
Simultaneous hashing of multiple messages

Shay Gueron
1,2

, Vlad Krasnov
2

1 Department of Mathematics, University of Haifa, Israel
2 Intel Corporation, Israel Development Center, Haifa, Israel

July 3, 2012

Abstract. We describe a method for efficiently hashing multiple messages of

different lengths. Such computations occur in various scenarios, and one of

them is when an operating system checks the integrity of its components during

boot time. These tasks can gain performance by parallelizing the computations

and using SIMD architectures. For such scenarios, we compare the performance

of a new 4-buffers SHA-256 S-HASH implementation, to that of the standard

serial hashing. Our results are measured on the 2nd Generation Intel® Core™

Processor, and demonstrate SHA-256 processing at effectively ~5.2 Cycles per

Byte, when hashing from any of the three cache levels, or from the system

memory. This represents speedup by a factor of 3.42x compared to OpenSSL

(1.0.1), and by 2.25x compared to the recent and faster n-SMS method. For

hashing from a disk, we show an effective rate of ~6.73 Cycles/Byte, which is

almost 3 times faster than OpenSSL (1.0.1) under the same conditions. These

results indicate that for some usage models, SHA-256 is significantly faster

than commonly perceived.

Keywords: SHA-256, SHA-512, SHA3 competition, SIMD architecture,

Advanced Vector Extensions architectures, AVX, AVX2.

1 Introduction

The performance of hash functions is important in various situations and platforms.

One example is a server workload: authenticated encryption in SSL/TLS sessions,

where hash functions are used for authentication, in HMAC mode. This is one reason

why the performance of SHA-256 on modern x86_64 architectures was defined as a

baseline for the SHA3 competition [‎13].

Traditionally, the performance of hash functions is measured by hashing a single

message (of some length) on a target platform. For example, consider the 2
nd

Generation Intel
®
 Core™ Processors. The OpenSSL (1.0.1) implementation hashes a

single buffer (of length 8KB) at 17.55 Cycles per Byte (C/B hereafter). Recently, [‎5]

improved the performance of SHA-256 with an algorithm that parallelizes the

message schedule, and the use of SIMD architectures, moving the performance

baseline to 11.58 C/B (code version from April 2012 is available from [‎6], and will be

updated soon) on the modern processors, when hashing from the cache.

2 Shay Gueron, Vlad Krasnov

In this paper, we investigate the possibility of accelerating SHA-256 for some

scenarios, and are interested in optimizing the following computation: hashing a

number (k) of independent messages, to produce k different digests. We investigate

the advantage of SIMD architectures for these parallelizable computations.

Such workloads appear, for example, during the boot process of an operating

system, where it checks the integrity of its components (see [‎15] for example). This

involves computing multiple hashes, and comparing them to expected values. Another

situation that involves hashing of multiple independent messages is data de-

duplication, where large amounts of data are scanned (typically in chunks of fixed

sizes) in order to identify duplicates (see e.g., [‎2]). In these two scenarios, the data

typically reside on the hard disk, but hashing multiple independent messages could

also emerge in situations where the data is in the cache/memory.

A SIMD based implementation of hash algorithms was first proposed (in 2004)

and described in detail by Aciiçmez [‎1]. He studied the computations of SHA-1,

SHA-256 and SHA-512, and his investigation was carried out on Intel
®
 Pentium™ 4,

using SSE2 instructions. Two approaches for gaining performance were attempted: a)

using SIMD instructions to parallelize some of the computations of the message

schedule of these hash algorithms, when hashing a single message (see also later

works (on SHA-1) along these lines, in [‎4] and [‎12]); b) using SIMD instructions to

parallelize hash computations of several independent messages. Aciiçmez reports that

he could not improve the performance of hashing a single buffer, using the SIMD

instructions (while this could not be done on the Pentium 4, we speculate that it would

be possible on more recent architectures). However, he reports speedup by a factor of

1.71x for simultaneous hashing of four buffers, with SHA-256 (speedup by a factor of

2.3x for SHA-512 is also reported, but it is less interesting in our context, because the

comparison baseline was a (slow) 32-bit implementation).

In this paper we expand the study conducted by Aciiçmez, by demonstrating the

performance of Simultaneous Hashing of multiple independent messages, on

contemporary processors. We detail a method for a “Simultaneous Update” that

facilitates hashing of independent messages of arbitrary sizes. To account for different

usages, we investigate the performance of hashing multiple messages (of variable

sizes) from different cache hierarchies, system memory, and from the hard drive.

2 Preliminaries and notations

The detailed definition of SHA-256 can be found in FIPS180-2 publication [‎3].

Schematically, the computational flow of SHA-256 can be viewed as follows: “Init”

(setting the initial values), a sequence of “Update” steps (compressing a 64 bytes bloc

the message, and updating the digest value), and a “Finalize” step (takes care of the

message padding). The padding requires either one or two calls to the Update

function, depending on the message’s length (see more details in [‎5]). For SHA-256,

the performance is almost linearly proportional to the number (N) of Update function

calls, which. For a message of length bytes, the value of N is:

SHA-256:

Simultaneous hashing of multiple messages 3

For sufficiently long messages, we can approximate N~floor (length/64). For

example, this approximation for a 4KB message gives floor (length/64) = 64, while

actual hashing of a 4KB message requires 65 Update function calls (i.e., a ~1.5%

deviation).

3 Simultaneous hashing (S-HASH) of multiple messages

SIMD architectures [‎7] are designed to execute, in parallel, the same operations on

several independent chunks of data (called “elements”). Modern architectures have

variants of SIMD instructions that operate on elements of sizes 1, 2, 4, or 8 bytes. By

the nature of the algorithms, SHA-256 (and SHA-1) requires operations on 4 bytes

elements, while SHA-512 requires operations on 8 bytes elements.

Fig. 1 describes the Simultaneous Hashing algorithm (S-HASH) that hashes k

messages and generates k digests, with some hash function. Suppose that the

implemented hash function operates on t-bit “words” (elements), and that the

architecture has s-bit SIMD registers. Then, the number of words that fit into a SIMD

register is m = s/t, which we assume to be an integer. We also assume that k > m.

Algorithm 1 starts with the Initialize step for the first m buffers. Then, it invokes the

“Simultaneous Update” function (for the specific hash function) every time there are

m blocks ready for processing. This is repeated until the shortest buffer (from the m

processed buffers) is fully consumed. At this point, a padding block is fed to the

Simultaneous Update function, to “Finalize” (that buffer). If the hash is already

finalized, a block from a new buffer is fed (after the proper “Init”).

Here, we use the AVX architecture [‎7], with 128-bit registers (i.e., s=128). SHA-

256 (and SHA-1) algorithms have t=32, while SHA-512 has t=64, implying m=4 for

SHA-1 and SHA-256, and m=2 for SHA512. For our SHA-256 study, we can hash 4

buffers in parallel. We call this implementation 4-buffers SHA-256 S-HASH.

The near-future AVX2 architecture [‎9] has integer instructions that operate on

256-bit registers. This allows for doubling the number of independent messages that

can be hashed in parallel and would lead to, for example, 8-buffers SHA-256 S-

HASH or 4-buffers SHA-512 S-HASH.

4 Shay Gueron, Vlad Krasnov

Algorithm 1: Simultaneous Hashing (S-HASH)

Input:

Buffers – a list with pointers to k buffers to be hashed.

Lengths – a list with the lengths (in bytes) of the k buffers.

Hashes – a list with pointers to store the k generated hash values.

Notations:

The number of t-bit “words” (elements) that fit in a register is m. (for

SHA-256, t=32, and with AVX, m=128/32=4).

It is assumed that k > m.

The number of bytes, hashed by one “Update” operation is denoted by p.

Output: k hash values of the k buffers, stored the at memory locations

pointed by Hashes.

Flow:

Init:

L[0] = Lengths[0]; L[1] = Lengths[1];… L[m-1] = Lengths[m-1]

B[0] = Buffers[0]; B[1] = Buffers[1]; … B[m-1] = Buffers[m-1]

H[0] = Hashes[0]; H[1] = Hashes[1]; … H[m-1] = Hashes[m-1]

Last[0] = 0; Last[1] = 0; … Last[m-1] = 0

HashInit(Hashes[0])

HashInit(Hashes[1])

…

HashInit(Hashes[m-1])

i = m;

Simultaneous Update:

Repeat

n = min(L)/p

S-UPDATE(H, B, n)

L = L – [n×p|n×p|…|n×p]

For j = 0 to m-1

If L[j]<p AND Last[j]=0 then

LastBlock[j] = PreparePaddingBlock(B[j])

B[j] = LastBlock[j]

Last[j] = 1

L[j] = Length(LastBlock[j])

Else If L[j]<p AND Last[j]=1 then

If i=k then

Break

Else

L[j] = Lengths[i]

B[j] = Buffs[i]

H[j] = Hashes[i]

Last[j] = 0

HashInit(Hashes[i])

i++

End If

End If

End For

End Repeat

If unfinished buffers still remain, finish hashing serially

Fig. 1. The Simultaneous Hashing (S-HASH) algorithm.

Simultaneous hashing of multiple messages 5

4 Results

This section describes the 4-buffers SHA-256 S-HASH results

4.1 The system’s characteristics

The system that was used for generating the reported measurements had the following

characteristics:

─ An Intel
®
 Core™ i5-2500 processor (2

nd
 Generation Intel

®
 Core™ Processor;

Sometimes referred to as Architecture Codename “Sandy Bridge”)

─ 8GB RAM (DDR3 1600, 2 Channels).

─ A RAID0 array of two Intel
®
 SSD 320 drives, each one of 80GB and combined

throughput of 400MB/sec (indicated by “hdparm –t” [‎10]).

─ Fedora 16 OS.

All the runs were carried out on a system where the Intel
®

 Turbo Boost

Technology, the Intel
®

 Hyper-Threading Technology, and the Enhanced Intel

Speedstep
®
 Technology, were disabled.

4.2 Simultaneous hashing of multiple 4KB buffers, from different cache levels

and main memory

For profiling the performance of the 4-buffers SHA-256 S-HASH, we wrote a new

implementation which processes four buffers in parallel. In order to estimate the

advantage of the parallelization, we compare the resulting performance to serial

implementations that hash the same amount of data.

To measure the performance of hashing data that resides in different cache levels,

or in memory, we note that the processor has ([‎8]): a) First Level Data Cache of 32KB

(per core); b) Second Level Cache of 256KB (per core); c) Last Level Cache of 6MB

(shared among all the cores). Therefore,

─ For data that resides in the First Level Cache, we hashed a total of 16KB of

data, split to 4 chunks of 4KB each.

─ For data that resides in the Second Level Cache, we hashed a total of 256KB of

data, split to 64 chunks of 4KB each.

─ For data that resides in the Last Level Cache, we hashed a total of 2MB of data,

split to 512 chunks of 4KB each.

─ For data that resides in the main memory, we hashed a total of 32MB of data,

split to 8192 chunks of 4KB each.

Prior to the actual measurements, we ran the hash, in a loop, 500 times, in order to

make sure that our data resides in the desired cache level (or memory).

For comparison, we used the OpenSSL (version 1.0.1) SHA-256 (serial) [‎14]

implementation, and the faster implementation, based on the n-SMS method [‎5] (a

version from April 2012, can be retrieved from [‎6]; An update will be posted soon).

The results, illustrated in Fig. 2, show that hashing from all three cache levels can

be performed at roughly the same performance, and there is only some small

performance degradation when the data is hashed from the main memory. The 4-

6 Shay Gueron, Vlad Krasnov

buffers SHA-256 S-HASH method is 3.42x faster than OpenSSL (1.0.1), and 2.25x

times faster than the n-SMS method.

Fig. 2. SHA-256 hashing from different cache levels and memory, on the Intel® Core™ i5-

2500 (Architecture Codename Sandy Bridge). The performance of the 4-buffers SHA-256 S-

HASH is compared to the (standard) serial hashing with the OpenSSL 1.0.1 implementation,

and to the n-SMS method (see explanation in the text).

4.3 Simultaneous hashing of files from the hard-drive

The following results account for the performance of hashing from the disk. The

numbers were obtained using the following methodology.

For the experiments, we prepared two directories with a different combination of

files. The first directory (DIVERSE hereafter) contained 350 files occupying 79MB

(82,833,132 bytes) in total
(1)

. The files sizes range from 3 Bytes to 7.18MB

(7,533,568 bytes), with the average size of 0.22MB (236,666 bytes). The detailed size

distribution of the file is provided in the Appendix. The second directory (UNIFORM

hereafter) contained 8 (large) files of equal size, each one of 17.76MB (18,623,835

bytes)
(2)

 For each directory, we prepared, in advance, the list of its files.

To measure the performance of hashing from the hard drive, we flushed the OS

“pagecache” and “dentries” and “inodes” caches, before the measurements were taken

(using the Linux directive echo 3 > /proc/sys/vm/drop_caches) [‎11].

We measured the following operations: scanning the list (in the prescribed order),

opening the files in the list, reading the size of each file, mapping the files to memory,

calculating the SHA-256 values and storing them in appropriate location.

(1) These files were the drivers from a Windows 7 directory “Windows\Systen32\drivers\”.

(2) The files were copies of the same file, namely “supercop-20120219.tar.gz”, retrieved from
http://hyperelliptic.org/ebats/supercop-20120219.tar.bz2).

1
7

.7
2

1
1

.6
8

5
.1

8

1
7

.7
3

1
1

.7
3

5
.1

8

1
7

.7
3

1
1

.7
3

5
.1

8

1
7

.8
0

1
1

.8
1

5
.2

1

0

2

4

6

8

10

12

14

16

18

20

OpenSSL 1.0.1 n-SMS 4-buffers S-HASH

16KB (L0)

256KB (L1)

2MB (L2)

32MB (Memory)

http://hyperelliptic.org/ebats/supercop-20120219.tar.bz2

Simultaneous hashing of multiple messages 7

Fig. 3, top panel, provides the performance for the “DIVERSE” directory in C/B

(which is a frequency-agnostic metric). The performance is shown for several

processor frequencies, to demonstrate how the hard-drive’s throughput limits the

overall observed performance. The figure shows that at the native processor speed

(3.3GHz), the S-HASH method outperforms the OpenSSL (1.0.1) implementation by

a factor of 1.73x. When the processor is down-clocked to 1.6GHz, all three

implementations improve their C/B count, but the S-HASH improves by a larger

margin, becoming 2.16x faster than OpenSSL. The bottom panel of Fig. 3 shows the

same performance, measured in MB/sec. It is interesting to observe that although the

frequency of the processor is reduced by factor of two, from 3.3GHz to 1.6GHz, the

S-HASH throughput reduces only by a factor of 1.28x.

Fig. 3. Hashing the files in the directory DIVERSE (see explanation in the text). Measurements

are taken on the Core i5-2500, operating at different CPU frequencies. Panel a shows the

performance in Cycles per Byte. Panel b shows the performance in MB/sec.

Fig. 4 illustrates the performance for the UNIFORM directory. In this scenario,

Tte performance of OpenSSL and of the n-SMS method are not limited by hard drive,

because we see that reducing frequency does not improve the speed in C/B. On the

other hand, the faster 4-buffers SHA-256 S-HASH implementation is affected by the

hard drives. It improves (in C/B) when the frequency is reduced, although not as

3
0.3

2

2
7.46

23.96

23.41

26.15

22.64 18.82

18.35

17.53

14.78

11.21

10.85

0

5

10

15

20

25

30

35

3.3 2.6 1.7 1.6

C
P

U
 C

yc
le

s/
B

yt
e

CPU frequency in GHz

OpenSSL 1.0.1

n-SMS

4-buffers S-
HASH

103.8
0

90.30 67.66

6
5.1

8

120.35

109.5
2

86.1
4

8
3.1

5

179
.53

167.76

144.63

140.63

0

20

40

60

80

100

120

140

160

180

200

3.3 2.6 1.7 1.6

M
B

/S
ec

CPU frequency in GHz

OpenSSL 1.0.1

n-SMS

4-buffers S-
HASH

8 Shay Gueron, Vlad Krasnov

much as it does in the DIVERSE test. The figure shows that the 4-buffers S-HASH is

2.86x faster than OpenSSL, when the processor is clocked at 1.6GHz, and 2.26x

faster at the native processor’s frequency.

In general, all implementations improve when the hashed files are large. The

reasons are that the overheads for opening files are reduced, and the reads from hard

drive are sequential. In addition, the S-HASH is faster when the processed files have

equal lengths (UNIFORM directory). This happens because the computations for all

the four buffers terminate concurrently, allowing four new buffers to be scheduled

together. By contrast, in the DIVERSE directory, when a certain buffer is consumed,

operations on the remaining buffers are stopped until a new buffer is scheduled.

Fig. 4. Hashing the files in the directory UNIFORM (see explanation in the text).

Measurements are taken on the Core i5-2500 operating at different CPU frequencies. Panel a

shows the performance in Cycles per Byte. Panel b shows the performance in MB/sec.

5 Conclusion

We illustrated the general S-HASH approach, and demonstrated the advantage of a 4-

buffers SHA-256 S-HASH, running on the AVX architecture. The speedups we

observe depend on the location of the data, but are significant in all cases. When

1
9.5

5

1
9.3

9

1
9.2

9

1
9

.2
6

14.45

14.14

13
.97

13.9

8.65

7.52

6.81

6.73

0

5

10

15

20

25

3.3 2.6 1.7 1.6

C
P

U
 C

yc
le

s/
B

yt
e

CPU frequency in GHz

OpenSSL 1.0.1

n-SMS

4-buffers S-
HASH

160.9
8

12
7.8

8

84.05

79.23

217.79

175.36
 1
1

6.0
5

1
09.7

8

363.83

329
.73

238.07

226.73

0

50

100

150

200

250

300

350

400

3.3 2.6 1.7 1.6

M
B

/S
ec

CPU frequency in GHz

OpenSSL 1.0.1

n-SMS

4-buffers S-
HASH

Simultaneous hashing of multiple messages 9

hashing equal length messages from any of the three levels of the processor’s cache,

or from main memory, the 4-buffers SHA-256 S-HASH performs at ~5.2 C/B. This is

~2.25x times faster than the best known serial hashing implementation. When hashing

data from the hard-disk, the CPU performance is not the (only) limiting factor,

because the disk’s read performance becomes a bottleneck. Here, the 4-buffers S-

HASH method executes at effectively 8.65 C/B at the native processor speed,

3.3GHz. This performance is 2.26x faster than OpenSSL (1.0.1) and 1.67x faster than

the n-SMS method [‎5] under the same conditions (19.55 C/B and 14.45 C/B,

respectively).

We mentioned above two scenarios that require hashing of multiple messages, and

can enjoy an S-HASH implementation: An OS check of the integrity of its

components (during boot time), and data de-duplication. In addition, SSL/TLS servers

that need to support multiple connections could also take advantage of an S-HASH

implementation, if their software is set to process data from multiple connections in

parallel. We suggest that the potential performance gain might be worth the hassle of

tweaking the software to accommodate such parallelization.

Since the 4-buffers S-HASH operates on 4 buffers in parallel, one might wonder

why it does not achieve the theoretical four-fold speedup factor, compared to the

alternative implementation. We mention here two of the reasons: a) the 2
nd

 Generation

Core
™

 Processors have an efficient ALU unit that can process data at a faster rate than

the SIMD unit. This closes some of the theoretical four-fold gap that AVX can offer;

b) SHA-256 algorithm has a significant amount of rotations. Compared to a single

ALU instruction (ROR), the S-HASH method needs to implement rotation by a flow

of two (SIMD) shifts, followed by a (SIMD) xor.

Hashing from a hard-drive introduces a different consideration. The RAID array

(of two Solid State Drives) that we used in our experiments had throughput of

400MB/sec. At 3.3GHz, this throughput is equivalent to processing at the rate of 7.15

C/B. This explains the results that we obtained: while the processor can hash data at

5.18 C/B with the 4-buffers S-HASH method if the data read from the cache (or

memory), this performance cannot be reached when the data is fetched from the disk.

This is why we get only 8.65 C/B (for the UNIFORM case), but as already noted, this

is still significantly faster than the serial alternative. When the processor is clocked to

1.6GHz, the same disk throughput becomes equivalent to processing at the rate of

3.81 C/B. Thus, on the under-clocked systems, we were able to hash at 6.73 C/B,

which is closer (only 1.31x slower) to the processor’s hashing capability (5.18 C/B).

The remaining gap between the system-wise performance and the maximal processing

capability can be attributed to OS overheads, and to the fact that the accessing data

stored in the disk is non-sequential (but rather distributed between four areas).

The soon to be released Haswell architecture [‎9] will support AVX2 with integer

instructions that operate on 256-bit registers. With this architecture, we could upgrade

our method to implement 8-buffers S-HASH efficiently - in theory, doubling the

performance of the 4-buffers S-HASH. However, for hashing data from the disk, we

note that the SSD drives are not expected to double their throughput (at least in this

time frame), so we should expect less than a twofold speedup.

Note that we intentionally did not study an S-HASH implementation of SHA-512.

The reason is that SHA-512 operates on 64-bit “words”, and therefore, the current

AVX architecture can support only a 2-buffers SHA-512 S-HASH. This makes the S-

10 Shay Gueron, Vlad Krasnov

HASH method less attractive because a) the SHA-512 ALU implementations are

already fast with the n-SMS method (8.72 C/B); b) while each SHA-512 Update

compresses 128 bytes of the message and a SHA-256 Update compresses only 64

bytes, SHA-512 involves 1.25x more rounds in the processing than SHA-256 (80

rounds versus 64). We therefore speculate that SHA-512 S-HASH implementations

would become useful only on the AVX2 architectures (doing a 4-buffers S-HASH),

but will be slower than 8-buffers SHA-256 S-HASH on that architecture.

We conclude this study by stating that our results show that for some usages,

SHA-256 is significantly faster than commonly perceived.

Finally, we add a few related remarks on the five SHA3 finalists [‎13]. Skein and

Keccak use 64-bit words, and the remark we made on SHA-512 holds similarly.

Blake, JH and Grøstl, already use SIMD instructions in their better performing

implementations. Therefore, applying the S-HASH method to these algorithms would

create a delicate tradeoff with the S-HASH and the benefits of their current use of the

SIMD instructions. Such optimization would be an interesting study to carry out.

6 References

1. Aciicmez, O.: Fast Hashing on Pentium SIMD Architecture. M.S. Thesis, School of

Electrical Engineering and Computer Science, Oregon State University (2004).

2. Chuanyi Liu, Yingping Lu, Chunhui Shi, Guanlin Lu, David H.C. Du , Dong-Sheng

Wang: ADMAD: Application-Driven Metadata Aware De-duplication Archival

Storage System. Fifth IEEE International Workshop on Storage Network

Architecture and Parallel I/Os, 29-35 (2008).

3. Federal Information Processing Standards Publication 180-2: Secure Hash Standard.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

4. Gaudet, D.: SHA1 using SIMD techniques, http://arctic.org/~dean/crypto/sha1.html.

5. Gueron, S., Krasnov, V.: Parallelizing message schedules to accelerate the

computations of hash functions (2012), http://eprint.iacr.org/2012/067.pdf

6. Gueron, S., Krasnov, V.: [PATCH] Efficient implementations of SHA256 and

SHA512, using the Simultaneous Message Scheduling method (2012).

http://rt.openssl.org/Ticket/Display.html?id=2784&user=guest&pass=guest

7. Intel: Intel Advanced Vector Extensions Programming Reference.

http://software.intel.com/file/36945

8. Intel: 2nd Generation Intel® Core™ Processor Family Desktop Datasheet, Vol. 1, page

11. http://www.intel.com/content/www/us/en/processors/core/2nd-gen-core-desktop-

vol-1-datasheet.html,

9. Intel (M. Buxton): Haswell New Instruction Descriptions Now Available!

 http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-

descriptions-now-available/

10. Linux Manual, hdparm, http://linux.die.net/man/8/hdparm

11. LinuxMM: Drop Caches, http://linux-mm.org/Drop_Caches

12. Locktyukhin, M.: Improving the Performance of the Secure Hash Algorithm (SHA-

1), Intel, http://software.intel.com/en-us/articles/improving-the-performance-of-the-

secure-hash-algorithm-1/ (March 2010).

13. NIST, cryptographic hash Algorithm Competition.

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

14. OpenSSL, The Open Source toolkit for SSL/TLS, http://openssl.org/.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://arctic.org/~dean/crypto/sha1.html
http://eprint.iacr.org/2012/067.pdf
http://rt.openssl.org/Ticket/Display.html?id=2784&user=guest&pass=guest
http://software.intel.com/file/36945
http://www.intel.com/content/www/us/en/processors/core/2nd-gen-core-desktop-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/2nd-gen-core-desktop-vol-1-datasheet.html
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://linux.die.net/man/8/hdparm
http://linux-mm.org/Drop_Caches
http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://openssl.org/

Simultaneous hashing of multiple messages 11

15. The Chromium Project, Verified Boot.

http://www.chromium.org/chromium-os/chromiumos-design-docs/verified-boot

7 Appendix : files size distribution for the “DIVERSE” director

Table 1. The lengths (in bytes) of the 350 files in the DIVERSE directory, when they are sorted

by an alphabetic order of the file-names (from left column top to right column bottom).

14,336

5,120

68,096

227,840

497,152

61,008

80,384

18,432

8,704

286,720

47,104

14,976

14,720

293,376

740,864

1,481,216

178,752

17,664

38,912

30,320

27,008

28,736

288,336

48,840

65,088

70,168

143,792

350,208

195,024

77,888

78,848

158,720

271,872

54,824

15,360

284,736

3

7,533,568

7,533,568

122,960

651,264

277,624

169,080

50,808

256,120

7,680

7,680

8,192

41,472

303,464

307,560

311,640

311,656

30,760

393,264

13,104

64,080

64,592

32,896

89,600

21,760

292,864

740,864

1,485,312

146,036

112,128

172,544

654,928

42,064

412,672

10,240

334,416

12,288

491,088

339,536

182,864

499,200

60,416

15,440

15,440

64,512

60,928

106,576

194,128

28,752

61,440

87,632

97,856

23,040

24,128

155,728

270,848

28,240

6,656

45,056

90,624

95,232

41,984

72,192

118,784

552,448

98,344

132,648

35,104

21,160

468,480

92,160

147,456

45,568

17,488

460,504

21,584

39,504

24,144

514,048

102,400

40,448

73,280

116,224

5,632

55,128

16,896

98,816

982,912

265,088

301,784

294,064

530,496

9,728

3,286,016

195,072

204,800

29,696

70,224

34,304

24,576

290,368

23,104

55,376

223,448

3,440,660

646

31,232

122,368

26,624

100,864

76,288

46,592

32,896

30,208

751,616

14,416

105,472

537,112

410,688

39,024

6,150,304

44,112

16,960

62,464

82,944

116,224

120,320

17,920

20,544

119,680

50,768

33,280

243,712

95,312

153,160

20,992

60,928

114,752

106,560

65,600

115,776

113,152

22,016

17,024

35,392

158,712

228,752

9,984

481,504

642,952

75,672

100,904

283,744

40,448

30,208

49,216

31,232

94,784

155,216

77,312

140,800

157,696

287,744

126,464

30,272

140,352

26,112

8,192

15,424

224,832

11,136

7,168

6,784

367,168

32,320

8,064

60,496

947,776

35,328

24,064

56,320

164,352

57,856

44,544

259,072

374,864

51,264

44,032

24,576

1,659,984

6,144

149,056

167,488

318,976

72,832

131,584

97,280

75,840

183,872

12,352

48,720

220,752

50,768

230,400

60,416

40,512

1,524,816

128,592

46,592

14,848

130,048

92,672

111,616

83,968

309,248

24,064

165,376

204,800

214,096

158,720

55,296

145,920

11,264

76,800

104,016

29,696

171,600

109,056

23,040

23,552

94,208

26,624

14,336

13,824

14,336

16,896

43,584

80,464

93,184

20,992

15,472

35,456

3,531,136

19,008

426,496

461,312

401,920

161,792

24,656

185,936

34,896

68,864

12,496

23,552

30,088

199,168

199,168

192,256

192,256

29,184

1,897,328

44,544

26,624

15,872

23,552

99,840

62,544

38,400

38,400

125,440

41,536

327,680

48,640

9,728

19,968

98,816

100,352

7,936

51,712

343,040

25,600

324,608

25,088

31,744

30,720

184,832

36,432

29,184

29,184

217,680

17,488

129,024

200,272

6,656

46,672

71,760

363,584

294,992

24,248

161,872

24,576

59,904

17,920

27,776

88,576

42,496

21,056

12,800

22,096

52,304

40,448

14,336

16,464

21,504

(SHA256_simultanious_hashing_2012_07_03_v02.docx)

http://www.chromium.org/chromium-os/chromiumos-design-docs/verified-boot

