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Abstract: This paper introduces a special type of symmetric cryptosystem called multi-encryption scheme. It allows
users to encrypt multiple plaintexts into a single ciphertext. Each plaintext is protected with its own secret
key, meaning that they can be decrypted individually by applying the decryption function with the correspond-
ing key to the ciphertext. Compared to encrypting the ciphertexts one-by-one using a standard symmetric
cryptosystem, the main advantage of using a multi-encryption scheme is the no-search property, which guar-
antees that knowing the key is sufficient for decrypting a single plaintext. We show how to construct a multi-
encryption scheme based on polynomials over finite fields. A possible application area is coercion-resistant
electronic voting. To ensure a strong form of privacy, voters are equipped with multiple fake credentials, which
are indistinguishable from the proper one. While theoretically sound, this requires a voter to perfectly recall
multiple lengthy random numbers, and to know which of them is the proper one. To ensure 100% recall, users
need to manage these numbers and keep them secret. A multi-encryption scheme is an elegant solution for
this problem.

1 INTRODUCTION

In strong cryptographic systems, keys are long ran-
dom numbers, very long and very random, so that it
is hard for a human user to reproduce all these keys
from memory (Brown et al., 2004; Florêncio and Her-
ley, 2007). Various approaches addressing this prob-
lem have been introduced. One example is keeping
a record of the keys, either in plaintext or as an en-
crypted password vault using an easy-to-remember
password or passphrase. Clearly, the plaintext vari-
ant is not desirable. However, encrypting multiple se-
cret keys in a single password vault (e.g., KEEPASS)
is also not ideal: either the password vault informs
the user whether or not the entered password is cor-
rect (enabling an offline attack), or the password vault
produces values for incorrect passwords (meaning the
user cannot be sure if the correct values came out).

1.1 Contribution

In this paper, we present a simple multi-encryption
scheme satisfying the needs of both sides, persons and
cryptographic systems providing the property of per-
fect secrecy. In particular, it is able to encrypt any
amount of pre-chosen high-entropy plaintexts of any

means (e.g., private keys, e-voting credentials, differ-
ent but similar looking PUK numbers, etc.) in a single
ciphertext, using an individual and user-chosen low-
entropy key for every plaintext. The decryption of
such a plaintext is achieved very efficiently by apply-
ing only the corresponding key.

Below, we give an informal list of minimal basic
requirements a multi-encryption ciphertext must sat-
isfy to be useful in practical applications.
• No search. Applying a genuine key to a multi-

encryption ciphertext directly reveals the corre-
sponding plaintext, without the need of further
discrimination amongst the plaintexts. This very
special feature states a key property of multi-
encryption schemes and is in accordance to the
works of Stajano (Stajano, 2011) allowing hu-
mans to deal with high-entropy data serving as
secret-keying material for some cryptographic
system.

• Indistinguishability of keys. False keys must
return plaintexts indistinguishable from actual
plaintexts. This ensures that an adversary cannot
distinguish false keys from genuine keys. This
property must hold true even if the plaintext al-
phabet is limited.

• Independence of keys. Knowledge of one or sev-



eral keys of a given ciphertext must not reveal any
information about any remaining keys or plain-
texts.

• Reusability of keys. It must be possible to reuse
the keys used within one ciphertext in other ci-
phertexts without any loss of security. Hence it
must be secure against differential cryptographic
analyzes.

1.2 Example Applications

The aim of the following examples is to demonstrate
the potential of such multi-encryption schemes and
their usage allowing humans to manage the rising
demands of modern e-society, requesting more and
more high-entropy keying material to guarantee se-
curity and privacy.

Coercion-Resistant E-Voting. Coercion-resistant
e-voting schemes, such as (Koenig et al., 2011), re-
quire the voter to remember several high entropy cre-
dentials. These credentials are used in order to al-
low a voter to vote. However, there are two flavors
of credentials. The ’good one’ is silently accepted
while the ’dummy one’ is silently rejected by the vot-
ing scheme. The good credential is required to allow
an eligible voter to cast the vote. The dummy creden-
tials are required to fake the cast of a vote. But all
credentials look the same. In order to stay coercion
resistant, the voter is not allowed to write the creden-
tials down, or to mark them accordingly. Moreover,
no one else than the voter is allowed to know the
amount of personal credentials. All these extremely
user-unfriendly requirements have mainly motivated
the multi-encryption scheme. The scheme now al-
lows the voter to create a ciphertext, where all cre-
dentials can be placed securely. The multi-encryption
ciphertext will not unveil the exact amount of creden-
tials that were placed within. Furthermore, the voter
can use any input as key, serving as a hint for the
voter only, in order to recover the desired credential
(e.g. think of the name of a fruit for the good creden-
tial and the name of vegetables for the dummy cre-
dentials). However, any input will always result in
a plausible credential. The ciphertext does not leak
the true credentials it carries. This renders the cipher-
text unchallengeable neither for any credential, nor
for the amount of credentials. After entering the cor-
rect key, the according credential will be presented
without having to search for it or having to mark it.
Only the use of a multi-encryption scheme renders
such e-voting schemes usable by human end-users.

Remember the PUKs. Todays mobile computing
requires the knowledge of PUKs (personal unblock-
ing key) for SIM-cards in order to use them in the
GSM-network. These PUKs are composed of an ar-
bitrary immutable eight digit decimal number. Even
though PUKs can not be changed by the user, the
user needs to remember them precisely. Using a
multi-encryption scheme, all needed PUKs can be en-
crypted in a single ciphertext, each PUK recoverable
by applying its appropriate freely selectable decryp-
tion key. So the PUK of mom’s SIM-card could be
released by the key “Mama’s smarty”, whereas the
PUK of father’s mobile SIM-card would be accessi-
ble by “Daddies 2nd dearest”. However, entering any
other key would always result in a plausible but wrong
PUK code. This way no adversary is able to challenge
a given ciphertext, as every outcome is a plausible
outcome. Without the SIM-card, the multi-encryption
ciphertext does not leak the true PUK codes at all.
In possession of the SIM-card, the adversary will be
given ten challenges to unlock the system. If the ad-
versary does not succeed, the SIM-card is rendered
unusable. So even if keys with somewhat low entropy
are used as encryption keys, the adversary would only
get a very low chance to guess the correct PUK using
the ciphertext. This implies that the ciphertext can be
made public without unveiling any information to a
potential adversary.

Context Aware Decryption During their bachelor
thesis, two of our students implemented a multi-
encryption scheme as an application on a smartphone.
By enriching the key space with sensor data provided
by the smartphone, they were able to demonstrate a
location-aware access control system, where the cor-
rect credential was provided only if the correct geo-
graphical location and the BSSIDs of some WLAN
access points were entered. Any other geographical
place would have returned a plausible but wrong cre-
dential.

1.3 Paper Overview

In Section 2 we give a formal description of what
we consider to be a multi-encryption scheme. We
also describe possible modes of application of a gen-
eral multi-encryption scheme. Then, in Section 3,
we present a concrete instance of a symmetric multi-
encryption scheme based on polynomial interpola-
tion. Finally, Section 4 summarizes our findings and
gives an outlook to future work.



2 MULTI-ENCRYPTION SCHEME

We consider a plaintext space M , the set of all pos-
sible plaintexts, and a key space K , the set of all
possible keys. Let M = (m1, . . . ,mn), mi ∈M , be a
list of n ≥ 1 (not necessarily distinct) plaintexts and
K = (k1, . . . ,kn), ki ∈ K , an equally long list of dis-
tinct keys. Furthermore, let C be the ciphertext space,
the set of all possible ciphertexts.

2.1 Deterministic Multi-Encryption
Scheme

The two main components of a multi-encryption
scheme are functions for encrypting and decrypting
plaintexts. Formally, let

encrypt : M n×K (n) −→ C

denote the multi-encryption function, where K (n) ⊆
K n denotes the set of all proper key lists (those with
distinct keys), and

decrypt : C ×K −→M

the decryption function. As a notational convention,
we will write the functions with the keys as index, i.e.,
c = encryptK(M) ∈ C for encrypting a list of plain-
texts M ∈M n with a list of distinct keys K ∈ K (n)

and mi = decryptki
(c) ∈M for the corresponding de-

cryption with key ki ∈ K. Clearly, we require

decryptki
(encryptK(M)) = mi

to hold for all 1≤ i≤ n. We call n the size of c.
To render a multi-encryption scheme usable for

its intended purposes, we require it to possess the
cryptographic properties of a traditional symmetric
cryptosystem (Menezes et al., 1996). As a con-
sequence, we require that knowing c does not un-
veil any information about M (except possibly its
length), or in technical terms, that H(M|c), the con-
ditional Shannon entropy of M given c, is equal to
H(M). More generally, consider a non-empty sub-
set of indices I ⊆ {1, . . . ,n} and corresponding sub-
lists MI ⊆ S and KI ⊆ K of length s = |I|. Further-
more, let I-encrypt : M s ×K (s) −→ C be the par-
tial multi-encryption function derived from encrypt
by choosing mi and ki arbitrarily for all i 6∈ I, and
let I-decrypt : C ×K (s) −→M m be the extended de-
cryption function obtained from applying decrypt for
each ki ∈ KI in the given order. This clearly implies
I-decryptKI

(I-encryptKI
(MI)) = MI . Therefore, we

require that I-encrypt together with I-decrypt satis-
fies the cryptographic properties of a symmetric cryp-
tosystem for all non-empty subsets I ⊆ {1, . . . ,n}.

In particular, we require that decrypting some plain-
texts from c does not disclose any information about
the other plaintexts in c, or in technical terms,
that H(MI |c,MJ) = H(MI) holds for all complemen-
tary subsets I,J ⊆ {1, . . . ,n}. As a consequence,
H(mi|c)=H(mi) and H(mi|c,m j)=H(mi) must hold
individually for every mi ∈MI and m j ∈MJ .

Definition 1. A multi-encryption scheme of order n,

Σ[n] = (M ,K ,C ,encrypt,decrypt),

consists of a plaintext space M , a key space K , a
ciphertext space C , and two functions encrypt (with
two arguments of arity n) and decrypt with properties
as introduced above.

A multi-encryption scheme cannot be constructed
by simply concatenating n symmetric cryptosystems.
The difference is subtle but crucial: ki alone is not
sufficient for decrypting the i-th plaintext from a list
of ciphertexts c = (c1, . . . ,cn). While mi could easily
be retrieved by decrypting ci, additional knowledge of
the position i would be required for selecting ci from
c. However, since (i,ki) is not an element of the key
space, we get a more restrictive setting for decrypting
the plaintexts. Note that a multi-encryption scheme is
also different from a single symmetric cryptosystem,
which is used to encrypt a list of plaintexts M ∈M n

with a single master key k ∈ K . This is the function-
ality generally provided by a password vault system.
Clearly, classical symmetric cryptosystems and pass-
word vault systems are both special cases of a multi-
encryption scheme of order n = 1.

2.2 Randomized Multi-Encryption
Scheme

A multi-encryption scheme according to the above
definition is deterministic, i.e., encrypting a given list
of plaintexts M with a given list of distinct keys K
always results in the same ciphertext c. Some ap-
plications, however, may require a randomized multi-
encryption function. Formally, let R be a randomiza-
tion space, the set of all possible randomizations, and

randEncrypt : M n×R ×K (n) −→ C

the resulting randomized multi-encryption function
(decrypt remains unchanged). As in the determinis-
tic case, we expect

decryptki
(randEncryptK(M,r)) = mi

to hold for all 1 ≤ i ≤ n and r ∈ R . We also as-
sume the same cryptographic properties to hold with
respect to corresponding functions I-randEncrypt and



I-decrypt. Finally, we require that different ran-
domizations distribute corresponding ciphertexts uni-
formly over C , i.e.,

P(randEncryptK(M,r) = randEncryptK(M,r′)) =
1
|C |

is the probability of getting the same ciphertext for
two different randomizations r 6= r′.

Definition 2. A randomized multi-encryption scheme
of order n,

Σ̃[n] = (M ,R ,K ,C , randEncrypt,decrypt),

consists of a plaintext space M , a randomization
space R , a key space K , a ciphertext space C , and
two functions randEncrypt (with the first and the last
argument of arity n) and decrypt with properties as
introduced above.

2.3 Modes of Application

The standard mode of application of a multi-
encryption scheme of order n is to encrypt n different
plaintexts with n different keys. In this section, we
present further options for using a multi-encryption
scheme by making the keys and the plaintexts depen-
dent on each other. We provide a non-exhaustive list
of modes of application, which may be useful for var-
ious purposes. Note that arbitrary combinations of
these modes of application are possible.

Disjunctive Keys. To allow a single plaintext m to
be accessed redundantly by multiple keys, we con-
struct a ciphertext c = encryptK(M) of size n for

K = (k1, . . . ,kn) and M = (m, . . . ,m),

where M contains n copies of the same plaintext m
and K the different keys to decrypt it. This can be
used for defining one or several backup keys, which
allow access to the plaintext in case the master key
is lost or forgotten. Another application is the detec-
tion of typos by accepting a plaintext only after de-
crypting it independently from at least two different
keys. Please note, that if low-entropy keys only are in
use, the ciphertext can be challenged, as several low-
entropy keys result in the same plaintext. So, only one
low-entropy key is allowed whereas the other keys
must be of high-entropy.

Conjunctive Keys. To allow access to a single
plaintext m only if several keys are provided, we con-
struct a ciphertext c = encryptK(M) of size n+1 for

K = (k1, . . . ,kn,k) and M = (m1, . . . ,mn,m),

where k1, . . . ,kn are the n keys required to decrypt the
plaintext, m1, . . . ,mn are chosen at random from M ,
and k = ψ(m1, . . . ,mn) ∈ K is an additional key ob-
tained from applying some n-ary function ψ : M n→
K to the randomly chosen plaintexts. Note that if ψ is
symmetric, then the order of the keys does not matter
to decrypt the plaintext. A direct application of this
setting is the combination of multiple low-entropy
keys (e.g., passwords) into a high-entropy key.

Threshold Keys. By combining the above cases
of disjunctive and conjunctive keys, any monotone
Boolean function can be constructed. Of particular
interest are (t,n)-threshold functions, where at least t
(out of n) keys are needed to decrypt the plaintext m.
Generally, such threshold functions can be expressed
by a disjunction of

(n
t

)
conjunctions of length t. For

t = 2 and n = 3, for example, we construct a cipher-
text c = encryptK(M) of size 3+

(3
2

)
= 6 for

K = (k1,k2,k3,k12,k13,k23),

S = (m1,m2,m3,m,m,m),

where m1,m2,m3 are chosen at random from M , and
ki j = ψ(mi,m j) are additional keys obtained from ap-
plying some binary function ψ : M ×M → K to all
pairs of random plaintexts.

Chains of Plaintext. To decrypt a sequence of
plaintexts from a single key k, we construct a cipher-
text c = encryptK(M) of size n for

K = (k,k2, . . . ,kn) and M = (m1, . . . ,mn),

where M contains the plaintexts, and ki+1 = ψ(mi),
1≤ i≤ n−1, are n−1 additional keys obtained from
applying some unitary function ψ : M → K to the
plaintexts (for K = M , ψ may simply be the identity
function). To mark the end of such a chain of plain-
texts, a special marker m0 ∈M must be attached as an
additional plaintext to M. Note that by applying this
technique multiple times in parallel, we can construct
a ciphertext containing several independent chains of
plaintexts. More generally, we can construct arbitrary
directed graphs of interlinked plaintexts (with multi-
ple sources or sinks, loops, etc.), whose nodes have
an outdegree of at most 1.

Non-Confidential Plaintexts. To enhance a cipher-
text of size n with r non-confidential metadata, say
m′1, . . . ,m

′
r ∈M , we define r additional keys idi ∈K ,

which serve as identifiers for corresponding values
m′i. Therefore,

K = (k1, . . . ,kn, id1, . . . , idr),

S = (m1, . . . ,mn,m′1, . . . ,m
′
r),



are the enhanced lists of keys and plaintexts, from
which the ciphertext c = encryptK(M) of size n+ r
is constructed. This can be used for adding metadata
about the ciphertext (e.g., author, date of creation, de-
scription, notes, etc.), the keys (e.g., recovery hints),
or the plaintexts (e.g., application domain, expiration
date, etc.) to the ciphertext.

3 MULTI-ENCRYPTION SCHEME
BASED ON POLYNOMIALS
OVER FINITE FIELDS

In this section, we introduce a concrete instance
of a randomized multi-encryption scheme Σ̃[n] =
(M ,R ,K ,C , randEncrypt,decrypt). The general
idea of our approach corresponds to the Reed-
Solomon coding scheme (Reed and Solomon, 1960),
which is based polynomial interpolation over a finite
field. To create a ciphertext, randEncrypt will there-
fore construct a polynomial that contains a point for
each of the n plaintexts, and to decrypt a single plain-
text from the ciphertext, decrypt simply applies the
polynomial on the corresponding key.

3.1 Construction

Let p be a large prime number and Zp the cor-
responding finite field of integers modulo p. The
set of all possible polynomials over Zp is denoted
by Fp[x] and serves as our ciphertext space C . To
apply the Lagrange interpolation formula (or any
other interpolation method) directly on points (ki,mi),
we start with the simplifying assumption of K =
M = R = Zp. The resulting polynomial c(x) =
Lagrange((k1,m1), . . . ,(kn,mn)) ∈ Fp[x] is then the
ciphertext, from which every mi = c(ki) is easily re-
trieved. Unfortunately, there are at least two major
problems with this basic solution:

• For n = 1 or, more generally, if mi = m1 holds for
all plaintexts mi, then the polynomial degenerates
into a straight horizontal line c(x) = m1. To avoid
such trivial cases, we suggest that (0,0) is added
to the list of given interpolation points (ki,mi) and
that the value 0 is removed from both sets K and
M .

• The resulting polynomial c(x) is of very low or-
der (≤ n− 1), which makes it easy to factorize
(Berlekamp, 1970), (Kaltofen and Shoup, 1998) .
As a countermeasure, we suggest combining the
interpolation polynomial with a monomial xr of
very high random order r ≥ 2u, where u is a secu-
rity parameter. For this to work, we must adjust

the interpolation points from (ki,mi) to (ki,m′i) by
m′i =mi−kr

i . Then the interpolation yields c′(x)=
Lagrange((k1,m′1), . . . ,(kn,m′n)), from which we
obtain the ciphertext c(x) = xr + c′(x). This way
we get a very sparse polynomial of very high or-
der, a combination allowing an easy evaluation
but a hard inversion.

By combining the two suggested enhancements of
the basic solution, we obtain the following random-
ized multi-encryption and decryption functions:

Function randEncryptK(M,r)
Input: M = (m1, . . . ,mn), K = (k1, . . . ,kn), r
begin

k0← 0, m′0← 0
for i← 1 to n do

m′i← mi− ki
r

c(x)← xr +Lagrange((k0,m′0), . . . ,(kn,m′n))
return c

Note that this solution bears a small risk of obtaining

Function decryptki
(c)

Input: c, ki
begin

return c(ki)

a degenerated polynomial, since it may happen that
mi = kr

i for all 1≤ i≤ n. As a countermeasure, we fur-
ther restrict K to a large sub-group Gq ⊂ Z∗p of order
q (e.g., by selecting a safe prime p= 2q+1) and M to
the complement Gq = Z∗p \Gq. This implies mi 6= kr

i
and therefore m′i 6= 0. Note that this solution also im-
poses a upper limit r < q for the randomization, i.e.,
the remaining randomization space for a given secu-
rity parameter u is R = [2u,q−1].

In the most general case, where K , M , and R
are general sets, we can apply the above randomized
multi-encryption function only after mapping the keys
into Gq, the plaintexts into Gq, and the randomiza-
tion into [2u,q− 1]. Let κ : K → Gq, σ : M → Gq,
and ρ : R → [2u,q− 1] be such mappings. Note that
σ must be invertible, since decrypting a plaintext re-
quires applying σ−1 to σ(mi), and this imposes a gen-
eral restriction |M | ≤ |Gq| on the size of the plain-
text space (|M | ≤ q for p = 2q + 1). To preserve
the distinctness of the keys in K = (k1, . . . ,kn), sim-
ilar considerations apply to κ. However, instead of
requiring κ being injective and thus imposing the re-
striction |K | ≤ q on the size of the key space, we
only assume that κ is collision-resistant. With this, no
more restrictions apply to the key space, i.e., K may
even be an infinite set. To avoid collisions entirely,



consider a parameterized collision-resistant function
κ : K ×N→Gq, for which we choose each time a pa-
rameter z∈N such that κ(ki,z) 6= κ(k j,z) holds for all
i 6= j. In that case, z becomes part of the ciphertext.

3.2 Discussion

Security. We will first discuss the security of a
multi-encryption scheme of order n = 1 and then aug-
ment our arguments inductively to bigger size. For
n = 1, the resulting interpolation polynomial can be
written as:

c(x) = xr + c′(x) = xr +
m1− kr

1
k1

x.

Knowing m1 allows the adversary to learn k1 by solv-
ing the equation c(x) = m1, or in other words, by
finding the roots of the polynomial c(x)−m1 = xr +
m1−kr

1
k1

x−m1. The adversary may either try an exhaus-
tive search or factorizing the polynomial, but both op-
tions are considered to be hard for a sufficiently large
key space and a very high order r ≥ 2u. Exactly the
same argument holds for each of the plaintexts in the
more general case n > 1.

Now suppose the adversary learns one key ki from
a ciphertext of size n > 1. Would this reveal any in-
formation about the other keys or plaintexts? In that
case, the adversary is able to reduce the order of the
polynomial c(x) by one (from r to r− 1, by dividing
c(x)−mi by x− ki), but this means that all other keys
and plaintexts remain completely hidden under the
above assumptions of a sufficiently large key space
and a very high order.

Efficiency. If we consider the field operations of
Zp, i.e., addition, subtraction, multiplication, and
division modulo p, as primitive operations, we
need O(n logr + n2) many operations to compute
randEncryptK(M,r), i.e., O(logr) operations for each
value kr

i and O(n2) for polynomial interpolation. To
compute decryptki

(c), we require O(logr + n logn)
operations, i.e., O(logr) operations for the monomial
kr

i and O(logn) operations for every low-order term
in c′(x). Therefore, if we treat logr as a constant (its
lower bound is u and it upper bound is logq), we can
summarize the running times by saying that construct-
ing a ciphertext is quadratic and decrypting a plaintext
is quasilinear in n. Note that n will be rather small in
most applications.

4 CONCLUSION

A multi-encryption scheme is a new cryptographic
concept for protecting the confidentiality of multi-
ple plaintexts in a single ciphertext. It is similar
to a symmetric cryptosystem, but the ability to de-
crypt the plaintexts individually using respective keys
adds a great amount of flexibility. We have shown
in this paper some of these possibilities. One of
the main applications of a ciphertext is to facilitate
human interaction with complex cryptographic pro-
tocols, which require users to remember multiple
lengthy random numbers. The proposed realization of
a multi-encryption scheme based on polynomial inter-
polation offers the necessary security and efficiency.
A functional prototype written for a smartphone has
already proven its usability. The inclusion of sensor
data in the key space even allows automatic decryp-
tion based on a given context.

Future work will focus on a generic construction
method based on existing cryptosystems, determinis-
tic or asymmetric multi-encryption schemes, a more
profound security analysis.
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