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Abstract. We describe a method for efficiently hashing multiple messages of 

different lengths. Such computations occur in various scenarios, and one of 

them is when an operating system checks the integrity of its components during 

boot time. These tasks can gain performance by parallelizing the computations 

and using SIMD architectures. For such scenarios, we compare the performance 

of a new 4-buffers SHA-256 S-HASH implementation, to that of the standard 

serial hashing. Our results are measured on the 2nd Generation Intel® Core™ 

Processor, and demonstrate SHA-256 processing at effectively ~5.2 Cycles per 

Byte, when hashing from any of the three cache levels, or from the system 

memory. This represents speedup by a factor of 3.42x compared to OpenSSL 

(1.0.1), and by 2.25x compared to the recent and faster n-SMS method. For 

hashing from a disk, we show an effective rate of ~6.73 Cycles/Byte, which is 

almost 3 times faster than OpenSSL (1.0.1) under the same conditions. These 

results indicate that for some usage models, SHA-256 is significantly faster 

than commonly perceived.  

Keywords: SHA-256, SHA-512, SHA3 competition, SIMD architecture, 

Advanced Vector Extensions architectures, AVX, AVX2.  

1 Introduction 

The performance of hash functions is important in various situations and platforms. 

One example is a server workload: authenticated encryption in SSL/TLS sessions, 

where hash functions are used for authentication, in HMAC mode. This is one reason 

why the performance of SHA-256 on modern x86_64 architectures was defined as a 

baseline for the SHA3 competition [‎13].  

Traditionally, the performance of hash functions is measured by hashing a single 

message (of some length) on a target platform. For example, consider the 2
nd

 

Generation Intel
®
 Core™ Processors. The OpenSSL (1.0.1) implementation hashes a 

single buffer (of length 8KB) at 17.55 Cycles per Byte (C/B hereafter). Recently, [‎5] 

improved the performance of SHA-256 with an algorithm that parallelizes the 

message schedule, and the use of SIMD architectures, moving the performance 

baseline to 11.58 C/B (code version from April 2012 is available from [‎6], and will be 

updated soon) on the modern processors, when hashing from the cache.  
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In this paper, we investigate the possibility of accelerating SHA-256 for some 

scenarios, and are interested in optimizing the following computation: hashing a 

number (k) of independent messages, to produce k different digests. We investigate 

the advantage of SIMD architectures for these parallelizable computations.  

Such workloads appear, for example, during the boot process of an operating 

system, where it checks the integrity of its components (see [‎15] for example). This 

involves computing multiple hashes, and comparing them to expected values. Another 

situation that involves hashing of multiple independent messages is data de-

duplication, where large amounts of data are scanned (typically in chunks of fixed 

sizes) in order to identify duplicates (see e.g., [‎2]). In these two scenarios, the data 

typically reside on the hard disk, but hashing multiple independent messages could 

also emerge in situations where the data is in the cache/memory.  

A SIMD based implementation of hash algorithms was first proposed (in 2004) 

and described in detail by Aciiçmez [‎1]. He studied the computations of SHA-1, 

SHA-256 and SHA-512, and his investigation was carried out on Intel
®
 Pentium™ 4, 

using SSE2 instructions. Two approaches for gaining performance were attempted: a) 

using SIMD instructions to parallelize some of the computations of the message 

schedule of these hash algorithms, when hashing a single message (see also later 

works (on SHA-1) along these lines, in [‎4] and [‎12]); b) using SIMD instructions to 

parallelize hash computations of several independent messages. Aciiçmez reports that 

he could not improve the performance of hashing a single buffer, using the SIMD 

instructions (while this could not be done on the Pentium 4, we speculate that it would 

be possible on more recent architectures). However, he reports speedup by a factor of 

1.71x for simultaneous hashing of four buffers, with SHA-256 (speedup by a factor of 

2.3x for SHA-512 is also reported, but it is less interesting in our context, because the 

comparison baseline was a (slow) 32-bit implementation).  

In this paper we expand the study conducted by Aciiçmez, by demonstrating the 

performance of Simultaneous Hashing of multiple independent messages, on 

contemporary processors. We detail a method for a “Simultaneous Update” that 

facilitates hashing of independent messages of arbitrary sizes. To account for different 

usages, we investigate the performance of hashing multiple messages (of variable 

sizes) from different cache hierarchies, system memory, and from the hard drive.  

2 Preliminaries and notations 

The detailed definition of SHA-256 can be found in FIPS180-2 publication [‎3]. 

Schematically, the computational flow of SHA-256 can be viewed as follows: “Init” 

(setting the initial values), a sequence of “Update” steps (compressing a 64 bytes bloc 

the message, and updating the digest value), and a “Finalize” step (takes care of the 

message padding). The padding requires either one or two calls to the Update 

function, depending on the message’s length (see more details in [‎5]). For SHA-256, 

the performance is almost linearly proportional to the number (N) of Update function 

calls, which. For a message of length bytes, the value of N is:   

 

SHA-256:    
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For sufficiently long messages, we can approximate N~floor (length/64). For 

example, this approximation for a 4KB message gives floor (length/64) = 64, while 

actual hashing of a 4KB message requires 65 Update function calls (i.e., a ~1.5% 

deviation).  

3 Simultaneous hashing (S-HASH) of multiple messages 

SIMD architectures [‎7] are designed to execute, in parallel, the same operations on 

several independent chunks of data (called “elements”). Modern architectures have 

variants of SIMD instructions that operate on elements of sizes 1, 2, 4, or 8 bytes. By 

the nature of the algorithms, SHA-256 (and SHA-1) requires operations on 4 bytes 

elements, while SHA-512 requires operations on 8 bytes elements.  

Fig. 1 describes the Simultaneous Hashing algorithm (S-HASH) that hashes k 

messages and generates k digests, with some hash function. Suppose that the 

implemented hash function operates on t-bit “words” (elements), and that the 

architecture has s-bit SIMD registers. Then, the number of words that fit into a SIMD 

register is m = s/t, which we assume to be an integer. We also assume that k > m. 

Algorithm 1 starts with the Initialize step for the first m buffers. Then, it invokes the 

“Simultaneous Update” function (for the specific hash function) every time there are 

m blocks ready for processing. This is repeated until the shortest buffer (from the m 

processed buffers) is fully consumed. At this point, a padding block is fed to the 

Simultaneous Update function, to “Finalize” (that buffer). If the hash is already 

finalized, a block from a new buffer is fed (after the proper “Init”).  

Here, we use the AVX architecture [‎7], with 128-bit registers (i.e., s=128). SHA-

256 (and SHA-1) algorithms have t=32, while SHA-512 has t=64, implying m=4 for 

SHA-1 and SHA-256, and m=2 for SHA512. For our SHA-256 study, we can hash 4 

buffers in parallel. We call this implementation 4-buffers SHA-256 S-HASH. 

The near-future AVX2 architecture [‎9] has integer instructions that operate on 

256-bit registers. This allows for doubling the number of independent messages that 

can be hashed in parallel and would lead to, for example, 8-buffers SHA-256 S-

HASH or 4-buffers SHA-512 S-HASH. 
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Algorithm 1: Simultaneous Hashing (S-HASH) 

Input:  

Buffers – a list with pointers to k buffers to be hashed. 

Lengths – a list with the lengths (in bytes) of the k buffers. 

Hashes – a list with pointers to store the k generated hash values. 

Notations:  

The number of t-bit “words” (elements) that fit in a register is m. (for 

SHA-256, t=32, and with AVX, m=128/32=4).  

It is assumed that k > m. 

The number of bytes, hashed by one “Update” operation is denoted by p. 

Output: k hash values of the k buffers, stored the at memory locations 

pointed by Hashes. 

Flow: 

Init: 

L[0] = Lengths[0]; L[1] = Lengths[1];… L[m-1] = Lengths[m-1] 

B[0] = Buffers[0]; B[1] = Buffers[1]; … B[m-1] = Buffers[m-1] 

H[0] = Hashes[0]; H[1] = Hashes[1]; … H[m-1] = Hashes[m-1] 

Last[0] = 0; Last[1] = 0; … Last[m-1] = 0 

HashInit(Hashes[0]) 

HashInit(Hashes[1]) 

… 

HashInit(Hashes[m-1]) 

i = m; 

 

Simultaneous Update: 

 

Repeat 

n = min(L)/p 

S-UPDATE(H, B, n) 

L = L – [n×p|n×p|…|n×p] 

For j = 0 to m-1 

If L[j]<p AND Last[j]=0 then 

LastBlock[j] = PreparePaddingBlock(B[j]) 

B[j] = LastBlock[j] 

Last[j] = 1 

L[j] = Length(LastBlock[j]) 

Else If L[j]<p AND Last[j]=1 then 

If i=k then  

Break 

Else 

L[j] = Lengths[i] 

B[j] = Buffs[i] 

H[j] = Hashes[i] 

Last[j] = 0 

HashInit(Hashes[i]) 

i++ 

End If 

End If 

End For 

End Repeat 

 

If unfinished buffers still remain, finish hashing serially 

Fig. 1. The Simultaneous Hashing (S-HASH) algorithm. 
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4 Results 

This section describes the 4-buffers SHA-256 S-HASH results 

4.1 The system’s characteristics 

The system that was used for generating the reported measurements had the following 

characteristics:  

─ An Intel
®
 Core™ i5-2500 processor (2

nd
 Generation Intel

®
 Core™ Processor; 

Sometimes referred to as Architecture Codename “Sandy Bridge”) 

─ 8GB RAM (DDR3 1600, 2 Channels).  

─ A RAID0 array of two Intel
®
 SSD 320 drives, each one of 80GB and combined 

throughput of 400MB/sec (indicated by “hdparm –t” [‎10]).  

─ Fedora 16 OS. 

All the runs were carried out on a system where the Intel
®

 Turbo Boost 

Technology, the Intel
®

 Hyper-Threading Technology, and the Enhanced Intel 

Speedstep
®
 Technology, were disabled.  

4.2 Simultaneous hashing of multiple 4KB buffers, from different cache levels 

and main memory 

For profiling the performance of the 4-buffers SHA-256 S-HASH, we wrote a new 

implementation which processes four buffers in parallel. In order to estimate the 

advantage of the parallelization, we compare the resulting performance to serial 

implementations that hash the same amount of data.  

To measure the performance of hashing data that resides in different cache levels, 

or in memory, we note that the processor has ([‎8]): a) First Level Data Cache of 32KB 

(per core); b) Second Level Cache of 256KB (per core); c) Last Level Cache of 6MB 

(shared among all the cores). Therefore,  

─ For data that resides in the First Level Cache, we hashed a total of 16KB of 

data, split to 4 chunks of 4KB each.  

─ For data that resides in the Second Level Cache, we hashed a total of 256KB of 

data, split to 64 chunks of 4KB each.  

─ For data that resides in the Last Level Cache, we hashed a total of 2MB of data, 

split to 512 chunks of 4KB each.  

─ For data that resides in the main memory, we hashed a total of 32MB of data, 

split to 8192 chunks of 4KB each.  

Prior to the actual measurements, we ran the hash, in a loop, 500 times, in order to 

make sure that our data resides in the desired cache level (or memory). 

For comparison, we used the OpenSSL (version 1.0.1) SHA-256 (serial) [‎14] 

implementation, and the faster implementation, based on the n-SMS method [‎5] (a 

version from April 2012, can be retrieved from [‎6]; An update will be posted soon).  

The results, illustrated in Fig. 2, show that hashing from all three cache levels can 

be performed at roughly the same performance, and there is only some small 

performance degradation when the data is hashed from the main memory. The 4-
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buffers SHA-256 S-HASH method is 3.42x faster than OpenSSL (1.0.1), and 2.25x 

times faster than the n-SMS method.  

 

 

Fig. 2. SHA-256 hashing from different cache levels and memory, on the Intel® Core™ i5-

2500 (Architecture Codename Sandy Bridge). The performance of the 4-buffers SHA-256 S-

HASH is compared to the (standard) serial hashing with the OpenSSL 1.0.1 implementation, 

and to the n-SMS method (see explanation in the text). 

4.3 Simultaneous hashing of files from the hard-drive 

The following results account for the performance of hashing from the disk. The 

numbers were obtained using the following methodology.  

For the experiments, we prepared two directories with a different combination of 

files. The first directory (DIVERSE hereafter) contained 350 files occupying 79MB 

(82,833,132 bytes) in total
(1)

. The files sizes range from 3 Bytes to 7.18MB 

(7,533,568 bytes), with the average size of 0.22MB (236,666 bytes). The detailed size 

distribution of the file is provided in the Appendix. The second directory (UNIFORM 

hereafter) contained 8 (large) files of equal size, each one of 17.76MB (18,623,835 

bytes)
(2)

 For each directory, we prepared, in advance, the list of its files.  

To measure the performance of hashing from the hard drive, we flushed the OS 

“pagecache” and “dentries” and “inodes” caches, before the measurements were taken 

(using the Linux directive echo 3 > /proc/sys/vm/drop_caches) [‎11]. 

We measured the following operations: scanning the list (in the prescribed order), 

opening the files in the list, reading the size of each file, mapping the files to memory, 

calculating the SHA-256 values and storing them in appropriate location. 

 

 
(1) These files were the drivers from a Windows 7 directory “Windows\Systen32\drivers\”.  

(2) The files were copies of the same file, namely “supercop-20120219.tar.gz”, retrieved from 
http://hyperelliptic.org/ebats/supercop-20120219.tar.bz2).  
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Fig. 3, top panel, provides the performance for the “DIVERSE” directory in C/B 

(which is a frequency-agnostic metric). The performance is shown for several 

processor frequencies, to demonstrate how the hard-drive’s throughput limits the 

overall observed performance. The figure shows that at the native processor speed 

(3.3GHz), the S-HASH method outperforms the OpenSSL (1.0.1) implementation by 

a factor of 1.73x. When the processor is down-clocked to 1.6GHz, all three 

implementations improve their C/B count, but the S-HASH improves by a larger 

margin, becoming 2.16x faster than OpenSSL. The bottom panel of Fig. 3 shows the 

same performance, measured in MB/sec. It is interesting to observe that although the 

frequency of the processor is reduced by factor of two, from 3.3GHz to 1.6GHz, the 

S-HASH throughput reduces only by a factor of 1.28x. 

 

 

 

Fig. 3. Hashing the files in the directory DIVERSE (see explanation in the text). Measurements 

are taken on the Core i5-2500, operating at different CPU frequencies. Panel a shows the 

performance in Cycles per Byte. Panel b shows the performance in MB/sec.  

Fig. 4 illustrates the performance for the UNIFORM directory. In this scenario, 

Tte performance of OpenSSL and of the n-SMS method are not limited by hard drive, 

because we see that reducing frequency does not improve the speed in C/B. On the 

other hand, the faster 4-buffers SHA-256 S-HASH implementation is affected by the 

hard drives. It improves (in C/B) when the frequency is reduced, although not as 
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much as it does in the DIVERSE test. The figure shows that the 4-buffers S-HASH is 

2.86x faster than OpenSSL, when the processor is clocked at 1.6GHz, and 2.26x 

faster at the native processor’s frequency. 

In general, all implementations improve when the hashed files are large. The 

reasons are that the overheads for opening files are reduced, and the reads from hard 

drive are sequential. In addition, the S-HASH is faster when the processed files have 

equal lengths (UNIFORM directory). This happens because the computations for all 

the four buffers terminate concurrently, allowing four new buffers to be scheduled 

together. By contrast, in the DIVERSE directory, when a certain buffer is consumed, 

operations on the remaining buffers are stopped until a new buffer is scheduled. 

 

 

 

Fig. 4. Hashing the files in the directory UNIFORM (see explanation in the text). 

Measurements are taken on the Core i5-2500 operating at different CPU frequencies. Panel a 

shows the performance in Cycles per Byte. Panel b shows the performance in MB/sec.  
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hashing equal length messages from any of the three levels of the processor’s cache, 

or from main memory, the 4-buffers SHA-256 S-HASH performs at ~5.2 C/B. This is 

~2.25x times faster than the best known serial hashing implementation. When hashing 

data from the hard-disk, the CPU performance is not the (only) limiting factor, 

because the disk’s read performance becomes a bottleneck. Here, the 4-buffers S-

HASH method executes at effectively 8.65 C/B at the native processor speed, 

3.3GHz. This performance is 2.26x faster than OpenSSL (1.0.1) and 1.67x faster than 

the n-SMS method [‎5] under the same conditions (19.55 C/B and 14.45 C/B, 

respectively).  

We mentioned above two scenarios that require hashing of multiple messages, and 

can enjoy an S-HASH implementation: An OS check of the integrity of its 

components (during boot time), and data de-duplication. In addition, SSL/TLS servers 

that need to support multiple connections could also take advantage of an S-HASH 

implementation, if their software is set to process data from multiple connections in 

parallel. We suggest that the potential performance gain might be worth the hassle of 

tweaking the software to accommodate such parallelization.  

Since the 4-buffers S-HASH operates on 4 buffers in parallel, one might wonder 

why it does not achieve the theoretical four-fold speedup factor, compared to the 

alternative implementation. We mention here two of the reasons: a) the 2
nd

 Generation 

Core
™

 Processors have an efficient ALU unit that can process data at a faster rate than 

the SIMD unit. This closes some of the theoretical four-fold gap that AVX can offer; 

b) SHA-256 algorithm has a significant amount of rotations. Compared to a single 

ALU instruction (ROR), the S-HASH method needs to implement rotation by a flow 

of two (SIMD) shifts, followed by a (SIMD) xor.  

Hashing from a hard-drive introduces a different consideration. The RAID array 

(of two Solid State Drives) that we used in our experiments had throughput of 

400MB/sec. At 3.3GHz, this throughput is equivalent to processing at the rate of 7.15 

C/B.  This explains the results that we obtained: while the processor can hash data at 

5.18 C/B with the 4-buffers S-HASH method if the data read from the cache (or 

memory), this performance cannot be reached when the data is fetched from the disk. 

This is why we get only 8.65 C/B (for the UNIFORM case), but as already noted, this 

is still significantly faster than the serial alternative. When the processor is clocked to 

1.6GHz, the same disk throughput becomes equivalent to processing at the rate of 

3.81 C/B. Thus, on the under-clocked systems, we were able to hash at 6.73 C/B, 

which is closer (only 1.31x slower) to the processor’s hashing capability (5.18 C/B). 

The remaining gap between the system-wise performance and the maximal processing 

capability can be attributed to OS overheads, and to the fact that the accessing data 

stored in the disk is non-sequential (but rather distributed between four areas).  

The soon to be released Haswell architecture [‎9] will support AVX2 with integer 

instructions that operate on 256-bit registers. With this architecture, we could upgrade 

our method to implement 8-buffers S-HASH efficiently - in theory, doubling the 

performance of the 4-buffers S-HASH. However, for hashing data from the disk, we 

note that the SSD drives are not expected to double their throughput (at least in this 

time frame), so we should expect less than a twofold speedup.  

Note that we intentionally did not study an S-HASH implementation of SHA-512. 

The reason is that SHA-512 operates on 64-bit “words”, and therefore, the current 

AVX architecture can support only a 2-buffers SHA-512 S-HASH. This makes the S-
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HASH method less attractive because a) the SHA-512 ALU implementations are 

already fast with the n-SMS method (8.72 C/B);  b) while each SHA-512 Update 

compresses 128 bytes of the message and a SHA-256 Update compresses only 64 

bytes, SHA-512 involves 1.25x more rounds in the processing than SHA-256 (80 

rounds versus 64). We therefore speculate that SHA-512 S-HASH implementations 

would become useful only on the AVX2 architectures (doing a 4-buffers S-HASH), 

but will be slower than 8-buffers SHA-256 S-HASH on that architecture. 

We conclude this study by stating that our results show that for some usages, 

SHA-256 is significantly faster than commonly perceived.  

Finally, we add a few related remarks on the five SHA3 finalists [‎13]. Skein and 

Keccak use 64-bit words, and the remark we made on SHA-512 holds similarly. 

Blake, JH and Grøstl, already use SIMD instructions in their better performing 

implementations. Therefore, applying the S-HASH method to these algorithms would 

create a delicate tradeoff with the S-HASH and the benefits of their current use of the 

SIMD instructions. Such optimization would be an interesting study to carry out.  
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http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://openssl.org/
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15. The Chromium Project, Verified Boot.  

http://www.chromium.org/chromium-os/chromiumos-design-docs/verified-boot  

 

7 Appendix : files size distribution for the “DIVERSE” director 

Table 1. The lengths (in bytes) of the 350 files in the DIVERSE directory, when they are sorted 

by an alphabetic order of the file-names (from left column top to right column bottom). 

14,336 

5,120 

68,096 

227,840 

497,152 

61,008 

80,384 

18,432 

8,704 

286,720 

47,104 

14,976 

14,720 

293,376 

740,864 

1,481,216 

178,752 

17,664 

38,912 

30,320 

27,008 

28,736 

288,336 

48,840 

65,088 

70,168 

143,792 

350,208 

195,024 

77,888 

78,848 

158,720 

271,872 

54,824 

15,360 

284,736 

3 

7,533,568 

7,533,568 

122,960 

651,264 

277,624 

169,080 

50,808 

256,120 

7,680 

7,680 

8,192 

41,472 

303,464 

307,560 

311,640 

311,656 

30,760 

393,264 

13,104 

64,080 

64,592 

32,896 

89,600 

21,760 

292,864 

740,864 

1,485,312 

146,036 

112,128 

172,544 

654,928 

42,064 

412,672 

10,240 

334,416 

12,288 

491,088 

339,536 

182,864 

499,200 

60,416 

15,440 

15,440 

64,512 

60,928 

106,576 

194,128 

28,752 

61,440 

87,632 

97,856 

23,040 

24,128 

155,728 

270,848 

28,240 

6,656 

45,056 

90,624 

95,232 

41,984 

72,192 

118,784 

552,448 

98,344 

132,648 

35,104 

21,160 

468,480 

92,160 

147,456 

45,568 

17,488 

460,504 

21,584 

39,504 

24,144 

514,048 

102,400 

40,448 

73,280 

116,224 

5,632 

55,128 

16,896 

98,816 

982,912 

265,088 

301,784 

294,064 

530,496 

9,728 

3,286,016 

195,072 

204,800 

29,696 

70,224 

34,304 

24,576 

290,368 

23,104 

55,376 

223,448 

3,440,660 

646 

31,232 

122,368 

26,624 

100,864 

76,288 

46,592 

32,896 

30,208 

751,616 

14,416 

105,472 

537,112 

410,688 

39,024 

6,150,304 

44,112 

16,960 

62,464 

82,944 

116,224 

120,320 

17,920 

20,544 

119,680 

50,768 

33,280 

243,712 

95,312 

153,160 

20,992 

60,928 

114,752 

106,560 

65,600 

115,776 

113,152 

22,016 

17,024 

35,392 

158,712 

228,752 

9,984 

481,504 

642,952 

75,672 

100,904 

283,744 

40,448 

30,208 

49,216 

31,232 

94,784 

155,216 

77,312 

140,800 

157,696 

287,744 

126,464 

30,272 

140,352 

26,112 

8,192 

15,424 

224,832 

11,136 

7,168 

6,784 

367,168 

32,320 

8,064 

60,496 

947,776 

35,328 

24,064 

56,320 

164,352 

57,856 

44,544 

259,072 

374,864 

51,264 

44,032 

24,576 

1,659,984 

6,144 

149,056 

167,488 

318,976 

72,832 

131,584 

97,280 

75,840 

183,872 

12,352 

48,720 

220,752 

50,768 

230,400 

60,416 

40,512 

1,524,816 

128,592 

46,592 

14,848 

130,048 

92,672 

111,616 

83,968 

309,248 

24,064 

165,376 

204,800 

214,096 

158,720 

55,296 

145,920 

11,264 

76,800 

104,016 

29,696 

171,600 

109,056 

23,040 

23,552 

94,208 

26,624 

14,336 

13,824 

14,336 

16,896 

43,584 

80,464 

93,184 

20,992 

15,472 

35,456 

3,531,136 

19,008 

426,496 

461,312 

401,920 

161,792 

24,656 

185,936 

34,896 

68,864 

12,496 

23,552 

30,088 

199,168 

199,168 

192,256 

192,256 

29,184 

1,897,328 

44,544 

26,624 

15,872 

23,552 

99,840 

62,544 

38,400 

38,400 

125,440 

41,536 

327,680 

48,640 

9,728 

19,968 

98,816 

100,352 

7,936 

51,712 

343,040 

25,600 

324,608 

25,088 

31,744 

30,720 

184,832 

36,432 

29,184 

29,184 

217,680 

17,488 

129,024 

200,272 

6,656 

46,672 

71,760 

363,584 

294,992 

24,248 

161,872 

24,576 

59,904 

17,920 

27,776 

88,576 

42,496 

21,056 

12,800 

22,096 

52,304 

40,448 

14,336 

16,464 

21,504 
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