
Several Weak Bit-Commitments Using Seal-Once Tamper-Evident

Devices∗

Ioana Boureanu and Serge Vaudenay
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland
{ioana.boureanu,serge.vaudenay}@epfl.ch

Abstract

Following both theoretical and practical arguments, we construct UC-secure bit-commitment protocols
that place their strength on the sender’s side and are built using tamper-evident devices, e.g., a type of distin-
guishable, sealed envelopes. We show that by using a second formalisation of tamper-evident distinguishable
envelopes we can attain better security guarantees, i.e., EUC-security. We show the relations between sev-
eral flavours of weak bit-commitments, bit-commitments and distinguishable tamper-evident envelopes. We
focus, at all points, on the lightweight nature of the underlying mechanisms and on the end-to-end human
verifiability.

1 Introduction

Most of the recent approaches to primitive-construction employ the universal composability (UC) framework [6]
in order to specify and prove the correctness/security of their cryptographic designs. The UC framework is
a formalism that allows for cryptographic protocols to be computationally analysed in a single session, yet
the security guarantees thereby obtained are preserved when multiple sessions are composed concurrently, in
parallel and/or sequentially. See Appendix A, for a short wrap-up on UC frameworks [6, 8] and UC proofs.
In [6], Canetti shows that any polynomial-time multi-party functionality is feasible in the UC framework if
the majority of participants are honest. Otherwise, feasibility is usually attained if the models are augmented
with “setup-assumptions”, obtaining the so-called “UC hybrid models” (i.e., extra ideal functionalities are made
available to the parties).

UC-formalisations of tamper-evident and tamper-resistant hardware devices have been used as setups to UC-
realize different cryptographic primitives, from bit-commitment to polling schemes [14, 16, 13, 17, 18, 20, 19];
the tamper-evidence of a device implies that, if tampered with, the device will signal the inflicted abnormalities,
whereas tamper-resistance denotes the impossibility of tampering with the device. Tamper-evidence-based UC-
secure protocols [17, 18, 20] also bear lightweight, humanly constructible/verifiable cryptographic mechanisms.
To realize UC-secure weak bit-commitment (WBC) protocols, a type of distinguishable tamper-evident envelopes
were shown sufficient and necessary (in the sense that simpler functionalities of distinguishable tamper-evident
containers are not sufficient to realize bit-commitments) [19]. The protocols thereby constructed placed their
“strength” on the receiver’s side, i.e., it is the receiver who creates the tamper-evident devices or prepares
them. In [19], Moran and Naor raise the question of finding such lightweight, UC-secure (weak) bit-commitment
protocols that in turn place their strength on the sender’s side, i.e, sender-strong protocols. Along similar lines,
Brassard, Chaum and Crépeau in foundation papers have long made the question: “Is it preferable to trust Vic
or Peggy? We do not know, but it sure is nice to have the choice. [4]”.

Contributions. The contributions of this paper are as follows:

• We create weak bit-commitments that place the (adversarial) strength on the committer side, i.e., sender-
strong WBC, and that are UC-secure. To achieve this, we require a new formalisation of distinguishable
envelopes and use it as a UC setup functionality (see the motivations below).

• We describe a hierarchy of ideal functionalities for sender-strong weak bit-commitments and UC-realize
them. In this, we relate better with the existing literature in the field (see Section 2.2 for details).

∗A shorter version of this paper appeared in the proceedings of ProvSec’12 [3].

1



• We relate our first functionality of distinguishable envelopes (FDE
OneSeal), the standard UC-functionality of

bit-commitment (FBC) and those of WBC (already existing and newly introduced herein), showing most
implication-relations between them.

• We introduce a second distinguishable envelope functionality (FpurpotedDE
OneSeal ), which allows for the corre-

sponding DE-based WBC protocols herein and the ones in [19] to be enjoyed a stronger security notion:
be not only UC-secure, but also EUC-secure.

Motivation for Our Formalisation of Tamper-Evident Envelopes.
I. As Moran et al. state in [19], there are many ways to formalise tamper-evident containers, reflecting the

different requirements of the possible physical implementations of such devices. The sole motivation given in [19]
for allowing creator-forgeability is the desiderata of creating more complex, somewhat stronger protocols.

But, when it comes to placing this sort of asymmetric strength on the sender’s side, it only makes sense to
construct commitment protocols that are, in the standard sense, computationally hiding and somewhat binding,
i.e., the receiver is powerless and the sender can possibly equivocate his commitments. (By contrast, in [19]
are both partially hiding and partially binding and are then amplified.) In this context, we conjecture that
it is not possible to be based only on tamper-evident envelopes à la Moran et al. [19] and construct hiding
sender-strong bit-commitment protocols, which would further be UC-secure in the same time. To overcome
this shortcoming, we have herein slightly modified the original, tamper-evident envelope functionality from [19],
preventing the creator from resealing envelopes. Hence, we model seal-once distinguishable tamper-evident
envelopes (or, envelope allowing one-seal only). By contrast, the functionality in [19] formalises a multi-seal
distinguishable tamper-evident envelope.

II. The previous protocols designed using tamper-evident envelopes à la Moran et al. [19] were only UC-
secure and not EUC-secure. We noted that if we relaxed the forging abilities of the envelope-creator in the
aforementioned way and we furthermore allow for purported destinator for envelopes the corresponding DE-
based protocols obtained both here and in [19] attain EUC-security and not only UC-security.

Our Weak Bit-Commitments: a theoretical viewpoint.
Alongside the UC-framework, sender-strong weak bit-commitments are also interesting by traditional theo-

retical lines, where they are easier to construct (see Section 3.5). In [4], outside of the UC-framework, Brassard
et al. proved that the existence of “chameleon” bit-commitments1 implies the existence of zero-knowledge (ZK)
proofs of knowledge which were MA-protocols (i.e., where the verifier sends independent bits). Moreover, in [2]
Beaver proved that in order for the aforementioned ZK proofs of knowledge (PoK) to be provable secure against
adaptive adversaries, the chameleon bit-commitments (BC) are not enough, but content-equivocable bit com-
mitments are needed (i.e., the equivocation is possible only if a record of the traffic between the sender and the
receiver is available to the sender and not other types of witnesses, like parts of messages). One of our weak BC

functionalities, Fq−WBC
LearnAtOpening, models this last type of important weak bit-commitments.

Our Weak Sender-Strong Bit-Commitments: a practical viewpoint.
Practice also imposes situations where the sender/committer should not have to trust the receiver in any

way (e.g., it should only be the sender/committer who is required to create and seal the envelopes used in an
envelope-based commitment scheme). This may be the case if the receiver is thought to have access to side-
channels attacks (i.e., the receiving voting authority uses some special techniques to change the values hidden
inside envelopes without resealing). Or, further, take the example of anonymous auctioning protocols [10, 15, 12],
where the receiver/auctioning-house and the sender/auctioneer mutually ignore their identities throughout most
phases of the protocol. Hence, the receiver Bob should not start by sending to some committer Alice the
envelopes to be used in her commitment (as Bob ignores Alice’s existence), but Alice should in turn commit to
the maximum bid that she intends to place by possibly using self-made, tamper-evident “envelopes”.

A real-life situation were the committer/sender should be given the chance to “change his mind” is the case
in negotiation-based protocols where the receiver is known or thought to be corrupt (e.g, hostage-release cases,
reputations [1], anonymous special auctioning [23], etc.).

To sum up, we are motivated to present certain means of attaining different UC and EUC-secure, bit-
commitment protocols placing their strength on the sender’s side, i.e., sender-strong (SS). For this, we use two
new lightweight tamper-evident devices justified in the given context.

1These are commitments where the sender could cheat at the decommitment phase if given extra information.

2



Related Work

We will hereby refer to lines of work using tamper-resistance and tamper-evidence to construct cryptographic
protocols, designed mainly in the UC framework [6].

A series of works on designing UC-secure protocols using tamper-resistant building blocks have recently
emerged [14, 9, 16, 13, 20]. For example, the formalism by Katz, in [14], opens for the creation and exchange
of tamper-proof hardware tokens used in a commitment protocol, which is UC-secure if the tokens are stateful
and the DDH assumption holds. In [9], the two-party computation can equally be UC-realized, but the model is
relaxed: the tokens are stateless and the assumption is switched to the existence of oblivious transfer protocols
in the UC plain model. Similar results are obtained using tamper-resistant devices as building blocks in a model
called the trusted agent model [16]. Like in [9] and unlike in [14], Mateus and Vaudenay [16] permit a freer
flow of devices from their creator to their users and backwards. Similar protocols are constructed by Moran et
al., in [20], using tamper-resistant hardware tokens that can be passed in one direction only. We note that the
distinction of having UC-commitments which place the strength on the sender or, on the contrary, place their
strength on the receiver has also been underlined [20] within this context of using tamper-resistant hardware as
UC-setup.

Simpler cryptographic protocols UC-constructed using not tamper-resistant devices, but tamper-evident de-
vices in form of sealed envelopes and sealed locks have been studied in [19, 17, 18]. All the protocols thereby
presented place their strength on the receiver’s side.

2 Setup and Target UC Functionalities

We begin by formalising tamper-evident distinguishable envelope through an ideal UC functionality, which is
similar to the one formalised in [19]. To relate more closely to Moran and Naor’s work [19], we then introduce

a weak bit-commitment functionality Fq−WBC
EscapeThenMayCheat, q ∈ (0, 1), which is similar to that of [17, 19]. In this

functionality, a sender decides whether to cheat at the very beginning (i.e., in a protocol, at the phase of envelope
sealing) and the probability of potential cheating is controlled by the fact that the sender can be caught in certain

cases (i.e., in a protocol, due to certain choices by the receiver). Then, we give functionalities Fq−WBC
LearnAtCommitment and

Fq−WBC
LearnAtOpening, which are different from Fq−WBC

EscapeThenMayCheat (i.e., a sender can decide to equivocate his commitment
only at some point during the commitment phase or at some point during the opening phase, respectively). These

Fq−WBC
LearnAtCommitment and Fq−WBC

LearnAtOpening functionalities are closer to standard weak bit-commitments [11, 2] and are
better suited to both the theoretical and practical motivations mentioned in the introduction (e.g., the sender
only decides to cheat in his commitments within an auctioning protocol once the receiver has already proven to
be untrustworthy).

2.1 UC-Setup Functionalities Modelling Tamper-Evident Envelopes

The FDE
OneSeal Functionality for Tamper-Evident Distinguishable Sealed Envelopes

In general, a functionality for tamper-evidence stores a table of envelopes, indexed by their unique id. More
precisely, an entry in this table is of the form (id, value, holder, state). The values in one entry indexed by id
are respectively denoted valueid, holderid and stateid.

In particular, the functionality FDE
OneSeal models a tamper-evident “envelope”, distinguishable by some obvious

mark (e.g., barcode, serial number, colour, etc.). Protocol parties can simply open such containers, but any
such opening will be obvious to other parties who receive the “torn” envelope. The FDE

OneSeal ideal functionality,
running in the presence of parties P1, . . . , Pn and an ideal adversary I is described in the following.

Seal(id , value). Let this command be received from party Pi. It creates and seals an envelope. If this is the
first Seal message with id id, the functionality stores the tuple (id, value, Pi, sealed) in the table. If this is not
the first command of type Seal for envelope id, then the functionality halts.

Send(id , Pj ). Let this command be received from party Pi. This command encodes the sending of an
envelope held by Pi to a party Pj . Upon receiving this command from party Pi, the functionality verifies that
there is an entry in its table which is indexed by id and has holderid = Pi. If so, it outputs (Receipt, id, Pi, Pj)
to Pj and I and replaces the entry in the table with (id, valueid, Pj , stateid).

Open id . Let this command be received from party Pi. This command encodes an envelope being opened
by the party that currently holds it. Upon receiving this command, the functionality verifies that an entry for

3



container id appears in the table and that holderid = Pi. If so, it sends (Opened, id, valueid) to Pi and I. It
also replaces the entry in the table with (id, valueid, holderid, broken).

Verify id . Let this command be received from party Pi. This command denotes Pi’s verification of whether
or not the seal on an envelope has been broken. The functionality verifies that an entry indexed by id appears
in the table and that holderid = Pi. It sends (Verified, id, stateid) to Pi and to I.

One of the differences from the corresponding functionality presented in [19] is that the one introduced above
does not output tuples containing the creator’s identity. This would have been of no interest for the protocols
constructed in the following and would hinder EUC-security proofs given herein. However, a more important
difference is that the creator of an envelope cannot re-seal it, i.e., he cannot forge the value stored initially inside
the envelope. Hence, we use the syntagm “OneSeal” to refer to the functionality herein and, sometimes, we
use the expression “MultiSeal” to designate the tamper-evident envelopes in [19]. This modification is driven
by the fact that we could not yet construct a sender-strong, somewhat binding and not partially hiding, but
computationally hiding bit commitment that is also simulatable within UC, using only creator-forgeable/multi-
seal tamper-evident envelopes; we have not yet disproved this either.

Our change brings the FDE
OneSeal functionality closer to regular commitment than the tamper-evident function-

ality in [19] was. It is relatively easy to see that regular bit-commitments can be immediately constructed using
one distinguishable tamper-evident envelope (see Section C of the Appendix, for the FBC UC-functionality of
regular bit-commitments). The relation with the regular commitment functionality is however not symmetric,
as Section 4 will detail (i.e., if FDE

OneSeal implies BC, it is not necessarily the case that FBC
OneSeal implies DE). But,

as we said in the introduction, it is of stand-alone theoretical importance to be able to construct “error-tolerant”
bit-commitments which are sender-strong, i.e., q-weak bit-commitments.

For consistency, in Appendix B, the reader can find the tamper-evident envelope functionality corresponding
to [19]. We denote it FDE

MultiSeal.

2.2 Target UC Functionalities of Bit-Commitment

We now describe our target functionalities Fq−WBC
? that respectively model different weak bit-commitment

(WBC) protocols, where ? ∈ {EscapeThenMayCheat, LearnAtCommitment, LearnAtOpening}. In this fashion,
we can relate the WBCs UC-realized herein both with traditional weak bit-commitments [2] of theoretical

importance (e.g., see our Fq−WBC
LearnAtOpening), and with weak bit-commitments UC-created in [19] with distinguishable

envelopes (see our Fq−WBC
EscapeThenMayCheat). The differences between these target-functionalities lie mainly in learning

that equivocation is possible (yet not obligatory) at the commitment phase (Fq−WBC
LearnAtCommitment) or the opening

phase (Fq−WBC
LearnAtOpening) vs. cheating only when the committer has not yet been caught abusing the protocol

(Fq−WBC
EscapeThenMayCheat).

The Fq−WBC
EscapeThenMayCheat functionality idealising q-weak bit-commitment.

Let q ∈ (0, 1).
The functionality maintains a variable bit, where bit ranges over {0, 1,�}.
Commit b. When the Commit b command (b ∈ {0, 1}) is sent to the functionality by a sender S, the value

b is recorded in the variable bit. The Fq−WBC
EscapeThenMayCheat functionality outputs Committed to the receiver R and

to the ideal adversary I2. Further commands of this type or of type EquivocatoryCommit below are ignored
by the functionality.

EquivocatoryCommit. When the EquivocatoryCommit command is sent to the functionality, the
Fq−WBC
EscapeThenMayCheat functionality replies to the sender and the ideal adversary with a ⊥ message, with probability

1 − q. With probability q, the functionality sets the variable bit to the value �, outputs Committed to the
sender, the receiver and to the ideal adversary. Further commands of this type or of type Commit above are
ignored by the functionality.

AbortCommit. When the AbortCommit command is sent to the functionality, the Fq−WBC
EscapeThenMayCheat

functionality replies to the sender, to the receiver, and to the ideal adversary with a ⊥ message (denoting an
abnormal end of the execution). Further commands are ignored.

Open. Upon receiving the command Open from the sender, the functionality verifies that the sender has
already sent the Commit b command. Then, the Fq−WBC

EscapeThenMayCheat functionality outputs (Opened, bit) to the
receiver and to the ideal adversary. Further commands are ignored by the functionality.

2Throughout, the fact that the output is sent to the ideal adversary as well is inherent to the UC framework, i.e., see the
UC-notion of “delayed output”.

4



EquivocatoryOpen c. Upon receiving the EquivocatoryOpen c command from the sender, with
c ∈ {0, 1}, the functionality verifies that bit = �. Then, the functionality Fq−WBC

EscapeThenMayCheat outputs (Opened, c)
to the receiver and to the ideal adversary. Further commands are ignored by the functionality.

In this functionality, the binding property of commitments can be defied. It corresponds to the weak bit-
commitment functionality used by Moran and Naor [19], but it applies to the sender-strong case. In that sense,
a dishonest player decides to try and open his commitment to any value even from the very beginning of the
protocol and he can be successful in doing so with a probability of q ∈ (0, 1), once he has not been caught
red-handed.

Note that the WBC functionality presented above and the ones to be presented further model single bit
commitments. Yet, they can easily be extended to respective functionalities for multiple commitments: i.e.,
each Commit b command sent by a sender S aimed at a receiver R would become Commit(id , b,R) and each
corresponding functionality would store a tuple (id, sender, receiver, value) for each commitment, doing the
respective checks.

The Fq−WBC
LearnAtCommitment functionality idealising q-weak bit-commitment.

Let q ∈ (0, 1).
The functionality maintains a tuple (bit, equiv), where bit ranges over {0, 1} and equiv ranges over

{“Yes”, “No”}.
Commit b. When the Commit b command (b ∈ {0, 1}) is sent to the functionality, the value b is recorded

in the variable bit. With probability q the value “Yes” is stored in equiv or, with probability 1 − q the value
“No” is stored in equiv. The Fq−WBC

LearnAtCommitment functionality outputs Committed to the receiver and to the ideal

adversary. The Fq−WBC
LearnAtCommitment functionality outputs the updated value of equiv to the sender and to the ideal

adversary. Further commands of this type are ignored by the functionality.
Open. Upon receiving this command, the functionality verifies that the sender has already sent the

Commit b command. Then, the Fq−WBC
LearnAtCommitment functionality outputs (Opened, bit) to the receiver and

to the ideal adversary. Further commands are ignored by the functionality.
EquivocatoryOpen. Upon receiving this command, the functionality verifies that the sender has already

sent the Commit b command. Then, the functionality checks the value of equiv. If the value is “Yes”, then
Fq−WBC
LearnAtCommitment outputs (Opened, bit) to the receiver and to the ideal adversary. If the value is “No”, then

Fq−WBC
LearnAtCommitment halts. Further commands are ignored by the functionality.

The Fq−WBC
LearnAtCommitment functionality mirrors a protocol which allows the sender to cheat by breaking the binding

property of the protocol. Note that this cheating possibility is “decided” at the commitment phase, i.e., it is at
some point during the commitment phase that the potential cheater learns about his opportunity. Also, note
that while the cheating is allowed, it does not necessarily need to happen (i.e., there are two distinct opening
commands).

Next, we give a similar functionality where in turn the possibility of equivocation becomes clear only at the
opening phase.

The Fq−WBC
LearnAtOpening functionality idealising q-weak bit-commitment.

Let q ∈ (0, 1).
The functionality maintains a variable bit, ranging over {0, 1}.
Commit. When the Commit b command (b ∈ {0, 1}) is sent to the functionality, the value b is recorded in

the variable bit. The Fq−WBC
LearnAtOpening functionality outputs Committed to the receiver and to the ideal adversary.

Further commands of this type are ignored by the functionality.
Open. Upon receiving this command, the functionality verifies that the sender has already sent the

Commit b command. Then, the Fq−WBC
LearnAtOpening functionality outputs (Opened, bit) to the receiver and to

the ideal adversary. Further commands are ignored by the functionality.
EquivocatoryOpen. Upon receiving this command, the functionality verifies that the sender has already

sent the Commit b command. With probability q, the Fq−WBC
LearnAtOpening outputs (Opened, bit) to the receiver

and to the ideal adversary. With probability 1 − q, the Fq−WBC
LearnAtOpening sends ⊥ to the sender S and the ideal

adversary I. Further commands of this type are ignored by the functionality (but commands of type Open are
still allowed).

The Fq−WBC
LearnAtOpening functionality mirrors a protocol which allows the sender to cheat by breaking the binding

property of the protocol, knowingly at some point during the opening phase, i.e., i.e., it is at some point during

5



the opening phase that the potential cheater learns about his opportunity, similarly to traditional lines in [2].
As aforementioned, note that while the cheating is allowed, it does not necessarily need to happen.

Note that sender-strong weak bit-commitments protocols with distinguishable, tamper-evident envelopes that
allow only partial hiding are of course easier to UC-construct than those that require perfect hiding. Amplifi-
cations techniques could then be applied. However, we take the view that once the protocols that we seek are
sender-strong, UC-realizing a functionality which is only partially hiding is would contradict the aim for the
senders’ strength (hence, the “computationally hiding” UC functionalities that we have given above).

3 UC (Sender-Strong) Bit-Commitments

Driven by the theoretical and practical motivations presented in the introduction, we are now going to present
protocols that UC-implement the weak bit-commitment (WBC) functionalities above, use the herein introduced
functionalities of distinguishable envelopes as the UC-setup and place their strength on the senders’ sides.

We start with the protocol Pass&MayCheat which UC-realizes the F
1
2−WBC
EscapeThenMayCheat using the FDE

OneSeal. We
continue with the protocol CommitEnablesCheat and OpenEnablesCheat which respectively UC-realize the

F
2
3−WBC
LearnAtCommitment and the F

2
3−WBC
LearnAtOpening functionalities, using the FDE

OneSeal. We then present amplification tech-
niques of such weak BC protocols. The techniques maintain the lightweight character of the constructions. We
conclude the section by a strengthening of the FDE

OneSeal functionality such that we attain EUC-security [8], i.e.,
not only UC-security.

3.1 Pass&MayCheat — a SS-WBC protocol à la Moran and Naor [19]

The Pass&MayCheat Protocol:

The Commitment Phase.

1. A sender S seals four envelopes and creates two pairs out of them such that each pair contains the set
{x, x} of values, for a random x ∈ {0, 1}. Each pair “contains” its own value x. He sends two envelopes,
one from each pair, to the receiver R.
(E.g., The pairs are pair1 = (E1, E2), pair2 = (E3, E4) and S sends, e.g., E1, E3 to R).

2. The receiver R stores the identifiers of the envelopes in a register W .
(I.e., it stores (1, 3), given the illustrated execution by S above.).
Then, R sends them back without opening them.

3. The sender S verifies that the recently returned envelopes have the seals unbroken. If this is not so, he
halts. Otherwise, he sends the two envelopes not sent before.
(I.e., If seals are unbroken, then S sends the remaining E2, E4.)

4. The receiver verifies that the envelopes received do not have the ids stored already. If they do, he halts.
Otherwise, he opens one of these envelopes, sends back the other one without opening it, together with
the value of an id stored already in W to request back one envelope.
Given the steps of the protocol so far, note that the opened envelope together with the requested one form
an initial pair. Also, once the sender has sent this requested envelope, the sender will be left with the other
of the initial pairs at his end. These comments equally apply to the equivocatorial commitment phase to
follow. The receiver also stores the ids of the envelopes seen this time round.
(I.e., R opens, e.g., E2, sends back E4 and, e.g., 1, thus requesting back envelope E1.)

5. The sender S verifies that the recently returned envelope has the seal unbroken. If this is not so, he halts.
Otherwise, he sends the one requested envelope to R. He also sends the value d=b⊕ x, where b is the bit
he is committing to and x is the bit hidden inside each envelope in the pair to be found at his side.
(I.e., If the seal is unbroken, then S sends the requested E1, d=b⊕ x, where x is in E3 and/or in E4).

6. The receiver R opens the last envelope received and checks that the value at its side are equal. If not, he
aborts.
(I.e., If E1 and E2 do not contain the same value, then R aborts).

6



The EquivocatoryCommitment Phase.

1. A sender S seals four envelopes and creates two pairs out of them such that one pair contains the set {x, x}
of values, for a random x ∈ {0, 1} and the other pair contains the values {0, 1}. He sends two envelopes,
one from each pair, to the receiver R.
(E.g., The pairs are pair1 = (E1, E2), pair2 = (E3, E4) and S sends E1, E3 to R).

2. The receiver R stores the identifiers of the envelopes in a register W .
(I.e., it stores (1, 3)).
Then, R sends them back without opening them.

3. The sender S verifies that the recently returned envelops have the seals unbroken. If this is not so, he halts.
Otherwise, he sends the two envelopes not sent before.
(I.e., If seals are unbroken, then S sends the remaining E2, E4.)

4. The receiver verifies that the envelopes received do not have the ids stored already. If this is not the case,
he halts. Otherwise, he opens one of these envelopes, sends back the other one without opening it and
requests one envelope with the id stored already in W . The receiver also stores the ids of the envelopes
seen this time round.
(I.e., R opens e.g., E2, sends back E4 and requests, e.g., E1.)

5. The sender S verifies that the recently returned envelope has the seal unbroken. If this is not so, he halts.
Otherwise, he sends the one requested envelope to R, together with the value d=b⊕ x, where b is the bit
he is committing to and x is the bit hidden inside each envelope in the pair to be found at his side.
(I.e., If the seal is unbroken, then S sends the requested E1, d=b⊕ x, where x is in E3 and/or in E4).

6. The receiver R opens the last envelope received and checks that the value at its side are equal. If not, he
aborts.
(I.e., If E1 and E2 do not contain the same value, then R aborts).

Let A denote the pair of envelopes to be found at this stage on the sender side.
The Opening Phase.

1. The sender S sends one envelope Ek in the remaining pair, i.e., Ek ∈ A or k ∈ {i, j}.

2. The receiver R checks that Ek is in the set A (by checking the ids). If so, he opens the envelope Ek to find
the value bk hidden inside and then he sets the commitment-bit b′ to d⊕ bk. Otherwise, the receiver halts.

The EquivocatoryOpening Phase.

1. The sender S sends from the remaining pair A the envelope Ek that contains the bit d⊕ c, where c is the
bit that the sender wants to open to.

2. The receiver R checks that Ek is in the set A (by checking the ids). If so, he opens the envelope Ek to find
the value bk hidden inside and then he sets the commitment-bit b′ to d⊕ bk. Otherwise, the receiver halts.

In the following figure, we give an illustration of the protocol above, in a symmetric way (i.e., E1 and E2

could be interchanged in their appearances, etc.).
Explanations on the Pass&MayCheat protocol.

Assume first that the sender S creates pairs of envelopes such that each contains the set {x, x} of values
and that the sender respects the calculation of d for the non-equivocable case. It is clear that at the end of the
protocol, the sender has no choice but to open to the correct bit. If, in turn, S does not form d as specified and
R does follow the protocol, then S may not be able to open.

Assume now that the sender S creates pairs of envelopes such that one contains the set {x, x} of values and
the other contains the set {0, 1} of values. Depending on the choice of R to open envelopes, the sender may
continue the protocol; clearly this is possible in half of the cases (the possibility that a randomly chosen bit x is
equal either to 0 or to 1, depending which was the opening of R). In such cases, S can clearly open the value d
to any bit-value, since he is left with x and its negation x in the pair A at his end.

7



S R
seals env-pairs P1 = (E1, E2),
P2 = (E3, E4) s. t. the ordered
(x, x, 0, 1) or (x, x, y, y) is in
the pairs, with x, y ∈ {0, 1}

E1 from P1, E3 from P2-
remember ids 1, 3, i.e., W = {1, 3}

{E1, E3}�

continue if {E1, E3}
have not been tampered

E2 from P1, E4 from P2-

check ids 2, 4 /∈ {1, 3}, rmb. ids {2, 4}
open E2

(note that E2 and E1 to-be-requested form
the P1 pair)

E4, 1�

check E4 for tamper
(after sending E1 below,
S will be left with pair P2)

let d be b⊕ bl,
l ∈ {3, 4} -E1, d check 1 ∈ {1, 3}, open E1

FOR Commit:

let d ∈ {0, 1}
-E1, d check 1 ∈ {1, 3}, open E1

FOR EquivocatorialCommit:

FOR Open/EquivocatorialOpen:
let En, n ∈ {1, 2, 3, 4} \ {k3, k1}

-En check if n ∈ {1, 2, 3, 4} \ {k3, k1}
if passed, open En

set b′ to d⊕ bn
if not passed, halt

Note that the receiver R cannot cheat without being caught: i.e., torn envelopes are obvious to the sender
and opening by R of more than two envelopes –to try and break the hiding property– is not possible due to the
stage-by-stage unsealing enforced by the protocol.

Also, note that the envelopes used within are seal-once envelopes. Thus, the sender S is not able to change
the values x stored inside the envelopes, after step 4 of the commitment phase (say, in order to avoid being
caught by R).

Theorem 3.1 In a hybrid UC-model, where the setup is the FDE
OneSeal functionality, the Pass&MayCheat protocol

UC-realizes the F
1
2−WBC
EscapeThenMayCheat functionality.

Proof: We technically need to prove that any attack that happens in the real world can be simulated in the

ideal world where the F
1
2−WBC
EscapeThenMayCheat is running. We divide this in two (logical) parts: A corrupts the sender

(Alice) and A corrupts the receiver (Bob). Other cases are trivial.

A corrupts the sender (Alice).

The commitment phase. I simulates A(Alice), its interaction with FDE
OneSeal and the protocol on Bob’s side.

We distinguish three cases.

I. A creates two pairs of envelopes, each containing the values {x, x}, for some x ∈ {0, 1}.
I’s simulation of Bob will receive envelopes and send them back as per the protocol.

If A checks that the envelopes returned by Bob are indeed sealed, then I simulates a (Verified, id, ok)
reply sent by FDE

OneSeal.

I continues any simulation until A(Alice) sends a bit d to Bob.

I chooses a bit b′′ such that b′′=d⊕ x, where x is the value inside the envelopes left on the side of the

A(Alice). The ideal adversary I sends Commit b′′ to the F
1
2−WBC
EscapeThenMayCheat functionality.

8



II. A creates two pairs of envelopes, one containing the values {x, x} and the values {0, 1}, for some x ∈ {0, 1}.

The ideal adversary I sends EquivocatoryCommit to the F
1
2−WBC
EscapeThenMayCheat functionality. If the func-

tionality answers ⊥, then the ideal adversary I simulates Bob opening such that he is eventually seeing the
{0, 1}-pair, and he is then halting to A. Otherwise, he simulates Bob sending, in stage, the pair containing
{0, 1} back to A.

If A checks that the envelopes returned by Bob are indeed sealed, then I simulates a (Verified, id, ok)
reply sent by FDE

OneSeal.

I continues any simulation until A(Alice) sends a bit d to Bob.

III. A creates two pairs of envelopes, each containing the values {0, 1}. In this case, I sends AbortCommit
to the functionality and simulates Bob halting in front of A.

The opening phase.
I awaits for Bob to be sent an envelope Ek from A. The simulation now depends on what A did at the

commitment phase (i.e., recall that I distinguished two cases based on the values sealed by A, which he knew).

If it was case I above, then I sends Open to the F
1
2−WBC
EscapeThenMayCheat functionality.

If it was case II above, then I sends EquivocatoryOpen c to the F
1
2−WBC
EscapeThenMayCheat functionality, where c

is calculated as d⊕ bk with bk the value hidden inside envelope Ek.

Lemma: For any environment machine Z and any real adversary A that corrupts only the sender, the output of
Z when communicating with A in the real world is identically distributed to the output of Z when communicating
with I in the ideal world.

The proof of the above lemma follows from the detailed simulation above.

A corrupts the receiver (Bob).

In this case, I simulates the real-world interaction of Alice with A(Bob) and with FDE
OneSeal and I corrupts

dummy-Bob in the ideal-world.
Note that, in all this, I does not need to “commit” to the contents of the simulated envelopes but at the time

of the opening.
We begin with the simulation of the commitment phase. The ideal adversary I waits for Committed or

⊥ to be sent by the functionality F
1
2−WBC
EscapeThenMayCheat. (No matter what command EquivocatoryCommit or

Commit was sent to F
1
2−WBC
EscapeThenMayCheat by dummy-Alice, F

1
2−WBC
EscapeThenMayCheat will send just Committed or ⊥).

If ⊥ was sent by F
1
2−WBC
EscapeThenMayCheat, then I creates four simulated envelopes, each pair containing {0, 1}.

No matter what opening A(Bob) makes, I will simulate an abort from the commitment phase (i.e., send

AbortCommit to F
1
2−WBC
EscapeThenMayCheat).

Now consider the case that Committed was sent by F
1
2−WBC
EscapeThenMayCheat. Then, I prepares four simulated

envelopes for A(Bob), the content of which is not determined at this stage (as we anticipated above): if A(Bob)
opens two envelopes from one initially formed pair, then I gives results (simulating FDE

OneSeal) consistent with
Alice not trying to equivocate or passing the equivocation.

Equivalently, for the first envelope to open from an arbitrarily fixed pair, I makes it open to a random value;
for the second envelope from such the same pair, I makes it looks as if it had the same value. Namely, when
A(Bob) opens two envelopes, their content is set to the same random bit and the two remaining envelopes are
set to two different random bits. Again, this simulates a successful equivocatorial commitment: i.e., the ideal
adversary I needs to choose a permutation π ∈ S4 such that π=(x, x, 0, 1), to place in the simulated envelopes
in a delayed way. (As expected, I will eventually see the value of the bit committed by dummy-Alice and, with
this strategy, I will be able to equivocatorially open to that bit.)

If A(Bob) opened an envelope that he should not have opened (i.e., both in one packet of two sent in step 2),

then I sends Halt to the F
1
2−WBC
EscapeThenMayCheat functionality. If I got to this point, then he sends d ∈ {0, 1} to

A(Bob).
We continue with the simulation of the opening phase. As anticipated above, the ideal adversary I waits for

(Opened, b) to be sent by the F
1
2−WBC
EscapeThenMayCheat functionality.

9



It is now that I needs to send A(Bob) an envelope Ek containing a bit bk such that Ek is consistent with
the alleged permutation π ∈ S4 that I used in the commitment phase (bk appears in the permutation), Ek is
consistent (w.r.t. ids) with A(Bob)’s opening, and bk = d⊕b. Note that these constraints can always be satisfied
giving the simulation in the commitment phase by I. So, I sends this envelope Ek to A(Bob), which will “accept”
the opening.

From the simulation above, together with the lemma within, it follows that the PMC protocol is UC-secure,

realizing the 1
2 -weak bit-commitment functionality F

1
2−WBC
EscapeThenMayCheat. �

3.2 The CommitEnablesCheat and OpenEnablesCheat Protocols

The CommitEnablesCheat Protocol:

S R

-pick b1, b2, b3, not all equal
seal bi in Ei, i ∈ {1, 2, 3}

E1, E2, E3

remember {E1, E2 E3}

�E1, E2, E3check E1, E2, E3 for tamper
take m= MAJ(b1, b2, b3)
let d be b⊕m -d

pick i in {1, 2, 3}� i
FOR CommitEnablesCheat:
dispose of Ei

pick i in {1, 2, 3}FOR OpenEnablesCheat:
dispose of Ei

honest S -Ek with bk=m test: Ek is in {E1, E2 E3} \ {Ei}
if passed, open Ek

set b′ to d⊕ bk
if not passed, halt

equivocatory S

-Ek with bk=m test: Ek is in in {E1, E2 E3} \ {Ei}
if passed, open Ek

set b′ to d⊕ bk
if not passed, halt

� i

The Commitment Phase. The sender wants to commit to a bit b and proceeds as it follows.

1. The sender S creates 3 sealed envelopes denoted E1, E2, E3 respectively containing the bits denoted b1,
b2, b3, such that not all bits are equal. The sender sends the envelopes over to the receiver R.

2. The receiver memorises the set {E1, E2, E3} of envelopes and sends them back to the sender

3. The sender verifies that the envelopes sent back are untampered with. Then, he computes m as the
majority of the bits sealed inside, i.e., m=MAJ(b1, b2, b3). The sender wants to commit to a bit b. He
calculates d=b⊕m. Then, the sender sends d to the receiver.

4. The receiver sends the identifier i of an envelope that the sender should dispose of, i.e., i ∈ {1, 2, 3}. Let
the set S={E1, E2, E3} \ {Ei} denote the set of remaining envelopes.

5. The sender disposes of envelope i. (Note that after this the sender can equivocate if the remaining envelopes
contain different bits.)

The equiv value is 2
3 .

The Opening Phase.

1. The non-equivoquing sender sends an envelope Ek such that bk=m.

10



2. The equivoquing sender sends an envelope Ek such that bk=m.

3. The receiver tests that Ek ∈ S and if so, he sets b′, the commitment bit, as follows: b′=d⊕ bk. If the test
fails, the receiver halts.

Note that by being asked to discard3 an envelope at the opening phase instead of in step 4 of the commitment
phase, the idea behind protocol CommitEnablesCheat can be shaped to obtain a protocol where the equivocation
becomes clear only at the opening time. The protocol obtained in this way is hereby denoted OpenEnablesCheat.
The protocols CommitEnablesCheat and OpenEnablesCheat are graphically represented in figure to follow.

Note once more that, unlike in the Pass&MayCheat protocol, in CommitEnablesCheat and OpenEnablesCheat

protocols, the committer can cheat with some probability (i.e., 2
3 ), yet this is not influenced by him being caught

cheating, but rather by a mere choice of the receiver.
These requirements sound similar to looking for a means in which Alice would commit to a bit b using a BSC

(binary symmetric channel) with noise level q [5]. Nevertheless, the existing solutions [5, 11, 21] to problems
of the latter kind are receiver-strong, not sender-strong. Also, they are not constructed to be UC-secure, but
secure by classical lines, which may be weaker. Moreover, those original constructions involve error-correction
codes and/or pseudo-random generators being manipulated by the participants. Thus, those primitives are also
beyond our cryptographically lightweight scope. Therefore, to obtain senders’ strength, UC-security, simplicity
and human operability we have proposed protocols CommitEnablesCheat and OpenEnablesCheat above.

Explanations on the CommitEnablesCheat and OpenEnablesCheat protocols.
We detail on the CommitEnablesCheat protocol above, the explanations on OpenEnablesCheat being very

similar and immediately following. Let us consider the case where the parties follow the protocol. We can
see that if S prepares the envelopes correctly (i.e., they contain a permutation of {x, x, x}, x ∈U {0, 1}) and
he adheres to step 2, then at step 3, the value m=x. No matter what value bi has (i.e., x or x), in the set
S of remaining envelopes there is always an envelope Ek with the value x inside that opens the commitment
correctly. With probability 2

3 , the set S still contains an envelope with value x. In this last case, S could open
his commitment to the flipped bit (i.e., point 2 in the opening phase). By the above, the protocol is complete.
One can see that the case where S does not follows the protocol in terms of envelope sealing does not bring him
any benefit. In Theorem 3.2, we formalise the above explanations, in the context of the UC framework.

Theorem 3.2 In a hybrid UC-model, where the setup is the FDE
OneSeal functionality, the CommitEnablesCheat and

OpenEnablesCheat protocols UC-realize the F
2
3−WBC
LearnAtCommitment and the F

2
3−WBC
LearnAtOpening functionalities, respectively.

Due to heavy similarities between the case of CommitEnablesCheat and the case of OpenEnablesCheat, the
proof of Theorem 3.2 is given in the for CommitEnablesCheat only.
Proof: We technically need to prove that any attack that happens in the real world can be simulated in the

ideal world where the F
2
3−WBC
LearnAtCommit is running. We divide this in two (logical) parts: A corrupts the sender

(Alice) and A corrupts the receiver (Bob). The same sort of respective simulations by I as in the previous proof
are in place.

A corrupts the sender (Alice). Hence, it is A who creates and sends the 3 envelopes, i.e., interacts with
the FDE

OneSeal functionality. Note that I intercepts the communication between A and the FDE
OneSeal functionality.

So, I knows when A is cheating.

The commitment phase.

I A has sent a valid pack of envelopes and the contents of the envelopes are an arbitrary but fixed permutation
of (x, x, x), where x ∈U {0, 1} (i.e., b1=x, b2=x and b3=x, up to a permutation).

Bob will receive the envelopes and send them back.

If A checks that the envelopes returned by Bob are indeed sealed, then I simulates a (Verified, id, ok)
reply sent by FDE

OneSeal.

I continues any simulation until A(Alice) sends a bit d to Bob.

I picks mI=MAJ(b1, b2, b3) (i.e., on this input, mI=x). I chooses a bit b′′ such that b′′=d⊕mI . The

ideal adversary I sends Commit b′′ to the F
2
3−WBC
LearnAtCommit functionality. The functionality replies with a

3A possible way of implementing discarding is sending the emptied envelope back to the receiver.

11



value for equiv, which is “yes” with probability 2
3 and “no” with probability 1

3 . If equiv is “yes”, I picks
i ∈ {1, 2, 3} such that bi=x and otherwise he picks i such that bi=x. I simulates Bob in sending i to A.

II A has sent an invalid pack of envelopes, with all value inside equal to x, where x ∈U {0, 1}.
I acts as in the case I above, but he sets equiv always to “no”.

The opening phase.
I awaits for Bob to be sent an envelope Ek from A to see how A wants to open. The simulation now depends

on what A did at the commitment phase (i.e., recall that I distinguished two cases based on the envelopes sealed
by A, which he knew).

If it was case I of the commitment phase and bk=mI , then I will send anOpen command to the F
2
3−WBC
LearnAtCommit.

If it was case I of the commitment phase and bk=mI , then I will send an EquivocatoryOpen command to

the F
2
3−WBC
LearnAtCommit . (Note that because of the simulated i in the last step of the commitment, the ideal adversary

is able to open the bit b′′ in the same way that the adversary would open his d.)
If it was case II of the commitment phase, then bk=mI and I will send an Open command to the

F
2
3−WBC
LearnAtCommit.

Lemma: For any environment machine Z and any real adversary A that corrupts only the sender, the output of
Z when communicating with A in the real world is identically distributed to the output of Z when communicating
with I in the ideal world.

The proof of the above lemma follows from the detailed simulation above.

A corrupts the receiver (Bob)
In this case, I will have to create and send simulated envelopes for A(Bob). Note that the ideal adversary

does not need to commit to the contents of containers from the beginning, since they influence the view of the
environment only when they are actually open.

The commitment phase.
I sends 3 simulated envelopes to A.
I continues the simulation until A sends the envelopes back. If A does not send the envelopes back or they

are tampered with, I assigns {x, x, x} values to the envelopes at random and continues the simulation in the
opening. A will be stuck in the protocol, eventually.

The simulation through I continues until it receives Committed from F
2
3−WBC
LearnAtCommit .

I chooses d at random and sends this value d to A(Bob).
Consider that, at the end of this phase, I will identify the simulated, remaining envelopes by the set

{1, 2, 3} \ {i}, where i is picked at random. (There is no better strategy for A to pick i without opening
envelopes.).

The opening phase.

I waits until it receives (Opened, b′) from F
2
3−WBC
LearnAtCommit .

Let bIk be d⊕ b′.
The ideal adversary I will send an envelope k ∈ {1, 2, 3} \ {i} simulated and containing bIk .

Lemma: For any environment machine Z and any real adversary A that corrupts only the receiver, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.

The proof of the above lemma follows from the detailed simulation above.

From the simulation above, together with the two lemmas within, it follows that the CommitEnablesCheat

protocol is UC-secure, realizing the 2
3 -weak bit-commitment functionality F

2
3−WBC
LearnAtCommit . �

3.3 Amplifying q-WBC Sender-Strong Protocols

Let z∈ {Pass&MayCheat, CommitEnablesCheat, OpenEnablesCheat}.
Let ? ∈ {EscapeThenMayCheat, LearnAtCommitment, LearnAtOpening}.

12



By using k instances of a q-weak sender-strong protocol of the z-kind of protocols, we can obtain a protocol

Amplified_z protocol that UC-realizes Fqk−WBC
? . Hence, for a conveniently large k, we can attain regular

bit-commitments. See the formalisations below.
The Amplified_Pass&MayCheat Protocol:
(Equivocatory) Commitment Phase.

The sender commits, all equivocally or all normally, to a bit bj in k sequential rounds, each time using the

Fq−WBC
EscapeThenMayCheat functionality, j ∈ {1, . . . , k}. The j-th such functionality is denoted Fq−WBC

EscapeThenMayCheat; j .

Each functionality Fq−WBC
EscapeThenMayCheat; j to which EquivocatoryCommit was sent, outputs to its sender

Committed, with probability q and ⊥ otherwise. If ⊥ is sent, then the receiver aborts.
(Equivocatory) Opening Phase.

The sender opens all commitments, equivocally or not, using the Fq−WBC
EscapeThenMayCheat; j functionalities. The

receiver halts if the openings are not all the same.

Theorem 3.3 Let q ∈ (0, 1) and λ be a security parameter. By using k=Ω(λ) instances of an Fq−WBC
? func-

tionality, we can construct a protocol Amplified_z that UC-realizes the FBC functionality, where
? ∈ {EscapeThenMayCheat, LearnAtCommitment, LearnAtOpening} and
z∈ {Pass&MayCheat, CommitEnablesCheat, OpenEnablesCheat}.

In particular, the protocol Amplified_Pass&MayCheat UC-realizes the Fqk−WBC
EscapeThenMayCheat functionality.

For the regular BC functionality, FBC , section C of the Appendix. The Amplified_Pass&MayCheat BC
protocol is trivially following out of Amplified_Pass&MayCheat, i.e., where equivocation is not possible. By
letting k= log ε

log q in Theorem 3.3, we make Amplified_Pass&MayCheat a ε-weak bit-commitment, with ε arbitrarily

close to 0. However, for protocol Amplified_Pass&MayCheat to UC-realize FBC , we need a k to be of linear-size
in the security parameter λ. Proofs that weak bit-commitment protocols in the above sense can be amplified to
regular bit-commitments exist already, e.g., [21]. The proofs therein follow long-established lines, i.e., not the UC
framework 4. Also, they often refer to receiver-strong protocols and generally use more convoluted primitives,
e.g., pseudo-random generators, error-correcting codes, outside our lightweight interests. Our proof is done
in the UC framework and, as we can see, the protocol respects the sender-strong aspects sought-after herein.
For simplicity, the proof is split between the three different cases: for the case of Amplified_Pass&MayCheat,
see first lemma below; for the case of Amplified_CommitEnablesCheat, see the second lemma below; the
Amplified_OpenEnablesCheat protocol is similar to Amplified_CommitEnablesCheat .

Lemma 3.1 The protocol Amplified_Pass&MayCheat UC-realizes the Fqk−WBC
EscapeThenMayCheat functionality.

A corrupts the receiver. Note that the receiver cannot cheat using the functionalities provided. Hence,
there is no attack in the real world to be simulated in the ideal world.

A corrupts the sender.

Commitment Phase.
Let the bits used by A be denoted b1, . . . , bk. Moreover, let I ⊆ {1, . . . , k} denote the indices of those bits sent

through the command Commit and J ⊆ {1, . . . , k} denote the indices of those bits sent through the command

EquivocatoryCommit to different instances Fq−WBC
EscapeThenMayCheat; `, ` ∈ {1, . . . , k}. Also, let equivj be the answer

that I simulates for A to receive from each functionality Fq−WBC
0; j , j ∈ J (recall that equivj=Committed with

probability q and equivj=⊥, otherwise).
The ideal adversary I, upon seeing these commands, replies nothing to the ones of the Commit type and

replies equivj=Committed to the commands of type EquivocatoryCommit, for all j ∈ J .

In the case that there is some jinJ such that equivj = ⊥, then I sends AbortCommit to Fqk−WBC
EscapeThenMayCheat.

There are two cases completely describing the corrupt adversary’s behaviour:

I. card(I) 6= 0, i.e., A has sent some Commit commands5;

4Similar proofs of amplifications may exist in the UC framework, however they would not be with respect to the Fq−WBC
i

functionalities as introduced in Section 2.
5The notation card(S) denotes the cardinality of a set S.

13



II. card(I)=0, i.e., A has only sent EquivocatoryCommit commands.

Case I above is completely described by the following sub-cases, depending on whether A could ever possibly
open his commitments to the same bit:

I.1. In this case, there are two bits bi and bi′ of different values both sent through Commit commands, i.e.,

the set I of indices is non-empty and ∃i, i′ ∈ I, i 6= i′ such that bi 6= bi′ . I sends Commit(0) to Fqk−WBC
EscapeThenMayCheat

and stores that this was a special case.
I.2. In this case, all bits indexed in the set I have the same value. Let us denote this value bi, i ∈ I. However,

the ideal adversary I knows that equivj=Committed for A, for all j ∈ J . I sends Commit(bi) to the ideal

functionality Fqk−WBC
EscapeThenMayCheat.

In case II above, the ideal adversary I sends EquivocatoryCommit to the Fqk−WBC
EscapeThenMayCheat functionality.

I gets an equiv answer back from the Fqk−WBC
EscapeThenMayCheat functionality. If the equiv reply is negative, then I halts

(advising the real-world receiver to halt by an abort message as from an Fq−WBC
0; j functionality, j ∈ J).

Opening Phase.
The opening phase follows on from the distinct cases discussed in the commitment phase.
If it was case I.1 and I has not halted in the commitment phase, then I halts now. Note that this models the

real-world scenario, as —in this case– A will never be able to open to the same bit as he has sent two different,
un-flippable bits, i.e., sent under Commit commands. I.e., the real-world receiver will halt also at most at the
end of the k openings.

If it was case I.2 and I has not halted in the commitment phase, then I sends Open to the Fqk−WBC
EscapeThenMayCheat

functionality. Note that in this case, the opening will have the same bi value as in the real world.
If it was case II and I has got a positive equiv back, then upon the opening c of A, I sends

EquivocatoryOpen (c) to the Fqk−WBC
EscapeThenMayCheat functionality.

Lemma: In the case above, the following holds. For any environment machine Z and any real adversary A that
corrupts only the sender, the output of Z when communicating with A in the real world is identically distributed
to the output of Z when communicating with I in the ideal world.

The proof of the above lemma follows immediately from the detailed simulation above. �

Lemma 3.2 In a hybrid UC-model, where a linear number of k instances of the Fq−WBC
LearnAtCommitment are available

as setup, the FBC can be UC-realized, where q ∈ (0, 1).

Proof: Note that the receiver cannot cheat using the functionalities provided. Hence, there is no attack in the
real world to be simulated in the ideal world.

A corrupts the sender.

Commitment Phase.
Let the bits used by A be denoted b1, . . . , bk in respective (Commit, bl) commands sent to the instances

Fq−WBC
LearnAtCommitment; `, ` ∈ {1, . . . , k}.
I flips coins such that for each Fq−WBC

LearnAtCommitment; l, it simulates an equiv` reply being “yes” with probability
q and “no” otherwise, for ` ∈ {1, . . . , k}.

Then, having the bits bl and the values equivl, the ideal adversary I looks at the cases that A can be in:

I. A could only open to the bit 0 (b` = 0 whenever equiv`=“no” and there may be other equiv`′ equal to “no”);

II. A could only open to the bit 1 (b` = 1 whenever equiv`=“no” and there may be other equiv`′ equal to “no”);

III. A could only open to any (this is the case if all equiv`=“yes”);

IV. A cannot open to a consistent bit (this is the case if some equiv`=“no” with b` = 0 and equiv`′=“no” with
b`′ = 1).

14



Note that for k as in the current lemma, the challenge protocol for the UC-environment is a game that is
indistinguishable for the game where case III never arises. Using the difference lemma [22], we conclude that we
can ignore the simulation by I in this case.

In case I and II above, I sends (Commit, b) to the FBC functionality, b=0 in the first case and and b=1 in
the second case.

In case IV above, I sends (Commit, b) to the FBC functionality, where b is a bit picked at random.

Opening Phase.
If it was case I or case II of the commitment phase, then I simply sends Open to the FBC

1 functionality
(and this will reflect exactly the bit opened in the real-world).

If it was case IV of the commitment phase, then I sends a halting message to the receiver (that presumably
the protocol to realize contains).

Lemma: In the case above, the following holds. For any environment machine Z and any real adversary A that
corrupts only the sender, the output of Z when communicating with A in the real world is identically distributed
to the output of Z when communicating with I in the ideal world.

The proof of the above lemma follows immediately from the detailed simulation above. �

3.4 EUC-Insecurity of the CommitEnablesCheat Protocol in the FDE
OneSeal-hybrid model

Lemma 3.3 : In a hybrid EUC-model, where the setup is the FDE
OneSeal functionality, the protocol CommitEn-

ablesCheat does not EUC-realizes the F
2
3−WBC
LearnAtCommit functionality.

Proof: We will show that for a certain environment Z and a certain adversary A, there is no ideal adversary I
that perfectly simulates the protocol run by A to the environment Z.

In an EUC FDE
OneSeal-hybrid model where the adversary corrupts the sender in the EUC real world, assume

the following commitment phase execution.
The environment Z runs the Commit b protocol with b selected at random and A just relays messages

and envelopes between Z and the receiver R. After the environment Z learns that R has actually received the
Committed message, Z runs the Open protocol and compares the bit at R’s end to the actual chosen bit
b. Clearly, I cannot guess the bit b and cannot simulate perfectly the opening to b (i.e., decommit to b with
probability 1). �

3.5 (Stronger) Universally Composable Security

A UC-oriented note is that something as little as the order of the messages in the commitment-phase of the
weak protocol CommitEnablesCheat above and/or the amount of randomness given to the sender does impact
the UC-simulatability. A protocol only different from CommitEnablesCheat in that it inverts the order of events

3 and 4 in the commitment phase does not UC-realize the F
2
3−WBC
LearnAtCommitment functionality, while it is perfectly

hiding and binding with probability 2
3 in the classical sense. Thus, it seems to be easier to construct q-weak bit-

commitments using just a formalisation of distinguishable envelopes, but when sender-strength and UC-security
are both sought after subtle difficulties arise (q ∈ (0, 1)).

Another important UC note is that the protocols above (and in fact all weak bit-commitment protocols
constructed previously for the receiver-strong case in Moran and Noar’s work [19]) are not secure in stronger
versions of the UC framework, e.g., GUC (Generalised UC) or EUC (externalised UC) [8]. For a wrap-up on
GUC (Generalised UC) or EUC (externalised UC), see the Appendix, Section A.2. To support this claim, it
is enough to show that the protocols are not secure in the EUC framework. So, in an EUC model with the
FDE
OneSeal-setup consider an environment that prepares the envelopes and feeds them to the adversary. It is clear

that the ideal adversary cannot “extract” the bit b to commit to and thus he cannot indistinguishably simulate
the commitment phase.

As aforementioned, along very similar lines the receiver-strong protocols in previous works [19] are not
EUC-secure either. We modify the FDE

OneSeal functionality slightly such that when used as a setup, we attain
EUC-security of the protocols herein and those WBC protocols in Moran and Noar’s work [19].

FpurpotedDE
OneSeal : A Stronger Functionality for Tamper-Evident Distinguishable Sealed Envelopes

15



This functionality stores tuples of the form (id, value, holder, state). The values in one entry indexed with
id, like before.

SealSend(id , value, Pj ). Let this command be received from an envelope-creator party Pi. It seals an
envelope and sends its id to the future holder Pj . If this is the first Seal message with id id, the functionality
stores the tuple (id, value, Pj , sealed) in the table. The functionality sends (id, Pi) to Pj and to I. (Optionally,
it can send (id, sealed) to Pi and to I). If this is not the first command of type Seal for envelope id, then the
functionality halts.

Send(id , Pj ). Let this command be received from a holder-party Pi. This command encodes the sending of
an envelope held by Pi to a party Pj . Upon receiving this command from party Pi, the functionality verifies that
there is an entry in its table which is indexed by id and has holderid = Pi. If so, it outputs (Receipt, id, Pi, Pj)
to Pj and I and replaces the entry in the table with (id, valueid, Pj , stateid).

Open id . Let this command be received from a holder-party Pi. This command encodes an envelop being
opened by the party that currently holds it. Upon receiving this command, the functionality verifies that an
entry for container id appears in the table and that holderid = Pi. If so, it sends (Opened, id, valueid) to Pi

and I. It also replaces the entry in the table with (id, valueid, holderid, broken).
Verify id . Let this command be received from a holder-party Pi. This command denotes Pi’s verification of

whether or not the seal on an envelope has been broken. The functionality verifies that an entry indexed by id
appears in the table and that holderid = Pi. It sends (Verified, id, stateid) to Pi and to I.

The main difference between FpurpotedDE
OneSeal and the original FDE

OneSeal functionality is that an envelope is created
for a specifically intended holder and this holder is consequently notified with a message of the form (id, creator).
Note that this enhancement is realistic (i.e., if to be used in a protocol, the delivery address of the receiver is to
be specified by a manufacturing body). However, note that the functionality does not store or reveal publicly
the creators of the envelopes (i.e., that would be a stronger enhancement, akin to signing the tamper-evident
devices). With this modification, the holder-to-be knows that a specific envelope has been freshly produced by a
specific creator. Intuitively, this prevents the weakness in the proof of Lemma 3.3 from happening, i.e., R cannot
accept envelopes that are not (newly) meant for him. Also, the creator is authenticated by the functionality, in
the sense that he cannot use envelopes made by others. In a larger sense, this can prevent relay attacks. More
formally, the following holds.

Theorem 3.4 In a hybrid EUC-model, where the setup is the FpurpotedDE
OneSeal functionality, the protocol CommitEn-

ablesCheat EUC-realizes the F
2
3−WBC
LearnAtCommitment functionality.

The proof of the above theorem follows from the proofs of Theorem 3.2 and that of Lemma 3.3, combined
with the fact that FpurpotedDE

OneSeal -envelopes have a specified entity as their destination and this entity knows this
fact upon the creation of the envelopes. We conjecture that Theorem 3.4 holds even in the case of adaptive
adversaries.

4 Implication-Relations between (Weak) Bit-Commitments and Dis-
tinguishable Envelopes in UC

Given the results above and those in [19], we have that FDE
OneSeal (or FpurpotedDE

OneSeal ) can create receiver-strong and
sender-strong weak UC bit-commitments, which in turn can be amplified to obtain regular UC bit-commitments.
The FBC functionality or a flavour of it (see FCOM in [6]) constitutes a sufficient setup to UC-realize a ZK
protocol [6]. Under these circumstances, it is definitely interesting to investigate the existent implications
between different sort of weak bit-commitment, regular bit-commitment and tamper-evident envelopes, in the
UC framework.

Firstly, note that a multiple commitment FMCOM [6] setup suffices to UC-realize an Fq−WBC
EscapeThenMayCheat,

Fq−WBC
LearnAtCommitment or an Fq−WBC

LearnAtOpening functionality, for some q ∈ (0, 1). (We recall the FMCOM [6] functionality
in Section C of the Appendix). In other words, several instances of the regular bit-commitment functionality
FBC suffice to UC-construct a sender-strong weak bit-commitment. In particular, three regular bit-commitment
FBC functionalities (see Section C of the Appendix) UC-construct a 2

3 -WBC which is sender-strong. Let a
protocol P be obtained from protocol CommitEnablesCheat where the creation and transmission of the three
envelopes is respectively replaced by creation and transmission of three commitments using FMCOM or using

16



three respective instances of FBC . An analogous fact holds also for F
2
3−WBC
LearnAtOpening, where to construct the

protocol P we use OpenEnablesCheat instead of CommitEnablesCheat.
Secondly, as a consequence of Theorem 3.3, note that all sender-strong weak BCs UC-imply regular BCs.
Thirdly, it should be answered whether bit-commitment setup suffice to UC-realize the FDE

OneSeal distinguish-
able tamper-evident envelope functionality. We conjecture that question 1 has a negative answer. This is
intuitively due to the fact that in bit-commitments it is the sender who opens the commitment and, in an
envelope-emulating protocol, it should be the envelope’s creator who needs to perform the corresponding open-
ing. But, in order for this to be generally possible, an envelope creator ought to know the current envelope holder,
which is not the case in our formalisations (i.e., envelopes can be passed on from holder to holder, without the
notification of the creator).

To sum up, amplification proofs considered, we have completed the picture of UC-realisability of different
flavours of sender-strong weak BC with tamper-evident envelopes and of their relation to (almost) regular BC and
receiver-strong weak BCs by Moran and Naor [19]. To some level, we can say that all weak BCs are equivalent
to regular BCs. We leave the EUC or the GUC correspondents of the implications enumerated above as open
questions.

5 Conclusions

Answering a variant of the open question in Moran and Naor’s work [19] and several practical needs [10, 15, 12],
we conclude that simple, sealed envelopes can also create sender-strong (weak) bit-commitments protocols. In
the process, we have also discussed the fact that the protocols in [19] are not EUC-secure but only UC-secure.
We mainly focused on creating sender-strong bit-commitments with the same level of security. Nevertheless,
we showed how to modify the FDE

OneSeal functionality given in Moran and Naor’s work [19] such that we also
create (weak) bit-commitment protocols that are EUC-secure. We showed lightweight amplification proofs of
our WBC protocols. We lastly discussed some of the implications between UC weak BCs, UC regular BCs and
distinguishable tamper-evident UC envelopes. The interest in weak BC protocol per se was motivated by both
theoretical and practical reasons. The GUC-security of our schemes remains to be discussed.

References

[1] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Tuttle. Collaboration of Untrusting Peers with Changing
Interests. In Proceedings of the 5th ACM conference on Electronic commerce, EC ’04, pages 112–119, New
York, NY, USA, 2004. ACM.

[2] D. Beaver. Adaptive Zero Knowledge and Computational Equivocation (Extended Abstract). In The 28th
Annual ACM Symposium on Theory of Computing (STOC), pages 629–638, 1996.

[3] Ioana Boureanu and Serge Vaudenay. Several Weak Bit-Commitments Using Seal-Once Tamper-Evident
Devices. In Tsuyoshi Takagi, Guilin Wang, Zhiguang Qin, Shaoquan Jiang, and Yong Yu, editors, Provable
Security, Lecture Notes in Computer Science, pages 70–87, 2012.

[4] G. Brassard, D. Chaum, and C. Crépeau. Minimum Disclosure Proofs of Knowledge. Journal of Computer
Systems Science, 37:156–189, October 1988.

[5] C. Crépeau. Efficient Cryptographic Protocols Based on Noisy Channels. In Advances in Cryptology,
Proceedings of the 16th Annual International Conference on Theory and Application of Cryptographic Tech-
niques – EUROCRYPT, Lecture Notes of Computer Science, pages 306–317, Berlin, Heidelberg, 1997.
Springer-Verlag.

[6] R. Canetti. A Unified Framework for Analyzing Security of Protocols. Electronic Colloquium on Computa-
tional Complexity (ECCC), 8(16), 2001.

[7] R. Canetti. Universally Composable Signature, Certification, and Authentication. In Proceedings of the
17th IEEE workshop on Computer Security Foundations, pages 219–239, Washington, DC, USA, 2004. IEEE
Computer Society.

17



[8] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally Composable Security with Global Setup. Cryp-
tology ePrint Archive, Report 2006/432, 2006. http://eprint.iacr.org/.

[9] N. Chandran, V. Goyal, and A. Sahai. New Constructions for UC Secure Computation Using Tamper-Proof
Hardware. In Advances in Cryptology, Proceedings of the 27th Annual International Conference on Theory
and Application of Cryptographic Techniques – EUROCRYPT, pages 545–562, 2008.

[10] C. Chin-Chen and C. Ya-Fen. Efficient Anonymous Auction Protocols with Freewheeling Bids. Computers
& Security, 22(8):728–734, 2003.

[11] I. Damg̊ard. On the existence of bit commitment schemes and zero-knowledge proofs. In Advances in
Cryptology, Proceedings of the 9th Annual International Cryptology Conference, CRYPTO, pages 17–27,
New York, NY, USA, 1989. Springer-Verlag New York, Inc.

[12] G.Dane. The Implementation of an Auction Protocol over Anonymous Networks.
http://research.microsoft.com/en-us/um/people/gdane/papers/partiiproj-anonauctions.pdf, 2000.

[13] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding Cryptography on Tamper-Proof
Hardware Tokens. In Theory of Cryptography, pages 308–326, 2010.

[14] J. Katz. Universally Composable Multi-party Computation Using Tamper-Proof Hardware. In Theory and
Application of Cryptographic Techniques, pages 115–128, 2007.

[15] H. Kikuchi, M. Harkavy, and J. D. Tygar. Multi-round Anonymous Auction Protocols. In In Proceedings of
the 1st IEEE Workshop on Dependable and Real-Time E-Commerce Systems, pages 62–69. Springer-Verlag,
1998.

[16] P. Mateus and S. Vaudenay. On Tamper-Resistance from a Theoretical Viewpoint. In Proceedings of the
11th International Workshop on Cryptographic Hardware and Embedded Systems(CHES), volume 5747 of
Lecture Notes in Computer Science, pages 411–428. Springer, 2009.

[17] T. Moran and M. Naor. Basing Cryptographic Protocols on Tamper-Evident Seals. In L. Caires et al., editor,
Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP),
volume 3580 of Lecture Notes in Computer Science, pages 285–297. Springer-Verlag, Jul 2005.

[18] T. Moran and M. Naor. Polling with Physical Envelopes: A Rigorous Analysis of a Human-Centric Protocol.
In S. Vaudenay, editor, Advances in Cryptology, Proceedings of the 25th Annual International Conference
on Theory and Application of Cryptographic Techniques – EUROCRYPT, volume 4004 of Lecture Notes in
Computer Science, pages 88–108. Springer Berlin / Heidelberg, May 2006.

[19] T. Moran and M. Naor. Basing Cryptographic Protocols on Tamper-Evident Seals. Theoretical Computer
Science, 411:1283–1310, March 2010.

[20] T. Moran and G. Segev. David and Goliath Commitments: UC Computation for Asymmetric Parties Using
Tamper-Proof Hardware. In Theory and Application of Cryptographic Techniques, pages 527–544, 2008.

[21] M. Naor. Bit Commitment Using Pseudo-Randomness. Journal of Cryptology, 4:151–158, 1991.

[22] V. Shoup. Sequences of games: a tool for taming complexity in security proofs. manuscript, 2006.

[23] F. Stajano and R. Anderson. The Cocaine Auction Protocol: On the Power of Anonymous Broadcast. In
Proceedings of the 3rd International Workshop on Information Hiding, IH ’99, pages 434–447, London, UK,
2000. Springer-Verlag.

18



A Overview on the UC and Enhanced UC Frameworks

A.1 General Approach to UC proofs

At some high level, a UC proof that a protocol is secure means to show that the environment (Z) cannot
distinguish between the execution in the “real world” from the execution in the “ideal world” [6].

The “ideal world” contains “dummy” parties, the “target” ideal functionality (that the protocol is emulating)
and the “ideal” adversary, I. The “ideal” adversary” I can corrupt up to half minus one of the parties, in which
case I will see the input of such a party, all communication sent to it, and I can decide its output. Normally,
these “dummy” parties simply send their inputs to the ideal functionality and wait for the response which they
write on their output tape. The environment Z normally gives the inputs to the parties and reads their local
outputs, can communicate with I, but it does not have a direct input-output communication link with the ideal
functionality.

The “real world” contains protocol participants, the environment Z, the “real adversary”A and potentially
ideal, “setup” functionalities. There can be up to half minus one parties corrupted by A (i.e., parties which
may not follow the protocol) and A can communicate with Z and with the setup functionalities, if and when
the latter are present. The environment Z has the same capabilities as in the ideal world (e.g., he cannot see
internal communications).

The protocol securely UC-realizes an ideal functionality, if there exists I such that for any Z and any A, Z
cannot distinguish between the ideal world and the real world. Or, an alternative definition reads as follows: a
protocol securely UC-realizes an ideal functionality, if for any Z and any A, there exists I such that Z cannot
distinguish between the ideal world and the real world [6, 8].

A.2 Enhanced UC frameworks

This short summary on enhanced UC frameworks follows the work by Canetti et al. [8], where the reader is
referred for further details. In the basic UC framework, the environment Z is able to interact with the adversary
and with the general challenge protocol (i.e., the protocol distinguishing actual attacks in the real world from
simulated attacks on the ideal, target functionality), but the environment Z is unable to invoke directly the
setup functionalities. While this is enough to get the composability theorem [7], it was shown to be impossible
to UC-realize some protocols in UC with global setup, i.e., when protocols share state information with each
other [8]. To bypass such impossibility results, strengthen UC framework were created [8], i.e., Externalized UC
and Generalized UC.

In GUC (Generalized UC), the environment Z is allowed to invoke and interact with arbitrary protocols
(setup functionalities included) and even in multiple sessions of the challenge protocol.

Additionally to a basic UC environment and restricting the GUC environment, the EUC (Externalized UC)
environment Z is allowed to invoke a single external protocol instance. Any state information that will be shared
by the challenge protocol must be shared via calls the shared functionality (here, FDE

OneSeal or similar distinguish-
able envelope functionalities) and the EUC environment is granted direct access to the shared functionality.

B The Tamper-Evident Envelope, Creator-Forgeable Functionality
(as per [19])

The FDE
MultiSeal Functionality for Tamper-Evident Distinguishable Sealed Envelopes

This functionality for tamper-evidence stores a table of “devices”, indexed by their id. More precisely, an
entry in this table is of the form (id, value, creator, holder, state). The values in one entry indexed by id are
respectively denoted creatorid, valueid, holderid and stateid.

Seal(id , value). Let this command be received from party Pi. It creates and seals an envelope. If this is
the first Seal message with id id, the functionality stores the tuple (id, value, Pi, sealed) in the table. If this is
not the first command of type Seal for envelope id and the command comes from the envelope’s creator, then
the functionality updates the stored value. If this is not the first command of type Seal for envelope id but the
command does not come from the envelope’s creator, then the functionality updates the stored value.

Send(id , Pj ). Let this command be received from party Pi. This command encodes the sending of an
envelope held by Pi to a party Pj . Upon receiving this command from party Pi, the functionality verifies that

19



there is an entry in its table which is indexed by id and has holderid = Pi. If so, it outputs (Receipt, id, Pi, Pj)
to Pj and I and replaces the entry in the table with (id, valueid, Pj , stateid).

Open id . Let this command be received from party Pi. This command encodes an envelope being opened
by the party that currently holds it. Upon receiving this command, the functionality verifies that an entry for
container id appears in the table and that holderid = Pi. If so, it sends (Opened, id, valueid) to Pi and I. It
also replaces the entry in the table with (id, valueid, holderid, broken).

Verify id . Let this command be received from party Pi. This command denotes Pi’s verification of whether
or not the seal on an envelope has been broken. The functionality verifies that an entry indexed by id appears
in the table and that holderid = Pi. It sends (Verified, id, stateid) to Pi and to I.

C Regular Bit-Commitment UC-Functionality

The FBC functionality idealizing regular bit-commitment.
Commit b. This command simulates a party (the sender) committing to the bit b in front of another party

(the receiver). The functionality records b and outputs Committed to the receiver and to the ideal adversary.
It then ignores any other commands until it receives the Open command from the sender.

Open. This command simulates a party (the sender) opening a commitment in front of another party (the
receiver). The functionality outputs (Opened, b) to the receiver and to the ideal adversary.

The FMCOM functionality idealizing multiple regular bit-commitment.
(Commit, sid , cid , Pi , Pj , b). Upon receiving this command from Pi, with b ∈ {0, 1}, the functionality

stores (cid, Pi, Pj , b) and it sends (receipt, sid, cid, Pi, Pj) to Pj and the ideal adversary. It then ignores
subsequent commands (commit, sid, cid, Pi, Pj , ∗) from Pi.

(Open, sid , cid , Pi , Pj ). Upon receiving this command from Pi, if a tuple (cid, Pi, Pj , b) for some bit b
exists, then the functionality sends (open, sid, cid, Pi, Pj , b) to Pj and to the ideal adversary. Otherwise, the
functionality does nothing. It then ignores subsequent commands (open, sid, cid, Pi, Pj) from Pi.

20


