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Abstract. Collision resistant one-way hashing schemes are the basic building
blocks of almost all crypto-systems. Use of graph-structured data models are on
the rise – in graph databases, representation of biological and healthcare data as
well as in modeling systems for representing system topologies. Therefore, the
problem of hashing graphs with respect to crypto-systems needs to be studied
and addressed. The traditional Merkle Hash technique cannot be applied as it is
because graphs are more complex data structures than trees. In this paper, we
make the following contributions: (1) we define the formal security model of
hashing schemes for graphs, (2) we define the formal security model of leakage-
free hashing schemes for graphs, (3) we describe a hashing scheme for hashing
directed and undirected graphs that uses Merkle hash technique, (4) and a hashing
scheme that uses structural information instead of Merkle hash technique, (5)
we define leakage-free hashing schemes for graphs. Our constructions use graph
traversal techniques and are highly efficient with respect to updates to graphs:
they require as little as two (O(1)) hash values to be updated to refresh the hash
of the graph, while the Merkle Hash Technique and Search DAG schemes for
trees and DAGs respectively require as many as O(|V |) and O(|V |+ |E|).

1 Introduction

One of the fundamental building blocks of modern cryptography is hash functions. Hash
functions are used towards verification of data integrity as well as message authentica-
tion codes and digital signature schemes. Traditional hash functions handle messages
as bit strings. H : {0, 1}∗ → {0, 1}n defines a hash function that takes a bitstring of
any size as input and outputs a hash-value of size n-bits. Integrity protection of data
includes not only data objects that are bit strings but also data objects that are graphs.

Some of the several contexts where graph-structured data models are widely used
are healthcare, biological, geographical and location data as well as financial databases [7,
15]. Often it is required to check if a given graph has been updated or not or whether
two graphs are identical3. Hashing is used to evaluate these operations. Authenticating
the graph-structured data is often required as a security property in databases [14, 13].
Authentication schemes use hashing as a basic building block.

Hashing graphs pose several challenges: graphs have several nodes and edges, with
each node having multiple incoming edges and outgoing edges. The edges maybe di-
rectional and there maybe cycles in the graphs. There are four types of graphs that are
of interest in this paper: (a) trees, (b) directed acyclic graphs, (c) graphs with cycles and

3 Identical graphs are isomorphic graphs, but the reverse is not true [4].
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Fig. 1. Graphs: (a) Tree, (b) DAG, (c) Graph with cycles, (d) Graph with multiple sources (vertices
with no incoming edge) and cycles. The shadowed with dotted boundary are the subgraphs that a
user may receive.

(d) graphs with multiple sources. In the Figure 1, these types of graphs are seen. From
(a) onwards, the complexity of hashing increases because the complexity of the graph
increases from (a) to (b) and so on.

Implementing a random oracle as a hash function for graphs require that the same
hash value is computed universally by any instance of that implementation of the ran-
dom oracle. In case of hashing schemes such as SHA-1, SHA-2, a message is either
shared completely or not shared at all with a user. In contrast, when graphs are used, a
user may receive part(s) of a graph (subgraph(s)). Moreover, when taking updates into
consideration, parts of the graph maybe updated and other parts may not be updated;
the challenge is how does the hash of a graph is computed for an updated graph and
what is its cost? Can we compute the updated hash value incrementally? Moreover,
graph models are used for representation of sensitive data as well (such as healthcare,
biological data). Traditional hashing schemes leak information (SHA1, SHA2 leak in-
formation about length of the plaintext [1]). The challenge is how to hash graphs so
that no information is leaked at least in the context of probabilistic polynomial adver-
saries [9]. The Merkle hash technique (MHT) is used to compute hashes for trees [12]
and has been extended for directed acyclic graphs [11]. However, not all the above chal-
lenges are addressed by the Merkle hash technique and its extensions. Cryptographic
hashing techniques for cyclic graphs have not been well-studied. Existing schemes rely
on the fact that updates do not change a tree into a non-tree graph and a DAG to a
cyclic graph. That restriction is quite strong – it limits the operations that can be carried
out on a graph database. Moreover, the cost of computing the hashes on updates using
MHT is quite high: any modification of the value of a node or insertion or deletion of
a node leads to as many updates as the depth of the node is in a tree. Can we reduce
some of these costs not only for trees but also for general graphs? As in the MHT, when
a subtree is shared with a user, the user also receives a set of Merkle hash values for
some of the nodes that are not in the shared subtree. If the hash function used is not per-
fectly collision-resistant, the hash values could lead to leakage of information about the
unshared nodes, which needs to be prevented. Encryption is too heavyweight and has
different security properties than the properties required for hash functions. Therefore,
there is a need for perfectly collision-resistant hash functions for graphs. In addition
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the formalization of such secure hashing schemes for graphs is an essential requirement
besides their constructions.

In this paper, we make the following contributions: (1) we define the formal security
model of collision-resistanthashing schemes for graphs, (2)we define the formal secu-
rity model of perfectly collision-resistant hashing schemes for graphs, (3) we describe a
hashing scheme for hashing directed and undirected graphs that uses the MHT, (4) and
a hashing scheme that uses structural information instead of the MHT, (5) we propose
a perfectly collision-resistant hashing scheme for graphs.

2 Related Works and Background

There are two techniques in the literature that come closest to the constructions pre-
sented in this paper: Merkle hash technique [12] (MHT) and the Search-DAG tech-
nique [11] (SDAG). Integrity assurance of tree-structured data is primarily carried by
the Merkle hash technique [12]. This scheme requires information about other nodes
and edges (extraneous information) in order to verify the integrity of a subtree, which
is why it leaks. We would describe the issues associated with MHT in the next sec-
tion, and the following section, we would describe the SDAG technique. Martel et
al. [11] proposed SDAG – an authentication technique for directed acyclic graphs re-
ferred to as “Search DAGs” in third party distribution frameworks. Their technique
uses Merkle hash technique. The SDAG technique only covers DAGs, not the general
directed graphs, which is of greater interest in this paper.

2.1 Hashing Trees with Merkle Hash Technique

The Merkle hash technique [12] works bottom-up. For a node x in tree T (V,E), it
computes a Merkle hash (MH) mh(x) as follows: if x is a leaf node, then mh(x) =
H(cx); else mh(x) = H(mh(y1)‖mh(y2)‖. . .‖mh(ym)), where y1, y2, . . . ,ym are the
m children of x in T in that order from left to right. For example, consider the tree in
Figure 1(a). The Merkle hash for this tree is computed as follows. The MH of e and f are
computed asH(ce) andH(cf ), respectively, which are then used to compute the MH of
d as mh(d) = H(mh(e) ‖ mh(f)). The MH of b is computed as H(mh(d)). Similarly
the MH of c and a are computed asH(cc) andH(mh(b) ‖ mh(c)), respectively.

In order to account for the contents in non-leaf nodes, two simple variants of the
Merkle hash technique can be used to compute the MH of a non-leaf node from the
MH of its children and the contents (or hash of the content) of the non-leaf node itself.
Suppose x to be a non-leaf (thus a root/intermediate) node in T . The MH of x is defined
as follows: mh(x) =H(H(cx)‖mh(y1)‖mh(y2)‖. . .‖mh(ym)).

Consider again the tree in Figure 1(a). MH of d, b and a are computed respectively
asH(H(cd)‖mh(e)‖mh(f)),H(H(cb)‖mh(d)), andH(H(ca)‖mh(b)‖mh(c)).

2.1.1 Integrity Verification Let be a subtree of tree T as shown shadowed to be
shared with a user. The following set ofverification objects VO is also sent to the user,
for integrity verification of Tδ (Consider the shadowed subtree in Figure 1:
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1. With respect to each node in Tδ , MH of its siblings4 that are in T but not in Tδ . For
example, in Figure 1, mh(f) (with respect to e) is sent.

2. With respect to each node x in Tδ , the MH of each sibling of each ancestor of x, if
that sibling is not in Tδ . In our example, mh(a) and mh(b) are also sent.

3. With respect to each node in Tδ , the hash of the content of each of its ancestor. In
our example,H(ca) andH(cb) are sent to the user.

4. The structural order between a node in Tδ and its sibling(s) that are not in Tδ , and
the structural order between the sibling nodes that are not in Tδ . In our example,
the order between e and f , and the order between b and c are sent to the user.

5. Parent-child/ancestor-descendant relationship(s) between a node in Tδ and another
node not in Tδ (such as the relationship between b and d), and those between the
nodes that are not in Tδ (such as between a and b, and between a and c).

6. The fact that a given node is the root of T (even if it is the root of Tδ). In our
example, a is the root of the tree and this fact is conveyed to the user.

The user then computes the MH of the whole tree using such information (the sub-
tree and VO) and compares it with the received signed MH of the root. If they are equal,
the integrity of the subtree is validated. Moreover, this process verifies the integrity of
the subtree against the original tree.

2.1.2 Privacy Attacks The attacks on the Merkle hash technique are based on the set
of verification objects sent to the user. By exploiting the knowledge of these informa-
tion, inference attacks described below can be carried out on the MHT.

– The first attack exploits the information (1), (2), and(3). By comparing the Merkle
hash of a node e in the shared subtree with the MH of another node f received, the
user can infer whether contents of e is same as that of f and if the subtree with root
e is identical to the subtree with root f .

– The second attack exploits the information (1), (2), (3), and (6). By comparing the
Merkle hashes of two nodes (c and f ) that are received, the user can infer whether
the contents of c is same as that of f .

2.1.3 Inefficiency of Updates using MHT Consider that there is a change to the
node e. The change affects the hash values of e, d, b, and a. A single change led to four
changes. In general in MHT, a change in a node may lead to changes in O(n) nodes,
with n nodes in the tree. This leads to several performance issues especially in memory
integrity, integrity in databases and indices.

2.2 Hashing Graphs

Graphs are more complex structures than trees. Nodes may have multiple incoming
edges, there maybe no roots or source nodes; perhaps, there maybe a number roots or
source nodes. The major challenges in hashing graphs arise out of the fact that (i) a

4 Nodes that are siblings in a tree have a common parent.
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graph may have cycles, (ii) changes to the nodes affects hashes of multiple other nodes,
and (iii) a graph can be shared with a user in parts or in terms of subgraphs. For example,
in the figure, subgraphs that are shared are shown as shadowed regions on each of the
graphs.

Consider the DAG in Figure 1(b). Node f has three incoming edges. If we use
SDAG technique, then hash of node f influences hashes of three other nodes from
which these nodes originate: d, b, and c. While that is acceptable, any update to f
affects the hashes of all nodes other than e. In general in SDAG technique, an update to
a node in a DAG affects |V |+|E| nodes.

Hashing graphs with cycles is more complex because such graphs cannot be ordered
topologically [4]. For the graphs in Figure 1(c) and (d), the cycles involve nodes a, b, c
and f . How can we hash such graphs so that the cyclic structure is also preserved in the
hash – dissimilar structures should not have the same hash even if the contents maybe
identical.

2.3 Formal Security Models

Existing works [12, 11] do not formally define the notion of graph hashing, nor they
define nor construct perfectly collision-resistant hash functions. Canetti et al. [1, 2]
developed the notion of perfectly collision-resistant hash functions for messages that
are bit-strings and are not graphs nor any structured/semi-structured objects. Canetti et
al. [2] also proposed that verify method should be included in the definition of random
oracles. In this paper, we have also proposed a similar hash-verify method as well as a
hash-redact method that is specific for structured/semi-structured data.

3 Terminology

Trees and Graphs: A directed graph G(V,E) is a set of nodes (or vertices) V and a
set of edges E between these nodes: e(x, y) is an edge from x to y, (x, y) ∈ V × V .
Undirected graphs can be represented as directed graphs. Therefore in what follows we
consider only the case of directed graphs and we will use the term graph with the mean-
ing of directed graph. A node x represents an atomic unit of data, which is always shared
as a whole or is not shared at all. A source is a node that does not have any incoming
edge. A node x is called the ancestor of a node y iff there exists a path consisting of one
or more edges from x to y. Node x is an immediate ancestor, also called parent, of y in
G iff there exists an edge e(x, y) in E. Nodes having a common immediate ancestor are
called siblings. Let G(V,E) and Gδ(Vδ, Eδ)be two graphs. We say that Gδ(Vδ, Eδ)is a
redacted subgraph of G(V,E) if Gδ(Vδ, Eδ) ⊆ G(V,E). Gδ(Vδ, Eδ) ⊆ G(V,E) if an
only if Vδ ⊆ V and Eδ ⊆ E. Also Gδ(Vδ, Eδ) ⊂ G(V,E) if and only if Vδ ∪ Eδ ⊂ V
∪ E. A redacted subgraph Gδ(Vδ, Eδ) is derived from the graph G(V,E) by redacting
the set of nodes V \ Vδ and the set of edges E \ Eδ from G. A directed tree T (V,E)
is a directed graph with the following constraint: removal of any edge e(x, y) from E
leads to two disconnected trees with no edge or path between nodes x and y. As in
the case of graphs, a redacted subtree of tree T (V,E) denoted by Tδ(Vδ, Eδ) is such
that Tδ(Vδ, Eδ) ⊆ T (V,E). Tδ(Vδ, Eδ) ⊆ T (V,E) denotes that Vδ ⊆ V and Eδ ⊆ E.
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Redacted subgraph Tδ(Vδ, Eδ) is derived from the tree T (V,E) by redacting the set of
nodes V \ Vδ and the set of edges E \ Eδ from T . Two trees/graphs/forests with the
same nodes and edges, but different ordering between at least one pair of siblings are
different trees/graphs/forests.

4 Review of Standard Hashing Schemes

In this section, we review the standard definition of hashing schemes (adopted from
[9]). A standard hashing schemeΠ is a tuple (Gen,H). (s is not a secret key in standard
cryptographic sense.)

Definition 1 (Standard hashing scheme). A hashing scheme Π consists of two probabilistic
polynomial-time algorithms Π = (Gen,H) satisfying the following requirements:

KEY GENERATION: The probabilistic key generation algorithm Gen takes as input a security
parameter 1λ and outputs a key s: s← Gen(1λ).

HASH: There exists a polynomial l such that H takes a key sand a string x ∈ {0, 1}∗ and
outputs a stringHs(x) ∈ {0, 1}l(λ) (where λ is the value of the security paramrter implicit
in s).

IfHs is defined only for inputs x ∈ {0, 1}l
′(λ) and l′(λ) > l(λ), then we say that (Gen,H) is a

fixed-length hash function for inputs of length l′(λ).

4.1 Security of Hash Functions

The strongest form of security for hash functions include three properties: (1) collision
resistance, (2) second pre-image resistance, and (3) pre-image resistance. Collision re-
sistance is the strongest notion and subsumes second pre-image resistance, which in
turn subsumes pre-image resistance [9]. In other words, any hash function that satisfies
(2) satisfies also (3) but the reverse is not true; and any hash function that satisfies (1)
satisfies also (2) (and transitively (3)) but the reverse is not true. In the rest of the paper,
security of hash functions refer to the strongest property, i.e., collision resistance.

For the traditional hash functions defined in the previous section, we are now re-
viewing the collision-finding experiment (adapted from [9]). In the rest of the paper, A
is a probabilistic polynomial time (PPT) adversary.

Collision-finding Experiment: GH-CollA,gΠ(λ)

1. Key (pk, sk)← Gen(1λ)
2. A is given s and outputs x and x′. (If Π is a fixed-length hash function then for inputs of

length l′(λ) then x, x′ ∈ {0, 1}l
′(λ))

3. The output of the experiment is 1 if and only if x 6= x′ and Hs(x) = Hs(x′). In such a
case, we say that A has found a collision forHs; else the output of the experiment is 0.

Definition 2. A hash function Π = (Gen,H) is collision-resistant if for all probabilistic polyno-
mial adversaries A there exists a negligible function negl such that

Pr(H− CollA,Π(λ) = 1) ≤ negl(λ)
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5 Collision-resistant Hashing of Graphs

The standard definition of hashing schemes cannot be applied directly to graphs because
the standard definition operates on messages x ∈ {0, 1}∗ and each message is shared
either fully shared or not shared at all with a user. In contrast, a graph G(V,E) is a set
of nodes and edges, where each node may be represented by x, and a user may have
access to one or more subgraphs instead of the complete graph.

As discussed earlier, a hashing scheme for graphs requires a key generation algo-
rithm and a hash function algorithm. We would also need a method to verify hashes for
a graph as well as its subgraphs. We refer to this algorithm as the “hash-verification”
method. This is because as mentioned earlier, users may receive entire graphs or sub-
graphs, and need to verify their integrity. To that end, if the hash function used to com-
pute the hash of a graph is a collision-resistant hash function, then the user would need
certain extra information along with the proper subgraphs. Otherwise, the hash value
computed by the user for the received subgraphs would not match the hash value of the
graph unless there is a contradiction to the premise that the hash function is collision-
resistant. We refer to this extra information as “verification objects” VO. Computation
of the VO for a subgraph with respect to a graph is carried out by another algorithm
also part of the definition of the hashing scheme for graphs. We call this algorithm as
“hash-redaction” of graphs.

The conceptualization of these two algorithms for verification and redaction de-
scribed in the previous paragraph is already in use by schemes such as the Merkle hash
technique, but have not been formalized. As essential components of our formalization
of the notion of graph hashes, we need to formalize these methods. Such formalization
is also essential for a correct design and rigorous analysis of the protocols that realize
these definitions. The definition of the graph hashing schemes is as follows.

Definition 3 (Collision-resistant graph hashing scheme). A hashing scheme gΠ consists of
three probabilistic polynomial-time algorithms and one deterministic algorithm
gΠ = (gGen, gH, ghRedact, ghVrfy) satisfying the following requirements:

KEY GENERATION: The probabilistic key generation algorithm gGen takes as input a secu-
rity parameter 1λ and outputs a key s: s← gGen(1λ).

HASHING: The hash algorithm gH takes a key s and a graph G(V,E) and outputs a string
gHs(G(V,E)) ∈ {0, 1}l(λ), where l a polynomial, and λ is the value of the security
parameter implicit in s.

HASH-REDACTION: The redaction algorithm ghRedact is a probablistic algorithm that
takes G(V,E) and a set of subgraphs Gδ (such that each Gδ ∈ Gδ , Gδ ⊆ G(V,E)) as
inputs and outputs a set VOGδ,G(V,E) of verification objects for those nodes and edges that
are in G(V,E) but not in any of the subgraphs in Gδ .

VOGδ,G(V,E) ← ghRedact(Gδ, G(V,E))

HASH-VERIFY: ghVrfy is a deterministic algorithm that takes a hash value gH , a set of
graphs G, and a set of verification objects VO, and returns a bit b, where b = 1 if the hash
value gH is a valid hash for G and VO, and b = 0 otherwise: b← ghVrfys(gH,G,VO)
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5.1 Correctness

A hashing scheme for graphs is correct if the following properties hold.

Hashing Correctness (Empty redaction): For any graph G(V,E), any positive integer value
of λ, any key s← gGen(λ), and any gH ← gHs(G(V,E)), VO ← ghRedact({G}, G),
ghVrfys(gH ,{G(V,E)},VO) always outputs 1.

Hash-Redaction Correctness: For any graph G(V,E), any positive integer value of λ, any key
s ← gGen(λ), any set Gδ of subgraphs Gδ(Vδ, Eδ) ⊆ G(V,E) such that the union of all
the subgraphs in Gδ results in a graph that is a proper subgraph of G, and
gH ← gHs(G), VO ← ghRedact(Gδ, G), ghVrfys(gH ,Gδ ,VO) always outputs 1.

5.2 Security of Hash Functions

The strongest form of security for hash functions for graphs also includes three prop-
erties: (1) collision resistance, (2) second pre-image resistance, and (3) pre-image re-
sistance. As earlier, collision resistance is the strongest notion and subsumes second
pre-image resistance, which in turn subsumes pre-image resistance.

Collision-finding Experiment: GH-CollA,gΠ(λ)

1. Key s← gGen(1λ)
2. A is given s and outputs (a) G(V,E) and G′(V ′, E′), and

(b) VOGδ,G(V,E) ← ghRedact(Gδ, G(V,E)) and VO′G′
δ
,G′(V ′,E′) ← ghRedact(G′δ, G′(V ′, E′))

3. The output of the experiment is 1 if and only if any of the following is true: in such a case,
we say that A has found a collision forHs; else the output of the experiment is 0.
(a) G(V,E) 6= G′(V ′, E′) and gH = gH ′, where gH ← gHs(G), and

gH ′ ← gHs(G′(V ′, E′)).
(b) G(V,E) 6= G′(V ′, E′) and ghVrfys(gH ′,Gδ,VO) = gHs(gH,G′δ,VO′).

Definition 4. A hash function gΠ = (gGen, gH, ghRedact, ghVrfy) is collision-resistant if
for all probabilistic polynomial adversaries A there exists a negligible function negl such that

Pr(GH− CollA,gΠ(λ) = 1) ≤ negl(λ)

6 Perfectly Collision-resistant Hashing of Graphs

In this section, we formalize the notion of perfectly one-way (i.e., collision-resistant)
hash functions for graphs.

Hash functions used in practice do not hide information about the message being
hashed. Canetti [1] showed that there is the need for a hash function that is perfectly one-
way, i.e., for which it is hard to find a collision. SHA1, MD5 do not satisfy the“perfectly
one-way” property. In this paper, we refer to “perfectly one-way” hash functions as
“perfectly collision-resistant” hash functions. Before we define what perfectly collision-
resistant hash functions are for graphs, we discuss why such a notion is necessary and
what the leakages are.
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Standard hashing schemes may leak information about the image being hashed.
Even though such schemes are one-way in a computational sense (informally speaking,
to find a collision one needs to solve a hard problem or do intractable amount of work),
the hash value H(x) of image x reveals some information about x. Such information
leaks in the reverse direction – H(x) to x makes this function “not perfectly one way”;
such leakage may allow the attacker to construct pre-images and second-preimages with
less work than what was defined by the random oracle model. In the case of sensitive
data, such leakages via hash values lead to another security issue: leakage of sensitive
information. As Canetti et al. describe in [2], if x represents a confidential information,
H(x) may leak the length of x and bits of x, which is a serious security breach.

The formal definition of hashing schemes does not capture the requirement of non-
leakage of information about pre-images. Canetti has introduced a formal definition for
x ∈ {0, 1}∗ and several constructions for perfectly one-way hash functions [2].

However, for graphs no such notion has been defined. Graphs are often used to
represent sensitive data, and it is thus essential to hide all the information contained
in the nodes. There is another reason for the need of perfectly collision-resistant hash
functions: the standard definition operates on messages x ∈ {0, 1}∗ and each message
is either fully shared or not shared at all with a user. In contrast, a graph G(V,E) is a
set of nodes and edges, where each node may be represented by x, and a user may have
access to one or more subgraphs instead of the complete graph. As in the Merkle hash
technique, when a subtree is shared with a user, the user also receives a set of Merkle
hash values for some of the nodes that are not in the shared subtree. If the hash function
used is not perfectly collision-resistant, then the hash values could lead to leakage of
information about the unshared nodes, which needs to be prevented. Encryption is too
heavyweight and has different security properties than those required for hash functions.
We thus need a perfectly collision-resistant hash functions for graphs.

In the previous section, we formally defined the notion of collision-resistant graph
hashing schemes. The definition of a perfectly collision-resistant graph hash function
is identical to this definition but includes an extra element: a key that is used towards
making the scheme perfectly collision-resistant (as well as hiding).

Definition 5 (Perfectly collision-resistant graph hashing scheme). A hashing scheme gΠ con-
sists of three probabilistic polynomial-time algorithms and one deterministic algorithm
gΠ = (gGen, gH, ghRedact, ghVrfy) satisfying the following requirements:

KEY GENERATION: The probabilistic key generation algorithm pgGen takes as input secu-
rity parameter 1λ and outputs a key s.

s← pgGen(1λ).

RANDOMIZER GENERATION: The probabilistic randomizer generation algorithm pgRandom
takes as input security parameter 1λr and outputs a uniformly chosen random r ∈ {0, 1}λr .

r ← pgRandom(1λr ).

HASHING: There exists a polynomial l such that the hash algorithm pgH takes a key s and a
graph G(V,E) and outputs a string pgH ← pgHs,r(G(V,E)) ∈ {0, 1}l(λ,λr).
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HASH-REDACTION: The redaction algorithm ghRedact is a probabilistic algorithm that
takes G(V,E) and a set of subgraphs Gδ (such that each Gδ ∈ Gδ , Gδ ⊆ G(V,E)) as
inputs and outputs a set VOGδ,G(V,E) of verification objects for those nodes and edges that
are in G(V,E) but not in any of the subgraphs in Gδ .

VOGδ,G(V,E) ← pghRedact(Gδ, G(V,E)).

HASH-VERIFY: pghVerify is a deterministic algorithm that takes a hash value pgH, a set
of graphs G, and a set of verification objects VO, and returns a bit b, where b = 1 meaning
valid if the hash value pgH is a valid hash for G and VO, and b = 0 meaning invalid hash
value.

b← pghVerify
s,r(pgH,G,VO)

6.1 Correctness

A perfectly collision-resistant hashing scheme for graphs is correct if the following
properties hold: Hashing Correctness (Empty redaction) and Hash-Redaction Correct-
ness. These two properties have definitions similar to the definitions of such properties
for the collision-resistant hash function for graphs in section 5.1.

6.2 Security

There are two security requirements: (1) collision-resistance, and (2) semantically per-
fect one-wayness of graph hash functions. The collision-resistance experiment is similar
to the one defined earlier in Section 5.2.

Collision-finding Experiment: PGH-CollA,pgΠ(λ, λr)

1. Key s← pgGen(1λ)
2. Randomizer r← pgRandom(1λr )
3. A is given s, r; A outputs (a) G(V,E) and G′(V ′, E′), and

(b) VOGδ,G(V,E) ← pghRedact(Gδ, G(V,E)) and
VO′G′

δ
,G′(V ′,E′) ← pghRedact(G′δ, G′(V ′, E′))

4. The output of the experiment is 1 if and only if any of the following is true: in such a case,
we say that A has found a collision forHs; else the output of the experiment is 0.
(a) G(V,E) 6= G′(V ′, E′) and pgH = pgH ′, where pgH ← pgHs,r(G), and

pgH ′ ← pgHs,r(G′(V ′, E′)).
(b) G(V,E) 6= G′(V ′, E′) and pghVerifys,r(pgH ′,Gδ,VO) = pgHs,r(pgH,G′δ,VO′).

The following experiment involves the adversary who can learn information about
the graphs applied with hash. In the first game, the adversary is challenged to determine
the graph that has been hashed without the knowledge of the graphs themselves. The
adversary is given two hash values computed either for the same graph or for two dis-
tinct graphs. Iff the hash function is not perfectly collision-resistant hash function then
the adversary can determine whether the two hash values correspond to one graph or
the two graphs with a probability non-negligibly greater than 1

2 .
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Privacy experiment-1: PGH-Priv1A,pgΠ(λ, λr)

1. Key s← pgGen(1λ)

2. Randomizers r1, r2← pgRandom(1λr )

3. Any two random graphs G0(V0, E0), and G1(V1, E1) that differ only at the contents of one
or more nodes, drawn uniformly from G.

4. Toss an unbiased coin; if it returns head then bit b = 1, else b = 0.
5. Compute the following: pgH0← pgH(r0, G0(V0, E0)). pgH1← pgH(rb, Gb(Vb, Eb)).
6. A is given s, pgH0 and pgH1; A outputs a bit b′.
7. The output of the experiment is 1 if and only if any of b = b′.

The following experiment is for privacy, but is with respect to the hash-redaction
algorithm.

Privacy experiment-2: PGH-Priv2A,pgΠ(λ, λr)

1. Compute Key s← pgGen(1λ)

2. Compute randomizer r← pgRandom(1λr )

3. Draw a random graph G(V,E). Determine any two sets of subgraphs Gδ0, Gδ1 ⊆ G(V,E).
Compute the hash of G(V,E): pgH ← pgHs,r(G(V,E)).

4. Toss an unbiased coin; if it returns head then bit b = 1, else b = 0.
5. Compute the following: VO0 ← pghRedact(Gδ0, G(V,E)) and VO1 ← pghRedact(Gδ1, G(V,E))

6. A is given s, pgH , VO0 and VO1; A outputs a bit b′.
7. The output of the experiment is 1 if and only if any of b = b′.

Definition 6. A hash function pgΠ = (pgGen, pgH, pghRedact, pghVerify) is collision-
resistant if for all probabilistic polynomial adversaries A there exists a negligible function negl

such that
Pr((PGH− CollA,pgΠ(λ, λr) = 1)) ≤ negl(λ, λr)

Definition 7. A hash function pgΠ = (pgGen, pgH, pghRedact, pghVerify) is perfectly
collision-resistant if for all probabilistic polynomial adversariesA there exists a negligible func-
tion negl such that

Pr((PGH− Priv1A,pgΠ(λ, λr) = 1)∨ (PGH− Priv2A,pgΠ(λ, λr) = 1)) ≤ 1

2
+negl(λ, λr)

7 Construction of Collision-resistant Hashing Scheme for Graphs

In this section, we propose a construction of collision-resistant hashing scheme for gen-
eral graphs that is applicable to trees, DAGs and graphs with cycles. The scheme is se-
cure with respect to gΠ and highly efficient updating hashes for updates to the nodes.
Our construction exploits a specific property of graph traversals, and defines a new type
of trees “efficient-tree” that are used to represent graphs.
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Fig. 2. A graph with depth-first tree in bold.

7.1 Graph Traversal

A graph G(V,E) can be traversed in a depth-first manner or breadth-first manner [4].
Post-order, pre-order, and in-order graph traversals are defined in [10, 4]. While post-
order and pre-order traversals are defined for all types of trees, in-order traversal is
defined only for binary trees. In each of these traversals, the first node visited is assigned
1 as its visit count. For every subsequent vertex visited, the visit count is incremented by
1 and is assigned to the vertex. This sequence of numbers is called the sequence of post-
order (PON), pre-order (RON), or in-order (ION) numbers for the tree T , depending on
the particular type of traversal. Figure 2 shows the traversal numbers and the DFT for a
graph.

Properties of traversal numbers: The post-order number of a node is smaller than
that of its parent. The pre-order number of a node is greater than that of its parent. The
in-order number of a node in a binary tree is greater than that of its left child and smaller
than that of its right child. A specific traversal number of a node is always smaller than
that of its right sibling. The following lemma provides the basis for using traversal
numbers in hash computation.

Lemma 1. The pair of post-order and pre-order number for a node in a non-binary
tree correctly and uniquely determines the position of the node in the structure of the
tree, where the position of a node is defined by its parent and its status as the left or
right child of that parent.

Proof. From the post-order and pre-order traversal sequences of the vertices, it is pos-
sible to uniquely re-construct a non-binary tree [5] [8]. Thus from these sequences or
from their counterparts, for a node, it is possible to correctly identify its parent and its
status as left or right child of that parent in the tree.

7.2 Graphs

In our scheme we are going to use the notion of post-order and pre-order numbers.
However, in order to do that, we need to represent the graph as a tree. To that end, what
we do is: we carry out a depth-first search (DFS) of the graph G(V,E), which gives us
one or more depth-first trees (DFT).
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Fig. 3. Tree representation of the running examples from Figure 1: (b-tree) and (c-tree) are tree-
representations of the graphs in (b) and (c) – each node contains its (post-order, pre-order) num-
ber. (b,c-efficient) are one-level tree representations of the graphs exploiting the post-order and
pre-order numbers of graph traversals. Each node contains their numbers. fe, ce, and be represent
forward-edges, cross-edges and back-edges, respectively. Each of these nodes contain the post-
and pre-order numbers of the origin and target of the edges and the hashes of their contents.

The various types of edges in a graph are defined below using the notion of traversal
numbers. An example of depth-first tree, types of edges are given in Figure 2 with
the post- and pre-order numbers for each node being given in the table in the figure.
Edge e(g3, g6) is a forward-edge, edge e(g5, g6) is a cross-edge and edge e(g6, g2) is
a back-edge. However, DFTs do not capture the edges that are called forward-edges,
cross-edges and back-edges.

Definition 8. Let τ be the depth-first tree (DFT) of a directed graph G(V,E). Let x, y
∈ V , and e(x, y) ∈ E. Let ox and qx refer to post-order number and pre-order number
of node x, respectively. With respect to the DFT τ , e(x, y) is a (1) tree-edge, iff ox>oy ,
and qx<qy; (2) forward-edge, iff there is a path from x to y consisting of more than one
tree-edges, ox>oy , and qx<qy; (3) cross-edge, iff ox>oy , and qx>qy; (4) back-edge,
iff ox<oy , and qx>qy .

Efficient-Tree Representation of a Graph: We represent each such edge by a spe-
cial node called edge-node and the special node has an incoming edge from the node
the specific edge originates from. The special nodes do not have any outgoing edges.
Once post-order and pre-order numbers are assigned to the nodes, we can dismantle the
structure of the DFT, because the traversal numbers can be used to re-construct the DFT
again (Lemma 1 and Definition 8). The rest of the edges can be re-constructed from the
edge-nodes. Figure 3 shows such tree-representations of graphs.
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7.3 Construction of Collision-resistant Hash Scheme for Graphs

The construction of the collision-resistant hash functions for graphs gΠ is given below.
H refers to a standard hash function as defined by Π . The last statement in gH com-
putes the hash of a tree as shown in Figure 3 (b-efficient) and (c-efficient).

gH:

1. Input: a graph G(V,E)and its efficient tree-representation.
2. Sort the source nodes of the graphs in the non-decreasing order of their contents or label.
3. Carry out depth-first traversal of the graph G(V,E) on the first source node x in the sorted

order. If there are no source nodes in G(V,E), choose x randomly.
4. If node y is visited in DFS, assign its (post-order, pre-order) number to it.
5. If the edge e(y, z) is not a tree-edge and is cross-edge, then create an edge-node yz hav-

ing the following content ce((py, ry), (pz, rz)); if forward-edge: fe((py, ry), (pz, rz)), and
back-edge: be((py, ry), (pz, rz))

6. Add an edge from y to the new node yz, and remove the edge e(y, z).
7. Remove x from the sorted order of source nodes if exists.
8. If there are nodes in G(V,E) that are yet to be visited, then repeat from 2.
9. Compute hash of each node x as follows: Hy ←H((py, ry)||y).

10. To each edge-node yz, assign Hyz ←H(Hy||Hz).
11. Compute the hash of graph gHG(V,E) as follows:

gHG(V,E) ← H(Hy1||Hy2|| . . . ||Hym)

where yi refers to the i’th node in the increasing order of the post-order numbers of the
nodes, and of the originating nodes of the edge-nodes, and m is the total number of nodes in
the efficient-tree including original nodes and the edge-nodes.

ghRedact:

1. Input: a set of subgraphs Gδ that contains the efficient tree representations of the subgraphs,
the efficient tree-representation of graph G(V,E).

2. Given Gδ , and G(V,E), determine the set V − excluded and E − excluded consisting
of excluded nodes and edge-nodes, respectively, in the efficient tree-representation of the
graph.

3. VO← ∅
4. VO ← VO ∪ ((py, ry), Hy, where y ∈ V − excluded.
5. VO← VO ∪ (τ((py, ry), (pz, rz), Hyz), where τ defines the type of the edge-node: fe, ce,

and be, and yz ∈ E − excluded.

ghVrfy:

1. Input: a set of subgraphs G′δ that contains the efficient tree representation of the subgraphs,
a set of verification objects VO, and the hash of the complete graph gH .

2. Sort the received nodes, edge-nodes in the increasing order of the post-order numbers of the
nodes or origins of the edge-nodes.

3. For each node x that is in a subgraph Gδ ∈ G′δ , compute Hx.
4. For each edge-node xy that is in a subgraph Gδ ∈ G′δ , compute Hxy .
5. Compute the hash gH ′ ← H(Hx1||Hx2|| . . . ||Hxm′), where xi refers to the i’th node in

the increasing order of the post-order numbers of the nodes, and of the originating nodes of
the edge-nodes, and m′ is the total number of nodes in the efficient-tree including original
nodes and the edge-nodes.
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6. Iff gH ′ = gH , return 1, else return 0.

Cost: Each of the schemes gH, ghRedact, and ghVrfy, perform a traversal on
the graph in the worst case (when the graph is shared as it is with no redaction). The
cost of such traversal and each of these methods is: O(|V |+ |E|).

Updates using Efficient-Trees: Updates to a node in a graph when applied in its tree-
representation, leads to only a constant number O(1) (two) of updates to hash values.
In contrast, as we saw earlier, when a node is updated, MHT requires O(|V |) number
of hash values to be updated. SDAG scheme requires O(|V | + |E|) number of hash
values to be updated. For example, consider the Figure 3. Consider that the node f is
updated. SDAG requires 4 hash values to be updated. However, if we use the efficient-
tree representation of the DAG, then the number of hashes updated is 2: one for the
node f and another for the root. This is true for any node at any depth in a graph.

7.4 Constructions of Perfectly Collision-resistant Hashing Scheme for Graphs

We are going to use the GGM trees to generate random numbers using the length-
doubling pseudo-random functions. Due to space constraints, we refer the reader to [6,
3] for a discussion on these trees.

The random numbers are used with each node, and edge-node towards computing
the perfectly one-way hashes of the contents of the nodes and edge-nodes. Any scheme
from Canetti’s schemes can be used. The random numbers are then supplied as part of
the hash values for the nodes or edge-nodes. Then hash computation, hash-redaction
and hash-verification proceeds as in the previous section.

7.5 Security

The following lemma states the security of the proposed constructions for gΠ and pgΠ .

Lemma 2. Under the random-oracle model, the gΠ is a collision-resistant hash func-
tion for graphs.

Lemma 3. Under the random-oracle model, the pgΠ is a perfectly collision-resistant
hash function for graphs.

8 Conclusions and Future Works

Graphs are widely used to specify and represent data. Verifications of integrity and
whether two graphs are identical or not are often required in computing that involves
graphs such as graph databases. Collision resistant one-way hashing schemes are the
basic building blocks of almost all crypto-systems. In this paper, we studied the prob-
lem of hashing graphs with respect to crypto-systems and proposed two constructions
for two notions of collision-resistant hash functions for graphs. We defined the formal
security models of hashing schemes for graphs, and perfectly collision-resistant hashing
schemes for graphs. We proposed the first constructions for general graphs that includes
not only trees and graphs but also graphs with cycles and forests. Our constructions use
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graph traversal techniques and are highly efficient with respect to updates to graphs:
they require as little as two (O(1)) hash values to be updated to refresh the hash of the
graph, while the Merkle Hash Technique and Search DAG schemes for trees and DAGs
respectively require as many as O(|V |) and O(|V | + |E|). Moreover, our proposed
schemes are also as efficient as these schemes: both of them require a single traver-
sal on the graph. We have also proposed the first perfectly collision-resistant hashing
schemes for graphs. We are in the process of implementing these schemes in C++.
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