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Abstract: In this paper we propose an efficient and regular ternary algorithm for scalar 

multiplication on elliptic curves over finite fields of characteristic three. This method is based on 

full signed ternary expansion of a scalar to be multiplied. The cost per bit of this algorithm is lower 

than that of all previous ones. 
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1 Introduction 
Elliptic curve cryptosystems, proposed independently by Neal Koblitz [14] and Victor Miller 

[15] are more and more widespread in everyday-life applications. The core operation of elliptic 
curve cryptosystems is the scalar multiplication on elliptic curves. There are numerous 
investigations of fast and regular scalar multiplication on elliptic curves over large prime field or 
binary field.(See [1], [2] and [5]) 

Note that elliptic curves in characteristic three could be applied in cryptographic schemes. For 
example, Koblitz announced an implementation of the digital signature algorithm on special 
supersingular elliptic curves in characteristic three with great efficiency [12] and Boneh-Franklin 
used such curves in pairing-based cryptosystems [11]. 

Recently, the improved formulae for arithmetic on Weierstrass and Hessian forms with a point 
of order 3 over finite fields of characteristic three are given in [4, 7, 8, 10]. The new doubling , 
mixed addition and tripling formulae require 3M+2C, 8M+1C+1D and 4M+4C+1D, respectively, 
where M, C and D is the cost of a field multiplication, a cubing and a multiplication by a constant. 

The goal of the present work is to make a fast and regular algorithm for scalar multiplication on 
elliptic curves in characteristic three by using an efficient ternary expansion of scalar. 

The remainder of this paper is organized as follows. In section 2 we recall the necessary 
background for arithmetic on elliptic curves over finite fields of characteristic three. In section 3 
we propose the fast and regular algorithm for scalar multiplication on elliptic curves over finite 
fields of characteristic three. Section 4 gives some comparison for scalar multiplication and in 
section 5 we give some conclusions. 

2 Preliminaries 

2.1 Ordinary elliptic curves over  m3
F

Elliptic curves over any field can be broken down into two classes of ordinary and supersingular 

elliptic curves. Every ordinary elliptic curve over  with a point of order 3 can be written in 

the Weierstrass form 

m3
F

 1



bxxyEb ++= 232:  with 0≠b , 

or equivalently the Hessian form 

dxyyxEd =++ 1: 33  with 0≠d . 

The Weierstrass Form: In 2012, Farashahi et al. [4] presented a new explicit formulae for point 
doubling, tripling and addition with a cost of 3M+2C, 8M+1C+1D and 4M+4C+1D, respectively, 
using projective coordinate system(it is called scaled projective system) such as 
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where . Using the scaled projective system, the Weierstrass curve 

can easily pass to the following 
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Scaled Projective Point Doubling: ),,(),,](2[ 222111 TYXTYX =  where  
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Scaled Projective Point Addition: ),,(),,(),,( 333222111 TYXTYXTYX =+  where  
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The cost of the mixed scaled addition formulae is 8M+1C+1D, by setting . 11 =T

Scaled Projective Point Tripling: ),,(),,](3[ 333111 TYXTYX =  where 
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The Hessian Form: With a substitution ZYyZXx /,/ == , the equation of Hessian curve 

can be expressed as 

dXYZZYX =++ 333 . 

A mixed addition, doubling and tripling formulae presented in [4] and [10] require 8M+1C+1D, 
3M+2C and 4M+4C+1D, respectively. 

Mixed Addition: ),,(),,()1,,( 33322211 ZYXZYXYX =+  where 
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Point Doubling:  where ),,(),,](2[ 222111 ZYXZYX =
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2.2 Scalar multiplication 

In order to withstand Side Channel Analysis(SCA), one must render the scalar multiplication 
regular, namely such that it performs a constant operation flow whatever the scalar value.[16-21] 
There are some algorithms such as the Montgomery ladder and the double-and-add algorithm 
proposed by Joye in [7]. These algorithms are based on an invariant loop invariants the point 
registers  and . In the Montgomery ladder, the relation 0R 1R PRR =− 01  is satisfied at the and of 

every loop iteration, while in Joye algorithm the th loop iteration yields . i PRR i ]2[10 =+

Algorithm 1 (Montgomery ladder)  
Input: NkkkkFEP nq ∈=∈ − 2011 ),,,(),( K  

Output:  PkQ ][=
 1.  PROR ←← 10 ;
 2.  dodowntoniFor 01−=
 3.     bbbi RRRkb +←← −− 11;
 4.     bb RR 2←
 5.  forend
 6. Return  0R

Algorithm 2 (Joye double-and-add)  
Input: NkkkkFEP nq ∈=∈ − 2011 ),,,(),( K  

Output:  PkQ ][=
 1.  PROR ←← 10 ;
 2.  dodowntoniFor 01−=
 3.     ikb ←
 4.     bbb RRR +← −− 11 2
 5.  forend
 6. Return  0R

The Montgomery ladder was initially proposed as a scalar multiplication algorithm for a specific 
kind of elliptic curves with very efficient point arithmetic. 

In general, ternary algorithms are faster than binary ones in finite fields of characteristic three, 
but it is less secure against SCA. 
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3 Regular Ternary Algorithm for Scalar Multiplication 
3.1 Full signed ternary expansion  

Let  be a scalar with ternary expansion , where k 3011 ),,,( kkkn K− }2,1,0{∈ik  for every 

 and 1−< ni 01 ≠−nk . There exists a unique full signed expansion  of  
such that 
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with  for  and . This expansion is obtained from the fact that 

for every 
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 It follows that any group of ω  bits  in the ternary expansion of  can be replaced by 
the group of 

100K k
ω  signed bits 2221 K (where 22 −= ).  

For , the full signed ternary expansion of  is obtained as follows. )10( −<≤ nii k
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3.2 Regular algorithm for scalar multiplication 

We perform the scalar multiplication PkQ ][←  with a left-to-right ternary algorithm by 
using the full signed representation of , namely we iterate k PkQQ i ][]3[ +← . In every 
iteration, we use the point operations in [4,10]. Our algorithm is depicted in the next algorithm. 

Algorithm 3 (signed ternary )  
Input: NkkkkFEP nq ∈=∈ − ),,,(),( 011 K  

Output:  PkQ ][=
 1.  PROR ]2[; 21 ←←
 2.  ln RQkl ←← − ;1

 3.  dodowntoniFor 02−=
 4.     QQb ]3[←

 5.    ii klksignb =← );(  

 6.     l
b RQQ )1(−+←

 7.  forend
 8. Return  Q

Algorithm 3 involves  tripling and add operation, and the initial doubling point.  1−n

Table 1. Cost of algorithm 3 on ordinary curves 
Form Cost per bit Additional cost #Field registers 

Weierstrass 8M+3.3C+1.3D 1I+3M 8/9 
Hessian 8M+3.3C+1.3D 1I+5M+2C 8/9 
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As known above, the algorithm 3 is fast and regular low-memory ternary algorithm for scalar 
multiplication on ordinary curves over finite fields of characteristic three. 

We now look at the context where more memory is available. In that case one can use following 
window techniques for scalar multiplication. 

Let  be a scalar with full signed ternary expansion , where  

for every  and . 

k ),,( 011 kkkn K− }2,1{ ±±∈ik
1−< ni 01 >−nk

We can replace the signed ternary expansion of  by the following signed -radix 

expansion by the group of 

k ω3
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),,,( 011 KKKk t K−=  

such that  
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where ω  is window size , ⎡ ⎤ω/nt =  and 0≠iK .  

In the above representation, the digits  lie in a basis B which is different from the simple 

- radix basis and includes negative integers. 
iK

ω3 }13,,1{ −ωK

The use of the above signed window expansion yields the following algorithm, where +B  
denotes the set }:{ Bdd ∈ . 

Algorithm 4 (signed window ternary )  
Input: NKKKkFEP tq ∈=∈ − ),,,(),( 011 K  

Output:   PkQ ][=
 1. for all  do  +∈ Bd PdRd ][←
 2.  lt RQKl ←← − ;1

 3.  dodowntotiFor 02−=
 4.     QQ ]3[ ω←
 5.    ii KlKsignb =← );(  

 6.     l
b RQQ )1(−+←

 7.  forend
 8. return  Q

The signed window ternary algorithm with 1>ω  involves less point additions than general  
ternary versions, while it requires more memories as it requires  point registers and 
precomputation  for all . This precomputation is similar to the schemes presented 
in [9], hence it requires only one field inverse operation. 

+= Bm #
Pd ][ +∈ Bd

4 Comparison  
In this section we compare the performances of different scalar multiplication for ordinary 

curves over finite fields of characteristic three.  
In particular, we consider the previous regular binary algorithms including the Montgomery 

ladder and double-and-add algorithm.  
For every algorithm, we give the cost per bit, additional cost and number of required field 
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registers.  
The result of comparison is summarized in the table 2. 

Table 2. Cost of regular scalar multiplication algorithms for Weierstrass (Hessian) form 
Method Cost per scalar bit Additional cost #field reg. 

Montgomery ladder 11M+3C+1D  8/9 
Joye’s double-add 11M+3C+1D  8/9 

Signed ternary 8M+3.3C+1.3D 1I+3M(1I+5M+2C) 8/9 
Signed window ternary( 2=ω ) 5.3M+3C+1D 1I+61M+8C+6D 22/23 

 

5 Conclusion  
In this paper we presented a regular scalar multiplication based on a full signed ternary 

expansion of scalar on ordinary curves over . The cost of the algorithm is 8M+3.3C+1.3D per 

bit and only 2 registers are needed for points.  

m3
F

This method is more efficient than all the previous regular algorithms for ordinary elliptic curves 

over , which can be also used for supersingular elliptic curves over . m3
F m3

F
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