
A Unified Indifferentiability Proof for Permutation- or
Block Cipher-Based Hash Functions

Anne Canteaut2,3, Thomas Fuhr1,
María Naya-Plasencia4, Pascal Paillier5, Jean-René Reinhard1, Marion Videau6

1 ANSSI
2 INRIA Paris-Rocquencourt

3 Technical University of Denmark
4 University of Versailles-Saint Quentin en Yvelines

5 CryptoExperts
6 University of Lorraine, CNRS, INRIA Nancy-Grand Est / LORIA

Abstract. In the recent years, several hash constructions have been introduced that aim at achieving
enhanced security margins by strengthening the Merkle-Damgård mode. However, their security analysis
have been conducted independently and using a variety of proof methodologies. This paper unifies these
results by proposing a unique indifferentiability proof that considers a broadened form of the general
compression function introduced by Stam at FSE09. This general definition enables us to capture in
a realistic model most of the features of the mode of operation (e.g., message encoding, blank rounds,
message insertion,...) within the pre-processing and post-processing functions. Furthermore, it relies on
an inner primitive which can be instantiated either by an ideal block cipher, or by an ideal permuta-
tion. Then, most existing hash functions can be seen as the Chop-MD construction applied to some
compression function which fits the broadened Stam model. Our result then gives the tightest known
indifferentiability bounds for several general modes of operations, including Chop-MD, Haifa or sponges.
Moreover, we show that it applies in a quite automatic way, by providing the security bounds for 7 out
of the 14 second round SHA-3 candidates, which are in some cases improved over previously known ones.

Keywords: hash function, indifferentiability, SHA-3.

1 Introduction

The vast majority of hash function designs rely on the iteration of a compression function on a
sequence of message blocks, based on the principle introduced by Merkle and Damgård [29, 22].
However, the publication since 2004 of new generic attacks on the Merkle-Damgård (MD) construc-
tion (multi-collisions, 2nd-preimage attacks for long messages, herding attacks. . .) has boosted the
quest for improvements of the original MD mode that would reach a significantly enhanced level
of resistance. These variants have opted for various strategies: doubling the internal state size [26],
ensuring a prefix-free message encoding by adding a final stage or a block counter in the mes-
sage [21], making use of a block counter whose treatment differs from the other input bits [12]. . .
They have also been combined with the different ways to derive a compression function from a
block cipher, including the well-known PGV modes [30]. Even much deeper modifications have been
proposed: instead of an internal block cipher, the sponge construction [8] uses an internal unkeyed
permutation.

All these works have led to a huge variety of modes of operation, as reflected by the design choices
made by the 64 submissions to the SHA-3 competition. But, all these constructions obviously do not
provide the same security level and the security of some of them remain somewhat obscure. In order
to guarantee that their proposal is based on a sound construction, the designers should then provide
some security arguments and prove that the way the internal block cipher or permutation is iterated
does not introduce any weakness in the hash function. For this purpose, the best studied modes of
operation have been proved to be indifferentiable from a random oracle: indifferentiability results
for several variants of the Merkle-Damgård construction are given in [21] and then refined in [19,
18], the case of Haifa has been investigated in [10] while similar results for the sponge construction
and its generalization can be found in [9, 6]. Also, some of the SHA-3 proposals include an ad-hoc
indifferentiability proof dedicated to the underlying particular mode of operation, e.g., [7, 16, 3, 11].

The dispersion of these results and the fact that these proofs are highly technical and hard to
check make it difficult to evaluate the security achieved by some of these constructions: collecting all
related results clearly requires an important effort [3, 1]. Also, the obtained indifferentiability bounds
are relevant only with a clear description of the components of the hash function which have been
idealized in the proof. This situation also makes it impossible to compare the respective advantages
of the different modes of operation, and quantifying the security brought by some features, like
adding a block counter to a fraction of the chaining variable, or inserting blank rounds, is still
an open problem in some cases. Moreover, the lack of a synthetic and comprehensive view of these
results restrains the possibilities to capture the influence of some non ideal properties of the internal
primitives on the security of the mode of operation. This line of work, introduced in [17], and followed
in [15, 2], has not yet been furthered satisfactorily, surely due to the already technical and complex
proofs that had to be adapted to include these non-random properties. Then, it appears that any
progress in evaluating the security achieved by all these constructions and their variants requires
a global and synthetic approach. An important step in this direction was taken by Stam [32] who
introduced a very general form for blockcipher-based compression functions, which encompasses the
PGV compression functions. The collision- and preimage-resistance of PGV constructions had been
studied by Black et al. in [13]. Stam then generalized this study to his more generic framework. He
obtained [32, 14], under some assumptions on the pre-processing and post-processing parts of the
compression function, general results on the resistance of blockcipher-based modes to collision and
preimage attacks. A similar approach has been followed in [6] in the case of compression functions
based on an unkeyed permutation. For this generalization of the sponge construction, named the
parazoa family, an indifferentiability proof is given based similar assumptions.

Our contributions. In this paper, we consider a broadened version of Stam’s compression function,
where we allow the internal block cipher to have a zero-bit key, i.e., this extension includes compres-
sion functions based on an internal block cipher and on an internal permutation. We show that this
type of compression function combined with the Chop-MD construction can be used to represent
most of the known hash functions in a realistic way, even when they include some particular features
like counters or final rounds. For instance, we show how 9 out of 14 second-round candidates in the
SHA-3 competition fit this broadened description. Moreover, it allows to clearly separate the prim-
itive which is expected to have an ideal behaviour, from some simple pre- or post-computation, like
the insertion of a counter, which may artificially cause some non-ideal behaviour, as noted in [20,
2] in the case of BLAKE. Then, we provide a general indifferentiability proof for this broadened
mode of operation, leading to a security bound which depends on the choice of the padding, and of
the pre-processing and post-processing parts of the compression function. In particular, the proof
technique is the same for blockcipher-based and permutation-based compression functions.

This unified result points out that the difficult part in such an indifferentiability proof is to
evaluate the resistance of the construction against the distinguishing attacks where the adversary
detects some inconsistencies by first querying some hash values, and then calling the inner primitive.
Length-extension attacks are typical examples of those techniques and illustrate the fact that the
program simulating the inner primitive does not have any knowledge of the calls made to the
hash function. Here, we show that this particular issue introduces some difficulties in the proofs,
which are sometimes overlooked as noted in [16] and in [23, Page 13], in the case of wide-state
constructions [9, 6] where the complexities of those attacks appear to be negligible. A similar flaw
in the indifferentiability proofs of PGV modes with prefix-free padding [21, 19] has been identified
in [27, Section 4]. Here, we introduce a new sequence of games which allows to handle this issue
carefully.

Another consequence of our proof is that it leads to a bound which can then be applied in an
automatic way to any hash function that fits the broadened model, if the blocksize of the (possibly
keyed) permutation is higher than the size of the digest. It includes several cases which are examined
for the first time, in particular because it does not require that the block size of the underlying ideal

2

primitive be equal to the size of the chaining variable, which is an assumption for the parazoa family
or for most previous results on blockcipher-based constructions. Then, for most of the second round
SHA-3 candidates, we derive similar or even improved indifferentiability bounds compared to the
results collected in [1, 3, 4].

2 Hash function based on the broadened Stam compression function

In [32], a general representation of blockcipher-based compression functions has been introduced
by Stam. This generalization was used to classify and identify the common properties of the PGV
hashing modes that could provide collision resistance. Under some specific properties of the under-
lying components, some bounds could be given, and the preimage resistance in some cases could
be analyzed. Here, we generalize further this representation of a compression function by consid-
ering not only blockcipher-based compression functions but also compression functions based on
permutations. Moreover, we need less restrictive assumptions on the underlying components of the
compression function than those required in [32] and in [6]. For instance, we do not require any
particular relationship between the block size of the (possibly keyed) permutation and the size of
the chaining variable. A very important feature of a general representation for the compression
function is that, together with an appropriate padding scheme, it can include all the features of
most existing modes of operation (e.g., a block counter, final rounds. . .). Then, most hash functions
can be defined by such a general compression function, a padding rule and the plain (or chopped)
Merkle-Damgård mode of operation.

2.1 Broadening Stam general compression function

The general representation of a blockcipher-based compression function introduced by Stam [32] is
depicted on Figure 1. The input of the compression function consists of an s-bit chaining value V and
an m-bit message block M . The corresponding output is a new s-bit chaining value W . The inputs
of the compression function are first combined by a pre-processing function CPRE for generating
the k-bit key K and the n-bit input X of the block cipher F . The n-bit output Y of the block
cipher, as well as M and V are combined by a post-processing function CPOST for generating the
new chaining value W . Given M and V , the output W of the compression function can thus be
written as

W = CPOST(M,V, F (CPRE(M,V)) .

FCPRE CPOST

M

V W

m bits

s bits s bits
Y

n bits

X
n bits

K
k bits

Fig. 1. General compression function of (m+ s) to s bits. In [32], F is a blockcipher with a k-bit key, while in [6] F
is an unkeyed permutation with n = s.

Here, we consider the general compression function proposed by Stam where we suppose that
F can also be a permutation, i.e., it accommodates k = 0. In other words, this description also
includes the compression function of any parazoa [6]. The sizes s, m, and n can then take any

3

non-zero value and k can take any value including 0. This differs significantly from the case of
parazoas where n = s. Then, a lot of different modes of operation fit this generalized compression
function. For instance, in the sponge construction, where CPRE xors M to a part of V , we have
s = n, k = 0, and CPOST(M,V, Y) = Y . Several types of CPRE and CPOST used in the main hash
function constructions are depicted in Tables 3 and 4, Page 15.

Within the indifferentiability framework, the function F is considered ideal, implying that the
main differences in the security levels achieved by the variants on this broadened mode of operation
will originate from the CPRE and the CPOST function.

2.2 Iterating the broadened Stam compression function

We now describe a framework that enables to build hash functions based on the broadened Stam
compression function. Our goal is to encompass as many real-life hash functions as possible, es-
pecially the SHA-3 semi-finalists. We can notice that most of them rely on the use of a unique
internal primitive, which is compatible with the compression model we are considering, and iterate
the compression function on a sequence of message blocks. The digest value is then a part of the
output of the last compression function. For these reasons, we model the analyzed hash functions
by the Chop-MD construction [21], which is defined as follows.

Let pad be a generic padding function, pad : {0, 1}∗ → ({0, 1}m)∗ , which computes injectively
a sequence of fixed-length blocks from a bitstring of arbitrary length, and a compression function
Γ : {0, 1}s+m → {0, 1}s . For a given message M such that pad(M) = M1|| . . . ||Mk, the hash
computation consists in iterating the compression function on the sequence of message blocks,
updating in the process a chaining variable V . This chaining variable is initialized by a constant
value V0 and takes intermediate values Vi such that

∀i ∈ {1, . . . , k}, Vi = Γ (Vi−1,Mi) .

The digest of M is then defined as the first `h bits of Vk, denoted Vk|`h . The next section shows
that the general form of the compression function combined with an appropriate padding provides a
large amount of latitude to include all features of most modes of operation, including the existence
of a block counter or of final rounds.

2.3 Identifying SHA-3 candidates with the broadened mode of operation

To show that the broadened generic compression function representation is indeed very generic,
we have studied and represented most of the SHA-3 second round candidates under this form. In
Table 1 we can see the classification of the 9 hash functions that we could represent this way.

SHA-3 candidate m s n k CPRE CPOST

BLAKE 512/1024 m
2 m m K = M,X = Exp(V) W = Comp(Y)⊕ V

JH 512 1024 1024 0 X = Exp(M)⊕ V W = Y ⊕ Exp(M)
KECCAK 1088/576 1600 1600 0 X = Exp(M)⊕ V W = Y

Skein 512 512 512 512 K = M , X = V W = Y ⊕M
Cubehash 8 1024 1024 0 X = Exp(M)⊕ V W = Y

ECHO 1536/1024 512/1024 2048 0 X = V ||M W = Comp((M ||V)⊕ Y)
Hamsi 32 `h 2`h 0 X = V ||Exp(M) W = Comp(Y)⊕ V
Shabal 512 1408 896 1024 K = C||M , X = (B +M)||A W = Y ||(Comp(V)−M)

Shavite-3 512/1024 m
2

m
2 m K = M , X = V W = Y ⊕ V

Table 1. Identifying the second-round SHA-3 candidates as broadened general compression functions. The functions
Exp (resp. Comp) are simple linear expansion functions (resp. linear compression functions).

4

In addition, we provide in Table 5 (Page 16) the information about their finalization functions
and padding rules. Since our analysis considers all these functions as Chop-MD based functions,
where finalization is just truncation, we need to provide an alternative description of some of them.
In this new description, counters and final rounds will be taken into account as parts of the message
padding and of CPRE and CPOST. For instance, the existence of a block counter added to the
chaining variable can be represented by larger message blocks (including both the message block
and the counter). But, while the counter is usually included in the inputs of the block cipher (see
e.g. [10]), here the insertion of the counter is handled by CPRE only, which leads to a more realistic
model in many cases. The final rounds are also considered as an additional padding after the usual
one, with the appropriate number of zeroes (or repetitions of the last message block in the case of
Shabal) for covering all the final rounds (see Appendix A for details).

Functions that do not fit the model. There are some of the second round functions that we have not
been able to include in this scenario. This is mainly due to the fact that they use in parallel several
similar internal functions or permutations. Then, since the model considers a single ideal block
cipher, the other ones should be included in the definition of CPRE or of CPOST, making the analysis
not directly applicable with our method. For instance, in the case of Grøstl, two similar permutations
P and Q are applied in parallel. If we consider one of them as the central ideal permutation, the
other one should be included in the CPOST block. Luffa also uses several permutations in parallel for
each iteration of the compression function, whereas the construction we study only allows for one
permutation or block cipher computation per compression function. Another example of function
that does not fit our model for the same reason is the RIPEMD family.

The compression function of the SHA-3 semi-finalist BMW uses a different compression function
after the last iteration. SIMD uses a postprocessing function that uses operations that are similar
to the ones used by the main primitive. Therefore, it seems unclear whether the postprocessing
function can be considered as deterministic, whereas the main primitive is modeled as an idealized
block cipher. Finally, Fugue uses an internal primitive that operates only on a small part of the
chaining variable. Therefore, its internal primitive cannot be considered ideal. A similar argument
applies to other hash functions that were designed before the SHA-3 competition, like RadioGatún
or Panama.

3 Indifferentiability proof using a generic sequence of games

In this section, we use the game-hopping technique to determine an indifferentiability bound for
the previously described iterated broadened mode of operation. As the security of the construction
depends on CPRE and CPOST functions, this bound takes into account the properties of these
functions, through quantities defined in Section 3.3. In Section 4, we evaluate these quantities for
the choices of CPRE and CPOST functions of SHA-3 candidates whose domain extenders fit into
the general representation introduced in Section 2 and deduce indifferentiability bounds for each of
them.

3.1 The indifferentiability framework

The indifferentiability framework has been introduced by Maurer et al. [28] as a generic tool to
study the security of cryptosystems, and its application to the field of hash functions has been first
proposed by Coron et al. [21]. In the case of hash functions, it enables to study the security of a do-
main extender C. Informally, an indifferentiability proof guarantees that a hash function constructed
by combining C with an ideal primitive is as secure as a random oracle. A more recent result by
Ristenpart et al. [31] clarifies which security notions are covered by the indifferentiability frame-
work. Namely, only the security against one-stage adversaries is guaranteed by an indifferentiability
proof.

5

The concept of indifferentiability relies on a security game played between a distinguisher D and
an oracle system. D interacts either with a hash function obtained by running a domain extender C
implemented with a fixed-input-length random oracle (FIL-RO) F as its internal primitive, or with
a variable-input-length random oracle (VIL-RO) H.

The oracle system Σ based on C includes a direct access to the hash function CF and an access
to the internal primitive F . Some refinements introduced in [25, 24] may also give the adversary the
possibility to query the inverse of F , when F is a (possibly keyed) permutation. In the following,
we take account of these refinements. F is therefore modeled as an ideal cipher E (or as a random
permutation if k = 0) instead of a FIL-RO, and D can send queries to E and E−1.

The oracle system Σ′ based on the VIL-RO H must give D a similar interface. Hash queries are
sent directly to H, and queries to the internal primitive or its inverse are dealt with by a specific
Turing machine called simulator and denoted S. To build its answers, S also has an access to
H. “Hash queries”, or H-queries, refers to queries sent either to CF or H. “Primitive queries”, or
F -queries, refers to queries sent either to F or SH, for an application of the primitive or its inverse.

The indifferentiability framework is summarized on Figure 2. The distinguisher tries to determine
whether he is interacting with Σ or Σ′ and returns accordingly a binary value.

D

H F/F−1

CF F/F−1

Σ

SHH
Σ′

Fig. 2. Indifferentiability of a domain extender C from a random oracle H

The advantage of a given distinguisher is then defined as:

Adv(D) =
∣∣∣Pr

[
DΣ = 1

]
− Pr

[
DΣ′ = 1

]∣∣∣ .
We define the indifferentiability of CF from H as follows.

Definition 1. CF is (ε,ND, NS)-indifferentiable from H if there exists a simulator S making at
most NS queries to H such that the advantage of any distinguisher D making H- and F -queries
of total weight at most ND satisfies Adv(D) ≤ ε. The total weight of queries is the sum of the
blocklengths of all H-queries and of the number of F -queries.

3.2 Design principles of the simulator and of the new sequence of games

We now apply this framework to the iterated broadened mode of operation. Let C denote this
domain extension, C this same extension without the truncation of the final chaining value.

First, we prove that the indifferentiability bound only depends on the image set of the padding
function pad, and on the set of all prefixes of elements in this image set.

Lemma 1 (Domain modification). Let π be a bijection from E to F such that π and π−1 can
be easily computed, and let G be a finite set. We consider a construction C based on an internal
primitive P such that CP : F → G.

6

Let H : F → G and H′ : E → G be two random oracles. Then, CP is (ε,ND, NS)-indifferentiable
from H if and only if CP ◦ π is (ε,ND, NS)-indifferentiable from H′.

Proof. Suppose that CP is (ε,ND, NS)-indifferentiable from H, and let S be the simulator derived
from the definition. We modify S to apply π to each hash query to obtain a simulator S ′. Now,
we consider the oracle systems (CF ◦ π,F) and (H′,S ′H′), and a distinguisher D′ against the indif-
ferentiability game defined by these systems. Then it can be easily shown that the distinguisher D
obtained by applying π−1 to each hash query issued by D′ has the same advantage against systems
(CF ,F) and (H,S ′H) than D′. Then, Adv(D′) ≤ ε. Therefore, CP ◦ π is (ε,ND, NS)-indifferentiable
from H′. The reverse implication is obtained by symmetry.

Let pad be an injective padding function, and Spad be the set of its images. By applying the preceding
lemma with E = {0, 1}∗, F = Spad and π = pad, we deduce that the indifferentiability bounds for
CF and CF ◦ pad from random oracles with the same domain are equal.

As a consequence, we can study the indifferentiability of a given construction in the first scenario.
To take account of the influence of the padding, we use the set Spad defined above and the set of
prefixes of padded messages

Sprefix = M ∈ ({0, 1}m)∗ s.t. ∃M ′ ∈ ({0, 1}m)+,M ||M ′ ∈ Spad .

Before giving our main indifferentiability result in Theorem 1, we summarize how we construct
our simulator and bound the advantage of a potential distinguisher. The proof is based on a sequence
of games: we build our final simulator as a sequence of elementary modifications starting from a
passive simulator.

Simulation of F . S has to simulate the answers to F -queries. It should ensure that the re-
turned values are distributed according to a uniform choice of F , and that applying the con-
struction C to the answers for a given message M leads to the same results as queries to the
random oracle H. To this end it maintains two lists during the game. The first one is the list
Lvalues = {(X,K, Y) s.t. F(K,X) = Y } of the values of F that have already been defined. The
second one is the list of identified intermediate values of the chaining variable Lprefix = {(V, µ)}.
The pair (V, µ) is in this list if µ is in Sprefix and V is the chaining variable obtained by applying
the construction CF to µ.

Our simulator is depicted on Figure 8. Informally, it works as follows. When it receives an
F -query (K,X) to the internal primitive, S has to detect if the computation of F (K,X) can be
interpreted as the last iteration of the compression function in the computation of a digest H(M):
in this case, the returned value should be consistent with the random oracle. To identify a query
(K,X) as the next step in a hash computation, S uses the following subroutine :

Prefix_identify :

(Lprefix,K,X) 7→
{

(V, µ,M) s.t. (V, µ) ∈ Lprefix, µ||M ∈ Sprefix ∪ Spad, C
PRE(V,M) = (X,K)

⊥, if such (V, µ) does not exist.

If this subroutine returns (V, µ,M) such that µ||M ∈ Spad, the F -query is the last step of the
computation of the digest H(µ||M) and S has to return an answer that is both consistent with H
and uniformly distributed (like the answers of the F oracle). As a consequence, we require that,
for any fixed chaining variable V and message block M , the first `h bits of the output of Y 7→
CPOST(M,V, Y) take all possible values in {0, 1}`h . This assumption holds for all CPOST identified
in Table 4, and is less restrictive that the one in [6] which requires that Y 7→ CPOST(M,V, Y) is
bijective. Then, S queries H to get H(µ||M).

7

Moreover, we suppose that there exists a sampling algorithm Samp that generates the value Y
consistently with the answers of the random oracle. More precisely, samp depends on CPOST such
that Samp(M,V, h,Lvalues) and has to return Y ∈ {0, 1}n satisfying:

– CPOST(M,V, Y)|`h = h;
– ∀(M,V),

∑
Y ∈{0,1}n

∣∣∣2−`hPr [Samp(M,V, h,Lvalues) = Y]− Pr [U(Lvalues,M, V) = Y]
∣∣∣ ≤ ∆.

In the last formula, ∆ is a constant bound and U(Lvalues,M, V) is the uniform distribution
over the set of images Y that do not already appear in Lvalues with the key K resulting from the
application of CPRE to (M,V). h denotes CPOST(M,V, Y)[`h , and the factor 2−`h represents the
probability that H(µ||M) outputs h. We allow for a small bias on the definition of Y as a perfect
simulation cannot always be achieved: as F is a permutation when the key is fixed, the output
distribution of F is biased when some values are already defined with the same key.
S then uses Samp to generate its answer from (M,V) and H(µ||M).
When it receives another F -query to the internal primitive (resp. its inverse), S selects the

answer uniformly over the values that do not already have a preimage (resp. an image) by F under
key K.

Bad events. The events that might prevent the simulator to maintain the consistency between
H and CS are the following.

– If the simulation of a given output F (K,X) is involved in the computation of the digests of
two messages with distinct prefixes and common suffixes, the collision might propagate to the
digests when applying CS , whereas H ignores this relation.

– If the simulator returns a value X to a fresh query F−1(K,Y), and the computation of F (K,X)
is involved in the computation of the digest of a given message M , a constraint on the digest
value may appear, which will be fulfilled by CS but not H.

– If the simulator adds an element (V, µ) to Lprefix after an F -query, and there is already a triple
(X,K, Y) in Lvalues and a message blockM such that CPRE(V,M) = (K,X), it might define the
digest of any message beginning with µ||M . This last case encompasses several attack strategies,
including the length-extension attack.

About the internal memory of the simulator. In cryptography, constructive indifferentiability
proofs involve

1. the description of a Turing machine that simulates the behaviour of an ideal primitive;
2. the evaluation of an upper bound of the advantage of the adversary.

The latter point is often achieved by defining bad events characterised by some property of the
internal memory of the simulator. This gives an additional role to the simulator and its intermediate
versions. Nevertheless, the identification of bad events does not necessarily involve a modification
of the view of D.

This method has the following drawback. Some unwanted event might occur due to H-queries,
to which the final simulator does not have access. Therefore, the sequence of games usually involves
an artificial access to H-queries for the simulator, which has then to be removed. This leads to two
technical difficulties. First, this removal has to be done very carefully, as it modifies the internal
memory of S. This point is completely overlooked in some other proofs [21, 9, 6]: the difference
between answers to H-queries is taken into account as their generations involve different processes,
but the answers to F -queries are supposed to be produced in an equivalent way. We argue that this
is something highly non-trivial, as the choice of a generation method might depend on the internal
memory of S. Nevertheless, our analysis tends to show that this shortcut does not lead to a mistake
on the overall security bounds (see e.g. [27, 23] for details).

8

The other difficulty is that the usual method can lead to a more complex sequence of games. Be-
cause of the existence of several consecutive gaps on the view of the adversary, the indifferentiability
bound is then multiplied by a constant but unnecessary factor.

Introducing the interceptor. In our proof, we build a second program called interceptor and
denoted I that is used in intermediate games. Its role is to passively log all theH-queries, to translate
them into sequences of F -queries by applying the construction C and to send these resulting queries
to S. We use two different versions of I. When it is introduced in the sequence of games, I calls S
as soon as it receives H-queries. In this way, the internal memory of S contains the knowledge of
D, which makes it easier to evaluate the probability that a bad event occurs. Later in the sequence
of games, the second version of I delays calls to S to the end of the game, i.e. after all interactions
involving D. This guarantees that its action does not affect the view of the adversary.

Unicity of the simulation. Our proof is based on an 8-game sequence, labeled 0 to 7. Never-
theless, we describe only one method to generate the answers to F -queries, using the access to a
random oracle. This is done between Games 5 and 6. The last transition consists in removing the
detection of bad events. Transitions between Games 0 and 5 involve the introduction of bad events
and modifications of the game scenarios that are depicted on Figure 3.

Bounding the advantage of D. Our strategy to bound the advantage of D is the following.
From Game 0 to Game 5, I and S identify unwanted events on the sequence of calls, but we show
that they do not affect the view of D. More precisely, in all these games, answers returned to D are
always the values of F , F−1 and CF , where F is the ideal primitive that S does not control. We
then need to bound the gap between Games 5 and 6, which is done by bounding the probability
that a bad event occurs. Keep in mind that in these games, I calls S after all interactions with
D, so its action does not affect the view of D. In Game 5, the occurrence of a bad event is fully
determined by the random choices of D and the choice of an instance of F . We define our bad events
so they occur on the same random choices in Games 4 and 5. In Game 4, S has a real-time access
to H-queries, therefore it is easier to bound the occurrence probability of a bad event.

D

FC

D

SC

F

D

S
I

C
F

D

S
I

H

D

SH

Game 0 Game 1 Games 2 to 5 Game 6 Game 7

Fig. 3. Sequence of games used to prove Theorem 1.

Summary of the sequence of games. Overall, our sequence of games can be summarized as
follows.

Game 0 We start with the original game taken from the definition of indifferentiability. In this
game, D interacts with a system Σ = (CF ,F), where CF answers only if the queried message
belongs to Spad.

Game 1 A passive simulator S1,2 is inserted in the game. It forwards F -queries to the ideal cipher
F , so that this modification does not affect D’s view.

9

Games 2 to 4 The interceptor I2,3,4 is added to the game. It translatesH-queries for the simulator
and runs S immediately. Bad events detection is added in Game 4.

Game 5 This game is very similar to Game 4, except that I5,6 runs the simulator only at the end
of the game.

Game 6 The oracle implementing the internal primitive F is replaced by the hash oracle H. The
construction C is withdrawn from the game. Therefore, S6 has to generate answers to F -queries
itself. For each fresh query, if the corresponding computation can be interpreted as the last
compression evaluation of a hash computation, S6 queries H to maintain consistency between
the answers of both oracles. Otherwise, it generates a random value (with the restriction that
F and F−1 must be bijective).

Game 7 The interceptor is withdrawn from the game and the bad event flags are withdrawn from
the simulator. This does not modify D’s view. The resulting game is the final game of the
definition of indifferentiability, where D interacts with Σ′ = (H,SH).

3.3 Indifferentiability result

The bounds obtained in [32, 6] on the complexity of collision attacks apply only if CPRE and CPOST

satisfy certain properties, for instance, if some related functions are invertible. Instead, we give
an indifferentiability proof in the general case and bound the advantage of the adversary using
the following quantities which depend on the properties of CPRE and CPOST. We are thus able to
provide a relevant bound in more cases. To illustrate what these quantities represent, we detail their
values for two widely used constructions: the sponge functions with `h = m (and where the block is
xored to the part of the state that corresponds to the digest), and Chop-MD with a Davies-Meyer
compression function (DM Chop-MD).

Collisions attacks. The quantity λColl appears in the occurrence probability of a local collision,
i.e. an evaluation of F on a given value (K,X) that is part of two hash computations of messages
with different prefixes. We use the following definition

λColl = max
V,µ,M,V ′,µ′

∣∣∣∣∣
{
Y s.t. ∃M∗,M ′, V ∗, CPOST(V,M, Y) = V ∗, CPRE(V ′,M ′) = CPRE(V ∗,M∗)

and µ||M ||M∗ ∈ Sprefix ∪ Spad, µ′||M ′ ∈ Sprefix ∪ Spad

}∣∣∣∣∣ .
In the case of parazoas, including sponge functions, Y 7→ CPOST(V,M, Y) is bijective. Then, we
always have V ∗ = Y , and we can have CPRE(V ′,M ′) = CPRE(Y,M) if V ′ and Y collide on n−m
bits, which leaves 2m possibilities for Y . Thus λColl = 2m.

Another situation is the case where CPRE is injective. Then, λColl is the maximal number of Y
such that CPOST(V,M, Y) = V ′ for a given (V, V ′,M) which is valid with respect to the padding
function. For example, in the case of DM Chop-MD, there is a single choice for Y , and λColl = 1.

Meet-in-the-middle attacks. The quantity λMitm is used to bound the probability of a meet-in-
the-middle distinguishing attack.

λMitm = max
V,µ,K

∣∣∣{X s.t. ∃M, CPRE(V,M) = (K,X) and µ||M ∈ Sprefix ∪ Spad
}∣∣∣ .

For sponges, if V collides withX on the last 2n−m bits, an accurate choice ofM leads to V ⊕(M ||0) =
X. Therefore, λMitm = 2m. In the case of DM Chop-MD, X = V and λMitm = 1.

Length-extension attacks. We now define two quantities related to the probability of length-
extension attacks: λExtension,1 corresponds to the maximum number of Y which, when combined to
the same pair (V,M), lead to the same value after applying CPRE ◦ CPOST. The other quantity
λExtension,2 corresponds to the cardinality of the same set of values Y with the additional constraints
that the first `h bits of the output of CPOST are fixed.

10

λExtension,1 = max
X,K,V,µ,M

∣∣∣{Y s.t. ∃M ′, CPRE(CPOST(V,M, Y),M ′) = (K,X), µ||M ||M ′ ∈ Sprefix ∪ Spad
}∣∣∣ ,

λExtension,2 = max
X,K,V,µ,M,h

∣∣∣∣∣
{
Y s.t. ∃M ′, CPOST(V,M, Y)|`h = h, CPRE(CPOST(V,M, Y),M ′) = (K,X)

and µ||M ||M ′ ∈ Sprefix ∪ Spad

}∣∣∣∣∣ .
These constants bound the number of values Y that can lead to a guess (K,X) made by D when

D knows the H-part of the intermediate chaining variable and when he does not. In the case of the
DM Chop-MD, only one value of Y can lead to X if V is fixed. Therefore, λExtension,1 = λExtension,2 =
1. In the case of the sponge construction, when h is not fixed, 2m values of Y can lead to a given X
(λExtension,1 = 2m), but given h and X, only 1 of the values works, and λExtension,2 = 1.

λPre. To estimate the resistance to length-extension attacks, we need to know, given a guess (K,X)
by the adversary, how many previously obtained distinct hashes hi can be reached by an appropriate
choice of vi,Mi and the application of CPRE to (hi||vi,Mi). Therefore, we denote S(K,X) the set
{h|∃v,M,CPRE(h||v,M) = (K,X)}. To establish a bound, we can suppose that these sets for
different values of (K,X) are either identical or disjoint and we denote by λPre their maximal size.

However, we could also wish to relax this constraint. We consider a partition of {0, 1}`h ,
(S1, . . . , St) such that each S(K,X) is included in one of the St’s. Instead of being either dis-
joint or identical, the sets S(K,X) are now either disjoint or included in the same set of a partition.
We then denote λPre the maximal size reached by one of the St’s.

In the sponge case, any hashed output can be completed into V combined with a given message
block to lead to any X. Therefore, λPre = 2`h . For DM Chop-MD, the hash output is a part of the
input of the next iteration of F . Thus, λPre = 1.

µPost. We also define a value that is only related to CPOST, which is the minimal number of preimages
which can be obtained for Y 7→ CPOST(V,M, Y)|`h for any fixed (V,M):

µPost = min
M,V,h

∣∣∣{Y s.t. CPOST(V,M, Y)|`h = h}
∣∣∣ .

This constant gives a lower bound on the number of possible Y that map to a given hash output h,
for fixed (V,M) entering CPOST. In most common designs, this quantity is constant. It seems clear
that a uniform distribution for Y should lead to a uniform distribution for h, which is the case of
the sponge construction and DM Chop-MD. In both cases, this leads to µPost = 2n−`h .

λPost. Another possibility for D is to try to exploit a length-extension-like property by calling F−1.
To bound the success probability of such a strategy, we define the sets S′(V,M, h) as {Y |CPOST(V,M, Y)|`h =
h}. We also suppose that for distinct values of (V,M, h), these sets are either disjoint or identical,
and bound their size by λPost. As for the case of λPre, we can relax this constraint by defining a par-
tition, each of the S′(V,M) being included in one of the sets of the partition. In most applications,
the sets of values Y that lead to a common h value do not depend on V and M and λPost = 2n−`h .
This is the case for DM Chop-MD and the sponge construction.

To bound the probability of length-extension attacks, we need to evaluate the number of hash
values that are in the same set Si or S′j during the game. This can be expressed with the function

g(N,λ, `) = min(N, (1 + e)Nλ2−` + 2`− 2 log2(λ)) .

This quantity bounds the sum of the probabilities of occurrence of i-multicollisions, 0 ≤ i ≤ N , in
a set of N values drawn independently following a distribution such that each value has probability
at most λ/2`. We refer to Appendix B.2 for the proof of this bound and its relationship with
length-extension attacks.

We can now give our indifferentiability bound.

11

Theorem 1. Let us consider a domain extender C, obtained by iterating a broadened Stam com-
pression function, and a padding function pad with corresponding sets Spad and Sprefix. Let F be an
ideal cipher (or an ideal permutation if k = 0) and H be a random oracle with domain Spad. Let S
be the simulator defined on Figure 8 in Appendix B and let D be a distinguisher that issues H and
F queries of total weight at most ND. Then, if µPost > 1,

Adv(D) ≤ 2ND∆+ max(λColl, λMitm)N2
D

2(2n −ND)

+ max
(
λExtension,1N

2
D

2(2n −ND) ,
g(ND, λPre, `h)λExtension,2ND

µPost −ND
,
g(ND, λPost, n)ND

µPost −ND

)
.

where ∆ is defined in Section 3.2. Furthermore, S issues at most ND hash queries.
More specifically, if the padding function is prefix-free, we have

Adv(D) ≤ 2ND∆+ max(λColl, λMitm)N2
D

2(2n −ND) + max
(
λExtension,1N

2
D

2(2n −ND) ,
g(ND, λPost, n)ND

µPost −ND

)
.

4 Application to several known constructions

One of the main interests of the previous result is that it enables us to determine indifferentiability
bounds for domain extenders of concrete hash functions, including several of the SHA-3 candidates.
For all functions we study, we can sample Y with the uniform distribution over the values that
fulfill CPOST(V,M, Y)|`h = h when h is uniformly distributed. As at most ND values for Y cannot
be reached if F is a permutation, we have ∆ = 1

2n−ND .
As an illustration, we first apply the theorem to both previously considered examples: the sponge

construction and Davies-Meyer Chop-MD. For the sponge construction, we get that

Adv(D) ≤ 2ND
2n −ND

+ 2`hN2
D

2(2n −ND) + 2N2
D

2n−`h −ND
,

which leads to the same bound as [9], with an additional (negligible) term corresponding to length-
extension attacks. In the case of DM Chop-MD, we get

Adv(D) ≤ 2ND
2n −ND

+ N2
D

2(2n −ND) + 2ND
2n−`h −ND

min
(
ND, (1 + e)ND2−`h + 2`h

)
.

The bound improves the result obtained in [21]. It is worth noticing that the best previously known
indifferentiability bound for Chop-MD is due to Chang and Nandi [18] but it does not take into
account the fact that the internal primitive is a permutation.

Another interesting construction is a variant of the Davies-Meyer mode based on a block cipher
with blocksize twice larger than the chaining value, i.e., with s = `h and n = 2`h. Such a construction
can use for instance CPRE(M,v) = (M,Exp(V)) and CPOST(M,V, Y) = Comp(Y) ⊕ V as in
the simplified mode of operation of BLAKE when the counter is omitted. In this case, we have
λColl = 2`h , λMitm = 1 and λExtension,1 = µPost = λPost = 2`h . Then, for a prefix-free padding, we
obtain

Adv(D) ≤ 2ND
2n −ND

+ 2`h+1N2
D

2(2n −ND) + 2ND
2n−`h −ND

min
(
ND, (1 + e)ND2−`h + 2`h

)
.

Then, an interesting observation is that this bound is similar to the bound obtained for sponges
with the same blocksize n = 2`h and digest size `h. But, the attacks meeting the bound are different:
meet-in-the-middle attacks have complexity 2

`
2 for sponges while they are much more expensive for

the other construction. On the other hand, the prefix-free Davies-Meyer with double blocksize is
vulnerable to collision attacks with complexity 2

`h
2 . Also, it is worth noticing that this construction

is indifferentiable up to 2
`h
2 queries while the chopped Davies-Meyer construction which is based on

a similar block cipher is indifferentiable up to 2`h queries.

12

Application to some SHA-3 candidates. The determination of the bounds λColl, λMitm, λExtension,1,
λExtension,2, λPost, µPost and λPre are pretty straightforward and summarized in Table 2 for some SHA-
3 candidates, as well as the resulting indifferentiability bound for each of the functions. Our proof
gives a significant bound for hash functions based on an ideal primitive whose output size is larger
than the digest size. It is worth noticing that this is not restricted to wide-pipe designs since it also
includes constructions using a chaining variable of the same size as the digest (for instance, BLAKE
or Hamsi). For Hamsi, this proof is to our best knowledge the first one that takes into account the
invertibility of the internal primitive.

SHA-3 candidate λColl λMitm P-F λExtension,2 λExtension,1 λPost µPost λPre Bound

BLAKE 2`h 2 yes n/a 2`h 2`h 2`h n/a ≈ (3+2e)2`h N2
D

2×22`h−ND

JH 2512 2512 no 2512 2512 21024−`h 21024−`h 1 ≈ 2`h×2512ND
21024−`h−ND

KECCAK-256 21088 21088 no 1 21088 21344 21344 2256 ≈ 2N2
D

2512−ND

KECCAK-512 2576 2576 no 264 2576 21088 21088 2512 ≈ 2N2
D

21024−ND

Cubehash 29 29 yes n/a 29 21024−`h 21024−`h n/a ≈ (29+e+1)N2
D

21024−ND

ECHO 22048−2`h 1 yes n/a 22048−2`h 22048−`h 22048−`h n/a ≈ 22048−2`h N2
D

22048−ND

Hamsi 2`h 1 yes n/a 2`h 2`h 2`h n/a 2`h N2
D

22`h−ND

Shabal-512 1 1 yes n/a 1 2384 2384 n/a ≈ 1024ND
2384−ND

Shabal-256 1 1 yes n/a 1 2640 2640 n/a ≈ N2
D

2896−ND

Table 2. Indifferentiability bounds for the second-round SHA-3 candidates deduced from Theorem 1.

When the block size of the ideal primitive F is equal to the size of the digest, we have µPost = 1
and our bound does not apply. Furthermore, our simulator is vulnerable to the same reverse attacks
as the simulators in [21, 19]: D queries H(M) where M is a single block message, and computes
Y such that CPOST(IV,M, Y) = h and (K,X) = CPRE(V,M); then he queries F−1(K,Y). The
answer should be X, that the simulator has no reason to know. To get a result on these functions,
we have to modify the simulator as suggested in [27]: when receiving a request (K,Y) to F−1, S
simulates all the values F (K,X) for which there is a (V, µ) in Lprefix and a message block M such
that CPRE(V,M) = (K,X) and µ||M ∈ Spad. However, this may highly increase the number of
hash queries issued by the simulator, and the properties of the padding play then an important role.
Finding a relevant unified indifferentiability bound is then an open issue in this case.

5 Conclusions

Our result provides an indifferentiability bound for many blockcipher-based or permutation-based
hash functions, as soon as the block size of this internal primitive is greater than the digest size. An
interesting observation is that the choice between an ideal keyed or an unkeyed permutation appears
to have a little influence on the indifferentiability bound — but, an ideal keyed permutation is a
much more complex primitive than an ideal permutation. For instance, our result allows to compare
some constructions like a parazoa with blocksize n = 2`h, a chopped Davies-Meyer construction
with blocksize n = 2`h and a prefix-free Davies-Meyer construction with chaining value of size `h
based on a blockcipher operating on blocks of size 2`h, like the BLAKE mode of operation.

Another important issue is that our result takes into account a realistic representation of most
compression functions. For instance, it uses the fact that the compression function in BLAKE is
based on an ideal block cipher with block size 2`h. The indifferentiability bound that we derive is
then very different from the usual argument [5] which identifies BLAKE mode of operation with

13

the Haifa construction iterating an ideal compression function from (13`h/4) to `h bits. Actually,
it has been recently observed that, when the counter insertion is included within the compression
function, the compression function can then be easily distinguished from an ideal function [20,
2]. These works point out that a relevant indifferentiability proof can only be obtained if the ideal
component corresponds to the block cipher. In the case of BLAKE, our general result gives the same
bound as the dedicated proof given in [20, 2]. Moreover, a better identification of the components of
the compression function which are expected to have a random behaviour may help some extension
of indifferentiability proofs aiming at determining how some structural properties of the inner block
cipher or permutation weaken the overall security of the hash function. Besides its direct application,
we believe that this synthetic view will help future research on modes of operation for hash functions.

References

1. Elena Andreeva, Andrey Bogdanov, Bart Mennink, Bart Preneel, and Christian Rechberger. On security argu-
ments of the second round sha-3 candidates. Int. J. Inf. Sec., 11(2):103–120, 2012.

2. Elena Andreeva, Atul Luykx, and Bart Mennink. Provable Security of BLAKE with Non-Ideal Compression
Function. IACR Cryptology ePrint Archive, 2011:620, 2011.

3. Elena Andreeva, Bart Mennink, and Bart Preneel. Security reductions of the second round SHA-3 candidates. In
Mike Burmester, Gene Tsudik, Spyros S. Magliveras, and Ivana Ilic, editors, ISC, volume 6531 of Lecture Notes
in Computer Science, pages 39–53. Springer, 2010.

4. Elena Andreeva, Bart Mennink, and Bart Preneel. Security reductions of the second round SHA-3 candidates.
Cryptology ePrint Archive, Report 2010/381, 2010. http://eprint.iacr.org/.

5. Elena Andreeva, Bart Mennink, and Bart Preneel. Security Reductions of the Second Round SHA-3 Candidates.
In ISC, volume 6531 of Lecture Notes in Computer Science, pages 39–53. Springer, 2011.

6. Elena Andreeva, Bart Mennink, and Bart Preneel. The parazoa family: generalizing the sponge hash functions.
Int. J. Inf. Sec., 11(3):149–165, 2012.

7. Mihir Bellare, Tadayoshi Kohno, Stefan Lucks, Niels Ferguson, Bruce Schneier, Doug Whiting, Jon Callas,
and Jesse Walker. Provable security support for the Skein hash family. http://www.skein-hash.info/sites/
default/files/skein-proofs.pdf, 2009.

8. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions. Ecrypt Hash Workshop, Barcelona,
Spain, May 2007. http://sponge.noekeon.org/.

9. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability of the sponge construction.
In Advances in Cryptology — EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages
181–197. Springer, 2008.

10. Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Indifferentiability Characterization of Hash Func-
tions and Optimal Bounds of Popular Domain Extensions. In INDOCRYPT, volume 5922 of Lecture Notes in
Computer Science, pages 199–218. Springer, 2009.

11. Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Security analysis of the mode of JH hash function. In
Seokhie Hong and Tetsu Iwata, editors, FSE, volume 6147 of Lecture Notes in Computer Science, pages 168–191.
Springer, 2010.

12. Eli Biham and Orr Dunkelman. A framework for iterative hash functions - HAIFA. Cryptology ePrint Archive,
Report 2007/278, 2007. http://eprint.iacr.org/.

13. John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-cipher-based hash-function
constructions from pgv. In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science,
pages 320–335. Springer, 2002.

14. John Black, Phillip Rogaway, Thomas Shrimpton, and Martijn Stam. An analysis of the blockcipher-based hash
functions from PGV. J. Cryptology, 23(4):519–545, 2010.

15. Charles Bouillaguet, Pierre-Alain Fouque, and Gaëtan Leurent. Security Analysis of SIMD. In Selected Areas in
Cryptography, volume 6544 of Lecture Notes in Computer Science, pages 351–368. Springer, 2011.

16. E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget, T. Icart, J.-F. Misarsky,
M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard, C. Thuillet, and M. Videau. Shabal, a submission
to NIST’cryptographic hash algorithm competition. Submission to the NIST Hash competition, 2008.

17. E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget, T. Icart, J.-F. Misarsky, M. Naya-
Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard, C. Thuillet, and M. Videau. Indifferentiability with Distinguish-
ers: Why Shabal does not require ideal ciphers. IACR ePrint Archive: Report 2009/199, 2009.

18. D. Chang and M. Nandi. Improved indifferentiabily security analysis of chopMD hash function. In Fast Software
Encryption - FSE 2008, volume 5086 of Lecture Notes in Computer Science, pages 429–443. Springer, 2008.

19. Donghoon Chang, Sangjin Lee, Mridul Nandi, and Moti Yung. Indifferentiable Security Analysis of Popular Hash
Functions with Prefix-Free Padding. In ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages
283–298. Springer, 2006.

14

20. Donghoon Chang, Mridul Nandi, and Moti Yung. Indifferentiability of the hash algorithm blake. IACR Cryptology
ePrint Archive, 2011:623, 2011.

21. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgård Revisited: How to Construct a Hash
Function. In Advances in Cryptology — CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 430–448. Springer, 2005.

22. I. Damgård. A design principle for hash functions. In Advances in Cryptology — CRYPTO’89, volume 435 of
Lecture Notes in Computer Science, pages 416–427. Springer, 1989.

23. Marion Daubignard, Pierre-Alain Fouque, and Yassine Lakhnech. Generic indifferentiability proofs of hash designs.
In 25th IEEE Computer Security Foundations Symposium, 2012.

24. Jonathan J. Hoch and Adi Shamir. On the Strength of the Concatenated Hash Combiner When All the Hash
Functions Are Weak. In ICALP (2), volume 5126 of Lecture Notes in Computer Science, pages 616–630. Springer,
2008.

25. Moses Liskov. Constructing an Ideal Hash Function from Weak Ideal Compression Functions. In Selected Areas
in Cryptography 2006, volume 4356 of Lecture Notes in Computer Science, pages 358–375. Springer, 2007.

26. S. Lucks. A failure-friendly design principle for hash functions. In Advances in Cryptology — ASIACRYPT 2005,
volume 3788 of Lecture Notes in Computer Science, pages 474–494. Springer, 2005.

27. Yiyuan Luo, Zheng Gong, Ming Duan, Bo Zhu, and Xuejia Lai. Revisiting the indifferentiability of pgv hash
functions. Cryptology ePrint Archive, Report 2009/265, 2009.

28. U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, Impossibility Results on Reductions, and Applica-
tions to the Random Oracle Methodology. In Theory of cryptography – TCC 2004, volume 2951 of Lecture Notes
in Computer Science, pages 21–39. Springer, 2004.

29. R. Merkle. One way hash functions and DES. In Advances in Cryptology — CRYPTO’89, volume 435 of Lecture
Notes in Computer Science, pages 428–446. Springer, 1989.

30. Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block ciphers: A synthetic approach.
In Douglas R. Stinson, editor, CRYPTO, volume 773 of Lecture Notes in Computer Science, pages 368–378.
Springer, 1993.

31. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with composition: Limitations of the
indifferentiability framework. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in
Computer Science, pages 487–506. Springer, 2011.

32. Martijn Stam. Blockcipher based hashing revisited. In Fast Software Encryption - FSE 2009, volume 5665 of
Lecture Notes in Computer Science, pages 67–83. Springer, 2009.

A Examples of CPRE and CPOST functions and finalization, counter and
padding of the SHA-3 candidates

CPRE Parameters CPRE Parameters

Exp

m

s n k = m, n > s.
K = M,X = Exp(V) ||

m

s n k = 0, n = m+ s.
X = V ||M

Exp

m

s
s s

k = 0, n = s, m < s.
X = Exp(M)⊕ V ||

Exp

m

s n
k = 0, n > m+ s.
X = V ||Exp(M)

m

s k = m, n = s.
K = M , X = V

||

||
a

b

m
c

n

k
s = a+ b+ c, m = b,
k = m+ c, n = a+ b.

K = C||M ,
X = (B +M)||A

Table 3. Common types of CPRE. The functions Exp are simple linear expansion functions, like for instance the
concatenation with a constant. Symbol || denotes a concatenation.

15

CPOST Parameters CPOST Parameters

C
n s s

s

n > s.
W = Comp(Y)⊕ V C

||

n s

s

m

n = s+m.
W = Comp((M ||V)⊕ Y)

Exp

n s
s

m

m < n, n = s.
W = Y ⊕ Exp(M)

n s

s

s = n.
W = Y ⊕ V

s n = s.
W = Y

C

||
n s

s

m

m+ n = s.
W = Y ||(Comp(V)−M)

n s
m

m = n = s.
W = Y ⊕M

Table 4. Common types of CPOST. The functions Comp are simple linear compression functions, like fold or a
truncation.

SHA-3 candidate Finalization function Padding Counter
BLAKE / m ← m||10 . . . 01(`)64/128 64/128 bits

JH truncate m ← m||10 . . . 0(`)128 no
KECCAK truncate m ← m||10 . . . 01 no

Skein 0-message block m ← m||10 . . . 0 block counter(64)
Cubehash ⊕1bit/80 rounds perm/truncate m ← m||10 . . . 0 no
ECHO truncate m ← m||10 . . . 0(|h|)16(`)128 64 bits
Hamsi last block: more rounds, 6= constants m ← m||10 . . . 0(`)64 no
Shabal 3 rounds with last block, same counter m ← m||10 . . . 0 block counter(64)

Shavite-3 truncated m ← m||10 . . . 0(`)64(|h|)16 64 bits

Table 5. Finalization functions, counter and padding of the SHA-3 candidates. We consider ` as the length of the
message in bits before padding.

In order to include the features described in Table 5 within the chop-MD mode with a particular
padding, we consider an equivalent description of the following hash functions:

– BLAKE, with message-block size m = 576/1152, as the counter is now included in the message
block by the padding.

– Skein, with message-block size m = 576, as the counter is included by the padding, and the
padding also adds an all-zero block at the end of the padded message.

– ECHO, with message-block size m = 1600/1088 (for the counter).
– Cubehash, with a new padding that adds 10 zero blocks at the end of the previous padded

message, and where the message block has one additional bit, i.e., m = 9, that is used for
representing the xor of 1 before the final rounds (this bit is zero for all the blocks except the
first of the last 10 ones).

– Shabal, with an increased block size ofm = 576 (for the counter), and where the padding repeats
the last block three times at the end.

– Shavite-3, with message-block size m = 2× w + 64 (for the counter).
– For Hamsi, the last iteration of F has more rounds and uses different constants. We consider the

Hamsi mode of operation with an independent permutation for the last block. Therefore, the

16

message blocks contain one more bit, which is 1 only for the last block. CPRE uses it to define
a 1-bit key.

B Detailed indifferentiability proof of the broadened mode of operation

B.1 Detailed description of the different versions of the simulator

Game 0. D is interacting with Σ = (CF ,F). No simulator is involved in this game.

Initialisation of S1,2

1. define Lvalues = ∅ and Lprefix = {(IV, ε)}

Simulation of F

Input : (K,X)
Output : Y

1. call F to get Y = F (K,X)
2. add (X,K, Y) to Lvalues
3. if Prefix_identify(Lprefix,K,X) 6= ⊥

(a) set (V, µ,M) = Prefix_identify(Lprefix,K,X)
(b) set W = CPOST(V,M, Y)
(c) if µ||M ∈ Sprefix, add (W,µ||M) to Lprefix

4. return Y

Simulation of F−1

Input : (K,Y)
Output : X

1. call F−1 to get X = F−1(K,Y)
2. add (X,K, Y) to Lvalues
3. return X

Fig. 4. Simulator S1,2 for F and F−1 in Games 1 and 2.

Game 1. A passive simulator S1,2 (Figure 4) is introduced in Game 1. S receives queries to
F or F−1 issued by D, forwards them to F , and forwards the answer to D. It builds the list
Lvalues = {(X,K, Y)} by storing the queries and answers it receives. S1,2 also maintains the list
Lprefix of values of the chaining variable that can be identified with the intermediate value of a
given hash computation. To achieve it, Lprefix is initialized with {(IV, ε)}, where ε denotes an empty
sequence of message blocks. Then, Lprefix is updated according to the following argument.

For a given query (K,X) to F , if CPRE(V,M) = (K,X) for given V, µ,M such that (V, µ) ∈
Lprefix and µ||M in Sprefix, then the computation of F corresponding to this query is involved in a
hash computation. Therefore, if Y is the answer returned by F , S1,2 computesW = CPOST(V,M, Y)
and adds (W, (µ||M)) to Lprefix.

Game 2. The interceptor I2,3,4 is inserted in the Game. When receiving a query µ = M1|| . . . ||M`,
I forwards it to C and runs the construction by calling S to get the values of the internal primitive.
Finally, I2,3,4, represented in Figure 5, forwards the answer returned by C.

17

Answer to a H query

Input : µ ∈ Spad

Output : h = H(µ)

1. compute (M1|| . . . ||M`) = pad(µ)
2. define V0 = IV
3. for i from 1 to `

(a) define (K,X) = CPRE(Vi−1,Mi)
(b) call S to get Y = F (K,X)
(c) define Vi = CPOST(Vi−1,Mi, Y)

4. call C to get h = H(µ)
5. return h

Fig. 5. Interceptor I2,3,4 in Games 2 to 4.

Game 3. A small modification is brought to the simulator, which is represented in Figure 6. When
it receives a query to F or F−1, it does not call F if the answer is already defined in Lvalues. It
simply returns the corresponding value to the caller, either I or D.

Game 4. We now define some bad events that can occur on the sequence of queries and answers
involving S. These events aim at detecting a potential bias in the answer to a hash query. The defi-
nition of bad events that may give an advantage to the adversary depend on CPRE. We suppose that
these events can be detected efficiently and define the corresponding subroutines of the simulator.

Collision_detect :

(Lprefix, V) 7→
{

(M,M ′, V ′) s.t. ∃(V ′, µ) ∈ Lprefix, C
PRE(V,M) = CPRE(V ′,M ′)

⊥, if such (M,M ′, V ′) does not exist
Suffix_detect :

(Lvalues, V) 7→
{

(M,X,K) s.t. ∃(X,K, Y) ∈ Lvalues, C
PRE(V,M) = (X,K)

⊥, if such (M,X,K) does not exist

If several answers are possible, these algorithms return one of them randomly. If this happens, D
might be able to distinguish the two oracle systems. Therefore such cases have to be covered by the
definition of bad events.

To get a significant bound on their occurrence probability, bad events have to be raised when
receiving a fresh answer from F , as these values are uniformly distributed up to the knowledge of
both D and S. The bad events are the following:

BadColl. This event occurs while inserting a path (V, µ) in Lprefix. Suppose that there is already
some (V ′, µ′) in Lprefix such that CPRE(V,M) = CPRE(V ′,M ′) for some M,M ′ such that µ||M and
µ′||M ′ are in Sprefix ∪ Spad. Then, F (CPRE(V,M)) is involved in the computation of two different
hashes with two different prefixes, which can lead to a correlation on the digests. A noticeable case
of this event occurs when V = V ′, which leads to an internal collision on the chaining variable. If
D can insert a common suffix to µ and µ′, this leads to a collision on the digests. We refer to this
event as BadColl.

BadSuffix. Another bad event can occur at the same step of the simulation. Suppose that there
exists (X,K, Y) in Lvalues and M such that µ||M ∈ Sprefix ∪ Spad and CPRE(V,M) = (K,X). Then,
V is an intermediate chaining variable involved in a hash computation, and the next iteration of the
compression function has already been executed. This can also lead to local collisions, or to digest
values that are completely defined before the computation of CF . We refer to this event as BadSuffix.

18

Initialization of S3−5

1. define Lvalues = ∅ and Lprefix = {(IV, ε, 1)}

Simulation of F

Input : (K,X), origin O = either I or D
Output : Y

1. (Game 4 only) if O = D and Prefix_identify(Lprefix,K,X) = (V, µ, 0,M),
detect(BadExtension)

2. if ∃(X,K, Y, T) ∈ Lvalues
(a) if T = 0 and O = D, replace (X,K, Y, 0) by (X,K, Y, 1)

in Lvalues
(b) return Y

3. (@(X,K, Y, T) ∈ Lvalues) call F to get Y = F (K,X)
4. if O = I, add (X,K, Y, 0) to Lvalues
5. else (if O = D), add (X,K, Y, 1) to Lvalues
6. if Prefix_identify(Lprefix,K,X) 6= ⊥

(a) set (V, µ, T,M) = Prefix_identify(Lprefix,K,X)
(b) set W = CPOST(V,M, Y)
(c) (Games 4-5 only) if Collision_detect(Lprefix,W),

detect(BadColl)
(d) (Games 4-5 only) if Suffix_detect(Lvalues,W),

detect(BadSuffix)
(e) if µ||M ∈ Sprefix

i. if T = 1, O = D and (W,µ||M, 0) ∈ Lprefix, erase it
ii. if T = 1 and O = D, add (W,µ||M, 1) to Lprefix

iii. else add (W,µ||M, 0) to Lprefix
7. return Y

Simulation of F−1

Input : (K,Y)
Output : X

1. if ∃(X,K, Y, T) ∈ Lvalues
(a) if T = 0

i. (Game 4 only) detect(BadReduction)
ii. replace (X,K, Y, 0) by (X,K, Y, 1) in Lvalues

(b) return X
2. else (@(X,K, Y) ∈ Lvalues)

(a) call F−1 to get X = F−1(K,Y)
(b) add (X,K, Y, 1) to Lvalues
(c) (Games 4-5 only) if Prefix_identify(Lprefix,K,X) 6= ⊥,

detect(BadMitm)
(d) return X

Fig. 6. Simulator S3−5 for F and F−1 in Games 3 to 5. The instructions labelled "Game 4 only" are pointless in Game
5 and removed from the simulator.

19

BadMitm. Finally, an unwanted property might occur due to the answer of queries to F−1. Suppose
that the oracle F returns X to a query (K,Y) to F−1 and that for some V, µ,M such that (V, µ) ∈
Lprefix and µ||M ∈ Sprefix ∪ Spad, CPRE(V,M) = (K,X). This might also lead to internal collisions,
or hashes that are defined without running C on the answers of F . We refer to this event as BadMitm.

We can now prove the following two lemmas. Lemma 2 ensures that if no bad event occurs,
Lprefix contains all the chaining variables that can be identified as an intermediate computation of
a digest from the values of F stored in Lvalues. Lemma 3 ensures that if no bad event occurs, the
last call to F in the computation of a digest can always be identified as such for a unique message
when the query is received by S.

Lemma 2. Let Lvalues and Lprefix denote the internal memory of S after answering any of the
queries, and suppose that no bad event has occured during the game. Let V0 = IV, . . . , Vt be a sequence
of chaining variables, M1, . . . ,Mt be a sequence of message blocks and (X1,K1, Y1), . . . , (Xt,Kt, Yt)
a sequence of elements of Lvalues such that µ = M1|| . . . ||Mt ∈ Sprefix and for all 1 ≤ i ≤ t,

CPRE(Vi−1,Mi) = (Xi,Ki)
CPOST(Vi−1,Mi, Yi) = Vi .

Then, (Vt, µ) is in Lprefix.

Proof. We prove this result by recurrence on t. (IV, ε) is added during the initialization phase of S,
which prooves the result for t = 0.

Now, let us suppose that it is true for all sequences of length (t− 1). Suppose that (Xt,Kt, Yt)
is the last of the values (Xi,Ki, Yi) to be added to Lvalues. Then, when it is added, if no bad event
has occured before, Lprefix contains (Vt−1,M1|| . . . |Mt−1).

– If (Xt,Kt, Yt) is added as the result of a query to F (as opposed to F−1), S then adds (Vt, µ) to
Lprefix.

– Else, Xt is obtained as F−1(Kt, Yt) and BadMitm occurs.

We now consider the case in which (Xt,Kt, Yt) is not the last input/output value of F added to
Lvalues. We then have t ≥ 2. If no bad event has occured, our hypothesis ensures that (X1,K1, Y1), . . . , (Xt−1,Kt−1, Yt−1)
have been added in that order. The addition of (Xt−1,Kt−1, Yt−1) then leads to a bad event, either
BadSuffix or BadColl. This case then always leads to a bad event, which ends the proof.

Lemma 3. Let (K,X) be the q-th query to F received by S3−5 in Game 4, and suppose that none
of the previously defined bad events occur during the game. Then, one of the following propositions
is true:

– Before the q-th query, there is a unique (V, µ,M) such that (V, µ) ∈ Lprefix, µ||M ∈ Sprefix ∪Spad
and CPRE(V,M) = (K,X), and it remains unique during the whole game.

– No such (V, µ,M) exists at the end of the game.

Proof. We prove Lemma 3 by contraposition: if both propositions of the lemma are false, then a
bad event was raised. Let (K,X) be the q-th query to F received by S3−5 in Game 4, and Y the
response to this query.

Assume that there exists at the end of the game two triples (V0, µ0,M0) 6= (V1, µ1,M1) such
that for i ∈ {0, 1}, (Vi, µi) ∈ Lprefix, µi‖Mi ∈ Sprefix∪Spad, and CPRE(Vi,Mi) = (K,X). Without loss
of generality, (V1, µ1) was inserted in Lprefix after (V0, µ0). As a consequence, BadColl is raised when
(V1, µ1) is inserted in Lprefix.

Assume now that a unique such triple (V, µ,M) exists at the end of the game, but that it did
not exist before the q-th query. We thus have CPRE(V,M) = (K,X), µ‖M ∈ Sprefix ∪ Spad and
(V, µ) is not in Lprefix before the q-th query, but belongs to this set at the end of the game. Let us

20

consider (K ′, X ′), the q′-th (q′ > q) query to S3−5 during which (V, µ) is inserted in Lprefix, and
Y ′ the response to this request. Since (V, µ) is inserted in Lprefix, there exists (V ′, µ′,M ′) such that
(V ′, µ′) is in Lprefix before the q′-th query, µ = µ′‖M ′ and V = CPOST(V ′,M ′, Y ′). Consequently,
BadSuffix is raised during query q′, since (X,K, Y) has been inserted in Lvalues during query q < q′

and CPRE(V,M) = (K,X).

In Game 4, we also prepare the delay of the queries issued by I that will be introduced in
Game 5. The three bad events that have already been defined also apply to Game 5, and their
occurrence probability in Game 5 affects the final indifferentiability bound. The problem is that
these probabilities are difficult to bound in Game 5, as the current knowledge of D is not included
in the internal state of S3−5: S3−5 does not know which hash queries have been issued before the
end of the game. Therefore, we define more bad events in Game 4, so that we can express an
indifferentiability bound as a function of the probability that a bad event occurs in Game 4.

To be able to detect these problems, S3−5 needs to be able to determine which parts of its
internal state D can know and which parts he cannot know. Therefore, the list Lprefix is modified:
its elements (V, µ) get an extra tag T ∈ {0, 1} that equals 1 if and only if all the queries leading
to (V, µ) have been issued by D. When inserting a new value (W,µ||M,T) in the set Lprefix, T = 1
if and only if the tag associated to the previous chaining variable (V, µ) is 1 and the current query
comes from D. Under the same conditions, if the value (W,µ||M, 0) is already in Lprefix, we modify
the tag value and set it to 1. It can be easily shown that when no bad event occurs, (V, µ, 1) is in
Lprefix if and only if all the corresponding queries have been issued by D as queries to F . Likewise,
an extra tag T ∈ {0, 1} is appended to (X,K, Y) ∈ Lvalues, that equals 1 if and only if (X,K, Y)
corresponds to a query originating from D.

We can now define the two other bad events.

BadExtension. This event occurs when D issues a query (K,X) to F such that for an element (V, µ, 0) ∈
Lprefix and a message block M that fulfills µ||M ∈ Sprefix ∪ Spad, CPRE(V,M) = (K,X). This event
cannot be detected if S does not have access to hash queries.

BadReduction. A similar event can occur when D issues a query (K,Y) to F−1. Suppose that there
is an element (X,K, Y, 0) in Lvalues, (V, µ) ∈ Lprefix and M such that µ||M ∈ Sprefix ∪ Spad and
CPRE(V,M) = (K,X). This event can only be detected if S has access to hash queries.

Game 5. In this game we modify the interceptor, so that I5,6 recomputes digests only at the end
of the game. The simulator is unchanged, but the bad events BadExtension and BadReduction cannot
occur anymore.

A relation between the probability of bad events in Games 4 and 5 can be established.

Lemma 4. For a given instance of F and a given randomness of D, the occurrences of a bad event
in Games 4 and 5 are deterministic and if a bad event occurs in Game 5, a bad event also occurs
in Game 4. Therefore,

Pr [Bad[5]] ≤ Pr [Bad[4]] ,

where the probability are defined on the randomness of D and a uniform selection of F .

Proof. The first statement of the lemma comes from the fact that given a fixed F and a randomness
of D, the execution of Game 4 and Game 5 is deterministic.

In the following, let us assume that F is fixed and that the randomness of D is fixed. In order
to prove the second statement, one has to consider every bad event type that can occur in Game 5
and show that a bad event would also occur in Game 4.

Let us first notice that the same query from D in Game 4 or Game 5 gets the same answer in
both games: CF (µ) if µ is a query to H, F(K,X) if (K,X) is a query to F , and F−1(K,Y) if (K,Y)
is a query to F−1. It is then clear that D performs the same queries when interacting with Game 4

21

or with Game 5, because the queries of D only depend on its randomness and on the answers to its
previous queries.

The difference between Game 4 and Game 5 is the behaviour of the interceptor, which directly
submits to the simulator the F -queries corresponding to the execution of the construction on the
H-queries in Game 4, but which delays these submissions to the end of the game in Game 5. As a
consequence, Lprefix at the end of Game 5 is included in Lprefix at the end of Game 4. Indeed let us
consider (V, µ) in Lprefix at the end of Game 5.

– if (V, µ) = (IV, ε), it is also in Lprefix in Game 4;
– if (V, µ) was inserted in Lprefix by a query originating from I (resp. D), it is also in Lprefix in

Game 4 because the orders of queries stemming from I (resp. D) is maintained in both games
and the execution of queries from I (resp. D) is sufficient to insert (V, µ) in Lprefix.

Let us assume that BadColl happens in Game 5, during the insertion of (V, µ) in Lprefix. At the
time of this insertion, there exists (V ′, µ′) ∈ Lprefix,M,M ′ such that CPRE(V,M) = CPRE(V ′,M ′),
and µ‖M and µ′‖M ′ both belong to Sprefix ∪ Spad. Thus (V, µ) and (V ′, µ′) are also in Lprefix at the
end of Game 4, and BadColl is raised when the second one is inserted in Lprefix in Game 4.

Let us now assume that BadSuffix happens in Game 5, during the insertion of (V, µ) in Lprefix. At
the time of this insertion, there exists (X,K, Y) ∈ Lvalues and M such that µ‖M ∈ Sprefix ∪Spad and
CPRE(V,M) = (K,X). (V, µ) is also in Lprefix at the end of Game 4. If (X,K, Y) ∈ Lvalues at the
time of its insertion during Game 4, then BadSuffix is raised in Game 4. Otherwise, necessarily (V, µ)
is inserted by a query originating only from I and (X,K, Y) is inserted by a query originating from
D. At the time it is inserted in Game 4, (V, µ) ∈ Lprefix. If the query is a F -query, BadExtension is
raised. If it is a F−1 query, BadMitm is raised.

Finally, let us assume that BadMitm happens in Game 5, during the insertion of (X,K, Y) in
Lvalues by a F−1-query. At the time of this insertion, there exists (V, µ) ∈ Lprefix,M such that
µ‖M ∈ Sprefix ∪ Spad and CPRE(V,M) = (K,X). (V, µ) is also inserted in Lprefix in Game 4. If it is
inserted after (X,K, Y) is inserted in Lvalues, BadSuffix happens in Game 4. If it is inserted before
(X,K, Y), one has to distinguish two subcases : if (X,K, Y) is inserted first in Game 4 by a query
to F , then this query was made by I, and when the query (K,Y) to F−1 is made, BadReduction
happens; otherwise BadMitm when (X,K, Y) is inserted in Lvalues by a query to F−1.

Game 6. We can now withdraw the F oracle from the game and insert the random oracle H.
The simulator must now generate answers to F queries itself. To thwart distinguishing attacks,
these answers must be consistent with the digests generated by H, and the distance between their
distribution (taken over the random coins of S and H) and the one that is induced by a uniform
choice of F must be as small as possible. To achieve it, we use the sampling algorithm Samp defined
in Section 3.2.

For each query to F (K,X), when there exists (V, µ) in Lprefix and M such that µ||M ∈ Spad and
CPRE(V,M) = (K,X), the answer Y must be generated so that the first `h bits of CPOST(V,M, Y)
equal H(µ||M). Therefore S6 computes it by calling H(µ||M) to get h and Samp(V,M, h,Lvalues) to
get Y .

For each query to F (K,X) that does not fulfill this condition (resp. each query to F−1(K,Y)),
S6 selects its answer randomly and uniformly over the set of values that do not have a preimage
(resp. an image) under the same key in Lvalues. We denote this set C(Lvalues,K) (resp. P (Lvalues,K)).

A consequence of Lemma 3 is when no bad event occurs, for each H-request issued by D, the
answer returned by I is consistent with the sequence of values defined by S. Therefore, as long as
no bad event occurs, the only difference between Games 5 and 6 is the distribution of the values
sampled by S. As a consequence,∣∣∣Pr

[
W6 ∧ Bad[6]

]
− Pr

[
W5 ∧ Bad[5]

]∣∣∣ ≤ ND∆ ,

22

Initialization of I5,6

1. define LH = ∅
2. define V0 = IV

Answer to a H query

Input : µ ∈ Spad

Output : h = H(µ)

1. add µ to LH
2. call C (Game 5) or H (Game 6) to get h = H(µ)
3. return h

Replay of H queries (at the end of the Game)

1. for each µ in LH
(a) set (M1|| . . . ||M`) = µ
(b) for i from 1 to `

i. compute (K,X) = CPRE(Vi−1,Mi)
ii. call S to get Y = F (K,X)

iii. compute Vi = CPOST(Vi−1,Mi, Y)

Fig. 7. Interceptor I5,6 in Games 5 and 6.

where Wi denotes the probability that D returns 1 in Game i.
Furthermore, the probabilities that a bad event occurs in Games 5 and 6 fulfill

|Pr [Bad[6]]− Pr [Bad[5]]| ≤ ND∆ .

Game 7. In Game 7, we remove I and the bad event detection from the game. We obtain the final
simulator. In this scenario D interacts with Σ′ = (H,SH). This does not change the view of the
distinguisher

Bound on the advantage of the distinguisher. The only pair of consecutive games for which the view
of D can be modified is Games 5 − 6, when the F-oracle is replaced by the H-oracle. Using the
difference lemma, we have:

Adv(D) ≤ |Pr [W6]− Pr [W5]|
≤ max(Pr [Bad[5]] ,Pr [Bad[6]]) +ND∆

≤ Pr [Bad[5]] + 2ND∆
≤ Pr [Bad[4]] + 2ND∆ .

The probability of a bad event in Game 4 and the value of ∆ are investigated in the next section.

B.2 Occurrence probability of bad events for concrete hash functions

In this section, we study the occurrence probability of a bad event in Game 4. For each of the
defined bad events, we study its occurrence probability when answering to each of the ND queries,
assuming no bad event has occurred before.

23

Initialization of S6−7

1. define Lvalues = ∅ and Lprefix = {(IV, ε, 1)}

Simulation of F

Input : (K,X)
Output : Y

1. if ∃(X,K, Y) ∈ Lvalues
(a) return Y

2. if Prefix_identify(Lprefix,K,X) = (V, µ,M) and µ||M ∈ Spad
(a) call H to get h = H(µ||M)
(b) run Samp(M,V, h,Lvalues) to get Y

3. else
(a) select Y uniformly over C(Lvalues,K)

4. add (X,K, Y) to Lvalues
5. if Prefix_identify(Lprefix,K,X) = (V, µ,M)

(a) set W = CPOST(V,M, Y)
(b) (Game 6 only) if Collision_detect(Lprefix,W),

detect(BadColl)
(c) (Game 6 only) if Suffix_detect(Lvalues,W),

detect(BadSuffix)
(d) if µ||M ∈ Sprefix, add (W,µ||M) to Lprefix

6. return Y

Simulation of F−1

Input : (K,Y)
Output : X

1. if ∃(X,K, Y) ∈ Lvalues
(a) return X

2. else (@(X,K, Y) ∈ Lvalues)
(a) select X uniformly over P (Lvalues,K)
(b) add (X,K, Y) to Lvalues
(c) (Game 6 only) if Prefix_identify(Lprefix,K, Y) 6= ⊥,

detect(BadMitm)
(d) return X

Fig. 8. Simulator S6−7 for F and F−1 in Games 6 and 7

24

Bad event caused by an answer to a query to F . First, let us suppose that the q-th query is a query
to F (Kq, Xq). If Yq is not already defined, S queries F . The answer is uniformly distributed over a
set of at least 2n − q values. By definition of λColl, for each chaining variable V such that there is a
(V, µ) in Lprefix, the number of answers that generate BadColl is at most λColl.

Similarly, for each (X,K, Y) in Lvalues, the number of answers that lead to BadSuffix is bounded
by a constant λSuffix that happens to be equal to λExtension,1. For any functions CPOST and CPRE, it
can be easily shown that λSuffix ≤ λColl.

Each of the previous q − 1 queries leads to the definition of a triple (X,K, Y) and belongs to
one of the following cases.

1. There is no (V, µ),M with (V, µ) ∈ Lprefix and µ||M ∈ Sprefix ∪ Spad such that CPRE(V,M) =
(K,Y). Then, the value (K,X) has to be taken into account when evaluating BadSuffix.

2. There is one such (V, µ),M . Then, for the q-th query, if (K,X) leads to BadSuffix, (V, µ) leads to
BadColl. (K,X) does not need to be taken into account.

For the q-th query, we can conclude that

Pr [BadColl[4](q) ∨ BadSuffix[4](q)] ≤ qλColl
2n − q .

Bad event caused by an answer to a query to F−1. Now, we suppose that the q-th query is a query
to F−1(Kq, Yq). If Xq is not already known to S, S queries F and gets an answer which is uniformly
distributed in a set of at least 2n−q values. By definition of λMitm, for each chaining variable V such
that there is a (V, µ) ∈ Lprefix, the number of answers that generate BadMitm is λMitm. Therefore,

Pr [BadMitm[4](q)] ≤ qλMitm
2n − q .

Merging the probabilities of a bad event on the answers of F . As BadMitm cannot occur on the same
type of queries as BadColl and BadSuffix, we have

Pr [BadColl[4](q) ∨ BadSuffix[4](q) ∨ BadMitm[4](q)] ≤ qmax(λColl, λMitm)
2n − q .

By summing on all the queries, we get that

Pr [BadColl[4] ∨ BadSuffix[4] ∨ BadMitm[4]] ≤ max(λColl, λMitm)N2
D

2(2n −ND) .

BadExtension. Now, we study the occurrence probability of the BadExtension event. This event occurs
if D guesses a value (K,X) for which there is a value (W,µ||M, 0) in Lprefix and a message block M ′
such that CPRE(W,M ′) = (K,X). For each such (Wi, µi||Mi, 0), D can chooseM ′i and knows at most
hi = Wi|`h (by a direct query toH),Mi, and Vi such that (Vi, µi, 1) ∈ Lprefix and CPOST(Vi,Mi, Yi) =
Wi. First, we deal with the case of hi that the adversary knows.

By definition of λPre, each hi is in one of the sets Sj of maximal size λPre that form a partition
of {0, 1}`h . For each guess (K,X), Wi can lead to BadExtension only if (K,X) can be reached from
the set Sj hi belongs to. It can be reached from only one such set, denoted S(K,X). We denote by
Ωt the event that there is at least t such values hi that belong to the same set Sj .

For a guess (K,X) and a value (Wi, µi||Mi) such that Wi|`h belongs to the set S(K,X), we
now estimate the probability that (K,X) is the right value using the knowledge of the adversary.
This probability is taken over a random distribution of Yi. By definition of µPost, there are at least
µPost − q values Yi that lead to hi (if µPost − q < 1, there is at least one such value). By definition
of λExtension,2, at most λExtension,2 of these values lead to (K,X). Therefore we get that

Pr
[
BadExtension[4](q)|Ωt ∧Ωt+1

]
≤ tλExtension,2

µPost − q

25

By summing over all the queries, we get

Pr
[
BadExtension[4]|Ωt ∧Ωt+1

]
≤ tλExtension,2ND

µPost −ND

Now, as Ωt+1 implies Ωt we sum over t and get

Pr [BadExtension[4]] ≤ λExtension,2ND
µPost −ND

ND∑
t=1

(t(Pr [Ωt]− Pr [Ωt+1]))

≤ λExtension,2ND
µPost −ND

ND∑
t=1

Pr [Ωt] .

The distribution of each hi implies a distribution of the set Sj it belongs to. The event Ωt can then
be interpreted as the existence of a t-collision over at most ND variables, where each value is chosen
with probability at most λPre

2`h−ND
.

To give a more explicit bound, we use the following result.

Lemma 5. Let Ωt be the event that there exists a subset of at least t identical values in a set of N
values {x1, . . . , xN}, drawn independently and randomly following a distribution D such that for all
y, Pr [xi = y] ≤ p. Then,

N∑
t=1

Pr [Ωt] ≤ min (N, (1 + e)Np− 2 log2 p) .

Proof. It is well-known that for any t > 1,

Pr [Ωt] ≤
N t

√
2πt

(
e

t

)t
pt−1.

We now pose
t0 = eNp− 2 log2 p ,

and prove that for any t ≥ t0 and any N ,

N t

√
2πt

(
e

t

)t
pt−1 ≤ p. (1)

Indeed, (1) is equivalent to

t (log2 t− log2 p− log2N − log2 e) + 1
2 log2 t ≥ −2 log2 p−

1
2 log2(2π).

Then for any t ≥ t0,

log2 t = log2 (eNp) + log2

(
1− 2 log2 p

eNp

)
= log2 e+ log2N + log2 p+ log2

(
1− 2 log2 p

eNp

)
,

wherefrom

t (log2 t− log2 p− log2N − log2 e) = −2 log2 p

(
1− eNp

2 log2 p

)
log2

(
1− 2 log2 p

eNp

)
≥ −2 log2 p

where the last inequality is deduced from the fact that for x ≥ 0,

f : x 7→
(

1 + 1
x

)
log2(1 + x)

26

is increasing and limx→0 f(x) = 1/ ln 2 > 1. Using t ≥ −2 log2 p ≥ 1, this implies

t (log2 t− log2 p− log2N − log2 e) + 1
2 log2 t ≥ −2 log2 p .

Therefore we get

N∑
t=1

Pr [Ωt] =
dt0e−1∑
t=1

Pr [Ωt] +
N∑

t=dt0e
Pr [Ωt] ≤ dt0e − 1 +Np ,

and finally
N∑
t=1

Pr [Ωt] ≤ (1 + e)Np− 2 log2 p .

Now, we deal with the case where the adversary does not know hi. Therefore, to his knowledge,
Yi is uniformly distributed over a set of at least 2n−ND values, and at most λExtension,1 such values
lead to his guess (K,X). In that case, the success probability for the q-th query is bounded by
q/(2n −ND).

By taking the maximum probability of both cases, we get

Pr [BadExtension[4]] ≤ max
(
g(ND, λPre, `h)λExtension,2ND

µPost −ND
,
λExtension,1N

2
D

2(2n −ND)

)
.

Prefix-free encoding. In the specific case of prefix-free encodings, the demonstration above can be
slightly improved. For each of the Wi, the adversary does not know hi. Therefore, only the second
case of the demonstration above applies. This leads to

Pr [BadExtension[4]] ≤ λExtension,1N
2
D

2(2n −ND) .

BadReduction. For the reverse attacks, the computation is similar to the case of length-extension
attacks. For each hi, the adversary has to guess a value Yi among all those that lead to hi after
CPOST. By definition, there are at least µPost − q such values. For each guess Y only some values
hi are compatible: those such that the actual value Y belongs to S′(Vi,Mi, hi). By definition of
hi, the probability that they S′(Vi,Mi, hi) is a given subset S′j of the partition depends on the
distribution of Yi and is bounded by λPost

2n−ND . Therefore, with a demonstration similar to the case of
length extension attacks, we can prove that

Pr [BadReduction[4]] ≤ g(ND, λPost, n)ND
µPost −ND

.

Bounding the probability of a guess by D. BadExtension and BadReduction can occur for different types
of queries. Therefore, in the generic case,

Pr [BadExtension[4] ∨ BadReduction[4]] ≤ max (g(ND, λPre, `h)λExtension,2, g(ND, λPost, n)) ND
µPost −ND

.

This concludes the proof of Theorem 1.

27

