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Abstract

In this paper, we revisit formalizations of information-theoretic security for symmetric-key en-
cryption and key agreement protocols which are very fundamental primitives in cryptography. In
general, we can formalize information-theoretic security in various ways: some of them can be
formalized as stand-alone security by extending (or relaxing) Shannon’s perfect secrecy; some of
them can be done based on composable security. Then, a natural question about this is: what
is the gap between the formalizations? To answer the question, we investigate relationships be-
tween several formalizations of information-theoretic security for symmetric-key encryption and
key agreement protocols. Specifically, for symmetric-key encryption protocols which may have
decryption-errors, we deal with the following formalizations of security: formalizations extended
(or relaxed) from Shannon’s perfect secrecy by using mutual information and statistical distance;
information-theoretic analogue of indistinguishability by Goldwasser and Micali; and the ones of
composable security by Maurer et al. and Canetti. Then, we explicitly show that those formal-
izations are essentially equivalent under both one-time and multiple-use models. Under the both
models, we also derive lower bounds on the adversary’s (or distinguisher’s) advantage and secret-key
size required under all of the above formalizations. Although some of them may be already known,
we can explicitly derive them all at once through our relationships between the formalizations. In
addition, we briefly observe impossibility results which easily follow from the lower bounds. The
similar results are also shown for key agreement protocols which may have agreement-errors.

Keywords: composable security, information-theoretic security, key agreement, symmetric-key en-
cryption, unconditional security.

1 Introduction

Background and Related Works. The security of cryptographic protocols in information-theoretic
cryptography does not require any computational assumption based on computationally hard prob-
lems, such as the integer factoring and discrete logarithm problems. In addition, since the security
definition in information-theoretic cryptography is formalized by use of some information-theoretic
measure (e.g. entropy or statistical distance), it does not depend on a specific computational model
and can provide security which does not compromise even if computational technology intensively
develops or a new computational technology (e.g. quantum computation) appears in the future. In
this sense, it is interesting to study and develop cryptographic protocols with information-theoretic
security.

As fundamental cryptographic protocols we can consider symmetric-key encryption and key-
agreement protocols, and the model of the protocols falls into a very simple and basic scenario where
there are two honest players (named Alice and Bob) and an adversary (named Eve). Up to date,
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various results on the topic of those protocols with information-theoretic security have been reported
and developed since Shannon’s work [28]. In most of those results the traditional security definition
has been given as stand-alone security in the sense that the protocols will be used in a stand-alone
way: in symmetric-key encryption, the security is formalized as I(M ; C) = 0 (Shannon’s perfect se-
crecy) or its variant (e.g. I(M ;C) ≤ ε for some small ε), where M and C are random variables which
take values on sets of plaintexts and ciphertexts, respectively; similarly, in key agreement the security
is usually formalized as I(K; T ) = 0 or its variant (e.g. I(K; T ) ≤ ε), where K and T are random
variables which take values on sets of shared keys and transcripts, respectively. The problem with
the traditional definition of stand-alone security is that, if a protocol is composed with other ones,
the security of the combined protocol may not be clear. Namely, it is not always guaranteed that the
composition of individually secure protocols results in the secure protocol, where secure is meant in
the sense of the traditional definition of stand-alone security.

On the other hand, composable security (or security under composition) can guarantee that a
protocol remains to be secure after composed with other ones. The previous frameworks of this line
of researches are based on the ideal-world/real world paradigm, and the paradigm includes universal
composability by Canetti [6] and reactive simulatability by Backes, Pfitzmann and Waidner [2] (See
also [5, 25, 13, 24, 3] for related works). In addition, the explicit and simple paradigm for composable
security was given by Maurer [19], and this approach is called constructive cryptography where the
security definitions of cryptographic systems can be understood as constructive statements: the idea
is to consider cryptographic protocols as transformations which construct cryptographically stronger
systems from weaker ones. Using the framework of constructive cryptography, Maurer and Tackmann
[22] studied the authenticate-then-encrypt paradigm for symmetric-key encryption with computational
security. Recently, Maurer and Renner [20] proposed a new framework in an abstract way, called
abstract cryptography. The framework is described at a higher level of abstraction than [19, 22], and
various notions and methodologies (e.g. universal composability [6], reactive simulatability [2], and
indifferentiability [21]) can be captured in the framework.

Up to date, there are a few works which report a gap between formalizations of the stand-alone
security and composable security for multiparty computation in information-theoretic settings [1,
11, 16]. In particular, Kushilevitz, Lindell and Rabin [16] investigated the gap between them in
several settings (i.e., perfect/statistical security and composition with adaptive/fixed inputs), and
they showed a condition that a protocol having stand-alone security is not necessarily secure under
universal composition.

Our Contributions. We can formalize information-theoretic security for symmetric-key encryption
and key agreement protocols in various ways: some of them can be formalized as stand-alone security
by extending Shannon’s perfect secrecy; some of them can be done based on composable security.
Then, a natural question about this is: what is the gap between the formalizations? To answer the
question, we investigate relationships between several formalizations of information-theoretic security
for symmetric-key encryption and key agreement protocols. Specifically, for symmetric-key encryption
protocols which may have decryption-errors, we deal with the following formalizations of security:

(i) Formalization extended (or relaxed) from Shannon’s perfect secrecy by using mutual information;

(ii) Another one extended (or relaxed) from Shannon’s perfect secrecy by using statistical distance;

(iii) Formalization by information-theoretic analogue of indistinguishability by Goldwasser and Micali
[14];

(iv) Formalizations of composable security by Maurer et al. [20, 22] and Canetti [5, 6].
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Then, we explicitly show that those formalizations are essentially equivalent under both one-time and
multiple-use models, and in particular, it turns out that the formalizations of the stand-alone and
composable security are essentially equivalent.

Under the both models, we also derive lower bounds on the adversary’s (or distinguisher’s) ad-
vantage and secret-key size required under all of the above formalizations. Although some of them
may be already known, we can explicitly derive them all at once through our relationships between
the formalizations. Technically, we derive the lower bounds for one-time encryption by combining our
relationships between the formalizations and the lower bound shown by Pope [26] where the security
definition is given based on Maurer’s formalization for composable security. To derive the lower bounds
in the multiple-use model, we slightly simplify and generalize Pope’s proof technique to the case of
multiple-use encryption, and we combine it with our relationships between the formalizations in the
multiple-use model. In addition, we briefly observe impossibility results which easily follow from the
lower bounds in one-time and multiple-use models.

Furthermore, we show similar results (i.e., relationships between formalizations, lower bounds, and
impossibility results) for key agreement protocols which may have agreement-errors.

We summarize our technical results above in Table 1.

Table 1: Summary of our results

Relationships Lower bounds
Protocols between Adversary’s Impossibility

formalizations (distinguisher’s) Key-size results
advantage

Symmetric-key one-time Th.1 Th.2 Cor.1 Contrapositive of Cor.1
encryption multiple-use Th.3 Th.4 Cor.2 Contrapositive of Cor.2

Key-agreement Th.5 Th.6 Cor.3 Prop.6 and Cor.4,5

Other Works Related. Independently of our work, Iwamoto-Ohta [4] and Bellare-Tessaro-Vardy [15]
recently report the equivalence between several formalizations of stand-alone security for encryption in
information-theoretic settings, though they do not consider composable security. In addition, indepen-
dently, Dodis [10] has recently shown a lower bound on the secret-key size required for symmetric-key
encryption in the one-time model, where the security definition is given based on a simulation-based
formalization under bounded/unbounded adversaries 1.

1For comparison, we briefly describe those related works below.
Iwamoto and Ohta [15] recently showed equivalence of the following formalizations of stand-alone security for

symmetric-key encryption protocols: two formalizations extended (or relaxed) from Shannon’s perfect secrecy by us-
ing statistical distance (one of them is equal to (ii) above); information-theoretic indistinguishability (the same as (iii));
and information-theoretic semantic security. Interestingly, they also showed that there is a formalization extended from
Shannon’s perfect secrecy such that it is stronger than those formalizations. Note that they only investigate security
notions under the one-time model, and it is assumed that encryption and decryption algorithms are deterministic and
that there is no decryption-error in the protocols.

Bellare, Tessaro, and Vardy [4] recently study security definitions and schemes for encryption in the model of the wiretap
channels. In particular, in the model of wiretap channels, they showed that the following formalizations of stand-alone
security are equivalent: formalizations extended (or relaxed) from Shannon’s perfect secrecy by using mutual information
and statistical distance (the ones similar to (i) and (ii), respectively); information-theoretic indistinguishability (the one
similar to (iii)) which is called distinguishing security in [4]; and information-theoretic semantic security. Although the
main scope of their paper lies in the wiretap channel and it is different from the model in this paper, their approach and
ours are similar. They also showed that the first formalization by using mutual information with restriction on that only
uniformly distributed plaintexts are input is weaker than those formalizations.
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Organization. The rest of this paper is organized as follows. In Section 2, we survey composable
security and its formalization based on [20, 22] which is similar in spirit to previous ones in [2, 5, 6,
25]. In Section 3, we show the equivalence between several security formalizations for symmetric-key
encryption protocols in both one-time and multiple-use models. In the both models, we also derive
lower bounds of adversary’s (or distinguisher’s) advantage and secret-key size required under all the
formalizations. In addition, impossibility results are briefly observed. In Section 4, we show similar
results for key agreement protocols. Finally, we conclude the paper in Section 5.

Notation. In this paper, for a random variable X which takes values in a finite set X , the min-entropy
and max-entropy of X are denoted by H∞(X) and H0(X), respectively. Also, I(X; Y ) denotes the
mutual information between X and Y , and we denote the statistical distance between two distributions
PX and PY by ∆(PX , PY ). For completeness, we describe the definitions in Appendix A.

For a joint random variable (X1, X2, . . . , Xn), we denote its associated probability distribution by
PX1X2...Xn . And, the entropy, mutual information, and statistical distance of joint random variables
are similarly defined by regarding (X1, X2, . . . , Xn) as a single vector-valued random variable. In this
paper, for a random variable X which takes values in X , we especially write PXX for the distribution
on X × X defined by PXX(x, x′) := PX(x) if x = x′, and PXX(x, x′) := 0 if x 6= x′.

Furthermore, |X | denotes the cardinality of X . Also, ℘(X ) := {PX on X} is the set of all proba-
bility distributions PX on X (or the set of all random variables X which take values in X ).

2 Composable Security

In this paper, we consider a very basic scenario where there are three entities, Alice, Bob (honest
players), and Eve (an adversary).

2.1 Definition of Systems

Following the notions in [20] [22], we describe three types of systems: resources, converters and
distinguishers (See [20] [22] for more details).

A resource is a system with three interfaces labeled A, B, and E, where A, B, and E imply three
entities, Alice, Bob, and Eve, respectively. If two resources R, S are used in parallel, this system is
called parallel composition of R and S and denoted by R ‖ S. We note that R ‖ S is also a resource.

A converter is a system with two kinds of interfaces: the first kind of interfaces are designated as
the inner interfaces which can be connected to interfaces of a resource, and combining a converter
and a resource by the connection results in a new resource; the second kind of interfaces are designed
as the outer interfaces which can be provided as the new interfaces of the combined resource. For
a resource R and a converter π, we write π(R) for the system obtained by combining R and π, and
π(R) behaves as a resource, again. A protocol is a pair of converters π = (πA, πB) for the honest
players, Alice and Bob, and the resulting system by applying π to a resource R is denoted by π(R) or
πAπB(R). For converters (or protocols) π, φ, the sequential composition of them, denoted by φ ◦ π, is
defined by (φ ◦ π)(R) := φ(π(R)) for a resource R. In contrast, the parallel composition of converters
(or protocols) π, φ, denoted by π ‖ φ, is defined by (π ‖ φ)(R ‖ S) := π(R) ‖ φ(S) for resources R,S.

Recently, in a simple and elemental way, Dodis [10] directly derives a lower bound on secret-key size required for
symmetric-key encryption, which may have decryption-errors, in the one-time model with specifying required run-
ning time of an adversary where the security definition is given based on a simulation-based formalization under
bounded/unbounded adversaries. Note that this bound is the same as the third inequality in Corollary 1 in this paper,
though in our results the adversary’s (or distinguisher’s) running time required is not explicitly shown. Interestingly,
Dodis also showed a strengthening of Shannon’s lower bound on secret-keys, H∞(K) ≥ log |M|, for perfect secrecy for
all distributions over a finite set of plaintexts M.
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A distinguisher for an n-interface resource is a system with n + 1 interfaces: n interfaces are
connected to n interfaces of the resource, respectively; and the other interface outputs a bit (i.e., 1 or
0). For a resource R and a distinguisher D, we write DR for the system obtained by combining R and
D, and we regard DR as a binary random variable. The purpose of distinguishers is to distinguish
two resources, and the advantage of a distinguisher D for two resources R0, R1 is defined by

∆D(R0, R1) := ∆(DR0, DR1),

where ∆(DR0, DR1) is the statistical distance of the binary random variables DR0 and DR1. Let D
be a set of all distinguishers, and we define

∆D(R0, R1) := sup
D∈D

∆D(R0, R1).

Note that D contains not only polynomial-time distinguishers but also computationally unbounded
ones, since this paper deals with information-theoretic security.

2.2 Definition of Security

The security definition we focus on in this paper is derived from the paradigm of constructive cryp-
tography [19]. Technically, the formal definition is based on the works in [20, 22] (see [20, 22] for
details), and is similar in spirit to previous simulation-based definitions in [2, 5, 6, 25]. The idea in
the paradigm of constructive cryptography includes comparison of the real and ideal systems: the
real system means construction π(R) by applying a protocol π to a resource R; and the ideal system
consists of the ideal functionality (such as ideal channels) S including description of a security goal
and a simulator σ connected to the interface of E, which we denote by σ(S). If the difference of the
two resources, π(R) and σ(S), is a small quantity (i.e., ∆D(π(R), σ(S)) ≤ ε for small ε), we consider
that the protocol π securely constructs S from R. More formally, we define the security as follows.

Definition 1 [20, 22] For resources R, S, we say that a protocol π constructs S from R with error
ε ∈ [0, 1], denoted by R

π,ε
=⇒ S, if the following two conditions are satisfied:

1. Availability: For the set of all distinguishers D, we have ∆D(π(⊥E(R)),⊥E(S)) ≤ ε, where ⊥E

is the converter which blocks the E-interface for distinguishers when it is attached to R.

2. Security: There exists a simulator σ such that, for the set of all distinguishers D, we have
∆D(π(R), σ(S)) ≤ ε.

In the above definition, we do not require the condition that the simulator is efficient (i.e.,
polynomial-time). In other words, the simulator may be inefficient.

The advantage of the above security definition lies in that a protocol having this kind of security
remains to be secure even if it is composed with other protocols. Formally, this can be stated as
follows.

Proposition 1 [20, 22] Let R, S, T and U be resources, and let π, φ be converters (or protocols) such

that R
π,ε
=⇒ S and S

φ,δ
=⇒ T . Then, we have the following:

(1) φ ◦ π satisfies R
φ◦π,ε+δ
=⇒ T ;

(2) π ‖ id satisfies R ‖ U
π‖id,ε
=⇒ S ‖ U ; and

(3) id ‖ π satisfies U ‖ R
id‖π,ε
=⇒ U ‖ S,
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where id is the trivial converter which makes the interfaces of the subsystem accessible through the
interfaces of the combined system.

We note that the first property in Proposition 1 means the security for sequential composition. In
addition, as stated in [20] three properties in Proposition 1 imply the security for parallel composition

in the following sense: For resources R, R′, S, S′ and converters π, φ such that R
π,ε
=⇒ S and R′ φ,δ

=⇒ S′,

π ‖ φ satisfies R ‖ R′ π‖φ,ε+δ
=⇒ S ‖ S′.

2.3 Ideal Functionality/Channels

In this section, we give several definitions of ideal functionality of resources such as the authenticated
channel and key sharing resources which are necessary to discuss in this paper.

• Authenticated Channel: An authenticated channel usable once, denoted by s−→, transmits a
message (or a plaintext) m from Alice’s interface (i.e., A-interface) to Bob’s interface (i.e., B-
interface) without any error/replacement. If Eve is active, through the E-interface Eve obtains
m, and she obtains nothing, otherwise. Similarly, an authenticated channel from B-interface
to A-interface can be defined and denoted by s←− . For a positive integer t, we write ( s−→)t

for the composition of invoked t authenticated channels s−→‖ s−→‖ · · · ‖ s−→ (t times), and we
write ( s−→)∞ if arbitrarily many use of s−→ is allowed. Similarly, ( s←− )t and ( s←− )∞ can be
defined.

• Secure Channel: A secure channel usable once, denoted by s−→s, transmits a plaintext m from
A-interface to B-interface without any error/replacement. Even if Eve is active, she obtains
nothing except for the length of the plaintexts and cannot replace m with another plaintext.
Also, for a positive integer t, we write ( s−→s)t for the composition of invoked t secure channels
s−→s‖ s−→s‖ · · · ‖ s−→s (t times).

• Key Sharing Resource (with Uniform Distribution): A key sharing resource with the uniform
distribution usable once, denoted by s s, means the ideal resource with no input which generates
a uniform random string k and outputs it at both interfaces of Alice and Bob. Even if Eve is
active, her interface outputs no information on k and cannot replace k with another one. More
generally, if such a key k is chosen according to a distribution PK (not necessarily the uniform
distribution), we denote the key sharing resource by [PK ].

• Correlated Randomness Resource (or Key Distribution Resource): Let PXY be a probability
distribution with random variables X and Y . A correlated randomness resource usable once,
denoted by [PXY ], means the resource with no input which randomly generates (x, y) according
to the distribution PXY and outputs x and y at interfaces of Alice and Bob, respectively. Even if
Eve is active, her interface outputs no information on (x, y) and cannot replace it with another
one. Note that the resource [PXY ] includes [PK ] (and hence s s ) as a special case.

3 Symmetric-key Encryption

3.1 Protocol Execution

We explain the traditional protocol execution of symmetric-key encryption. In the following, let M
(resp. C) be a finite set of plaintexts (resp. a finite set of ciphertexts) and M̃ := M∪ {⊥}. Also, let
M (resp. M̃) be a random variable which takes plaintexts in M (resp. M̃) and PM (resp. PM̃ ) its
distribution. C denotes a random variable which takes ciphertexts c ∈ C.
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Let πenc = (πA
enc, π

B
enc) be an encryption protocol as defined below, where πA

enc (resp. πB
enc) is a

converter at Alice’s (resp. Bob’s) side.

Symmetric-key Encryption Protocol πenc

Input of Alice’s outer interface: m ∈M
Input of Alice’s inner interface: k ∈ K by accessing [PK ]
Input of Bob’s inner interface: k ∈ K by accessing [PK ]
Output of Bob’s outer interface: m̃ ∈ M̃
1. πA

enc computes c = πA
enc(k, m) and sends c to πB

enc by s−→.
2. πB

enc computes m̃ = πB
enc(k, c) and outputs m̃.

Note that we do not require any restriction on the protocol execution of symmetric-key encryption
such as: an encryption algorithm is deterministic; or for each k ∈ K, πA

enc(k, ·) : M→ C is injective; or
a decryption algorithm is deterministic; or it has to be satisfied that πB

enc(k, πA
enc(k, m)) = m for any

possible k and m. Therefore, we deal with a general case of the protocol execution of symmetric-key
encryption. In particular, it should be noted that: πA

enc can be probabilistic (i.e., not necessarily
deterministic); for each k ∈ K, πA

enc(k, ·) may not be injective; πB
enc can be probabilistic; and a

decryption-error may occur.
If a symmetric-key encryption protocol πenc is usable at most one time (i.e., the one-time model),

the purpose of πenc is to transform the resources [PK ] and s−→ into the secure channel s−→s. Also, the
purpose of a multiple-use (say, t times) symmetric-key encryption protocol πenc with a same secret-key
k ∈ K is to transform [PK ] and ( s−→)t into ( s−→s)t.

3.2 Security Definitions Revisited: Formalizations and Relationships

In this section, we revisit the formalization of several information-theoretic security notions for symmetric-
key encryption in the one-time model. The most famous one is the notion of perfect secrecy by
Shannon[28]: I(M ; C) = 0. As an extended (or a relaxed) version, we can also consider its variant:
I(M ; C) ≤ ε for some extremely small quantity ε. Along with this concept, we first consider the
following two definitions.

Definition 2 Let π be a symmetric-key encryption protocol in the one-time model. Let PM be a
certain probability distribution on M. Then, π is said to be ε-secure for PM if it satisfies the following
conditions: (i) Correctness P (M 6= M̃) ≤ ε; and (ii) Secrecy I(M ; C) ≤ ε. In particular, π is said to
be perfectly-secure for PM if it is 0-secure for PM .

Definition 3 Let π be a symmetric-key encryption protocol in the one-time model. Then, π is said
to be ε-secure, if for any probability distribution PM ∈ ℘(M), we have:

(i) Correctness P (M 6= M̃) ≤ ε; and (ii) Secrecy I(M ; C) ≤ ε.

In particular, π is said to be perfectly-secure if it is 0-secure.

The difference of Definitions 2 and 3 is that we consider security only for a certain distribution of
plaintexts or for all distributions of plaintexts. Obviously, Definition 3 is stronger than Definition 2,
since we can find a distribution PM and π such that π is ε-secure for PM but it is not ε-secure. In
this paper, we are interested in the security of Definition 3 or other formalizations of strong security
for symmetric-key encryption protocols. We now define various types of security formalizations as
follows.
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Definition 4 Let π be a symmetric-key encryption protocol in the one-time model where M and C
are finite sets of plaintexts and ciphertexts, respectively. We define the following formalizations of
Correctness and Secrecy.

1. Correctness: (I) βπ,1 := sup
PM

P (M 6= M̃), (II) βπ,2 := sup
PM

∆(PMM̃ , PMM ),

(III) βπ,3 := max
m

∆(PM̃ |M=m, PM |M=m).

2. Secrecy: (i) απ,1 := sup
PM

I(M ; C), (ii) απ,2 := sup
PM

∆(PMC , PMPC),

(iii) απ,3 := max
m

max
m′ 6=m

∆(PC|M=m, PC|M=m′), (iv) απ,4 := inf
PQ

sup
PM

∆(PMC , PMPQ),

(v) απ,5 := inf
PQ

max
m

∆(PC|M=m, PQ),

where the supremum ranges over all PM ∈ ℘(M) and the infimum ranges over all PQ ∈ ℘(C). Then,
π is said to be (δ, ε)-secure in the sense of Type (i, j) in the one-time model, if π satisfies βπ,i ≤ δ and
απ,j ≤ ε.

By Definition 4, we can obtain fifteen kinds of security formalizations. In particular, several
important formalizations known so far can be captured within Definition 4 as follows.

• The formalization in Definition 3 corresponds to the security in the sense of Type (1, 1).

• The formalization using statistical distance instead of mutual information in Definition 3 corre-
sponds to the security in the sense of Type (1, 2).

• The formalization based on information-theoretic analogue of indistinguishability by Goldwasser
and Micali [14] corresponds to the security in the sense of Type (1, 3): απ,3 means the adversary’s
advantage for distinguishing the views (i.e., distributions of ciphertexts) in the protocol execution
when two different plaintexts are inputted.

• The formalizations based on information-theoretic composable security by Maurer et al. [20, 22]
and Canetti [5, 6] are closely related to the security in the sense of Type (2, 4) and Type
(3, 5), respectively (anyway, we will see (βπ,2, απ,4) = (βπ,3, απ,5) by Theorem 1): a distinguisher
arbitrarily chooses a random variable M (or a plaintext m) and inputs it into A-interface;
then, βπ,2 (or βπ,3) means the distinguisher’s advantage for distinguishing real output and ideal
one at B-interface, and βπ,2 is the same as the formalization of availability in Definition 1
for symmetric-key encryption protocols in the one-time model; and απ,4 (or απ,5) means the
distinguisher’s advantage for distinguishing real output and simulator’s output (according to
PQ) at E-interface. Actually, validity of using the simple formalization απ,4 instead of the
formalization of security in Definition 1 for symmetric-key encryption is shown by Proposition
2 below.

Proposition 2 The formalization of security in Definition 1 for a symmetric-key encryption protocol
π in the one-time model is lower-and-upper bounded as follows:

max(απ,4, βπ,2) ≤ inf
σ

∆D(π( s−→|| [PK ]), σ( s−→s)) ≤ απ,4 + βπ,2.

Proof. By focusing on distributions of input at A-interface, output at B-interface and output at E-
interface, for simplicity, we write infPQ

supPM
∆(PMM̃C , PMMPQ) for infσ ∆D(π( s−→|| [PK ]), σ( s−→s)).
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For any distributions PM ∈ ℘(M) and PQ ∈ ℘(C), we have

∆(PMM̃C , PMMPQ) ≤ ∆(PMM̃C , PMMC) + ∆(PMMC , PMMPQ)
= ∆(PMM̃ , PMM ) + ∆(PMC , PMPQ).

By taking the supremum over all PM ∈ ℘(M) and the infimum over all PQ ∈ ℘(C), we have

inf
PQ

sup
PM

∆(PMM̃C , PMMPQ) ≤ sup
PM

∆(PMM̃ , PMM ) + inf
PQ

sup
PM

∆(PMC , PMPQ)

= απ,4 + βπ,2.

In addition, from Proposition 7 in Appendix A, it is clear that ∆(PMC , PMPQ) ≤ ∆(PMM̃C , PMMPQ)
for any PM ∈ ℘(M) and PQ ∈ ℘(C). Therefore, we obtain απ,4 ≤ infPQ

supPM
∆(PMM̃C , PMMPQ).

Similarly, we have βπ,2 ≤ infPQ
supPM

∆(PMM̃C , PMMPQ). ¤

We next show the relationships between security formalizations of Type (i, j) for i ∈ {1, 2, 3} and
j ∈ {1, 2, . . . , 5}. The following theorem (i.e., Theorem 1) states that any formalization of Type (i, j)
in Definition 4 is equivalently sufficient to define security, if δ and ε are extremely small quantities. In
this sense, we can say that all formalizations in Definition 4 are essentially equivalent.

Theorem 1 Let π be a symmetric-key encryption protocol in the one-time model. Then, we have
explicit relationships between απ,i, βπ,j for i ∈ {1, 2, . . . , 5}, j ∈ {1, 2, 3} as follows:

βπ,1 = βπ,2 = βπ,3; and
1
2
απ,2 ≤ απ,4 = απ,5 ≤ απ,3 ≤ 2απ,2,

2
ln 2

α2
π,2 ≤ απ,1 ≤ −2απ,2 log

2απ,2

|M| |C| .

In particular, for any i, j ∈ {1, 2, . . . , 5} and any s, t ∈ {1, 2, 3}, we have

lim
(βπ,s,απ,i)→(0,0)

(βπ,t, απ,j) = (0, 0),

where the limit is taken by changing [PK ] or π2.

Proof. First, we show relationships between formalizations of correctness.

(i) We show βπ,1 = βπ,2: For any π and for any distribution PM , we have ∆(PMM , PMM̃ ) = P (M 6=
M̃) by Proposition 8 in Appendix A, from which it is straightforward to have βπ,1 = βπ,2.

(ii) We show βπ,2 = βπ,3: For an arbitrary distribution PM , we have

2∆(PMM̃ , PMM ) =
∑

m,m̃

|PMM̃ (m, m̃)− PMM (m, m̃)|

=
∑
m

PM (m)
∑

m̃

|PM̃ |M (m̃|m)− PM |M (m̃|m)|

≤ max
m

∑

m̃

|PM̃ |M (m̃|m)− PM |M (m̃|m)|

= 2max
m

∆(PM̃ |M=m, PM |M=m).

Therefore, βπ,2 ≤ βπ,3.
2Note that απ,i (2 ≤ i ≤ 5) are of the same order and the order of απ,1 may not be the same as those of απ,i

(2 ≤ i ≤ 5).
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Let m1 ∈ M be a plaintext such that it gives βπ,3. For any ε > 0, we define a distribution PM1

by

PM1(m) :=

{
1− δ if m = m1,

δ
|M|−1 otherwise,

where δ is a non-negative real number such that 0 ≤ δβπ,3 ≤ ε. Then, we have

βπ,2 ≥ ∆(PM1M̃1
, PM1M1)

≥ (1− δ)∆(PM̃1|M1=m1
, PM1|M1=m1

)

= (1− δ)βπ,3

≥ βπ,3 − ε.

We next show relationships between formalizations of secrecy.

(1) We show that 2
ln 2α2

π,2 ≤ απ,1 ≤ −2απ,2 log 2απ,2

|M| |C| : From Theorem 16.3.2 in [7] (see Corollary 8
in Appendix A), it follows that, for any PM and any π,

I(M ; C) ≤ −2∆(PMC , PMPC) log
2∆(PMC , PMPC)

|M| · |C|
≤ −2απ,2 log

2απ,2

|M| · |C| .

Therefore, we have

απ,1 ≤ −2απ,2 log
2απ,2

|M| · |C| .

On the other hand, from Lemma 12.6.1 in [7] (see Corollary 7 in Appendix A), it follows that,
for any PM and any π,

∆(PMC , PMPC) ≤
√

ln 2
2

I(M ; C)
1
2 .

Therefore, we have απ,2 ≤
√

ln 2
2 α

1
2
π,1.

(2) We show απ,3 ≤ 2απ,2: For any ε > 0, and for m0,m1 ∈ M (m0 6= m1) such that απ,3 =
∆(PC|M=m0

, PC|M=m1
), we define a distribution PM̂ by

PM̂ (m) :=

{
1
2(1− δ) if m ∈ {m0,m1},

δ
|M|−2 otherwise,

where δ is a non-negative real number such that 0 ≤ δαπ,3 ≤ 2ε. Then, we have

απ,2 ≥ ∆(PM̂Ĉ , PM̂PĈ)

≥ 1
2
(1− δ){∆(PĈ|M̂=m0

, PĈ) + ∆(PĈ|M̂=m1
, PĈ)}

≥ 1
2
(1− δ)∆(PĈ|M̂=m0

, PĈ|M̂=m1
)

=
1
2
(1− δ)απ,3

≥ 1
2
απ,3 − ε.
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(3) We show that απ,5 ≤ απ,3: Let m0 ∈ M be a plaintext such that it gives απ,5, and set PQ :=
PC|M=m1

by choosing m1 ∈M (m1 6= m0). Then, we have

απ,5 ≤ ∆(PC|M=m0
, PQ)

= ∆(PC|M=m0
, PC|M=m1

)
≤ απ,3.

(4) We show that απ,4 = απ,5: For arbitrary distributions PQ and PM , we have

2∆(PMC , PMPQ) =
∑
m,c

|PMC(m, c)− PM (m)PQ(c)|

=
∑
m

PM (m)
∑

c

|PC|M (c|m)− PQ(c)|

≤ max
m

∑
c

|PC|M (c|m)− PQ(c)|

= 2 max
m

∆(PC|M=m, PQ).

Therefore, απ,4 ≤ απ,5.

Next, we show απ,5 ≤ απ,4. Let m1 ∈ M be a plaintext such that it gives απ,5. For any ε > 0,
we define a distribution PM1 by

PM1(m) :=

{
1− δ if m = m1,

δ
|M|−1 otherwise,

where δ is a non-negative real number such that 0 ≤ δαπ,5 ≤ ε. Then, for any PQ ∈ ℘(C), we
have

sup
PM

∆(PMC , PMPQ) ≥ ∆(PM1C1 , PM1PQ)

≥ (1− δ)∆(PC1|M1=m1
, PQ).

Therefore, by taking the infimum over all PQ ∈ ℘(C), we have απ,5 − ε ≤ απ,4.

(5) We show that 1
2απ,2 ≤ απ,4: For arbitrary distributions PQ and PM , we have

∆(PMC , PMPC) ≤ ∆(PMC , PMPQ) + ∆(PMPQ, PMPC)
= ∆(PMC , PMPQ) + ∆(PQ, PC)
≤ 2∆(PMC , PMPQ).

Therefore, απ,2 ≤ 2απ,4. ¤

3.3 Lower Bounds and Impossibility Results in One-time Model

In this section, under each of the security formalizations in Definition 4, we derive lower bounds on
the adversary’s (or distinguisher’s) advantage and the required size of secret-keys. First, we note the
following lower bound shown in [26].

Proposition 3 ([26]) Let π be a symmetric-key encryption protocol in the one-time model. Then,
for any simulator σ on C, and for the set of all distinguishers D, we have

∆D(π( s−→|| [PK ]), σ( s−→s)) ≥ 1− |K|
|M| .
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In [26] Pope showed the above lower bound by only considering a distinguisher that inputs the
uniformly distributed plaintexts into the symmetric-key encryption protocol for distinguishing real
output and ideal one. We now derive lower bounds for the adversary’s (or distinguisher’s) advantage
under all formalizations in Definition 4 at once through our relationships (The proof follows from
Proposition 2, Theorem 1, and Proposition 3).

Theorem 2 For any symmetric-key encryption protocol π in the one-time model, we have:

(i)

√
ln 2
2

α
1
2
π,1 + βπ,j ≥ 1

2

(
1− |K|

|M|
)

for j ∈ {1, 2, 3};

(ii) απ,2 + βπ,j ≥ 1
2

(
1− |K|

|M|
)

for j ∈ {1, 2, 3};

(iii) απ,i + βπ,j ≥ 1− |K|
|M| for i ∈ {3, 4, 5} and j ∈ {1, 2, 3},

where απ,i and βπ,j are parameters for secrecy and correctness, respectively, defined in Definition 4.

We do not know whether the lower bounds in Theorem 2 are tight in the sense that there exists a
protocol π (and [PK ]) such that equality holds for given advantage (in particular, given positive απ,i

and βπ,j) in general. However, we note that they are tight in the sense that there exists a protocol π
(and [PK ]) such that equality holds (e.g., the one-time pad for zero advantage).

From Theorem 2, we obtain the following lower bounds for the size of secret-keys (Corollary 1
below). The proof of Corollary 1 immediately follows from Theorem 2, and we omit the proof.

Corollary 1 Suppose that a symmetric-key encryption protocol π is (δ, ε)-secure in the sense of Type
(i, j) in the one-time model. Then, we have the following lower bounds for the size of secret-keys:

(i) |K| ≥
{

1−
(√

2 ln 2ε
1
2 + 2δ

)}
|M| for j = 1 and i ∈ {1, 2, 3};

(ii) |K| ≥ {1− 2 (ε + δ)} |M| for j = 2 and i ∈ {1, 2, 3};
(iii) |K| ≥ {1− (ε + δ)} |M| for j ∈ {3, 4, 5} and i ∈ {1, 2, 3}.

Remark 1 As described in [29], it is known that: Let {Φr|r ∈ R} be a family of (hash) functions
from S to T such that: each Φr maps S injectively into T ; and there exists ε ∈ [0, 1] such that
∆(ΦH(s), ΦH(s′)) ≤ ε for all s, s′ ∈ S, where H is uniformly distributed over R. Then, we have
|R| ≥ (1 − ε)|S|. Corollary 1 can be understood as an extension of the above statement (see (iii)
in Corollary 1). Actually, we do not necessarily assume that: for each k ∈ K, πA(k, ·) : M → C is
deterministic and injective (Note that δ can be zero if πA(k, ·) is injective); or PK is uniform.

By considering a contrapositive of Corollary 1, we obtain the following impossibility result: There
exists no symmetric-key encryption protocol which is (δ, ε)-secure in the sense of Type (i, j) in the
one-time model, if δ and ε are some real numbers such that they do not satisfy the corresponding
inequality among (i)-(iii) in Corollary 1.

3.4 Multiple-use Model

We extend the results in the one-time model in Sections 3.2 and 3.3 to the ones in the multiple-use
model where a symmetric-key encryption protocol can be used multiple times (say, at most T times)
with a same secret-key. First, we give the following definition by extending Definition 4.
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Definition 5 Let π be a multiple-use symmetric-key encryption protocol where the number of pro-
tocol execution with a same secret-key is up to T . For every positive integer t ≤ T , we define the
following formalizations of Correctness and Secrecy.

1. Correctness: (I) βπ,t,1 := sup
PM1M2...Mt

P ((M1,M2, . . . , Mt) 6= (M̃1, M̃2, . . . , M̃t)),

(II) βπ,t,2 := sup
PM1M2...Mt

∆(PM1M̃1,M2M̃2,...,MtM̃t
, PM1M1,M2M2,...,MtMt),

(III) βπ,t,3 := max
(m1,m2,...,mt)

∆(PM̃1M̃2...M̃t|M1=m1,M2=m2,...,Mt=mt
, PM1M2...Mt|M1=m1,M2=m2,...,Mt=mt

).

2. Secrecy: (i) απ,t,1 := sup
PM1M2...Mt

I(Mt; Ct|M1C1,M2C2, . . . Mt−1Ct−1),

(ii) απ,t,2 := sup
PM1M2...Mt

∆(PMtCt|M1C1,M2C2,...,Mt−1Ct−1
,

PMt|M1C1,M2C2,...,Mt−1Ct−1
PCt|M1C1,M2C2,...,Mt−1Ct−1

),
(iii) απ,t,3 := max

((m1,c1),(m2,c2),...,(mt−1,ct−1))
max

(m,m′) s.t. m 6=m′ and m,m′ 6∈{m1,m2,...,mt−1}
∆(PC|M=m,(M1,C1)=(m1,c1),...,(Mt−1,Ct−1)=(mt−1,ct−1),

PC|M=m′,(M1,C1)=(m1,c1),...,(Mt−1,Ct−1)=(mt−1,ct−1)),
(iv) απ,t,4 := inf

PQ1Q2...Qt

sup
PM1M2...Mt

∆(PM1C1,M2C2,...,MtCt , PM1Q1,M2Q2,...,MtQt),

(v) απ,t,5 := inf
PQ1Q2...Qt

max
(m1,m2,...,mt)

∆(PC1C2...Ct|M1=m1,M2=m2,...,Mt=mt
, PQ1Q2...Qt),

where, for every i ≤ t, a random variable Mi may depend on previous information which an ad-
versary (or a distinguisher) obtains before (e.g., M1C1,M2C2, . . . , Mi−1Ci−1), while Qi depends only
on Q1, Q2, . . . , Qi−1; the supremum is taken over all PM1M2···Mt ∈ ℘(Mt); and the infimum is taken
over all PQ1Q2...Qt ∈ ℘(Ct). Then, π is said to be (δ, ε, T )-secure in the sense of Type (i, j) in the
multiple-use model, if π satisfies

max
1≤t≤T

{βπ,t,i} ≤ δ and max
1≤t≤T

{απ,t,j} ≤ ε.

We now explain the meaning of formalizations of Correctness (I)-(III) and Secrecy (i)-(v) in detail
as follows.

• (I), (II) and (III). Formalizations of correctness which are simple extension from the ones in Defi-
nition 4 for t protocol execution. The supremum is taken over all distributions PM1M2···Mt , where
for every i ≤ t a random variable Mi may depend on previous information (e.g., (M1,M2, . . . , Mi−1)
or (M1M̃1,M2M̃2, . . . , Mi−1M̃i−1)).

• (i) and (ii). Formalizations based on Shannon’s notion of independence of plaintexts and cipher-
texts (i.e., independence of Mt and Ct) under CPA (chosen plaintext attacks) by an adversary:
An adversary is allowed to access the encryption oracle; he/she makes a query, an arbitrarily
chosen random variable Mi (i < t), and obtains a corresponding answer Ci, where Mi may
depend on previous ones M1C1,M2C2, . . . , Mi−1Ci−1.

• (iii). Formalization of indistinguishability under CPA by an adversary: An adversary is allowed
to access the encryption oracle; he/she makes a query, an arbitrarily chosen plaintext Mi = mi

(i < t), and obtains a corresponding ciphertext Ci = ci as an answer; The purpose of the
adversary is to maximize his/her advantage for distinguishing two distributions of ciphertexts,
PC|M=m and PC|M=m′ by arbitrarily choosing plaintexts m,m′ (m 6= m′) with query/answer
pairs (m1, c1), (m2, c2), . . . , (mt−1, ct−1).

13



• (iv) and (v). Formalizations based on composable security, and (βπ,t,2, απ,t,4) and (βπ,t,3, απ,t,5)
mean distinguishing advantage by a distinguisher which can communicate with an adversary: For
every i ≤ t, a distinguisher arbitrarily chooses a random variable Mi (or a plaintext mi), which
may depend on the information the distinguisher has obtained before (e.g., Mi may depend on
M1C1,M2C2, . . . , Mi−1Ci−1), and inputs it into A-interface; the distinguisher gets a decrypted
plaintext M̃i or the genuine plaintext Mi from B-interface, and via an adversary it obtains a real
ciphertext Ci or simulator’s output Qi from E-interface. Since Alice and Bob are not corrupted
and the adversary cannot delete, insert or forge a ciphertext on the authenticated channel,
what the adversary can do is to send the distinguisher a ciphertext obtained at E-interface.
The validity of using the simple formalization απ,t,4 instead of the formalization of security in
Definition 1 is well explained by Proposition 4 below.

Proposition 4 The formalization of security in Definition 1 for a symmetric-key encryption protocol
π in the multiple-use model is lower-and-upper bounded as follows:

max(απ,t,4, βπ,t,2) ≤ inf
σ

∆D(π(( s−→)t|| [PK ]), σ(( s−→s)t)) ≤ απ,t,4 + βπ,t,2.

Proof. The proof can be shown in a way similar to that of Proposition 2. However, for completeness,
we give it below.

By focusing on distributions of input at A-interface, output at B-interface and output at E-
interface, for simplicity, we identify the following two formalizations:

inf
σ

∆D(π(( s−→)t|| [PK ]), σ(( s−→s)t)) and

inf
PQ1Q2···Qt

sup
PM1M2···Mt

∆(PM1M̃1C1,M2M̃2C2,...,MtM̃tCt
, PM1M1Q1,M2M2Q2,...,MtMtQt),

where for every i ≤ t, Mi may depend on the information which a distinguisher obtained before (e.g.,
M1M̃1C1,M2M̃2C2, . . . ,Mi−1M̃i−1Ci−1), and Qi depends only on Q1, Q2, . . . , Qi−1.

For any distributions PM1M2···Mt ∈ ℘(Mt) and PQ1Q2···Qt ∈ ℘(Ct), we have

∆(PM1M̃1C1,M2M̃2C2,...,MtM̃tCt
, PM1M1Q1,M2M2Q2,...,MtMtQt)

≤ ∆(PM1M̃1C1,M2M̃2C2,...,MtM̃tCt
, PM1M1C1,M2M2C2,...,MtMtCt)

+∆(PM1M1C1,M2M2C2,...,MtMtCt , PM1M1Q1,M2M2Q2,...,MtMtQt)
= ∆(PM1M̃1,M2M̃2,...,MtM̃t

, PM1M1,M2M2,...,MtMt)
+∆(PM1C1,M2C2,...,MtCt , PM1Q1,M2Q2,...,MtQt)

By taking the supremum over all PM1M2···Mt ∈ ℘(Mt) and the infimum over all PQ1Q2···Qt ∈ ℘(Ct), we
have

inf
σ

∆D(π(( s−→)t|| [PK ]), σ(( s−→s)t)) ≤ απ,t,4 + βπ,t,2.

In addition, it is easy to see that max(απ,t,4, βπ,t,2) ≤ infσ ∆D(π(( s−→ )t|| [PK ]), σ(( s−→s )t)) by
Proposition 7 in Appendix A. ¤

One may think of a little difference in the adversary’s (or distinguisher’s) choice of random variables
M1,M2, . . . , Mt in the formalizations in Definition 5: In (I) and (II), Mi may depend on previous ones,
say M1M̃1,M2M̃2, . . . , Mi−1M̃i−1; In (i), (ii) and (iv), Mi may depend on M1C1,M2C2, . . . , Mi−1Ci−1;
and in the formalization of security in Definition 1, Mi may depend on the information which the
distinguisher obtained before (e.g., M1M̃1C1,M2M̃2C2, . . . , Mi−1M̃i−1Ci−1). However, we eventually
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take the supremum over all PM1M2···Mt ∈ ℘(Mt) for all the formalizations, and the above difference
does not have any effect on the results in this paper.

Even in the multiple-use model, we next show equivalence between security formalizations of Type
(i, j) for i ∈ {1, 2, 3} and j ∈ {1, 2, . . . , 5} as follows.

Theorem 3 Let π be a multiple-use symmetric-key encryption protocol where the number of protocol
execution with a same secret-key is up to T . Then, we have explicit relationships between απ,t,i, βπ,t,j

for any i ∈ {1, 2, . . . , 5}, j ∈ {1, 2, 3} and t ∈ {1, 2, . . . , T} as follows:

βπ,t,1 = βπ,t,2 = βπ,t,3, and
1
4
απ,t,2 ≤ απ,t,4 = απ,t,5 ≤ απ,t,3 ≤ 2απ,t,2,

2
ln 2

α2
π,t,2 ≤ απ,t,1 ≤ −2απ,t,2 log

2απ,t,2

|M|t |C|t .

In particular, for any t ∈ {1, 2, . . . , T}, any i, j ∈ {1, 2, . . . , 5}, and any s, u ∈ {1, 2, 3}, we have

lim
(βπ,t,s,απ,t,i)→(0,0)

(βπ,t,u, απ,t,j) = (0, 0),

where the limit is taken by changing [PK ] or π.

Proof. The proof can be shown by extending that of Theorem 1, and it is given in Appendix B. ¤

Furthermore, we extend the lower bounds in Section 3.3 to the ones in the multiple-use model.

Lemma 1 Let π be a multiple-use symmetric-key encryption protocol where the number of protocol
execution with a same secret-key is t. Also, let PM1,M2,...,Mt be a distribution on Mt. Then, for
any simulator σ on C, there exists a distinguisher D which utilizes PM1,M2,...,Mt for distinguishing
advantage such that

∆D(π(( s−→)t|| [PK ]), σ(( s−→s)t)) ≥ 1− |K|
2H∞(M1,M2,...,Mt)

. (1)

In particular, for any simulator σ on C, and for the set of all distinguishers D, we have

∆D(π(( s−→)t|| [PK ]), σ(( s−→s)t)) ≥ 1− |K|
|M|t .

The inequality (1) is an extension of the lower bound in [26] (see Proposition 3). Actually, if we
assume that t = 1 and PM1 is uniform in Lemma 1, we obtain Proposition 3. The proof of Lemma 1
is given in Appendix C. From Lemma 1, we obtain the following lower bounds (The proofs are very
similar to those in Section 3.3).

Theorem 4 For any multiple-use symmetric-key encryption protocol π where the number of protocol
execution with a same secret-key is t, we have the following lower bounds:

(i)

√
ln 2
2

α
1
2
π,t,1 + βπ,t,j ≥ 1

2

(
1− |K|

|M|t
)

for j ∈ {1, 2, 3};

(ii) απ,t,2 + βπ,t,j ≥ 1
2

(
1− |K|

|M|t
)

for j ∈ {1, 2, 3};

(iii) απ,t,i + βπ,t,j ≥ 1− |K|
|M|t for i ∈ {3, 4, 5} and j ∈ {1, 2, 3},

where απ,t,i and βπ,j are parameters for secrecy and correctness, respectively, defined in Definition 5.
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Corollary 2 Suppose a symmetric-key encryption protocol π is (δ, ε, T )-secure in the sense of Type
(i, j) in the multiple-use model. Then, we have the following lower bounds for the size of secret-keys:

(i) |K| ≥
{

1−
(√

2 ln 2ε
1
2 + 2δ

)}
|M|T for j = 1 and i ∈ {1, 2, 3},

(ii) |K| ≥ {1− 2 (ε + δ)} |M|T for j = 2 and i ∈ {1, 2, 3},
(iii) |K| ≥ {1− (ε + δ)} |M|T for j ∈ {3, 4, 5} and i ∈ {1, 2, 3}.

By considering a contrapositive of Corollary 2, we obtain the following impossibility result: There
exists no symmetric-key encryption protocol which is (δ, ε, T )-secure in the sense of Type (i, j) in the
multiple-use model, if δ and ε are some real numbers such that they do not satisfy the corresponding
inequality among (i)-(iii) in Corollary 2.

4 Key Agreement

4.1 Protocol Execution

We explain protocol execution of key agreement. Let X and Y be finite sets. Suppose that Alice
and Bob can have access to an ideal resource, and that they can finally obtain x ∈ X and y ∈ Y,
respectively. For simplicity, suppose that the resource is given by a correlated randomness resource
[PXY ]. In addition, we assume that there is the bidirectional (or unidirectional) authenticated channel
available between Alice and Bob, and that Eve can eavesdrop on all information transmitted by the
channel without any error.

Let K be a set of keys, and let K be a random variable which takes values on K in s s (or more
generally, [PK ]). Also, let T be a set of transcripts between Alice and Bob. Let πka = (πA

ka, π
B
ka)

be a key agreement protocol, where πA
ka (resp. πB

ka) is a converter at Alice’s (resp. Bob’s) side,
defined below: Let l be a positive integer and n = 2l − 1; The converter πA

ka consists of (probabilis-
tic) functions f1, f3, f5, . . . , f2l−1 and gA, and the converter πB

ka consists of (probabilistic) functions
f2, f4, f6, . . . , f2l−2 and gB, where the functions f1, f2, . . . , fn, gA, gB are defined as follows:

fi : X × T i−1 → T , ti = fi(x, t1, t2, t3, . . . , ti−1) for i = 1, 3, . . . , 2l − 1;
fj : Y × T j−1 → T , tj = fj(y, t1, t2, t3, . . . , tj−1) for j = 2, 4, . . . , 2l − 2;
gA : X × T n → K, kA = gA(x, t1, t2, t3, . . . , tn); gB : Y × T n → K, kB = gB(y, t1, t2, t3, . . . , tn).

Key Agreement Protocol πka

Input of Alice’s inner interface: x ∈ X by accessing [PXY ]
Input of Bob’s inner interface: y ∈ Y by accessing [PXY ]
Output of Alice’s outer interface: kA ∈ K
Output of Bob’s outer interface: kB ∈ K
1. πA

ka computes t1 = f1(x) and sends t1 to πB
ka by s−→.

2. For k from 1 to (n− 1)/2,
2-1. πB

ka computes t2k = f2k(y, t1, t2, . . . , t2k−1). Then, πB
ka sends t2k to πA

ka by s←− .
2-2. πA

ka computes t2k+1 = f2k+1(x, t1, t2, . . . , t2k). Then, πA
ka sends t2k+1 to πB

ka by s−→.
3. πA

ka computes kA = gA(x, t1, t2, . . . , tn) and outputs kA.
Similarly, πB

ka computes kB = gB(y, t1, t2, . . . , tn) and outputs kB.
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Note that, if only the unidirectional authenticated channel from Alice to Bob is available, the
functions fi for even i could be understood as trivial functions which always return a certain single
point (or symbol). Similarly, we can capture the case of only the unidirectional authenticated channel
from Bob to Alice being available.

For every i with 1 ≤ i ≤ n, Ti denotes a random variable which takes values ti ∈ T , and let
Tn := (T1, T2, . . . , Tn) be the joint random variable which takes values tn = (t1, t2, . . . , tn) ∈ T n. Also,
let KA and KB be the random variables which take values kA ∈ K and kB ∈ K, respectively.

For simplicity, we assume that a key agreement protocol πka can be used at most one time (i.e., we
deal with key agreement protocols in the one-time model). Therefore, the purpose of the key agreement
protocol is to transform a correlated randomness resource [PXY ] and channels ( s−→)l ‖ ( s←− )l−1 into
a key sharing resource s s ( or more generally, [PK ]).

4.2 Security Definitions Revisited: Formalizations and Relationships

As in the case of symmetric-key encryption protocols, let’s consider the following traditional formal-
ization of security for key agreement protocols (e.g. [8, 9, 12, 17, 18, 23]).

Definition 6 Let π be a key agreement protocol. Then, π is said to be ε-secure if it satisfies the
following conditions:

P (KA 6= KB) ≤ ε, log |K| −H(KA) ≤ ε, and I(KA; Tn) ≤ ε.

In particular, π is said to be perfectly-secure if it is 0-secure.

We now consider the following formalizations of information-theoretic security for key agreement.

Definition 7 Let π be a key agreement protocol such that PK is the uniform distribution over K
(i.e., [PK ]= s s). We define the following formalizations of Correctness and Security.

1. Correctness: (I) βπ,1 := max(P (KA 6= KB), log |K| −H(KA)),
(II) βπ,2 := ∆(PKAKB

, PKK).

2. Security: (i) απ,1 := I(KA; Tn), (ii) απ,2 := ∆(PKAT n , PKA
PT n),

(iii) απ,3 := inf
PQ

∆(PKAT n , PKA
PQ), where the infimum ranges over all PQ ∈ ℘(T n).

Then, π is said to be (δ, ε)-secure in the sense of Type (i, j), if π satisfies βπ,i ≤ δ and απ,j ≤ ε.

The traditional definition in Definition 6 corresponds to the security in the sense of Type (1, 1). The
composable security by Maurer et al. [20, 22] and Canetti [5, 6] is closely related to the security in the
sense of Type (2, 3): βπ,2 means distinguisher’s advantage for distinguishing real output and ideal one
at honest players’ interfaces, and βπ,2 is the same as the formalization of availability in Definition 1 for
key agreement; απ,3 means distinguisher’s advantage for distinguishing real transcripts and simulator’s
output at E-interface, together with output at A-interface. Note that the formalization απ,3 is simple,
and validity of απ,3 is well explained by the following proposition.

Proposition 5 The formalization of security in Definition 1 for a key agreement protocol π is lower-
and-upper bounded as follows:

max
(

1
3
απ,3, βπ,2

)
≤ inf

σ
∆D(π(( s−→)l‖( s←− )l−1‖ [PXY ]), σ( s s)) ≤ απ,3 + 2βπ,2.
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Proof. By focusing on distributions of output at A’s, B’s and E’s interfaces, for simplicity, we write
infPQ

∆(PKAKBT n , PKKPQ) for infσ ∆D(π(( s−→)l‖( s←− )l−1‖ [PXY ]), σ( s s)), where PK is the uni-
form distribution over K.

For any distribution PQ ∈ ℘(C), we have

∆(PKAKBT n , PKKPQ) ≤ ∆(PKAKBT n , PKAKAT n) + ∆(PKAKAT n , PKAKA
PQ)

+∆(PKAKA
PQ, PKKPQ)

= P (KA 6= KB) + ∆(PKAT n , PKA
PQ) + ∆(PKA

, PK)
≤ ∆(PKAT n , PKA

PQ) + 2∆(PKAKB
, PKK).

By taking the infimum over all PQ ∈ ℘(T n), we have

inf
PQ

∆(PKAKBT n , PKKPQ) ≤ inf
PQ

∆(PKAT n , PKA
PQ) + 2∆(PKAKB

, PKK)

= απ,3 + 2βπ,2.

In addition, for any distribution PQ ∈ ℘(C) we have

∆(PKAT n , PKA
PQ) ≤ ∆(PKAKAT n , PKAKBT n) + ∆(PKAKBT n , PKKPQ) + ∆(PKKPQ, PKAKA

PQ)
= P (KA 6= KB) + ∆(PKAKBT n , PKKPQ) + ∆(PK , PKA

)
≤ 2∆(PKAKB

, PKK) + ∆(PKAKBT n , PKKPQ)
≤ 3∆(PKAKBT n , PKKPQ).

By taking the infimum over all PQ ∈ ℘(T n), we have

1
3
απ,3 ≤ inf

PQ

∆(PKAKBT n , PKKPQ).

Finally, it is straightforward to see that βπ,2 ≤ infPQ
∆(PKAKBT n , PKKPQ). ¤

Then, as in the case of symmetric-key encryption, we can show the following theorem which states
essential equivalence of all the formalizations (i.e., six possible formalizations above).

Theorem 5 Let π be a key agreement protocol such that PK is the uniform distribution over K. Then,
we have explicit relationships between απ,i, βπ,j for i ∈ {1, 2, 3}, j ∈ {1, 2} as follows:

(1) βπ,2 ≤ βπ,1 +

√
βπ,1 ln 2

2
and βπ,1 ≤ −2βπ,2 log

2βπ,2

|K| ,

(2)
2

ln 2
α2

π,2 ≤ απ,1 ≤ −2απ,2 log
2απ,2

|K||T |n , (3)απ,3 ≤ απ,2 ≤ 2απ,3.

In particular, for any i, j ∈ {1, 2, 3} and for any s, t ∈ {1, 2}, we have

lim
(βπ,s,απ,i)→(0,0)

(βπ,t, απ,j) = (0, 0),

where the limit is taken by changing [PXY ] or π.

Proof. First, we show (1): By Lemma 3 in Appendix A, we have

βπ,2 = ∆(PKAKB
, PKK)

≤ P (KA 6= KB) + min(∆(PKA
, PK), ∆(PKB

, PK)).
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In addition, by Proposition 9 in Appendix A we have

∆(PKA
, PK)2 ≤ ln 2

2
D(PKA

||PK)

=
ln 2
2

(log |K| −H(KA))

≤ ln 2
2

βπ,1.

Therefore, we have βπ,2 ≤ βπ,1 +
√

βπ,1 ln 2
2 .

Conversely, we have

P (KA 6= KB) ≤ βπ,2, and

log |K| −H(KA) ≤ −2∆(PKA
, PK) log

2∆(PKA
, PK)

|K| (2)

≤ −2βπ,2 log
2βπ,2

|K| ,

where (2) follows from Proposition 10. Thus, we obtain

βπ,1 ≤ −2βπ,2 log
2βπ,2

|K| .

Next, the proof of (2) is given in the same way as that of Theorem 1, and we omit it.
Finally, we show (3): By definition, we have απ,3 ≤ απ,2. In addition, for any ε > 0, there is a

distribution PQ such that απ,3 + ε ≥ ∆(PKAT n , PKA
PQ). Then, we have

απ,2 ≤ ∆(PKAT n , PKA
PQ) + ∆(PKA

PQ, PKA
PT n)

≤ απ,3 + ε + ∆(PQ, PT n)
≤ 2(απ,3 + ε),

where the last inequality follows from ∆(PQ, PT n) ≤ ∆(PKA
PQ, PKAT n) ≤ απ,3 + ε. Thus, we obtain

απ,2 ≤ 2απ,3. ¤

4.3 Lower Bounds and Impossibility Results in One-time Model

For any key agreement protocol which constructs a key sharing resource [PK ] starting from a correlated
randomness resource [PXY ], we show a lower bound on the advantage of distinguishers as follows. The
proof is given in Appendix D.

Lemma 2 Let [PK ] be a key sharing resource. For any key agreement protocol π, and for any simu-
lator σ, we have

∆D(π(( s−→)l‖( s←− )l−1‖ [PXY ]), σ([PK ])) ≥ 1− 2H0(X,Y )−H∞(K).

In particular, we have

∆D(π(( s−→)l‖( s←− )l−1‖ [PXY ]), σ( s s)) ≥ 1− 2H0(X,Y )

|K| .

From Lemma 2, we obtain lower bounds on the adversary’s (or distinguisher’s) advantage (Theorem
6) and the required size of a correlated randomness resource (Corollary 3) as follows.
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Theorem 6 For any key agreement protocol π such that PK is the uniform distribution over K, we
have the following lower bounds:

(i)

√
ln 2
2

α
1
2
π,1 + 2

(
1 +

√
ln 2
2

)
β

1
2
π,1 ≥ 1− 2H0(X,Y )

|K| , if βπ,1 ∈ [0, 1];

(ii) απ,i + 2

(
1 +

√
ln 2
2

)
β

1
2
π,1 ≥ 1− 2H0(X,Y )

|K| for i ∈ {2, 3}, if βπ,1 ∈ [0, 1];

(iii)

√
ln 2
2

α
1
2
π,1 + 2βπ,2 ≥ 1− 2H0(X,Y )

|K| ; (iv) απ,i + 2βπ,2 ≥ 1− 2H0(X,Y )

|K| for i ∈ {2, 3},

where απ,i and βπ,j are parameters for security and correctness, respectively, defined in Definition 7.

Proof. By Proposition 5, we have

inf
σ

∆D(π(( s−→)l‖( s←− )l−1‖ [PXY ]), σ( s s)) ≤ απ,3 + 2βπ,2. (3)

Therefore, by (3) and Lemma 2 we obtain

απ,3 + 2βπ,2 ≥ 1− 2H0(X,Y )

|K| .

From Theorem 5, we have explict relationships between απ,i and βπ,j as follows:

βπ,2 ≤ βπ,1 +

√
ln 2
2

β
1
2
π,1

≤
(

1 +

√
ln 2
2

)
β

1
2
π,1 if βπ,1 ∈ [0, 1];

απ,3 ≤ απ,2 ≤
√

ln 2
2

α
1
2
π,1.

Therefore, by combining the above inequalities we obtain all lower bounds in Theorem 6. ¤

Corollary 3 Suppose that a key agreement protocol π is (δ, ε)-secure in the sense of Type (i, j) in
which PK is the uniform distribution over K. Then, we have the following lower bounds for the size
of a correlated randomness resource:

(i) 2H0(X,Y ) ≥
{

1−
[√

ln 2
2

ε
1
2 + 2

(
1 +

√
ln 2
2

)
δ

1
2

]}
|K| for i = j = 1, if δ ∈ [0, 1];

(ii) 2H0(X,Y ) ≥
{

1−
[
ε + 2

(
1 +

√
ln 2
2

)
δ

1
2

]}
|K| for i = 1 and j ∈ {2, 3}, if δ ∈ [0, 1];

(iii) 2H0(X,Y ) ≥
{

1−
(√

ln 2
2

ε
1
2 + 2δ

)}
|K| for i = 2 and j = 1;

(iv) 2H0(X,Y ) ≥ {1− (ε + 2δ)} |K| for i = 2 and j ∈ {2, 3}.
Proof. The proof of Corollary 3 immediately follows from Theorem 6. ¤

Finally, from Lemma 2 we obtain Proposition 6 which is an impossibility result for key agreement.
Also, we provide Corollaries 4 and 5 below, as illustrations of impossibility results which are special
cases of Proposition 6 (The proofs immediately follow from Theorem 6 and Proposition 6).
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Proposition 6 Let [PK ] be a key sharing resource, and let [PXY ] be a correlated randomness resource.
In addition, let ε̂ be a real number such that ε̂ < 1 − 2H0(X,Y )−H∞(K). Then, there exists no key
agreement protocol π such that ( s−→)∞‖( s←− )∞‖ [PXY ]

π,ε̂
=⇒ [PK ].

Corollary 4 There is no key agreement protocol π such that ( s−→)∞‖( s←− )∞ π,ε̂
=⇒ [PK ] for ε̂ <

1 − 1/2H∞(K). In particular, there is no (δ, ε)-secure key agreement in the sense of Type (i, j) which
constructs s s (even with 1-bit) starting from authenticated communications, if δ, ε ∈ [0, 1] are some
real numbers such that:

(i)

√
ln 2
2

ε
1
2 + 2(1 +

√
ln 2
2

)δ
1
2 <

1
2

for i = j = 1;

(ii) ε + 2(1 +

√
ln 2
2

)δ
1
2 <

1
2

for i = 1 and j ∈ {2, 3};

(iii)

√
ln 2
2

ε
1
2 + 2δ <

1
2

for i = 2 and j = 1;

(iv) ε + 2δ <
1
2

for i = 2 and j ∈ {2, 3}.

Corollary 5 Let l and s be nonnegative integers with l < s. In addition, we denote the l-bit key
sharing resource by s s

l, and let [PK ]s be an s-bit key sharing resource with min-entropy H∞(K).

Then, there is no protocol π such that ( s−→)∞‖( s←− )∞‖ s s
l

π,ε̂
=⇒ [PK ]s for ε̂ < 1 − 2l−H∞(K).

In particular, there is no (δ, ε)-secure key agreement (or key-expansion) protocol in the sense of Type
(i, j) which constructs the s-bit key sharing resource s s

s from the l-bit key sharing resource s s
l,

if δ, ε ∈ [0, 1] are some real numbers which satisfy inequality in Corollary 4.

5 Conclusion

In this paper, we investigated relationships between formalizations of information-theoretic security for
symmetric-key encryption and key-agreement protocols in a general setting (i.e., encryption and key-
agreement protocols may have decryption-errors and agreement-errors, respectively). Specifically, we
showed that, for symmetric-key encryption, the following formalizations are essentially all equivalent
in both one-time and multiple-use models:

• Stand-alone security including formalizations of extended (or relaxed) Shannon’s secrecy using
mutual information and statistical distance, and that of information-theoretic indistinguishabil-
ity by Goldwasser and Micali; and

• Composable security including formalizations of Maurer et al. and Canetti.

In the both models, we also derived lower bounds of the adversary’s (or distinguisher’s) advantage
and secret-key size required under all of the above formalizations. In particular, we could derive them
all at once through our relationships between the formalizations. In addition, we briefly observed
impossibility results which easily follow from the lower bounds.

Furthermore, we showed similar results (i.e., relationships between formalizations of stand-alone
and composable security, lower bounds, and impossibility results) for key agreement protocols.

Our technical results above are summarized in Table 1 in Section 1. We hope that our results
shown by a formal and rigorous way (e.g., slight differences of adversary’s advantage or secret-key
sizes derived from those of security formalizations) are useful in the community. In particular, our
results explicitly imply that encryption and key agreement protocols defined by stand-alone security
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remain to be secure even if they are composed with other ones, though it may be implicitly assumed by
some researchers that the stand-alone security formalizations are sufficient for providing composable
security in the information-theoretic settings.
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Appendix A: Definitions and Inequality

Definition 8 Let X be a random variable which takes values in a finite set X . Then, the min-entropy
H∞(X) and the max-entropy H0(X) are defined by

H∞(X) = min
x∈X

{− log PX(x)}, H0(X) = log |{x ∈ X |PX(x) > 0}| .

Definition 9 Let X, Y , and Z be random variables associated with distributions PX , PY , and PZ ,
respectively. The mutual information between X and Y , denoted by I(X; Y ), is defined by

I(X;Y ) := H(X)−H(X|Y ),

where H(X) (resp. H(X|Y )) is the entropy (resp. the conditional entropy). Also, the conditional
mutual information of X and Y given Z, denoted by I(X; Y |Z), is defined by

I(X; Y |Z) :=
∑

z

PZ(z)I(X;Y |Z = z).

Definition 10 Let X, Y , and Z be random variables associated with distributions PX , PY , and
PZ , respectively, where X and Y take values in a finite set X . The statistical distance between two
distributions PX and PY (or two random variables X and Y ), denoted by ∆(PX , PY ) (or ∆(X, Y )),
is defined by

∆(PX , PY ) :=
1
2

∑

x∈X
|PX(x)− PY (x)| .

Also, for conditional probabilities PX|Z := PXZ/PZ and PY |Z := PY Z/PZ , the statistical distance
between PX|Z and PY |Z , denoted by ∆(PX|Z , PY |Z) (or ∆(X, Y |Z)), can be defined by

∆(PX|Z , PY |Z) :=
∑

z

PZ(z)∆(PX|Z=z, PY |Z=z).

Then, by definitions, note that ∆(PX|Z , PY |Z) = ∆(PZX , PZY ).
In this section, we describe several inequalities which are necessary to show the proofs of proposi-

tions in this paper.

Proposition 7 Let (X,Y ) and (X ′, Y ′) be random variables associated with two joint distributions
PXY and PX′Y ′, respectively, on a finite set. Then, we have

max (∆(PX , PX′), ∆(PY , PY ′)) ≤ ∆(PXY , PX′Y ′)

Proof. From the definition of statistical distance, it follows that

2 ·∆(PXY , PX′Y ′) =
∑

x

∑
y

|PXY (x, y)− PX′Y ′(x, y)|

≥
∑

x

∣∣∣∣∣
∑

y

PXY (x, y)−
∑

y

PX′Y ′(x, y)

∣∣∣∣∣

=
∑

x

|PX(x)− PX′(x)|

= 2 ·∆(PX , PX′). ¤
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Proposition 8 Let X and X ′ be random variables associated with two distributions PX and PX′,
respectively, on a finite set. For an arbitrary random variable Y associated with a distribution PY , we
have ∆(PXXY , PXX′Y ) = P (X 6= X ′).

Proof. The proof follows from the following direct calculation:

2 ·∆(PXXY , PXX′Y ) =
∑

x

∑

x′

∑
y

∣∣PXXY (x, x′, y)− PXX′Y (x, x′, y)
∣∣

=
∑

x

∑

x′=x

∑
y

∣∣PXXY (x, x′, y)− PXX′Y (x, x′, y)
∣∣

+
∑

x

∑

x′ 6=x

∑
y

∣∣PXXY (x, x′, y)− PXX′Y (x, x′, y)
∣∣

=
∑

x

∑
y

(PXY (x, y)− PXX′Y (x, x, y)) +
∑

x

∑

x′ 6=x

∑
y

PXX′Y (x, x′, y)

= 1− P (X = X ′) + P (X 6= X ′)
= 2P (X 6= X ′). ¤

Corollary 6 Let X and X ′ be random variables associated with two distributions PX and PX′, re-
spectively, on a finite set. Then, we have ∆(PX , PX′) ≤ P (X 6= X ′).

Proof. The proof follows from Propositions 7 and 8. ¤

Proposition 9 (Lemma 12.6.1 in [7]) Let X1 and X2 be random variables associated with two
distributions PX1 and PX2, respectively, on a finite set. Then, we have

D(PX1 ‖ PX2) ≥
2

ln 2
∆(PX1 , PX2)

2.

Corollary 7 Let X and Y be random variables associated with two distributions PX and PY , respec-
tively. Then, we have

I(X; Y ) ≥ 2
ln 2

∆(PXY , PXPY )2.

Proof. The proof immediately follows from Proposition 9 by setting PX1 := PXY and PX2 := PXPY .
¤

Proposition 10 (Theorem 16.3.2 in [7]) Let X1 and X2 be random variables associated with two
distributions PX1 and PX2, respectively, on a finite set X such that ∆(PX1 , PX2) ≤ 1

4 . Then, we have

|H(X1)−H(X2)| ≤ −2∆(PX1 , PX2) log
2∆(PX1 , PX2)

|X | .

Corollary 8 Let X and Y be random variables which take values in finite sets X and Y, respectively.
If ∆(PXY , PXPY ) ≤ 1

4 , we have

I(X; Y ) ≤ −2∆(PXY , PXPY ) log
2∆(PXY , PXPY )

|X ||Y| .

Proof. The proof immediately follows from Proposition 10 by setting PX1 := PXY and PX2 := PXPY .
¤
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Lemma 3 For a key agreement protocol, we have

P (KA 6= KB) ≤ ∆(PKAKB
, PKK)

≤ P (KA 6= KB) + min(∆(PKA
, PK),∆(PKB

, PK)).

Proof. Since we can easily see the existence of a distinguisher with advantage P (KA 6= KB), the first
inequality of the two is easy. We show the second inequality in the following. From triangle inequality,
we have

∆(PKAKB
, PKK) ≤ ∆(PKAKB

, PKAKA
) + ∆(PKAKA

, PKK)
= P (KA 6= KB) + ∆(PKA

, PK).

Similarly, it is shown that ∆(PKAKB
, PKK) ≤ P (KA 6= KB) + ∆(PKB

, PK). ¤

Appendix B: Proof of Theorem 3

The proof of Theorem 3 can be given by the similar idea used in the proof of Theorem 1.
First, we show relationships between formalizations of correctness.

(i) We show βπ,t,1 = βπ,t,2: This is straightforward from Proposition 8 in Appendix A.

(ii) We show βπ,t,2 = βπ,t,3: For arbitrary random variables (M1,M2, . . . , Mt), we have

2∆(PM1M̃1,M2M̃2,...,MtM̃t
, PM1M1,M2M2,...,MtMt)

=
∑

(m1,m̃1),...,(mt,m̃t)

|PM1M̃1,M2M̃2,...,MtM̃t
((m1, m̃1), . . . , (mt, m̃t))

−PM1M1,M2M2,...,MtMt((m1, m̃1), . . . , (mt, m̃t))|
=

∑

(m1,...,mt)

PM1M2...Mt(m1, m2, . . . , mt) ·
∑

(m̃1,...,m̃t)

|PM̃1...M̃t|M1...Mt
(m̃1, . . . , m̃t|m1, . . . , mt)− PM1...Mt|M1...Mt

(m̃1, . . . , m̃t|m1, . . . , mt)|

≤ max
(m1,...,mt)

∑

(m̃1,...,m̃t)

|PM̃1...M̃t|M1...Mt
(m̃1, . . . , m̃t|m1, . . . ,mt)

−PM1...Mt|M1...Mt
(m̃1, . . . , m̃t|m1, . . . , mt)|

= 2 max
(m1,...,mt)

∆(PM̃1M̃2...M̃t|M1=m1,M2=m2,...,Mt=mt
, PM1M2...Mt|M1=m1,M2=m2,...,Mt=mt

).

Therefore, we have βπ,t,2 ≤ βπ,t,3.

Let m1,m2, . . . ,mt ∈M be plaintexts such that

βπ,t,3 = ∆(PM̃1M̃2...M̃t|M1=m1,M2=m2,...,Mt=mt
, PM1M2...Mt|M1=m1,M2=m2,...,Mt=mt

).

For any ε > 0, we define a distribution PM1M2···Mt as follows: for every i with 1 ≤ i ≤ t, we
define a distribution PMi on M by

PMi(m) :=

{
1− δi if m = mi,

δi
|M|−1 if m 6= mi,
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where δi (1 ≤ i ≤ t) are non-negative real numbers such that 0 ≤ βπ,t,3
∑t

i=1 δi ≤ ε. Then, we
have

βπ,t,2 ≥ ∆(PM1M̃1,M2M̃2,...,MtM̃t
, PM1M1,M2M2,...,MtMt)

≥
t∏

i=1

(1− δi)∆(PM̃1M̃2···M̃t|M1=m1,M2=m2,...,Mt=mt
, PM1M2...Mt|M1=m1,M2=m2,...,Mt=mt

)

≥ (1−
t∑

i=1

δi)∆(PM̃1M̃2···M̃t|M1=m1,M2=m2,...,Mt=mt
, PM1M2...Mt|M1=m1,M2=m2,...,Mt=mt

)

≥ βπ,t,3 − ε.

Secondly, we show relationships between formalizations of secrecy.

(1) We show that 2
ln 2α2

π,t,2 ≤ απ,t,1 ≤ −2απ,t,2 log 2απ,t,2

|M|t|C|t : For any PM1M2···Mt−1Mt ∈ ℘(Mt) and any
π, let Zt−1 := (M1C1, M2C2, . . . , Mt−1Ct−1). Considering the relationship between statistical
distance and conditional mutual information derived from Theorem 16.3.2[7], it follows that,

I(Mt; Ct|Zt−1) ≤ −2∆(PMtCt|Zt−1
, PMt|Zt−1

PCt|Zt−1
) log

2∆(PMtCt|Zt−1
, PMt|Zt−1

PCt|Zt−1
)

|M|t|C|t .

Therefore, we have

απ,t,1 ≤ −2απ,t,2 log
2απ,t,2

|M|t|C|t .

On the other hand, by the relationship between conditional statistical distance and conditional
mutual information derived from Theorem 12.6.1[7], it follows that, for any PM1M2···Mt−1Mt ∈
℘(Mt) and any π,

∆(PMtCt|Zt−1
, PMt|Zt−1

PCt|Zt−1
) ≤

√
ln 2
2

I(Mt;Ct|Zt−1)
1
2 .

Therefore, we have απ,t,2 ≤
√

ln 2
2 α

1
2
π,t,1.

(2) We show απ,t,3 ≤ 2απ,t,2: Let m1,m2, . . . ,mt−1, m̂0, m̂1 ∈M such that

απ,t,3 = ∆(PCt|M=m̂0,(M1,C1)=(m1,c1),...,(Mt−1,Ct−1)=(mt−1,ct−1),

PCt|M=m̂1,(M1,C1)=(m1,c1),...,(Mt−1,Ct−1)=(mt−1,ct−1)).

In the following, we set Zt−1 := (M1C1,M2C2, . . . , Mt−1Ct−1) and
zt−1 := ((m1, c1), (m2, c2), . . . , (mt−1, ct−1)). For any ε > 0, and for every i, we define a distri-
bution PMi on M as follows: For every i with i ≤ t− 1,

PMi(m) :=

{
1− δi if m = mi,

δi
|M|−1 if m 6= mi,

and for i = t,

PMt(m) :=

{
1
2(1− δt) if m ∈ {m̂0, m̂1},

δt
|M|−2 if m 6∈ {m̂0, m̂1},
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where δi (1 ≤ i ≤ t) are non-negative real numbers such that 0 ≤ απ,t,3
∑t

i=1 δi ≤ 2ε. Then, we
have

απ,t,2 ≥ ∆(PMtCt|Zt−1
, PMt|Zt−1

PCt|Zt−1
)

=
∑

z

PZt−1(z)∆(PMtCt|Zt−1=z, PMt|Zt−1=zPCt|Zt−1=z)

≥
t−1∏

i=1

(1− δi)∆(PMtCt|Zt−1=zt−1
, PMt|Zt−1=zt−1

PCt|Zt−1=zt−1
)

≥ 1
2

t∏

i=1

(1− δi){∆(PCt|Mt=m̂0,Zt−1=zt−1
, PCt|Zt−1=zt−1

) +

∆(PCt|Mt=m̂1,Zt−1=zt−1
, PCt|Zt−1=zt−1

)}

≥ 1
2

t∏

i=1

(1− δi)∆(PCt|Mt=m̂0,Zt−1=zt−1
, PCt|Mt=m̂1,Zt−1=zt−1

)

=
1
2

t∏

i=1

(1− δi)απ,t,3

≥ 1
2
(1−

t∑

i=1

δi)απ,t,3

≥ 1
2
απ,t,3 − ε.

(3) We show that απ,t,5 ≤ απ,t,3: Let m1,m2, . . . , mt−1, mt ∈M such that

απ,t,5 = inf
PQ1Q2...Qt

∆(PC1C2...Ct|M1=m1,M2=m2,...,Mt=mt
, PQ1Q2...Qt).

We set PQi := PCi|M1=m1,M2=m2,...,Mi=mi
for i = 1, 2, . . . , t− 1 and

PQt := PCt|M1=m1,M2=m2,...,Mt−1=mt−1,Mt=m̂t

for some m̂t 6= mt. Then, we have

απ,t,5 ≤ ∆(PC1C2...Ct|M1=m1,M2=m2,...,Mt=mt
, PQ1Q2...Qt)

≤ max
(c1,c2,...,ct−1)

max
(mt,m̂t)

∆(PCt|M=mt,(M1,C1)=(m1,c1),...,(Mt−1,Ct−1)=(mt−1,ct−1),

PCt|M=m̂t,(M1,C1)=(m1,c1),...,(Mt−1,Ct−1)=(mt−1,ct−1))
≤ απ,t,3.

(4) We show απ,t,4 = απ,t,5: For arbitrary random variables (M1,M2, . . . , Mt) and (Q1, Q2, . . . , Qt),
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we have

2∆(PM1C1,M2C2,...,MtCt , PM1Q1,M2Q2,...,MtQt)

=
∑

(m1,c1),...,(mt,ct)

|PM1C1,M2C2,...,MtCt((m1, c1), . . . , (mt, ct))

−PM1Q1,M2Q2,...,MtQt((m1, c1), . . . , (mt, ct))|
=

∑

(m1,...,mt)

PM1M2...Mt(m1,m2, . . . ,mt) ·
∑

(c1,...,ct)

|PC1C2...Ct|(M1M2...Mt)=(m1,m2,...,mt)(c1, c2, . . . , ct)− PQ1Q2...Qt(c1, c2, . . . , ct)|

≤ max
(m1,m2,...,mt)

∑

(c1,...,ct)

|PC1...Ct|(M1...Mt)=(m1,...,mt)(c1, . . . , ct)− PQ1...Qt(c1, . . . , ct)|

= 2 max
(m1,m2,...,mt)

∆(PC1C2...Ct|M1=m1,M2=m2,...,Mt=mt
, PQ1Q2...Qt).

Therefore, we have απ,t,4 ≤ απ,t,5.

Next, we show απ,t,5 ≤ απ,t,4. Let m1,m2, . . . , mt ∈M be plaintexts such that

απ,t,5 = inf
PQ1Q2...Qt

∆(PC1C2...Ct|M1=m1,M2=m2,...,Mt=mt
, PQ1Q2...Qt).

For any ε > 0, we define a distribution PM̂1M̂2···M̂t
as follows: for every i with 1 ≤ i ≤ t, we

define a distribution PM̂i
on M by

PM̂i
(m) :=

{
1− δi if m = mi,

δi
|M|−1 if m 6= mi,

where δi (1 ≤ i ≤ t) are non-negative real numbers such that 0 ≤ απ,t,5
∑t

i=1 δi ≤ ε. Then, for
any PQ1Q2...Qt ∈ ℘(Ct), we have

sup
PM1M2...Mt

∆(PM1C1,M2C2,...,MtCt , PM1Q1,M2Q2,...,MtQt)

≥ ∆(PM̂1Ĉ1,M̂2Ĉ2,...,M̂tĈt
, PM̂1Q1,M̂2Q2,...,M̂tQt

)

≥
t∏

i=1

(1− δi)∆(PĈ1Ĉ2···Ĉt|M̂1=m1,M̂2=m2,...,M̂t=mt
, PQ1Q2...Qt)

≥ (1−
t∑

i=1

δi)∆(PĈ1Ĉ2···Ĉt|M̂1=m1,M̂2=m2,...,M̂t=mt
, PQ1Q2...Qt).

Therefore, by taking the infimum over all PQ1Q2...Qt ∈ ℘(Ct), we have απ,t,4 ≥ απ,t,5 − ε.

(5) We show 1
4απ,t,2 ≤ απ,t,4: For every i with 1 ≤ i ≤ t, and for arbitrary random variables

(M1,M2, . . . , Mi) and (Q1, Q2, . . . , Qi), we set Zi := (M1C1,M2C2, . . . ,MiCi) and
Q̂i := (M1Q1, M2Q2, . . . ,MiQi). Then, we have

∆(PMtCt|Zt−1
, PMt|Zt−1

PCt|Zt−1
) ≤ ∆(PMtCt|Zt−1

, PMt|Zt−1
PQt) + ∆(PMt|Zt−1

PQt , PMt|Zt−1
PCt|Zt−1

)
= ∆(PMtCt|Zt−1

, PMt|Zt−1
PQt) + ∆(PQt , PCt|Zt−1

)
≤ 2∆(PMtCt|Zt−1

, PMt|Zt−1
PQt)

= 2∆(PZt , PZt−1MtPQt). (4)

29



On the other hand, we have

∆(PZt , PZt−1MtPQt) ≤ ∆(PZt , PQ̂t−1Mt
PQt) + ∆(PQ̂t−1Mt

PQt , PZt−1MtPQt)

= ∆(PZt , PQ̂t
) + ∆(PQ̂t−1Mt

, PZt−1Mt)

≤ 2∆(PZt , PQ̂t
). (5)

From (4) and (5), it follows that ∆(PMtCt|Zt−1
, PMt|Zt−1

PCt|Zt−1
) ≤ 4∆(PZt , PQ̂t

). Therefore, we
obtain απ,t,2 ≤ 4απ,t,4. ¤

Appendix C: Proof of Lemma 1

Let π = (πA, πB). In the following, for m = (m1,m2, . . . , mt) ∈ Mt and c = (c1, c2, . . . , ct) ∈ Ct,
we briefly write c = πA(k, m) if ci = πA(k, mi) for every i with 1 ≤ i ≤ t. Similarly, for m̃ =
(m̃1, m̃2, . . . , m̃t) ∈ M̃t, we write m̃ = πB(k, c) if m̃i = πB(k, ci) for every i.

For m = (m1,m2, . . . , mt) ∈ Mt, m̃ = (m̃1, m̃2, . . . , m̃t) ∈ M̃t, let Ωπ,Ct

m,m̃ := {c ∈ Ct|∃k ∈ K
such that c = πA(k, m) and m̃ = πB(k, c)}. For any m ∈ Mt, m̃ ∈ M̃t, and k ∈ K, we also
define Ωπ,Ct

m,m̃,k := {c ∈ Ct|c = πA(k, m) and m̃ = πB(k, c)}. Then, for any simulator σ, and for any
distinguisher D which utilizes a certain distribution PM1M2···Mt for distinguishing advantage, we have

∆D(π(( s−→)t|| [PK ]), σ(( s−→s)t)) ≥
∑

(m,m̃),c∈Ωπ,Ct

m,m̃

(Pπ(m, m̃, c)− Pσ(m, m̃, c)) ,

= 1−
∑

(m,m̃),c∈Ωπ,Ct

m,m̃

Pσ(m, m̃, c), (6)

where Pπ and Pσ are distributions by the systems π(( s−→)t|| [PK ]) and σ(( s−→s)t), respectively.
We now need the following claim to complete the proof.

Claim 1 Suppose that, for every i (1 ≤ i ≤ t), πB deterministically executes the i-th decryption.
Then, we have

∑

(m,m̃),c∈Ωπ,Ct

m,m̃

Pσ(m, m̃, c) ≤ |K|
2H∞(M1,M2,...,Mt)

.

Proof. We note that Pσ(m, m̃, c) = 0 if m 6= m̃, and that Pσ(m, m̃, c) = PM1M2···Mt(m)Pσ(c) if
m = m̃ ∈Mt. Thus, we have

∑

(m,m̃),c∈Ωπ,Ct

m,m̃

Pσ(m, m̃, c) =
∑
m

PM1M2···Mt(m)
∑

c∈Ωπ,Ct
m,m

Pσ(c)

≤ 1
2H∞(M1,M2,...,Mt)

∑
m

∑

k∈K

∑

c∈Ωπ,Ct

m,m,k

Pσ(c)

=
1

2H∞(M1,M2,...,Mt)

∑

k∈K




∑
m

∑

c∈Ωπ,Ct

m,m,k

Pσ(c)




≤ 1
2H∞(M1,M2,...,Mt)

∑

k∈K
1 (7)

=
|K|

2H∞(M1,M2,...,Mt)
.
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where (7) follows from Ωπ,Ct

m,m,k ∩ Ωπ,Ct

m′,m′,k = ∅ if m 6= m′, since we assume that πB deterministically
executes the i-th decryption for every i (1 ≤ i ≤ t). ¤

We are back to the proof of Lemma 1. If πB is deterministic, the proof of the following first
inequality in Lemma 1 directly follows from (6) and Claim 1:

∆D(π(( s−→)t|| [PK ]), σ(( s−→s)t)) ≥ 1− |K|
2H∞(M1,M2,...,Mt)

.

We next consider the above lower bound in the case of πB being probabilistic. Let R be a finite set of
random numbers, and suppose that πB chooses a random number r ∈ R to execute each decryption
according to a probability distribution PR. For each r ∈ R, we define a symmetric-key encryption
protocol πr = (πA, πB

r ) such that πB
r is equal to πB with a fixed r ∈ R. For every i-th decryption

(1 ≤ i ≤ t), πB chooses a deterministic πB
r from {πB

r |r ∈ R} according to PR, and hence Claim 1 can
be applied. Namely, the above lower bound cannot be improved. Therefore, the above lower bound
holds without any assumption on πB.

The second inequality in Lemma 1 follows from

∆D(π(( s−→)t|| [PK ]), σ(( s−→s)t)) ≥ sup
PM1M2···Mt

(
1− |K|

2H∞(M1,M2,...,Mt)

)

= 1− |K|
2
supPM1M2···Mt

H∞(M1,M2,...,Mt)

= 1− |K|
|M|t .

Therefore, the proof of Lemma 1 is completed. ¤

Appendix D: Proof of Lemma 2

Let Supp(PXY ) = {(x, y)|PXY (x, y) > 0} ⊂ X × Y be the support of PXY . For any kA ∈ K, and
kB ∈ K, we define

Ωπ,T n

kA,kB
:=





∃(x, y) ∈ Supp(PXY ) such that
ti = fi(x, t1, . . . , ti−1) for odd i

tn = (t1, t2, . . . , tn) ∈ T n tj = fj(y, t1, . . . , tj−1) for even j
kA = gA(x, t1, t2, . . . , tn)
kB = gB(y, t1, t2, . . . , tn)





.

For any (x, y) ∈ Supp(PXY ), kA ∈ K, and kB ∈ K, we also define

Ωπ,T n

kA,kB ,x,y :=





ti = fi(x, t1, . . . , ti−1) for odd i
tn = (t1, t2, . . . , tn) ∈ T n tj = fj(y, t1, . . . , tj−1) for even j

kA = gA(x, t1, t2, . . . , tn)
kB = gB(y, t1, t2, . . . , tn)





.
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Then, for any simulator σ, we have

∆D(π(( s−→)l‖( s←− )l−1‖ [PXY ])), σ([PK ]))

≥ 1
2

∑

(kA,kB ,tn)∈K×K×T n

|Pπ(kA, kB, tn)− Pσ(kA, kB, tn)|

= max
B⊂K×K×T n

{Pπ(B)− Pσ(B)}

≥
∑

(kA,kB),tn∈Ωπ,T n

kA,kB

(Pπ(kA, kB, tn)− Pσ(kA, kB, tn)) ,

= 1−
∑

(kA,kB),tn∈Ωπ,T n

kA,kB

Pσ(kA, kB, tn), (8)

where Pπ and Pσ are distributions by the systems π(( s−→)l‖( s←−)l−1‖ [PXY ]) and σ([PK ]), respectively.
We now need the following claim.

Claim 2 Suppose that gA and gB in the key agreement protocol π are deterministic. Then, we have
∑

(kA,kB),tn∈Ωπ,T n

kA,kB

Pσ(kA, kB, tn) ≤ 2H0(X,Y )−H∞(K).

Proof. We note that Pσ(kA, kB, tn) = 0 if kA 6= kB, and that Pσ(kA, kB, tn) = PK(k)Pσ(tn) if
kA = kB = k ∈ K. Thus, we have

∑

(kA,kB),tn∈Ωπ,T n

kA,kB

Pσ(kA, kB, tn) =
∑

k

PK(k)
∑

tn∈Ωπ,T n

k,k

Pσ(tn)

≤ 1
2H∞(K)

∑

k

∑

(x,y)∈Supp(PXY )

∑

tn∈Ωπ,T n

k,k,x,y

Pσ(tn)

=
1

2H∞(K)

∑

(x,y)∈Supp(PXY )




∑

k

∑

tn∈Ωπ,T n

k,k,x,y

Pσ(tn)




≤ 1
2H∞(K)

∑

(x,y)∈Supp(PXY )

1 (9)

= 2H0(X,Y )−H∞(K).

where (9) follows from Ωπ,T n

k,k,x,y ∩Ωπ,T n

k′,k′,x,y = ∅ if k 6= k′, since we assume that gA and gB are determin-
istic. ¤

We are back to the proof of Lemma 2. If gA and gB are deterministic, the proof of Lemma 2
directly follows from (8) and Claim 2. We next show that the statement of Lemma 2 is true, even if
we remove the assumption. Suppose that gA or gB is probabilistic. Let RA (resp. RB) be a finite
set, and suppose that gA (resp. gB) chooses a random number rA ∈ RA (resp. rB ∈ RB) according
to a probability distribution PRA

(resp. PRB
). For each fixed (rA, rB) ∈ RA ×RB, a key agreement

protocol π(rA,rB) is specified in which gA with inputting rA and gB with inputting rB are deterministic.
Therefore, we can apply the lower bound derived before. Hence, even if gA (resp. gB) chooses rA ∈ RA

(resp. rB ∈ RB) according to PRA
(resp. PRB

), this lower bound cannot be improved. Therefore, the
proof of the lemma is completed. ¤
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