by the direct combination of IBE and IBS schemes, since [20] and [12]
are the most efficient IBS and IBE schemes with SUF-CMA and IND-CCA2 properties respectively in the
standard model.

Table 1. Computational Complexity of π and Ours

Scheme Secret key size Ciphertext size #pairings #exponentiations

Signcrypt, Unsigncrypt Signcrypt, Unsigncrypt

π (Direct combination) 5|p| 2|p| + nm 0(+1), 5(+1) 8, 3

Ours 3|p| 4|p| + nm + lτ 0(+1), 5(+1) 5, 1

The numbers shown in the brackets indicate the values that can be precomputed before the algorithm begins
(and they remain same for all runs of the protocol)

6 Conclusion

We have presented the first secure ID based signcryption scheme and proven its security in the standard
model. This scheme satisfies the strongest notions of security available for the signcryption schemes. Moreover,
it has additional interesting properties such as public ciphertext verifiability which is very useful in the
context of firewalls and spam filters. The security reduction is also tighter compared to many other schemes
in the standard model. There is a trade-off in this scheme between the size of public parameters and the
tightness to the underlying hard assumption. In our scheme we have included some extra parameters namely
a unsigncryption key to increase the probability to a much larger value so that the security of our scheme is
more tight to the underlying hard problem much more than the existing signcryption schemes. An interesting
and potential future direction will be designing a more efficient protocol with reduced public parameters,
key size and reduced ciphertext size.

Acknowledgements: We sincerely thank Prof. Qiong Huang for shepherding and for pointing us a subtle
inconsistency in the proof. We also thank the anonymous reviewers of the ProvSec 2012 program committee
for their insightful reviews.
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