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Abstract. Many papers deal with the problem of constructing an ef-
ficient masking scheme for existing block ciphers. We take the reverse
approach: that is, given a proven masking scheme (Rivain and Prouff,
CHES 2010) we design a block cipher that fits well the masking con-
straints. The difficulty of implementing efficient masking for a block ci-
pher comes mainly from the S-boxes. Therefore the choice of an adequate
S-box is the first and most critical step of our work. The S-box we selected
is non-bijective; we discuss the resulting design and security problems.
A complete design of the cipher is given, as well as some implementation
results.

1 Introduction

In a side-channel attack (SCA for short), the attacker observes — at runtime
— the execution environment (timing, power, electromagnetic radiation, etc.) of
a secret-dependent operation. From this observation, the attacker might either
be able to identify (part of) the secret (the attack is then called Simple Side-
Channel Analysis, SSCA) or get noisy information about internal states of the
cryptographic operation. In the latter case, when the accessed internal values are
a simple combination of a known variable and (part of) the secret, the attacker
will recover the secret from a statistical treatment of multiple cryptographic op-
eration execution, the attack is then called Differential Side-Channel Analysis
(DSCA for short). DSCA fits particularly well block ciphers which build their
security from piling-up simple and cryptographically weak operations. By access-
ing internal states, the attack bypasses the cipher strength. Since the seminal
work of Kocher et al. [37], DSCA (and its numerous variants and extensions) are
a constant threat against embedded devices that implement cryptographic prim-
itives. The development of DSCA countermeasures is a dynamic and challenging
research domain where the ultimate goal is to find the good trade-off between



security and performances. Many countermeasures focus on noise addition tech-
niques, which should increase the attack complexity. For instance, inserting ran-
dom delays during the cipher execution is a common practice in order to render
difficult finding the manipulation of secret-dependent variables inside multiple
side-channel traces. This kind of countermeasures indeed increases the classical
DSCA attack complexity and it can be done with relatively small overhead on the
algorithm complexity (see for instance [3, 21]). However these countermeasures
cannot be proven robust, i.e. an optimal attacker would be able to recognize and
suppress the random delays. This is actually what claim Durvaux et al. in a very
recent paper [24], where Hidden Markov Chain inference techniques are used
to point out dummy operations from real ones, discarding almost perfectly the
countermeasure proposed in [21]. It goes similarly for the other noise addition
countermeasures like jittered clock [20], shuffling of operations [30, 63] or Dual-
rail logic style ( [64] and variants). In fact, the only known countermeasure that
possesses security proofs is the so-called Masking Schemes where the cipher’s
secret-dependent internal values are randomized from one execution to another
(e.g. [18,28]). However, such countermeasures usually induce a high performance
overhead, making their implementation difficult if not impracticable in small em-
bedded devices. Many works have been dedicated to building a masking scheme
with low cost that fits the existing block ciphers (mainly DES and AES). In the
present paper we will take the problem the other way around: we will study a
proven masking scheme and propose a new construction of block cipher that fits
well the masking constraints. Hence, we come up with the design of a cipher that
ensures resistance to conventional cryptanalysis methods, with special care for
the S-boxes (that are used to introduce non-linearity in the cipher design, and
are usually the most challenging part to implement when a masking scheme is
used) in order to lower the performance overhead of masking.

The paper is organised as follows: In the next section, the basics about mask-
ing techniques are recalled and Rivain and Prouff’s Boolean masking scheme [55]
is described; our block cipher construction will follow the design criteria derived
from this scheme. In Section 3, we propose a new S-box having a good trade-off
between efficiency, conventional security and masking efficiency. The main limi-
tation of the new S-box is its non-bijectiveness but the use of a Feistel network
allows us to build a full block cipher from the S-box. We exhibit in Section 4
a devastating attack on Feistel schemes if no special care is taken on the diffu-
sion layer of the round function. In connection with this attack, various specific
cryptanalysis techniques of Feistel networks are recalled in Section 5. The full
round function is described in Section 6. Finally, in Section 7, a complete design
specification of a full block cipher is proposed as well as a performance analysis
compared to the AES block cipher.

2 Preliminaries on Higher-Order Masking Schemes

As recalled in introduction, a Differential Side-Channel Attack compiles leaked
information from side-channel observations of internal states of a block cipher



in order to recover some knowledge about the secret key. The strength of DSCA
comes from the statistical treatments of the leaked information that makes the
attack particularly robust to noise (from measurement setup, concurrent oper-
ations, etc. . . ). Many improvements have been proposed on the original Differ-
ential Power Analysis introduced by Kocher et al. in 1999 [37]. Among them
the Correlation Power Analysis [14] and the Mutual Information Analysis [27]
propose different statistical treatments to enhance the attack complexity with
respect to the noise and leakage model. Another notable extension of DSCA
is the so-called Higher-Order DSCA (HO-DSCA for short), already mentioned
in [37], that upgrades the attacker model: in a dth-order DSCA attack, it is able
to observe d different internal variables in a single cipher execution.

Countermeasures by masking are certainly the most studied countermeasures
against (HO-) DSCA because of their security proofs. However, the performance
overhead due to a masking scheme that thwarts HO-DSCA is such that they
are hardly used in practice. Our goal here is to point out the operations that
make a masking scheme costly and propose a block cipher that avoids as much
as possible such operations. To this end we will focus on a recent (HO-)Masking
scheme introduced by Rivain and Prouff [55].

2.1 Masking Schemes

A dth-order masking scheme is a countermeasure at the algorithmic level that
thwarts dth-order DSCA; the idea is to randomize the data processed by the
symmetric cipher such that there exists no set of d processed data that together
depend on the secret. A proof of security on a masking scheme ensures that this
property holds, in addition, the data complexity of a HO-DSCA attack increases
exponentially with its order, assuming the presence of noise (as showed by Chary
et al. [18]), which always exists in practice. All together, with a high enough
order with respect to the noise level, these properties make the masking approach
the only sound countermeasure against DSCA.

Several 1st-order masking schemes have been proposed (e.g. [1,11,44,46,49])
and some specific 2nd-order masking schemes [54, 57] but until recently very
few schemes could be extended to any order d. The first provable dth-order
masking scheme was proposed by Ishai et al. in 2003 [31]; the construction has
been extended in 2010 by Rivain and Prouff [55]. This work was followed by two
new propositions [35, 51] for which our own work would apply just the same as
for Rivain and Prouff’s construction. A third publication by Genelle et al. [26]
was also proposed in 2011; it is dedicated to very specific non-linear functions
(power functions) which would not leave enough room for us in the research of
new S-boxes.

2.2 Rivain-Prouff’s Scheme

Let us consider an intermediate variable V ∈ GF (2n) of the targeted block ci-
pher, the variable V is called sensitive if its value depends on a secret key K and



on a known variable (e.g. the plaintext P ), for instance V = K⊕P . The manip-
ulation of a sensitive variable should be avoided due to DSCA attacks, therefore,
in a dth-order Boolean Masking Scheme (as Rivain and Prouff’s scheme), its ma-
nipulation is replaced by the manipulation of d+ 1 shares (V0, V1, · · · , Vd) such
that

V = V0 ⊕ V1 ⊕ · · · ⊕ Vd . (1)

A dth-order Masking scheme is an algorithm that modifies the cipher sub-
functions in order to only manipulate such sharing of sensitive variables (ideally
without ever re-constructing the sensitive variables or decreasing the sharing
order).

In [55], the authors propose such an algorithm for each atomic operation:
affine functions (v 7→ Af (v)), addition ((v, w) 7→ v ⊕ w) and multiplication
((v, w) 7→ v × w).

Remark 1. Any function can be decomposed in a sequence of such atomic opera-
tions, which gives a great genericity to the masking scheme (this approach is clas-
sic in Secure Multi-Party Computations, a research area that is very close to our
problem and on which most of the dth-order masking scheme are based [31,51]).
The drawback is that those atomic functions shall be executed explicitly (pre-
computed tables, commonly used to evaluate S-boxes are not an option).

Affine functions and additions over shared variables can be applied straight-
forwardly, the masking overhead will solely correspond to d times the original
operation complexity. In the case of multiplication, when it is not linear over
GF (2n), the masking scheme is more expensive: it costs (d+ 1)2 field multipli-
cations, 2d(d+ 1) XORs and the generation of d(d+ 1)/2 random n-bit values.
In a block cipher like the AES, each of the 160 S-box computations needs at the
least 4 such multiplications in GF (28), making the cost of the masking scheme
mostly carried by the non-linear multiplications.

This study leads naturally to the following constraints that an S-box should
satisfy in order to be efficiently masked: the S-box should have a simple expres-
sion as a polynomial and minimum number of non-linear field multiplications in
this form.

3 Research of a ”Good” S-box

S-boxes are non-linear functions from GF(2)n to GF(2)m where n and m are pos-
itive integers. We also use the terminology (n,m)-functions. The vector spaces
GF(2)n and GF(2)m can be endowed with the structure of field. This gives, when
m divides n (and in particular when m = n), the possibility of designing S-boxes
as polynomial functions over finite fields.

3.1 Design Constraints

S-boxes must allow resistance to several logical attacks. The three main attacks
to be withstood are the linear attack [42], the differential attack [6] and the higher



order differential attack [36]. An attack which is not yet efficient but represents
some threat for the design of future block ciphers is the algebraic attack [19].
Designing an S-box, which is fastly implementable, allows high resistance to the
first three attacks and would not be potentially weak against a future efficient
version of the fourth one is a difficult challenge. Historically, the S-boxes of the
DES have been found by clever random computer search. This was possible
thanks to the relatively small size of these (6, 4)-functions. The S-box of the
AES was too big for that; it has been the result of a theoretical work by K.
Nyberg [48] on the so-called inverse function GF (2n) → GF (2n) : x 7→ x−1.
This function has very good properties: it is a permutation (which is necessary
for using it as an S-box in an SPN and is quite useful for a Feistel cipher as we
shall see below), it achieves the highest known nonlinearity when n is even (in
the case of AES n = 8; it is common to choose n as a power of 2 because it makes
software implementation easier), and has very high resistance to the differential
attack and to the higher order differential attack. It happens that, since 1993,
no other function in a number of variables equal to a power of 2 and gathering
these properties could be found (see a survey in [15]). Note however that the
inverse function is almost the worst possible against the algebraic attack.

The criteria listed above are those that an S-box should satisfy in black
box cryptography. We need to add the requirements derived for side-channel
resistance (see Section 2) and the practical design constraints:

1. Higher-Order Masking against HO-SCA attacks implementable without slow-
ing down the cryptosystem too much (reducing the overhead leads to min-
imizing the number of non-linear multiplications, see Section 2, and is also
related to Constraint 2).

2. Efficiency (i.e. reduce the number of instructions and allow the operations
to be performed in small fields).

3. Function in 8 variables (the number of variables must be large enough for
allowing good resistance to the three main known logical attacks; the choice
of 8 helps satisfying Constraint 2 and allows compatibility with standard
block size).

We describe now in more details the function’s criteria. Given an (n, n)-
function in the form:

f : X →
2n−1∑
i=0

aiX
i, ai ∈ GF (2n) (2)

its important parameters are:

– Non-linearity: nl(f) = 2n−1 − 1

2
max
a,b6=0

∣∣∣∣∣∑
X

(−1)b·f(X)+a·X

∣∣∣∣∣, where a ·X is an

inner product in GF (2n); in practice, a ·X = tr(aX) where tr is the trace

function tr(a) = a+ a2 + a2
2

+ . . .+ a2
n−1

.
To thwart linear cryptanalysis [42], the nonlinearity must be close to the
best known nonlinearity of vectorial functions in even numbers of variables:
2n−1 − 2n/2 (that is 112 for n = 8).



– Differentiality: δ = max
a 6=0,b

(#{X | f(a+X) + f(X) = b}).

Because of the differential cryptanalysis [7], it should be 2 (then the function
is called Almost Perfect Nonlinear APN [47]) or 4 (then the function is called
differentially 4-uniform [47]), or at most 6.

– Algebraic degree: d = maxi (ω2(i) | ai 6= 0), where ω2(i) is the Hamming
weight of the binary expansion of i.
Because of the higher differential attack [36], it should be at least 3 and
preferably at least 4.

– Graph algebraic Immunity: equals the minimal algebraic degree of a nonzero
Boolean function vanishing on the graph Gf = {(X, f(X)); X ∈ GF (2n)}
of the function (that is, the minimal algebraic degree of an annihilator of
the graph); this parameter is not related to an efficient attack yet, but 1 is
definitely too small and 2, as in the case of the inverse function, is risky.

– Minimum number of non-linear multiplications.

The evaluation of f : X →
∑2n−1
i=0 aiX

i involves a number, say k, of non-
linear multiplications (by opposition to linear transformations such as, in
characteristic 2, an exponentiation by a power of 2, i.e. a monomial of de-
gree a power of 2). Higher Order masking schemes like the one proposed by
Rivain and Prouff [55] slow down significantly the S-box implementation, the
overhead being directly related to the number of non-linear multiplications.

3.2 Bijective vs Non-Bijective S-box

Considering two comparable functions (with respect to their execution efficiency
as well as the above mentioned criteria), a bijective S-box is much more in-
teresting than a non bijective one, because in the latter case we have to solve
the problem of making the cipher invertible anyway. Moreover we will see in
Section 4 that a non-bijective S-box induces security flaws.

However, it is a matter of fact that the research of good (meaning efficient
and cryptographically strong) non-linear functions is much harder when only
considering bijective functions, especially in an number of variables that is a
power of two, where the inverse function is considered the only good candidate.

The selected function is a non-bijective function, specially efficient in the
number of operations necessary for evaluating it and involving only operations
in a small Galois Field (of 16 elements), operations that can then be tabulated
on standard platforms.

3.3 S-box description

A possible S-box candidate is proposed in [16]. It is not expressed as a polynomial
of the form (2), but as the concatenation of two bivariate polynomials whose
variables live in GF (2n/2):

f : GF(2n/2)2 → GF(2n/2)2 : (x, y) 7→ (xy, (x3 + ω)(y3 + ω′)),



where xy is the product of x and y in the field GF (2n/2). This S-box has the
desired properties when n/2 is even and ω, ω′ and ω

ω′ belong to GF (2n/2) \
{x3, x ∈ GF (2n/2)}. In particular, for n = 8, we have:

– δ = 4.
– nl = 94.
– algebraic degree: 4.
– number of non-linear multiplications: 4 in GF (24).

3.4 S-box instantiation

To represent elements in GF(24) we chose to work in field representation GF(2)[x]/P (x)
with P (X) = X4 +X3 + 1. Moreover we need to make a choice in the family of
S-boxes described above, that is to choose ω and ω′. We took ω = 02x, ω′ = 04x
(in hexadecimal notation).

The S-box is then fully specified, it can be represented as a look-up table
(still in hexadecimal):

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 08 0c 03 06 06 04 05 06 05 04 0c 0c 04 03 05 03
10 0a 1f 29 3b 4b 55 62 7b 82 95 af bf c5 d9 e2 f9
20 01 2d 45 6a 8a ac cf ea 9f bc dd fd 1c 35 5f 75
30 0f 34 61 52 c2 fb a3 92 13 2b 74 44 db e1 b3 81
40 0f 44 81 c2 92 db 13 52 b3 fb 34 74 2b 61 a3 e1
50 0e 59 a4 f8 d8 87 7c 28 3c 67 99 c9 e7 b4 4c 14
60 02 63 ca ad 1d 71 d7 bd 27 41 e3 83 31 5a f7 9a
70 0f 74 e1 92 52 2b b3 c2 a3 db 44 34 fb 81 13 61
80 02 83 9a 1d bd 31 27 ad f7 71 63 e3 41 ca d7 5a
90 0e 99 b4 28 f8 67 4c d8 7c e7 c9 59 87 14 3c a4
a0 0a af d9 7b 3b 95 e2 4b 62 c5 bf 1f 55 f9 82 29
b0 0a bf f9 4b 7b c5 82 3b e2 55 1f af 95 29 62 d9
c0 0e c9 14 d8 28 e7 3c f8 4c 87 59 99 67 a4 7c b4
d0 01 dd 35 ea 6a bc 5f 8a cf 1c fd 2d ac 75 9f 45
e0 02 e3 5a bd ad 41 f7 1d d7 31 83 63 71 9a 27 ca
f0 01 fd 75 8a ea 1c 9f 6a 5f ac 2d dd bc 45 cf 35

3.5 Masked S-box cost evaluation

As explained in Section 2, Rivain and Prouff’s higher order masking scheme [55]
uses a sequence of field multiplications and additions to compute the masked
S-box. It can be easily checked that one needs at most 2 additions, 2 square op-
erations and 4 multiplications in GF (24) to evaluate our S-box. By comparison,

the AES S-box is computed with 3 raisings to some power 2i (i.e. X2i) and 4
multiplications in GF (28) (see [55]).

The cost of the higher order masking scheme is linear in the masking order for
additions and linear operations (like ”X2i” operations in fields of characteristic



2) whereas it is quadratic for non-linear multiplications. Hence the overhead in
the number of operations to evaluate a masked AES S-box and our S-box seems
at first glance quite the same. Table 1 details the number of operations in GF (24)
that are needed to evaluate our S-box.

# additions # squarings # multiplications # random 4-bits values

Unmasked 2 2 4 0

dth-order masked (8d+ 2)(d+ 1) 2(d+ 1) 4(d+ 1)2 2d(d+ 1)
Table 1. Number of Operations

In practice, the field size will play an important role in the runtime (see
Section 7.3 for implementation results) as a field operation cost is directly de-
pendent on the field size. Decreasing the field size to 24 allows to tabulate the
field multiplication in a lookup table with much less memory, which makes it
possible even when it is very constrained (contrary to the case of GF (28)). As a
matter of fact, using tower field methods, the evaluation of higher-order masked
AES’s S-box in GF (24) by Kim et al. [35] has been shown to be faster (for
masking order 2 and 3) than the original evaluation in GF (28) (from [55]), even
though the number of non-linear multiplications turned to 5 in GF (24).

4 From the S-box to the Cipher

4.1 Using a Feistel network with SP-type round function

The non-bijectivity of the S-box we selected requires us to use an adequate
structure, in order to make the cipher invertible. A well-known way to use non-
bijective round functions to build a block cipher is to use a Feistel network.
Therefore we could think of embedding our S-box in an SP-Type F -function as
considered in many papers [2,32,58–61], and using this F -function as the round
function of a Feistel network.

An SP-type F-function F : GF(2)n×GF(2)n → GF(2)n is defined as follows.

Definition 1. Let m the number of S-boxes in a round, and t the size of the
S-box, with mt = n. Consider γ, θ : GF(2)n → GF(2)n with

– γ the function generated by concatenating m S-boxes.
– θ a linear diffusion layer.

Then an SP-type F-function F is defined as F (x, k) = θ(γ(x⊕ k)).

One round of a Feistel network with round function F : GF(2)n → GF(2)n

is defined as

Ψ(F ) : GF(2)2n → GF(2)2n : 〈L,R〉 → 〈R,L⊕ F (R)〉

Then



Definition 2. An SP-type R-round Feistel Network is the composition

©R
i=1Ψ(F (., ki))

where F is an SP-type F-function and the ki’s are round keys derived from the
master key K by a key schedule algorithm.

4.2 Why it is not a good idea

This approach is actually not applicable as such with our S-box S, as it lends
itself to a little-known but devastating attack.

Consider a, b ∈ GF(28) such that S(a) = S(b) (two such inputs always exist as
S is not injective). Let us denote ∆ = a⊕b. Consider two plaintexts P = 〈L,R〉 =
〈(l1, . . . , lm), (r1, . . . , rm)〉 and P ′ = 〈L,R′〉 = 〈(l1, . . . , lm), (r′1, . . . , r

′
m)〉 (li, ri, r

′
i ∈

GF(28)) such that

P ⊕ P ′ = 〈(0, . . . , 0), (∆, 0, . . . , 0)〉.

Assuming the first round key k1 = (k11, ..., k
1
m) is uniformly distributed, with

probability at least4 2/28 we have

F (R, k1) = F (R′, k1) (3)

As a matter of fact, the inputs R ⊕ k1 and R′ ⊕ k1 to the S-box layer differ
in their first byte only. Thus (3) is satisfied when S(r1 ⊕ k11) = S(r′1 ⊕ k11). This
equality is satisfied if r1 ⊕ k11 = a or r1 ⊕ k11 = b.

Attack complexity Let us consider a SP-type Feistel Network with R rounds
and a block size of n bits. The round function’s S-Box (S) is non-injective
and we denote by DP0 its maximum 0-output differential probability : DP0 =
maxa 6=0(#{x s.t. S(x⊕a)⊕S(x) = 0})/2m, where m is the size of the S-box in-
put (the best case scenario from the security point of view is when DP0 = 2/2m,
this is the case for our S-box). The differential attack we study here assumes that
the attacker chooses pairs of plaintexts P, P ′ such that the input difference at
the beginning of the first round function is null everywhere except on the input
of a single S-box where the difference is equal to ∆ = argmaxa6=0(#{x s.t. S(x⊕
a)⊕ S(x) = 0}).

The differential characteristic over R rounds considered in this attack is such
that the round function’s input differential for even rounds (resp. odd rounds) is
equal to 〈(0, . . . , 0), (∆, 0, . . . , 0)〉 (resp. null). Assuming that the round keys are
independent and uniformly distributed (i.e. the classical Markov Cipher assump-
tion), it is easy to evaluate the probability of such a differential characteristic
Ω:

Pr[Ω] = (DP0)R/2 .

4 It is greater than that if ∃c(a 6= c 6= b) such that S(c) = S(c⊕∆).



Given the differential characteristic probability it is well known (see for instance
[39]) that the differential cryptanalysis data complexity can be approximated by

C =
2

Pr[Ω]
.

Hence, in order to get an attack complexity higher than exhaustive search, we
would need to assure that Pr[Ω] ≤ 1

2n−1 . Considering the best non-injective S-

box for m = 8 (DP0 = 2−7) and n = 128 this means that (2−7)R/2 ≤ 2−127,
therefore the number of rounds R should be greater than 36.

4.3 Linear Counterpart to the previous attack

Several results show that some duality exists between linear and differential
attacks [17, 43]. Therefore it is not surprising that a linear attack exists that is
as powerful as the differential attack we exposed in the previous section.

This attack is based on the following theorem (see for instance [40]).

Theorem 1. A Boolean transformation F is invertible if and only if every out-
put parity (i.e. every component function λ · F ) is a balanced binary Boolean
function of input bits.

Applying this theorem to our S-box S we obtain

Corollary 1. There exists a linear mask λ ∈ GF(2)8 such that, for x random
and uniformly distributed, λ · S(x) = 0 is satisfied with probability p = 1/2 + ε
where the bias, denoted by ε, is not null.

Let us denote by Li = (li1, . . . , l
i
m) the left part and by Ri = (ri1, . . . , r

i
m) the

right part of the input to round i + 1, and by Y i = (yi1, . . . , y
i
m) the output of

the ith F -function. Then if we use mask λ to approximate the first S-box (only)
of first round, we have a linear characteristic on 2 rounds of the form

λ · l01 = λ · l21 with probability 1/2 + ε (4)

As a matter of fact, we have: λ · y11 = 0⇔ λ · l01 ⊕ λ · r11 = 0⇔ λ · l01 ⊕ λ · l21 = 0.

This characteristic is iterative. Therefore R rounds can be approximated with
probability 1/2 + 2R/2−1εR/2. It is well known (see for instance [42]) that the
linear cryptanalysis data complexity, given a characteristic of bias ε, is given by
C = 1

2(ε)2 . Assuming that the bias associated to λ is 2−8/2 (the smallest known

non-zero bias for an 8-bit S-box), 42 rounds are required to have an attack
complexity above 2127 for the whole cipher. Moreover, in the case of our S-box,
the maximal bias ε (over all output linear maps λ) is equal to 22

28 which leads to
R ≥ 126

7−log(22) > 49.



4.4 Why these attacks do not work (well) against DES

The DES S-boxes take 6-bit inputs and have 4-bit outputs. They are therefore
non-injective and for any DES S-box Sj(j = 1 . . . 8) one can find pairs (a, b) of
inputs such that Sj(a) = Sj(b). However all DES S-boxes have the following
well-known property [13]:

Property 1. Let us write an input x to the S-box Sj as x = x1x2x3x4x5x6 (xi ∈
GF(2)). Then the four 4 × 4 S-boxes obtained from Sj by fixing x1 and x6 are
permutations.

The consequence is that any (x, y) with Sj(x) = Sj(y) must be such that either
x1 ⊕ y1 = 1 or x6 ⊕ y6 = 1 (or both). But because of the expansion layer of
DES, these bits are shared with an adjacent S-box (see Figure 1). Therefore, if
we stick to this property, a differential characteristic of the form 0 6= ∆→ 0 for
one DES round implies at least two active S-boxes.

Fig. 1. Part of Expansion Layer in DES.

Moreover the design principle given by the NSA [12] also includes other
properties. One of them is the following:

Property 2. If two inputs x, y to a DES S-box Sj are such that x⊕ y = 11EF00
(said differently, such that x1 6= y1, x2 6= y2, x5 = y5, x6 = y6), then Sj(x) 6=
Sj(y).

In [13], E. Brickell et al. state that Property 2 implies that a differential charac-
teristic of the form 0 6= ∆→ 0 for one DES round must imply at least three active
S-boxes. Such a characteristic is given by Biham and Shamir in [6]. However it
is not among the best differential characteristic they found.



5 Comparison of Specific attacks on Feistel Ciphers with
non-bijective round function

We have seen that the use of non-bijective functions introduces vulnerabilities in
the design of a Feistel cipher. Some of these vulnerabilities can be found in the
literature. We divide them in three categories: The differential cryptanalysis [6]
and its linear counterpart (this corresponds to the attack described in Section 4),
Rijmen et al. ’s non-surjective attack [53] and the Davies and Murphy attack [5,
23,38].

5.1 Non-Injective Round Functions

The first attack described in Section 4 can be seen as a particular case of dif-
ferential cryptanalysis. We already mentioned that the initial paper of Biham
and Shamir on differential cryptanalysis [6] already proposed a similar differen-
tial characteristic construction for the DES cipher, but is not the best for the
DES because of its expansion function. Another example is the McGuffin ci-
pher proposed by Schneier and Blaze [10] that did not have a similar expansion
transformation and was then completely exposed against such strong differential
cryptanalysis. Rijmen et al. described the attack in [52].

5.2 Non-Surjective and Unbalanced Round Function

Rijmen et al. propose in [53] an attack on Feistel schemes assuming that the
round function is non-surjective and extend their attack when the round func-
tion is simply unbalanced. The linear attack presented in Section 4 is based on
the fact that the S-box is unbalanced (Theorem 1 and then Corollary 1). This
attack corresponds exactly to the Rijmen and Preneel attack where only lin-
ear masks of the round output bits are considered. Moreover, the SP-Network
structure of the round function allows us (similarly to the differential version)
to consider a single S-box instead of the full round function (as in [53]). This
property conceals the strength of the attack; thus an expansion transformation
is needed to ensure that more than a unique S-box per 2 successive rounds is
involved in the linear characteristic (as described in Section 4.4 for the DES in
the context of differential cryptanalysis). This will lower the linear (resp. differ-
ential) characteristic bias and then increase the attack’s data complexity (see
Section 7.1).

Before that, it is important to note that introducing an expansion step before
the round key mixing step and the S-box evaluation may open a new vulnerability
in the scheme: the Davies and Murphy attack.

5.3 Unbalanced Round Functions with Key Dependent Output
Distribution

Davies and Murphy proposed in [23] an attack on Feistel schemes assuming that
the round functions are unbalanced and the output distribution is dependent on



some key bits. This seminal paper was followed by many others, among them a
first improvement by Biham and Biryukov [5] and then a second improvement
proposed by Kunz-Jacques and Muller [38]. In the latter article, a parallel is
drawn between Davis and Murphy attack and the linear cryptanalysis; more-
over, the initial attack is optimized by the use of a distinguisher that evaluates
divergence between univariate distributions (through linear projections) instead
of divergence between multivariate distributions.

The use of an expansion step induces the S-box output distribution to be
somewhat dependent on the secret key. In [38], Kunz-Jacques and Muller exhibit
the tight relation between Davies and Murphy attack and linear cryptanalysis.
As a matter of fact, in the case of DES, they could show that the classical Davies
and Murphy attack would not be more efficient than a restriction of it where
only linear combinations of the round outputs are considered. This restricted
Davies and Murphy attack falls into linear cryptanalysis and then is naturally
bounded by the linear cryptanalysis complexity bound found for the DES.

6 Expansion and Compression Function

The attacks we described in Section 4 exploit the fact that it is possible to choose
(pairs of) plaintexts such that one S-box only is active in the first round (and
that this property can be propagated to the following odd rounds). If we deny
this possibility to the attacker, we thwart these attacks.

Using linear codes to ensure good diffusion in block ciphers is a well-known
idea (see [22], and many other works). We show how to use them slightly dif-
ferently from what is usually done in order to render impossible the attacks
discussed in Section 4 and Section 5.

– Let (a1, . . . , a8) ∈ GF(28)8 be the input of the round function. We encode it
with a linear code of dimension 8 and length 8 + ` over GF(28), before per-
forming the key addition and the S-boxes layer. That is, if G is the generator
matrix of such [8 + `, 8] code, we compute

(b1, . . . , b8+`) = (a1, . . . , a8) ·G

We call this computation the expansion layer E. If d is the minimal distance
of the code, it is trivial that the minimal number of active S-boxes is d. In
order to maximize it, we use a MDS code [8 + `, 8, ` + 1]. An easy way to
construct such code is to use a shortened Reed-Solomon code.

– After E comes a key addition layer, which will use 8(8 + `) key bits, and the
non-linear layer that consists in 8 + ` S-boxes in parallel.

– Finally the state must be compressed from 8 + ` to 8 bytes. Note that the
expansion layer only defeats the differential attack we exposed in Section 4.2,
not the linear one described in Section 4.3. Therefore the linear compression
layer C must ensure that every non-zero linear mask approximating the
output of the S-box layer has as many active S-boxes as possible. If we
denote by H the compression matrix and we write

(d1, . . . , d8) = (c1, . . . , c8+`) ·H,



a linear approximation of the output of the round can be written as

(β1, . . . , β8) · (d1, . . . , d8)T = (β1, . . . , β8) ·HT · (c1, . . . , c8+`)T

We define (β′1, . . . , β
′
8+`) as the linear mask at the output of the S-boxes

corresponding to (β1, . . . , β8). Thus we have

(β′1, . . . , β
′
8+`) = (β1, . . . , β8) ·HT .

In order to maximize the number of active S-boxes, we must choose HT

such as to lower bound the byte Hamming weight of (β′1, . . . , β
′
8+`). The

best choice HT for this purpose is again to choose HT as the generator
matrix of an MDS code. We decide to take HT = G.

We choose ` = 6, which offers a good compromise between the number of rounds
and the computational cost of one round. We built the matrix G such as to make
its implementation efficient. More precisely:

– We tried to minimize the number of non-zero coefficients.
– We tried to use a small number of different coefficients.
– We tried to use coefficients that have a small Hamming weight.

The resulting matrix G is as follows. Its elements belong to the Galois field
GF(28) defined as GF(2)[X]/(1 +X2 +X3 +X4 +X8).

G =



01 00 00 00 00 00 00 00 01 01 0A 01 09 0C
00 01 00 00 00 00 00 00 05 01 01 0A 01 09
00 00 01 00 00 00 00 00 06 05 01 01 0A 01
00 00 00 01 00 00 00 00 0C 06 05 01 01 0A
00 00 00 00 01 00 00 00 09 0C 06 05 01 01
00 00 00 00 00 01 00 00 01 09 0C 06 05 01
00 00 00 00 00 00 01 00 0A 01 09 0C 06 05
00 00 00 00 00 00 00 01 01 0A 01 09 0C 06


7 Full description of the block cipher

One round of the block cipher is pictured in Figure 2. In the next section we
analyze the number of rounds required to achieve good security.

7.1 Evaluation of the Number of Rounds

Differential Cryptanalysis As our S-box is differentially 4-uniform, the proba-
bility of any non-trivial 1-round characteristic is at most (4/28)7. Therefore a
differential characteristic over 2t rounds has probability at most (4/28)7t. In or-
der to upper bound the probability of any differential characteristic by 2−127, at
least 2t = 127

3·7 ' 6 rounds are necessary.



Fig. 2. One round of the cipher.

Linear Cryptanalysis Our S-box has non-linearity nl = 94; hence, the bias of
its best linear approximation is 128−94

256 . Over one round the bias of any non-
trivial linear characteristic is at most 1/2 · (34/128)7, and over 2t rounds it is
1/2 · (34/128)7t. As the data complexity of linear cryptanalysis is C = 1

2ε2 , we
must have

1

2 · (1/2 · ( 34
128 )7t)2

≥ 2128

which gives a lower bound of 2t = 127
7(7−log2(34))

= 9.5 rounds in order to ensure

an attack complexity at least 2128.

A security margin must be added to take linear hull effects into account, and
to deal with nR- (i.e. key guess) attacks. It is why we decided to use 12 rounds.

7.2 The Key Schedule

We have to derive 12 round keys k1, . . . , k12 of 112 bits each5 from one 128-bit
master key K. We want our scheme to resist known attacks on a key schedule al-
gorithm, in particular related-key attacks [4,33,34] and slide attacks [8,9]. More-
over the key schedule must be easy to implement; one very desirable property
is the ability to derive round keys on-the-fly in both encryption and decryption
mode (which is possible for DES, but not for AES).

It is our belief that designing highly complicated non-linear key schedules is
not mandatory to have good security. It is why we restrict ourselves to rotations,
bitwise additions and bit selection in the design of the key schedule.

Round key derivation in encryption mode
The round keys are extracted from an extended key (κ1, κ2, ..., κ12) by a simple

5 112 bits are required because of the use of the expansion layer.



bit selection. The κi’s are 128-bit long and computed as follows:
κ1 = K

κi = T (K) ≫ Θ(i) for i = 2, 4, 6, 8, 10, 12

κi = K ≫ Θ(i) for i = 3, 5, 7, 9, 11

where ≫ j is the right-rotation of j bits, and Θ is given by the following table:

i 2 3 4 5 6 7 8 9 10 11 12
Θ(i) 1 16 17 32 33 85 86 101 102 117 118

Regarding T , it is defined as follows. Let us writeK = (K(1),K(2),K(3),K(4)),
where K(i) ∈ GF(2)32. Then

T (K)(1)

T (K)(2)

T (K)(3)

T (K)(4)

 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ·

K(1)

K(2)

K(3)

K(4)


We note that T is involutive. Therefore it is easy to derive κi+1 from κi by

applying T followed by a rotation of a given number of bits. We describe such
iterative computation as{

κ1 = K

κi = T (κi−1) ≫ θ(i) pour i = 2...12

where θ is

i 2 3 4 5 6 7 8 9 10 11 12
θ(i) 1 15 1 15 1 52 1 15 1 15 1

The round key ki is obtained from κi by extracting the 112 leftmost bits of
κi: if κi = (κi1, . . . , κ

i
16) (κij ∈ GF(28)), then ki = (κi1, . . . , κ

i
14).

Round key derivation in decryption mode
Given K, the extended key for decryption κ′1 . . . κ′12 is computed as{

κ′1 = T (K) ≪ 10

κ′i = T (κ′i−1) ≪ θ′(i) for i = 2...12

where ≪ j is the left-rotation of j bits, and θ′ is given by the following table:

i 2 3 4 5 6 7 8 9 10 11 12
θ′(i) 1 15 1 15 1 52 1 15 1 15 1

We remark that once k′1 = T (K) ≪ 10 is computed, the sequences of round
keys in encryption and decryption mode, respectively, only differ by the di-
rection of the rotations (right for encryption, left for decryption). Again, k′i

(i ∈ {1, . . . , 12}) is computed from κ′i (i ∈ {1, . . . , 12}) by considering the 112
leftmost bits.



Design Rationales

– Slide attacks [8,9] exploit periodic sequences of round keys, e.g. (k1, k2, k1, k2, . . .).
The shorter the period, the better the attack. It is clear that our key sched-
ule does not generate such sequence. However we must ensure that there is
no big family of weak keys that do.
Assume all round keys are the same. Then we must have T (K) ≫ 33 =
T (K) ≫ 86 (among other relations). This is equivalent to T (K) = T (K) ≫
53 and T (K) = T (K ≫ 53) (because T commutes with ≫). Thus we have
K = K ≫ 53. This last equation is satisfied only by keys K = 00...00x and
K = FF...FFx. The same reasoning with the same result can be done for
longer periods.

– Because our scheme is very symmetric, it is worth looking for weak keys
with which ciphering and deciphering are actually identical. By writing down
equations similar to the above, we conclude that there are 4 of them:

000 . . . 000b, 0101 . . . 101b, 1010 . . . 10b and 1111 . . . 11b.

It is possible to detect that an unknown key indeed belongs to this family
by computing EK(EK(x)), that is only two encryptions. However because of
the very small cardinality of this set of weak keys, it is not a real weakness.

– Related-key slide attacks [4] target algorithms such that, if a given key K
generates a sequence of round keys (k1, . . . , k12), then there exists a key K∗

generating the sequence (k2, ..., k12, k
∗
12) (a shift of round keys by several

positions is worth considering too, but the resulting attack would be less
efficient). In our scheme it implies the relations:{

K∗ ≫ 32 = T (K) ≫ 33

T (K∗) ≫ 33 = K ≫ 85

which imply {
K∗ ≫ 33 = T (K) ≫ 34

K∗ ≫ 33 = T (K) ≫ 85

Therefore T (K) ≫ 34 = T (K) ≫ 85, or K = K ≫ 51. Two keys only
satisfy this last equation. From a bird’s eye view, the irregularity of the
rotations prevents the existence of related keys.

– A drawback of key schedules consisting in a simple bit permutation is that
they can make easier attacks that make use of last round key guesses in
combination with a distinguisher (the literature speaks of nR-attacks, where
n is the number of rounds on which key guesses are used). As a matter of
fact, if for example key guesses are done on the first two rounds, each guess
on a round key bit in the first round can be used in the second round “for
free”.
This technique is more difficult to apply in our scheme, because of the func-
tion T . Indeed each round key bit of the second (resp. last but one) round
is equal to the sum of 3 bits of the first (resp. last) round (and vice versa).



Moreover, the use of T at each round prevents to some extent the construc-
tion of a differential related-key characteristic6. Note that T is not absolutely
essential to the security of our block cipher, but we think it enhances it fur-
ther for a very small cost.

7.3 Performance analysis

Our block cipher7 has been implemented (not by the authors [45]) on a smart
card based on an 8-bit micro-controller, with 4 different masking levels: without
masking, and with maskings of order 1, 2, and 3. This implementation has been
compared with state-to-the-art implementations of (masked) AES on the same
platform. The results are given in Table 2.

Number of Kcycles: ciphering

Version AES Our algorithm

Unprotected 2 26

Masked order 1 129 94

Masked order 2 271 160

Masked order 3 470 253
Table 2. Implementation results of AES and our algorithm using different masking
orders.

We remark that AES in its non-masked version is definitely much faster than
the non-masked version of our algorithm. However once we consider masked ver-
sions, our algorithm takes the lead, and the difference between both algorithms
increases with the order of the masking.

8 Conclusion

It has been illustrated in this article how pertinent it is to have side-channel
resistance in mind when building a block cipher. To thwart higher order side-
channel attacks we focus on the use of masking schemes, of which the complexity
is mainly impacted by the cost of S-box implementation. We emphasize on a
new criteria for the design of S-boxes and present a construction that shows a

6 Note that such differential related-key attack is less problematic than a related-
key slide attack, because it cannot transpose into an attack reducing the cost of
exhaustive search in a classical context (i.e. with one only key).

7 To be precise, we need to mention that the block cipher implemented is a preliminary
version, which differs from the cipher we described in the compression layer (which
was also a [14, 8]-MDS code but different from the one used in the expansion step).
We believe that this difference in the block cipher design will not significantly change
the performance results given here.



good trade-off between efficiency and security. The non-bijectivity of the S-box
requires us to use a Feistel Network as an upper level of diffusion. We point out
a weakness in the straightforward use of Feistel Networks when the S-boxes are
non-bijective. We propose to circumvent this weakness by the use of maximum
distance separable codes to build optimal expansion and compression layers. As
an achievement of our work, a new block cipher is fully specified.
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volume 1965 of LNCS, pages 252–263. Springer, 2000.

21. J.-S. Coron and I. Kizhvatov. Analysis and improvement of the random delay
countermeasure of ches 2009. In Mangard and Standaert [41], pages 95–109.

22. J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.
23. D. W. Davies and S. Murphy. Pairs and triplets of DES s-boxes. J. Cryptology,

8(1):1–25, 1995.
24. F. Durvaux, M. Renauld, F.-X. Standaert, L. van Oldeneel tot Oldenzeel, and

N. Veyrat-Charvillon. Cryptanalysis of the ches 2009/2010 random delay coun-
termeasure. Cryptology ePrint Archive, Report 2012/038, 2012. http://eprint.

iacr.org/.
25. J. Feigenbaum, editor. Advances in Cryptology – EUROCRYPT ’91, volume 547

of LNCS. Springer, 1991.
26. L. Genelle, E. Prouff, and M. Quisquater. Thwarting higher-order side channel

analysis with additive and multiplicative maskings. In Preneel and Takagi [50],
pages 240–255.

27. B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual information analysis.
In E. Oswald and P. Rohatgi, editors, CHES 2008, volume 5154 of LNCS, pages
426–442. Springer, 2008.

28. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
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