
Edwards model of elliptic curves de�ned over any �nite

�eld

Oumar Diao1 and Emmanuel Fouotsa2

1Université de Rennes I, Laboratoire IRMAR Campus de Beaulieu, 35042 Rennes

Cedex, France, oumar.diao@univ-rennes1.fr
2Department of Mathematics, University of Bamenda, Higher Teacher Training College

P.O. BOX 39, Bambili-Cameroon, emmanuelfouotsa@prmais.org

January 8, 2013

Abstract

In this paper, we present an Edwards model for elliptic curves which is de�ned over

any perfect �eld and in particular over �nite �elds. This Edwards model is birationally

equivalent to the well known Edwards model over non-binary �elds and is ordinary over

binary �elds. For this, we use theta functions of level four to obtain an intermediate model

that we call a level 4 theta model. This model enables us to obtain the new Edwards model

with a complete and uni�ed group law. Over binary �elds, we present an e�cient arithmetic

of these curves. We also provide competitive di�erential addition formulas over any perfect

�eld.

Keywords: Elliptic curve, level 4 theta model, Edwards model, e�cient arithmetic, theta

functions, Riemann relations.

1 Introduction

In [Edw07], Edwards has described the model Edc : x2 + y2 = c2(1 + x2y2) for elliptic curves
over a non-binary �eld K. The sum of two points (x1, y1) and (x2, y2) on this Edwards curve
Edc is given by: (

x1y2 + x2y1
c(1 + x1x2y1y2)

,
y1y2 − x1x2

c(1− x1x2y1y2)

)
. (1)

The group law on Edc is uni�ed, this means that the same formulas can be used to compute
both the adition of two points and the doubling of a point. But this group law is not complete,
i.e. it does not work for every pair of inputs. In fact, if x 6= 0, y 6= 0, and the point (x, y) ∈ Edc,
then so are (±1/x,±1/y). But we can not compute the sum of (x, y) and (1/x, 1/y) because
the denominator of the second coordinate of the sum vanishes.

To �ll this gap, Bernstein and Lange introduced in [BL08] a more general model de�ned by
BLc,d : x2 + y2 = c2(1 + dx2y2) over non-binary �elds K. Using the birational map (x, y) 7→
(x, y) = (x 4

√
d, y 4
√
d), one transforms the classical Edwards model Edc : x2 + y2 = c2(1 + x2y2)

to the model BLc,d : x2 + y2 = c2(1 + dx2y2), where c = c/ 4
√
d. One can then derive the group

law formulas on BLc,d. The formulas obtained are also uni�ed and the addition law is complete
if d is not a square in K. But BLc,d and its twisted given by ax2+y2 = 1+dx2y2 in [BBJLP08]
always give singular model over binary �elds.
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To resolve the problem in binary �elds, Bernstein, Lange, and Farashahi introduced in
[BLF08] the ordinary binary model de�ned by EB,d1,d2 : d1(x + y) + d2(x

2 + y2) = xy +
xy(x + y) + x2y2. Another binary model is introduced in [Wu:2010:608] but, the connection
between these binary models [BLF08, Wu:2010:608] and the classical Edwards model Edc
of [Edw07] has not been made explicit, to our knowledge. To solve this problem, Diao in his
thesis [Dphd10] introduced a new binary Edwards model which is deduced from the well known
Edwards model, but the addition law is not uni�ed and not e�cient.

Contribution of this paper: Our �rst contribution in this work is the introduction of an
Edwards model for elliptic curves which is valid in all �elds. For this, we use an intermediate
model given by level 4 theta functions, that we call the level 4 theta model in this paper. We
obtain uni�ed addition formulas for addition law from Riemann theta relations.
Moreover, we prove that the group laws on these curves are complete over any �nite �eld Fq of
characteristic p ≥ 3 where q ≡ 3 mod 4. Over non-binary �eld, if q 6≡ 3 mod 4, then we show
that, the group law is complete depending on the curve parameters. Over binary �eld, we show
that there exists a subgroup of odd order such that addition laws are complete.

Over binary �elds, addition formulas are competitive with the well known models of elliptic
curve. The addition of two points requires 7M + 2S + 2m and 12M + 2S, respectively, for the
level 4 theta model and the Edwards model where M denote the multiplication, S the square
and m the multiplication by a constant in the �eld K.

Over non-binary �elds, we provide competitive di�erential addition formulas. Indeed the
computation of the point nP for an arbitrary integer n and a point P costs 4M + 3S + 4m and
5M + 5S + 2m per bits of n, respectively, for the level 4 theta model and the Edwards model.

Outline: The rest of the paper is organised as follows: In section 2, we brie�y review the
theory of theta functions. We de�ne the level 4 theta model and present explicit formulas for
point addition in section 3 . We use the results of this section to deduce the equation and the
arithmetic of our Edwards model in section 4 . Section 5 deals with the di�erential addition on
the curves mentioned above.

2 Theta functions

In this section, we brie�y review some general results about theta functions. A more compre-
hensive understanding, and results in this section can be found in [Mum74, Mum83, Cos11,
RobPhD10, Dphd10].

2.1 General de�nition

Let H1 be the upper-half space over C and ω ∈ H1. Let Λω := ωZ + Z be a lattice of C and
a, b ∈ Q. The theta function with rational characteristics (a, b) is by de�nition an analytic
function on C×H1 given by:

θa,b(z, ω) =
∑
n∈Z

exp
(
iπ(n+ a)2ω + 2iπ(n+ a)(z + b)

)
. (2)

A function f de�ned on C is Λω−quasi-periodic of level ` ∈ N? if for all z ∈ C and m,n ∈ Z, we
have f(z + ωm + n) = exp

(
−i`πm2ω − 2i`πmz

)
f(z). For ` ∈ N?, the set R`,ω of Λω−quasi-

periodic functions of level ` is a C−vector space of dimension `. For any ` ∈ N?, one basis of
R`,ω is given by B` :=

{
θ0,b(z, `

−1ω), b ∈ 1
`Z/Z

}
. If ` = k2, then an alternative basis of R`,ω is
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B(k,k) :=
{
θa,b(kz, ω), a, b ∈ 1

kZ/Z
}
. The change of basis between B` and B(k,k) can be obtained

by Koizumy formulas in [Koizumi76]:

θ0,b(z, `
−1ω) =

∑
α∈ 1

k
Z/Z

θα,kb(kz, ω). (3)

If ` ≥ 3, then we can consider the elements of the basis of R`,ω as projective coordinates of P`−1.
And for ` = 2, the image of R`,ω in P`−1 is the Kummer variety associated to E, which is the
quotient of E by the automorphism −1. From now on, we are interested by the set of complex
functions Λω− quasi-periodic of level 4 denoted R4,ω.

2.2 Riemann theta relations

Riemann theta relations give algebraic relations between theta functions. With these relations,
one can derive the model and the addition law on elliptic curve. In the following theorem we
recall that 1

2Z/Z can be seen as a subgroup of Z/4Z via the map n 7−→ 4n. To facilitate the
writing and the reading, we set θi(z) := θ0,i(z, 4

−1ω) for i ∈ Z/4Z.

Theorem 1 Let i, j, k and l be in Z/4Z such that i′ = (i+j+k+ l)/2, j′ = (i+j−k− l)/2, k′ =
(i − j + k − l)/2 and l′ = (i − j − k + l)/2 are in Z/4Z. Let z1 and z2 be elements in C. The

theta functions of level 4 satisfy:∑
η∈ 1

2
Z/Z

θi+η(z1 + z2)θj+η(z1 − z2)θk+η(0)θl+η(0)

=
∑

η∈ 1
2
Z/Z

θi′+η(z1)θj′+η(z1)θk′+η(z2)θl′+η(z2) (4)

Proof: Consider the particular case of [LuRo10] when g = 1. We replace i+ j, i− j, k + l and
k − l by i, j, k and l, respectively. We do the same for i′, j′, k′ and l′. Then we have ∑

η∈ 1
2
Z/Z

χ(η)θi+η(z1 + z2)θj+η(z1 − z2)


 ∑
η∈ 1

2
Z/Z

χ(η)θk+η(0)θl+η(0)


=

 ∑
η∈ 1

2
Z/Z

χ(η)θi′+η(z1)θj′+η(z1)


 ∑
η∈ 1

2
Z/Z

χ(η)θk′+η(z2)θl′+η(z2)

 (5)

These Riemann relations (5) can be rewritten in the form:∑
η,η′∈ 1

2
Z/Z

χ(η + η′)θi+η(z1 + z2)θj+η(z1 − z2)θk+η′(0)θl+η′(0)

=
∑

η,η′∈ 1
2
Z/Z

χ(η + η′)θi′+η(z1)θj′+η(z1)θk′+η′(z2)θl′+η′(z2). (6)

Then by summing under all characters χ on the dual 1̂
2Z/Z, we obtain the desired result. �

Theta functions, or more precisely Riemann relations of theta functions, give a parametrisation
of elliptic curves de�ned over C. It is well known that elliptic curves over C are isomorphic to
the torus C/Λω. By the classical theory of theta functions, the isomorphism E = C/Λω gives
an embedding into the projective space P3, for more details, see [MumRedAb04]. Moreover,
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Riemann relations satis�ed by theta functions are de�ned over C. According to Lefschetz prin-
ciple [Sil86], these relations are also valid over any algebraically closed �eld of characteristic
zero. But for characteristic p > 0, we consider an elliptic curve E de�ned by f(x, y) = 0 over
a �nite �eld Fq of characteristic p. We lift the coe�cients of f(x, y) over Zq, the valuation
ring of Qq which is an unrami�ed extension of Qp. Let EZq be the canonical lift of E over Zq
(i.e. End(E/Fq) 'p End(E/Zq)). We �x an embedding Qq ↪→ C and an application of Lefschetz
principle ensures that algebraic relations de�ned over C are also valid over an algebraic extension
of Qq. We then use a reduction modulo p to obtain relations over Fq.

3 Level 4 theta model

In this section, we de�ne the level 4 theta model of elliptic curve, which is valid over any �nite
�eld. We take z2 = 0 in formula (4) to obtain two equations that form an elliptic curve over
P3(C), that we call the level 4 theta model elliptic curve ([Mum66Ab]):

Eλ1,λ2 :

{
X2

0 +X2
2 = λ1X1X3

X2
1 +X2

3 = λ2X0X2

Where Xu = θu(z1), λ1 = (a20 + a22)/(a
2
1) and λ2 = 2a21/(a0a2) with ai = Xi(0).

The point [a0 : a1 : a2 : a3] is called the theta null point. The numbers ai = Xi(0), i = 0, 1, 2, 3
are called theta constants and satisfy the Jacobi relation

a0a2(a
2
0 + a22) = 2a41 ⇐⇒ λ1 = λ2. (7)

We can show (see for example [Car05]) that a1 = a3 and we can set the common value equals
1.

3.1 Valid model over any �nite �eld

Model over non-binary �elds. Let K be a �nite �eld of caracteristique p ≥ 3. The Jacobi
relation (7) is de�ned modulo p, then above coe�cients λ1 and λ2 are de�ned over K. Thus, in
projective space P3(K) with homogeneous coordinates [X0 : X1 : X2 : X3], the curve given by
Eλ1,λ2 : X2

0 + X2
2 = λ1X1X3, X

2
1 + X2

3 = λ2X0X2 de�nes an elliptic curve over the �nite �eld
K.

Model over even characteristic. Let Fq be a �nite �eld of characteristic 2 and W(Fq) the
ring of Witt vectors with coe�cients in Fq, which is isomorphic to Zq, the valuation ring of the
set of 2−adic integers. So, to obtain the level 4 theta model in even characteristic, it su�ces to
compute the 2−adic valuation of theta constants. Carls in [Car05] proves that on the canonical
lift EW(Fq), we have for all i ∈ Z/4Z the relations a2i = α

∑
j∈Z/4Z φ(ai+j)φ(aj) where φ is the

lift of the Frobenius of Fq over W(Fq) and α ∈ Zq is a non zero constant. Thus α(a0 + a2) = 1
and a2 = 2αa0. Applying the 2-adic valuation, v2, to the both hand sides of these relations
implies that v2(a0) = 0 and v2(a2) = 1. Then, there exists c0 ∈ Zq and c2 ∈ Zq such that
a0 = c0 and a2 = 2c2. Finally we have λ1 = c20 + 4c22 and λ2 = 1/(c0c2). The equations of level
4 theta model of elliptic curve over the binary �eld Fq has a good reduction:

Eλ1,λ2 :

{
X2

0 +X2
2 = λ1X1X3

X2
1 +X2

3 = λ2X0X2
, where λi ∈ K?.

We have λ1 = c20 and λ2 = 1/(c0c2) and the Jacobi relation given by λ1 = λ2 is equivalent to
c30c2 = 1.
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Valid model over any �nite �eld. Let K be a �eld of characteristic p ≥ 0. Then a level 4
theta model is de�ned by the intersection of two equations:

Eλ1,λ2 :

{
X2

0 +X2
2 = λ1X1X3

X2
1 +X2

3 = λ2X0X2
,

where λ1 = c20 + 4c22, λ2 = 1/(c0c2) ∈ K? and c0, c2 ∈ K? and λ1 = λ2. The Jacobi relation (7)
becomes c0c2(c

2
0 + 4c22) = 1 and the set of points (c0, c2) ∈ A2(K) satisfying Jacobi relation is a

curve C de�ned over K. The number of rationals points of C is equal to the number of level 4
theta model de�ned over K. In the above de�nitions, the condition λ1λ2 6= 0 ensures that the
level 4 theta model Eλ1,λ2 is not singular. Indeed, if we assume that [X0 : X1 : X2 : X3] is a
singular point, then the rank of the following matrix can not be two.(

2X0 −λ1X3 2X2 −λ1X1

−λ2X2 2X1 −λ2X0 2X3

)
.

Observe that the model that we call level 4 theta model has been introcuced in 1966 by
Mumford in non-binary �elds [Mum66Ab]. Over binary �elds, Carls [Car05] obtained the
level 4 theta model but, he did not studied the arithmetic of this model. Recently, David Kohel
[Koh12] studied the arthmetic of this model that he called a µ4-normal form, but only in
characteristic 2 and using a di�erent approach than in our case.

3.2 Addition law on level 4 theta model

Our addition law come from Riemann theta relations, which are valid over any �nite �eld.

Theorem 2 Let P1 = [X1,0 : X1,1 : X1,2 : X1,3] and P2 = [X2,0 : X2,1 : X2,2 : X2,3] be two

points on Eλ1,λ2. The coordinates of the sum P1 + P2 = P3 are given by the following formulas:

X3,0 = (X2
1,0X

2
2,0 +X2

1,2X
2
2,2)− 4(c2/c0)X1,1X1,3X2,1X2,3

X3,1 = c0(X1,0X1,1X2,0X2,1 +X1,2X1,3X2,2X2,3)− 2c2(X1,2X1,3X2,0X2,1 +X1,0X1,1X2,2X2,3)
X3,2 = (X2

1,1X
2
2,1 +X2

1,3X
2
2,3)− 4(c2/c0)X1,0X1,2X2,0X2,2

X3,3 = c0(X1,0X1,3X2,0X2,3 +X1,1X1,2X2,1X2,2)− 2c2(X1,0X1,3X2,1X2,2 +X1,1X1,2X2,0X2,3)

. (8)

In any �nite �eld, the opposite of the point P = [X0 : X1 : X2 : X3] is −P = [X0 : X3 : X2 : X1]
(the second coordinate and the fourth coordinate are permuted). The neutral element is O0 :=
[c0 : 1 : 2c2 : 1].

Proof: Consider Eλ1,λ2/Zq the canonical lift of Eλ1,λ2 . Then, an equation of Eλ1,λ2/Zq is Eλ1,λ2 .
Let B(i′, j′, k′, l′) =

∑
β∈ 1

2
Z/Z θi′+β(z1)θj′+β(z1)θl′+β(z2)θk′+β(z2), Zi,j = θi(z1 + z2)θj(z1 − z2)

and δk,l = θk(0)θl(0) = akal. The equation (4) leads to a system of linear equations:

(S)

{
δk,lZi,j + δk+2,l+2Zi+2,j+2 = B(i′, j′, k′, l′)
δk+2,lZi,j + δk,l+2Zi+2,j+2 = B(i′, j′, k′ + 2, l′)

The determinant of the system (S) is det(S) = alal+2(a
2
k − a2k+2). To avoid a null determinant,

we choose k /∈ {1, 3} since a1 = a3. The Cramer method to resolve the system (S) gives:

θi(z1 + z2)θj(z1 − z2) =
δk,l+2B(i′, j′, k′, l′)− δk+2,l+2B(i′, j′, k′ + 2, l′)

δk,lδk,l+2 − δk+2,l+2δk+2,l

=
akB(i′, j′, k′, l′)− ak+2B(i′, j′, k′ + 2, l′)

al(a
2
k − a2k+2)

. (9)
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We �x k = 0 and l = i + j. Then for i ∈ {0, 1, 2, 3} we factorize (9) by a20 − a22 in projective
coordinates to have:

θi(z1 + z2)θj(z1 − z2) =
a0B(i′, j′, 0, i′ + j′)− a2B(i′, j′, 2, i′ + j′)

ai+j
. (10)

In equation (10), if we �x j equal to 0, 1, 2 and 3,respectively, then we obtain 16 formulas for
i ∈ {0, 1, 2, 3} which correspond to four di�erent formulas for addition. Here we consider the
case j = 0 which gives the addition law formulas in (8). We can factorize by θ0(z1 − z2) since
we are in projective coordinates. We obtain

θi(z1 + z2)θ0(z1 − z2) =
a0B(i′, 0, 0, i′)− a2B(i′, 0, 2, i′)

ai
(11)

For i ∈ {0, 1, 2, 3} and recalling that ci = ai if i 6= 2, and 2c2 = a2, we have:

θ0(z1 + z2)θ0(z1 − z2) =
c0B(0, 0, 0, 0)− 2c2B(0, 0, 2, 0)

c0
,

θ1(z1 + z2)θ0(z1 − z2) =
c0B(1, 0, 0, 1)− 2c2B(1, 0, 2, 1)

c1
,

θ2(z1 + z2)θ0(z1 − z2) =
c0B(2, 0, 0, 2)− 2c2B(2, 0, 2, 2)

2c2
,

θ3(z1 + z2)θ0(z1 − z2) =
c0B(3, 0, 0, 3)− 2c2B(3, 0, 2, 3)

c3
.

If l = i = 2, the numerator and the denominator of (11) can be factorized by 2 before reducing
modulo 2. Nevertheless one can avoid a2 in the denominator by using this alternative relation

θi(z1 + z2)θ0(z1 − z2) =
a0B(i′, 0, 0, i′ + 2)− a2B(i′, 0, 2, i′ + 2)

ai+2
,

which gives

θ2(z1 + z2)θ0(z1 − z2) =
c0B(2, 0, 0, 0)− 2c2B(2, 0, 2, 0)

c0
.

Finally we have :

1©



θ0(z1 + z2)θ0(z1 − z2) =
c0

(
θ20(z1)θ

2
0(z2) + θ22(z1)θ

2
2(z2)

)
− 4c2θ1(z1)θ3(z1)θ1(z2)θ3(z2)

c0
,

θ1(z1 + z2)θ0(z1 − z2) = c0

(
θ0(z1)θ1(z1)θ0(z2)θ1(z2) + θ2(z1)θ3(z1)θ2(z2)θ3(z2)

)
−2c2

(
θ2(z1)θ3(z1)θ0(z2)θ1(z2) + θ0(z1)θ1(z1)θ2(z2)θ3(z2)

)
,

θ2(z1 + z2)θ0(z1 − z2) =
−4c2θ0(z1)θ2(z1)θ0(z2)θ2(z2) + c0

(
θ21(z1)θ

2
1(z2) + θ23(z1)θ

2
3(z2)

)
c0

,

θ3(z1 + z2)θ0(z1 − z2) = c0

(
θ0(z1)θ3(z1)θ0(z2)θ3(z2) + θ1(z1)θ2(z1)θ1(z2)θ2(z2)

)
−2c2

(
θ0(z1)θ3(z1)θ1(z2)θ2(z2) + θ1(z1)θ2(z1)θ0(z2)θ3(z2)

)
.

We set X3,i = θi(z1 + z2), X1,i = θi(z1) and X2,i = θi(z2). These relations are valid over Qq

according to Lefschetz principle and since they have a good reduction modulo p, this completes
the proof. �
These relations give the theta of the sum θi(z1 + z2) in term of θi(z1) and θi(z2), and hence the
addition formulas in any �nite �elds (see appendix B for a sage script for veri�cation).
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These formulas are valid modulo any prime p. In characteristic 2, the addition law formulas
are given by:

X3,0 = (X1,0X2,0 +X1,2X2,2)
2

X3,1 = c0(X1,0X1,1X2,0X2,1 +X1,2X1,3X2,2X2,3)
X3,2 = (X1,1X2,1 +X1,3X2,3)

2

X3,3 = c0(X1,0X1,3X2,0X2,3 +X1,1X1,2X2,1X2,2)

. (12)

The neutral element becomes 00 := [c0 : 1 : 0 : 1] over binary �elds.
The additions laws (8) and (12) for non-binary and binary �elds, respectively, are also valid for
doubling: they are uni�ed. More precisely, let [X1,0, X1,1, X1,2, X1,3] be a point on Eλ1,λ2 . The
coordinates of 2[X1,0, X1,1, X1,2, X1,3] = [X5,0, X5,1, X5,2, X5,3] are:

X5,0 = X4
1,0 +X4

1,2 − 4(c2/c0)X
2
1,1X

2
1,3

X5,1 = c0(X
2
1,0X

2
1,1 +X2

1,2X
2
1,3)− 4c2X1,0X1,1X1,2X1,3

X5,2 = X4
1,1 +X4

1,3 − (c2/c0)X
2
1,0X

2
1,2

X5,3 = c0(X
2
1,0X

2
1,3 +X2

1,1X
2
1,2)− 4c2X1,0X1,1X1,2X1,3

(13)

Denote by M,S and m the cost of a multiplication, a square and a multiplication by a constant,
respectively, in the �nite �eld K. In characteristic 2, we have an e�cient algorithm to compute
point addition formulas (see section 4.3.2 for comparaison with previous work). The di�erent
costs are given in the following corollary.

Corollary 3 (Costs of addition) The addition of two points on Eλ1,λ2 can be done with:

(a) 7M + 2S + 2m, when K is a binary �eld;

(b) 11M + 8S + 6m, when K is a non-binary �eld.

Proof: (a) In binary �elds, the point addition formulas can be computed as follows:

A := X1,0·X2,0; B := X1,1·X2,1; C := X1,2·X2,2; D := X1,3·X2,3; X3,0 := (A+ C)2;
X3,2 := (B +D)2; X3,1 := c0(A·B + C·D); X3,2 := X3,1 + c0(A+ C)·(B +D),

which cost 7 multiplications and 2 squares and 2 multiplications by constant c0.
(b) For e�ciency in non-binary �elds, a point [X0 : X1 : X2 : X3] is represented as a seventuplet
(X0, X1, X2, X3, X0X1, X2X3). Thus the sum (X3,0, X3,1, X3,2, X3,3, U3, V3) of the points repre-
sented by (X1,0, X1,1, X1,2, X1,3, U1, V1) and (X2,0, X2,1, X2,2, X2,3, U2, V2) where U1 = X1,0X1,1;
V1 = X1,2X1,3 and U2 = X2,0X2,1; V2 = X2,2X2,3 can be computed with the algorithm:

A := X1,0·X2,0; B := X1,1·X2,1; C := X1,2·X2,2; D := X1,3·X2,3; E := A2; F := B2;
G := C2; H := D2; X3,0 := E +G+ 2(c2/c0)((B −D)2 − F −H);
X3,2 := F +H + 2(c2/c0)((A− C)2 − E −G); I := ((A+B)2 − E − F )/2;
J := ((C +D)2 −G−H)/2; K := (U1 + V1)·(U2 + V2)− I − J ;
L := (A+ C)·(B +D)− I − J ; X3,1 := c0(I + J)− 2c2K;
E := (X1,0 +X1,2)·(X1,3 +X1,1)− U1 − V1; F := (X2,0 +X2,2)·(X2,3 +X2,1)− U2 − V2;
G := E·F − L; X3,3 := c0L− 2c2G; U3 := X3,0·X3,1; V3 := X3,2·X3,3,

This costs 11M + 8S + 6m. �

Lemma 4 Let Eλ1,λ2 be the level 4 theta model of an elliptic curve over a �nite �eld K of

characteristic p ≥ 0. Then Eλ1,λ2 has a rational point of order 4.



8 O. Diao and E. Fouotsa

Proof: Let S4 be the group of permutation on {0, 1, 2, 3}. Let σ = (0, 1, 2, 3) be the hull
permutation of S4 and denote by H1 = 〈σ〉 the subgroup of S4 generated by σ. Remark that
if P = [X0 : X1 : X2 : X3] is in Eλ1,λ2 , then so are [X1 : X2 : X3 : X0], [X2 : X3 : X0 : X1]
and [X3 : X0 : X1 : X2]. There exists an action of H1 on the points of Eλ1,λ2 given by :
σ([X0 : X1 : X2 : X3]) = [Xσ(0) : Xσ(1) : Xσ(2) : Xσ(3)]. Under this action, 4 divides the order of
Eλ1,λ2 . �
Over non-binary �elds, apart from the neutral element O0 = [c0 : 1 : 2c2 : 1], the level 4 theta
model has 3 points of order 2 namely: Õ0 = [−c0 : 1 : −2c2 : 1], O1 := [2c2 : 1 : c0 : 1] and Õ1 :=
[−2c2 : 1 : −c0 : 1]. The four points of order 4 are A1 := [1 : 2c2 : 1 : c0], Ã1 := [−1 : 2c2 :
−1, c0], A2 := [1 : c0 : 1 : 2c2] and Ã2 := [−1 : c0 : −1 : 2c2]. Let P = [X0 : X1 : X2 : X3] be a
point on level 4-theta model Eλ1,λ2 , the actions of these rationals points of order 2 and 4 are:

P +O0 = [X0 : X1 : X2 : X3] , P + Õ0 = [−X0 : X1 : −X2 : X3] ,

P +O1 = [X2 : X3 : X0 : X1] , P + Õ1 = [−X2 : X3 : −X0 : X1] ,

P +A1 = [X1 : X2 : X3 : X0] , P + Ã1 = [−X1 : X2 : −X3 : X0] ,

P +A2 = [X3 : X0 : X1 : X2] , P + Ã2 = [−X3 : X0 : −X1 : X2] .

These formulas give: P + σi(O0) = σi(P ) and P + τ i(O0) = τ i(P ), from which we can deduce
that σ(P ) + σ(Q) = P +Q+ 2σ(O0) and σ(P )− σ(Q) = P −Q.

Completness of group laws. A complete group law means that one can compute the addition
of all pairs of input. This property is used to avoid some exceptional procedure attack on elliptic
curve cryptosystems [IzuTakEPA02]. Let Eλ1,λ2 de�ned over a non-binary K.

Lemma 5 Let P = [X0 : X1 : X2 : X3] be a point on Eλ1,λ2 . If Xi = 0, then we can write P in

the form σj([0 : 1 : ±
√
±ελ1 : ±ε]) for some j = 0, 1, 2, 3 where ε =

√
−1.

Proof: Without loss of generality, we can assume that X0 = 0. If we have Xj = 0 for j 6= 0
then according to the equations of the curve, we obtain P = [0 : 0 : 0 : 0] /∈ P3. Therefore
Xj 6= 0 for j 6= 0. Assume also that X1 6= 0, then X2

2 = λ1X1X3 and X2
1 + X2

3 = 0 or
equivalently X3 = ±

√
−1X1 and X2

2 = ±
√
−1λ1X

2
1 . Then over projective space, we have

P = σ0([0 : 1 : ±
√
±ελ1 : ±ε]). Finally, it means that if Xi = 0 and Xi+1 6= 0 we have

P = σi([0 : 1 : ±
√
±ελ1 : ±ε]) �

Theorem 6 (completness) The group law on Eλ1,λ2 de�ned over K is complete if and only if

one of the following conditions holds in K:

(1) −1 is not a square in K, or

(2)
√
−1λ1 is not a square in K

Proof: For the �rst part, assume that these conditions do not hold, i.e. ε =
√
−1 ∈ K and

α =
√
ελ1 ∈ K. We will prove that they are two points P1, P2 ∈ Eλ1,λ2 such that we can not add

P1 and P2. Let P1 = [0 : 1 : ±
√
±ελ1 : ε] be a point given by lemma 5 and consider the points

P2 = [±c0ε : 1 : ±2c2ε : ±1] . By formulas in equation (8), the coordinate X3,2 of P1 + P2 is
equal to zero but X2

3,1+X2
3,3 is not zero, according to the equation of the curve. Hence the group

law is not complete. The converse is simple. Indeed, assume that one of the condition in the
theorem holds. Then it is clear that the coordinates X3,0, X3,1, X3,2 and X3,3 of the sum P1 +P2

satisfy the equations of the curve. The only point (sum) that must be removed is [0 : 0 : 0 : 0],
but according to lemma 5 and by hypothesis, the sum of points can not give this point. So the
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group law is complete. �

The �rst su�cient condition of theorem 6 holds when K is a �nite �eld Fq of characteristic
p ≥ 3 such that q ≡ 3 mod 4. Notice that all points of the form σi([±c0ε : 1 : ±2c2ε : ±1])
given by theorem 6 have an even order, since their coordinates are given by theta constants.
This implies that over any �nite �eld (including binary �elds), the addition law on the level 4
theta model Eλ1,λ2 is complete in a subgroup of odd order.

4 Edwards model for elliptic curves

In [Edw07], Edwards gave a normal form for elliptic curves de�ned over non-binary �elds with
an uni�ed addition law. From the level 4 theta model Eλ1,λ2 elliptic curve, we derive an Edwards
model which is de�ned over any �nite �eld and which is birationally equivalent to this Edwards
model over non binary �elds.

4.1 Equation of the Edwards model

Theorem 7 Let K be a �eld of characteristic p ≥ 0. The level 4 theta model Eλ1,λ2 gives a

normal form with equation: Eλ : 1 + x2 + y2 + x2y2 = λxy, where λ = λ1λ2 ∈ K?.

Proof: Divide the �rst equation of Eλ1,λ2 by X
2
0 and the second by X2

1 and consider the following
change of variables: [X0 : X1 : X2 : X3]7−→(x, y) = (X2/X0, X3/X1), we have:

1 + x2 = λ1
X1X3

X2
0

and y2 + 1 = λ2
X0X2

X2
1

.

Multiply the above two equations to have (x2 + 1)(1 + y2) = λ1λ2xy, which can be written as
1+x2 +y2 +x2y2 = λ1λ2xy. The change of variables gives the neutral element O0 := (2c2/c0, 1)
which becomes (0, 1) over binary �elds. �

Theorem 8 Let K be a non-binary �eld, then the model Eλ, with the neutral element O0 :=
(2c2/c0, 1) is birationally equivalent to the well known Edwards model.

Proof: Let Eλ/Zq be a canonical lift of Eλ. Then Eλ/Zq comes from the model Eλ1,λ2/Zq
de�ned by the basis B4 :=

{
θ0,b(z, 4

−1ω), b ∈ 1
4Z/Z

}
. Consider the alternative basis B(2,2) :={

θa,b(2z, ω), a, b ∈ 1
2Z/Z

}
. We recall that 1

2Z/Z can be identi�ed to Z/2Z via the map n 7−→ 2n.
The Koizumy formula (3) gives a change of basis:

X0(z) = θ00(z) + θ10(z)
X1(z) = θ01(z) + θ11(z)
X2(z) = θ00(z)− θ10(z)
X3(z) = θ01(z)− θ11(z)

⇐⇒


θ00(z) = 1

2 (X0(z) +X2(z))
θ01(z) = 1

2 (X1(z) +X3(z))
θ10(z) = 1

2 (X0(z)−X2(z))
θ11(z) = 1

2 (X1(z)−X3(z))

The basis B(2,2) gives an alternative model of elliptic curve de�ned over non-binary �elds (see
[Mum83] for more details):{

θ200(0)T 2
00 = θ201(0)T 2

01 + θ210(0)T 2
10

θ200(0)T 2
11 = θ210(0)T 2

01 − θ201(0)T 2
10

, where Tij = θij(z) (14)

Setting x = T00
T10

; y = T11
T01

and c = θ10(0)/θ00(0) = c0−2c2
c0+2c2

, the curve (14) is birationally equivalent
to the well known Edwards model, for more details see [Dphd10], which ends the proof. �
According to Theorems 7 and 8, we have this de�nition:
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De�nition 1 Let K be a �eld of characteristic p ≥ 0. An Edwards model for elliptic curves is
given by the equation:

Eλ : 1 + x2 + y2 + x2y2 = λxy, where λ ∈ K?.

Theorem 9 Let K be a �eld of characteristic p ≥ 0 and let λ ∈ K?. Then the Edwards model

de�ned over K is non-singular.

Proof : Our Edwards model is birationally equivalent to the Edwards model Edc : X2 + Y 2 =
c2(1 + X2Y 2) where c = c0−2c2

c0+2c2
. The model Edc is non singular if and only if c4 6= 1 (see

[Edw07]), i.e (c0 − 2c2)
4 6= (c0 + 2c2)

4. This condition is equivalent to c0c2(c
2
0 + 4c22) 6= 0 which

is always true, according to Jacobi relation (7). �

Apart from the neutral element O0 := (2c2/c0, 1), the Edwards model Eλ : 1+x2+y2+x2y2 =
λxy has three 2−torsion rationals points: P2 = (1/γ, 1), P3 = (−γ,−1) and P4 = (−1/γ,−1),
where γ = 2c2/c0. The Edwards model Eλ also has four 4-torsion points which are rationals over
K: Q1 = (1, γ), Q2 = (1, 1/γ), Q3 = (−1,−γ) and Q4 = (−1,−1/γ). The actions of rationals
points of order 2 and 4 are:

(x, y) +O = (x, y), (x, y) + P2 = (1/x, 1/y)
(x, y) + P3 = (−x,−y), (x, y) + P4 = (−1/x,−1/y)
(x, y) +Q1 = (1/y, x), (x, y) +Q2 = (y, 1/x)
(x, y) +Q3 = (−1/y,−x), (x, y) +Q4 = (−y,−1/x)

,

Remark 10 If K is a binary �eld, then P3 = O, P4 = P2, Q3 = Q1 and Q4 = Q2. The number
of rationals points of Eλ is then divisible by 4.

4.2 Birational equivalence with Weierstrass models

Theorem 11 Let Eλ : 1 + x2 + y2 + x2y2 = λxy be the Edwards model of elliptic curve de�ned

over the �nite �eld K of characteristic p ≥ 0.

(1) if p 6= 2, then Eλ is birationally equivalent to a cubic Weierstrass model;

(2) if p = 2, then Eλ is birationally equivalent to the Weierstrass model v2+uv = u3+1/λ4.

Proof: Theorem 8 gives the birational equivalence between Eλ : 1 + x2 + y2 + x2y2 = λxy and
the well known Edwards model X2 + Y 2 = c2(1 + X2Y 2). This well known Edwards model is
birationally equivalent to the quartic Z2 = c2X4− (c4 +1)X2 +c2. Setting X = 2c(u−c4−1)/v
and Z = −c+ uX2/(2c), the quartic Z2 = c2X4 − (c4 + 1)X2 + c2 is birationally equivalent to
the cubic Weierstrass model v2 = u3 − (1 + c4)u2 − 4c4u+ 4c4(1 + c4). This proves (1).
For �elds of characteristic 2, the birational map and its inverse between Edwards model and
Weierstrass model are

(u, v) 7−→ (x, y) =

(
1

λu
,

λ2v + 1

λ2u+ λ2v + 1

)
and (0, 1) 7→ [0 : 1 : 0]

(x, y) 7−→ (u, v) =

(
1

λx
,
λy + x(y + 1)

λ2x(y + 1)

)
and [0 : 1 : 0] 7→ (0, 1).

which ends the proof (see also [Dphd10]). �



11 Edwards model of elliptic curves de�ned over any �nite �eld

Corollary 12 (j−Invariant) Let K be a �nite �eld and Eλ : 1 + x2 + y2 + x2y2 = λxy the

Edwards model over K. The j−Invariant of Eλ is

j =

(
(c40 − 4c30c2 + 8c20c

2
2 + 16c0c

3
2 + 16c42)(c

4
0 + 4c30c2 + 8c20c

2
2 − 16c0c

3
2 + 16c42)

)3(
c2c0(c0 − 2c2)(c0 + 2c2)(c20 + 4c22)

)4 .

Over �elds of characteristic 2, the j−Invariant is λ4 = j mod 2.

Proof : Let K be a non-binary �eld. The j−Invariant of the Weierstrass model v2 = u3 − (1 +
c4)u2 − 4c4u+ 4c4(1 + c4) over K is:

jW = 24
(
(c4 − 2c3 + 2c2 + 2c+ 1)(c4 + 2c3 + 2c2 − 2c+ 1)

)3
(c(c− 1)(c+ 1)(c2 + 1))4

.

Since c = (c0−2c2)/(c0 + 2c2), a straightforward calculation give the desired result. Notice that
the expression of j is de�ned modulo any prime p then j is de�ned over �eld of any characteristic.
Over �elds of characteristic 2, we have j mod 2 = (c0/c2)

4 = λ4 which is the j−Invariant of
Weierstrass model v2 + uv = u3 + 1/λ4 in theorem 11. �

4.3 Addition on the Edwards model

In [Dphd10], Diao uses formulas (1) on the known Edwards model [Edw07] to deduce an
addition on his binary Edwards model. Over binary �elds, the addition law in [Dphd10] is not
uni�ed and not e�cient. However, to have an uni�ed and more e�cient addition law formulas
we use the addition law on the level 4-theta model. More precisely we have:

Theorem 13 Let (x1, y1) and (x2, y2) be two points of Eλ. The coordinates of the sum (x3, y3) =
(x1, y1) + (x2, y2) are given by:

(x3, y3) =

(
c0(x1 + y1x2y2)− 2c2(y1 + x1x2y2)

c0(y2 + x1y1x2)− 2c2(x2 + x1y1y2)
,
c0(x1x2 + y1y2)− 2c2(x1y2 + y1x2)

c0(1 + x1y1x2y2)− 2c2(x1y1 + x2y2)

)
. (15)

The opposite of the point is −(x1, y1) = (x1, 1/y1) and the neutral element is O0 := (2c2/c0, 1).

One can verify the addition law on new Edwards model Eλ by this sage script [Sage-4.8]:

R.<c0,c2,x1,y1,x2,y2> = QQ[]

E1 = c0*c2*(x1^2 + y1^2 + 1 + x1^2*y1^2) - (c0^2 + 4*c2^2)*x1*y1

E2 = c0*c2*(x2^2 + y2^2 + 1 + x2^2*y2^2) - (c0^2 + 4*c2^2)*x2*y2

S = R.quo([E1,E2])

Nx3 = c0*(x1 + y1*x2*y2) - 2*c2*(y1 + x1*x2*y2)

Dx3 = c0*(y2 + x1*y1*x2) - 2*c2*(x2 + x1*y1*y2)

Ny3 = c0*(x1*x2 + y1*y2) - 2*c2*(x1*y2 + y1*x2)

Dy3 = c0*(1 + x1*x2*y1*y2) - 2*c2*(x1*y1 + x2*y2)

x3 = Nx3/Dx3; y3 = Ny3/Dy3

E3 = c0*c2*(x3^2 + y3^2 + 1 + x3^2*y3^2) - (c0^2 + 4*c2^2)*x3*y3

S(numerator(E3)) == 0

Over �elds of characteristic 2, the coordinates of the sum of two points are obtained by a
reduction modulo 2:

(x1, y1) + (x2, y2) =

(
x1 + y1x2y2
y2 + x1y1x2

,
x1x2 + y1y2
1 + x1y1x2y2

)
. (16)
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Remark 14 Addition group law is uni�ed over any �elds, i.e. addition formulas are also valid
for point doubling. The point doubling formulas can be written as follow:

2(x1, y1) =

(
c0x1(1 + y21)− 2c2y1(1 + x21)

c0y1(1 + x21)− 2c2x1(1 + y21)
,
c0(x

2
1 + y21)− 4c2x1y1

c0(1 + x21y
2
1)− 4c2x1y1

)
. (17)

Over binary �elds, the formulas (16) or (17) give the doubling formulas:

2(x1, y1) =

(
x1(1 + y1)

2

y1(1 + x1)2
,

(x1 + y1)
2

(1 + x1y1)2

)
. (18)

According to theorems 6 and 7, the addition law on Edwards model Eλ is complete over any
subgroup of Eλ of odd order.

4.3.1 Explicit formulas

A�ne coordinates. Let (x1, y1) and (x2, y2) be two points on the Edwards model Eλ : 1 +
x2 + y2 + x2y2 = λxy de�ned the �eld K. The following formulas compute the sum (x3, y3) =
(x1, y1) + (x2, y2), when it is de�ned:

A = x1·y1; B = x2·y2; C = x1 + y1·B; D = y1 + x1·B; E = y2 + x2·A; F = x2 + y2·A;
G = A+B; H = (x1 + y2)·(x2 + y1)−G; I = (x1 + y1)·(x2 + y2)−H; J = 1 +A·B;
x3 = (c0·C − 2c2·D)/(c0·E − 2c2·F ); y3 = (c0·H − 2c2·I)/(c0·J − 2c2·G)

These formulas cost 2I + 9M + 8m over non-binary �elds and 2I + 5M over binary �elds, where
I,M and m are the costs of a �eld inversion, a �eld multiplication and a �eld multiplication by
a constant, respectively.

Remark that, the opposite of a point costs 1 inversion which is too expensive. Nevertheless
the sum and the di�erence of two points (x1, y1) and (x2, y2) have the same complexity. Indeed,
the following formula computes the di�erence (x5, y5) = (x1, y1)− (x2, y2), if it is de�ned:

(x5, y5) =

(
c0(x1y2 + y1x2)− 2c2(x1x2 + y1y2)

c0(1 + x1y1x2y2)− 2c2(x1y1 + x2y2)
,
c0(y1 + x1x2y2)− 2c2(x1 + y1x2y2)

c0(y2 + x1y1x2)− 2c2(x2 + x1y1y2)

)
. (19)

We retrieve the eight polynoms used to compute the sum: F1 = x1 + y1x2y2, F2 = y1 +
x1x2y2, F3 = y2+x1y1x2, F4 = x2+x1y1y2, F5 = x1x2+y1y2, F6 = x1y2+y1x2, F7 = 1+x1y1x2y2
and F8 = x1y1 + x2y2. Therefore formulas (15) and (19) can be rewritten as follows:

(x1, y1) + (x2, y2) =

(
c0F1 − 2c2F2

c0F3 − 2c2F4
,
c0F5 − 2c2F6

c0F7 − 2c2F8

)
,

(x1, y1)− (x2, y2) =

(
c0F6 − 2c2F5

c0F7 − 2c2F8
,
c0F2 − 2c2F1

c0F3 − 2c2F4

)
.

Projective coordinates. In this paragraph, we give projective coordinates over �nite �elds K
of characteristic 2. To avoid inversions we can work in the projective space P2(K). Let x = X/Z
and y = Y/Z, then the coordinates of the sum [X3 : Y3 : Z3] = [X1 : Y1 : Z1] + [X2 : Y2 : Z2]
can be computed as follows:

A = X1·X2; B = Y1·Y2; C = A·B;
D = X1·Z2; E = Y2·Z1; Z = Z1·Z2

F = E·(C +D2); G = D·(C + E2);
H = Z·(A+B); I = C + Z2;
X3 = F ·I; Y3 = H·G; Z3 = G·I

.
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The coordinates of a doubling [X4 : Y4 : Z4] = 2[X1 : Y1 : Z1] can be computed as follows:

A = (Y1 + Z1)
2; B = (X1 + Z1)

2; C = (Z1·(X1 + Y1))
2;

D = A·B + C; E = X1·A; F = Y1·B
X4 = E·D; Y4 = F ·C; Z4 = F ·D

.

Projective addition costs 12M + 3S and projective doubling costs 7M + 3S in the base �eld.

4.3.2 Comparisons of addition formulas with previous works

In this section, we compare our addition formulas in binary �elds with other models of elliptic
curves. As in theorems 7 and 11, we choose models that are birationally equivalent to the
ordinary Weierstrass model v2 +uv = u3 + b2u+ b6 where b2 = 0 of Explicit-Formulas Database
[BL-EFD]. Recall that M,S and m are the cost of multiplication, square and multiplication by
a constant, respectively, over a �nite �eld K.

Models Doubling Addition

Weierstraÿ 7M + 3S 14M + 1S

Binary Edwards of [BLF08] 4M + 4S + 1m 16M + 1S + 4m

Hessian 6M + 3S 12M + 6S

Hu� of [DevJoyBinHu�11] 6M + 5S + 2m 13M + 2S + 2m

Edwards model of [Wu:2010:608] 3M + 3S + 1m 12M + 4S + 2m

Level 4-theta model 3M + 6S + 2m 7M + 2S + 2m

Our Edwards model 7M + 3S 12M + 3S

Table 1: Comparisons of points operations in binary �elds

We can observe that addition law on the level 4 theta model costs only 7M+2S+2m, which
is the fastest addition formulas among well known models of elliptic curves.

5 Di�erential addition on Kummer line

5.1 Di�erential addition on the level 4 theta model

This section is devoted to di�erential addition on Kummer line of elliptic curves. Let K be a
�eld of characteristic p ≥ 0 and let Eλ1,λ2 be the level 4 theta model de�ned over the �eld K.
Let [Xi] := [X0 : X1 : X2 : X3] be a point on Eλ1,λ2 , the opposite of [Xi] is [X0 : X3 : X2 : X1].
The set {X0, X2, X1 +X3} is invariant under the action of opposite. Denote W = X1 +X3, an
equation of Kummer line can be written as

KEλ1,λ2 : W 2 =
2

λ1
(X2

0 +X2
2 ) + λ2X0X2,

which become W 2 = λ2X0X2 over binary �elds. The addition on Eλ1,λ2 does not induce an
addition law on the corresponding Kummer line, but one can de�ned a di�erential addition on
Kummer line. Let [X1,i] = [X1,0 : X1,1 : X1,2 : X1,3] and [X2,i] = [X2,0 : X2,1 : X2,2 : X2,3] be
two points on Eλ1,λ2 and let [X3,i] = [X1,i]+[X2,i], [X4,i] = [X1,i]−[X2,i] and [X5,i] = 2[X1,i]. For
di�erential addition and di�erential doubling, we express the coordinates X3,0, X3,2, X3,1 +X3,3

and X5,0, X5,2, X5,1 + X5,3 in term of the coordinates of X1,i, X2,i and X4,i. Remark that the
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computation of [X4,i] is done using the addition formulas; that is by adding [X1,i] with the
inverse of [X2,i]. We have:

X3,0 = (X2
1,0X

2
2,0 +X2

1,2X
2
2,2)− 4(c2/c0)X1,1X1,3X2,1X2,3

X3,1 = c0(X1,0X1,1X2,0X2,1 +X1,2X1,3X2,2X2,3)− 2c2(X1,0X1,1X2,2X2,3 +X1,2X1,3X2,0X2,1)
X3,2 = (X2

1,1X
2
2,1 +X2

1,3X
2
2,3)− 4(c2/c0)X1,0X2,0X1,2X2,2

X3,3 = c0(X1,0X1,3X2,0X2,3 +X1,1X1,2X2,1X2,2)− 2c2(X1,0X1,3X2,1X2,2 +X1,1X1,2X2,0X2,3)
X4,0 = (X2

1,0X
2
2,0 +X2

1,2X
2
2,2)− 4(c2/c0)X1,1X1,3X2,1X2,3

X4,1 = c0(X1,0X1,1X2,0X2,3 +X1,2X1,3X2,1X2,2)− 2c2(X1,0X1,1X2,1X2,2 +X1,2X1,3X2,0X2,3)
X4,2 = (X2

1,1X
2
2,3 +X2

1,3X
2
2,1)− 4(c2/c0)X1,0X1,2X2,0X2,2

X4,3 = c0(X1,0X1,3X2,0X2,1 +X1,1X1,2X2,2X2,3)− 2c2(X1,0X1,3X2,2X2,3 +X1,1X1,2X2,0X2,1)
X5,0 = X4

1,0 +X4
1,2 − 4(c2/c0)X

2
1,1X

2
1,3

X5,1 = c0(X
2
1,0X

2
1,1 +X2

1,2X
2
1,3)− 4c2X1,0X1,1X1,2X1,3

X5,2 = X4
1,1 +X4

1,3 − (c2/c0)X
2
1,0X

2
1,2

X5,3 = c0(X
2
1,0X

2
1,3 +X2

1,1X
2
1,2)− 4c2X1,0X1,1X1,2X1,3

A straightforward and easy calculation, while considering the equations of the curve, shows that: X3,0 = X4,0

X3,2 =
c20 − 4c22
c0c2

X1,0X2,0·X1,2X2,2 −X4,2
, (20)

{
X5,0 = µc0(X

2
1,0 +X2

1,2)
2 − 2X2

1,0X
2
1,2

X5,2 = (c2/c0)X
2
1,0·X2

1,2 − 2µc2(X
2
1,0 +X2

1,2)
2 , (21)

where µ = c0/(c
2
0 + 4c22). The cost of di�erential addition and doubling are 3M + 1m and

1M + 3S + 3m operations, respectively, over non-binary �elds. Over binary �elds, di�erential
addition and doubling cost 3M + 1m and 1M + 3S + 1m operations, respectively. Notice that,
moreover, we can also focus on the computation of the coordinates functions Wi = Xi,1 + Xi,3

for i = 1, 2, 3, 4, 5, which give the addition law on the Kummer line KEλ1,λ2 : W 2 =
2

λ1
(X2

0 +

X2
2 ) + λ2X0X2,. Finally we have:

W3 = W1·W2·
(
c0(X1,0·X2,0 +X1,2·X2,2)− 2c2(X1,0X2,2 +X1,2X2,0)

)
−W4

W5 = µ(c20 − 4c22)(X
2
1,0 +X2

1,2)·(W 2
1 − 2c0c2(X

2
1,0 +X2

1,2))

The computations cost 6M + 3m and 2M + 4S + 5m operations for di�erential addition and
doubling, respectively, over non-binary �elds. Over binary �elds, these cost are 5M + 2m and
2M + 4S + 2m for di�erential addition and doubling, respectively.

5.2 Di�erential addition on the Edwards model over any �nite �eld

Let Eλ be the Edwards model over the �eld K and let (x, y) be a point on Eλ. The �rst coordinate
of (x, y) is invariant under the negation action. For i = 1, 2, 3, 4, let (xi, yi) be a point on Eλ
such that (x3, y3) = (x1, y1) + (x2, y2), (x4, y4) = (x1, y1)− (x2, y2) and (x5, y5) = 2(x1, y1). As
in section 5.1, our goal is to express x3 and x5 in term of x1, x2 and x4. We have xi = Xi,2/Xi,0

for i = 1, 2, 3, 4, 5 where [Xi,0 : Xi,1 : Xi,2 : Xi,3] are points on the level 4 theta model. The �rst
and second relation of (20) and (21) give, if they are de�ned:

x3 + x4 =
(c20 − 4c22)x1x2
c0c2(1 + x21x

2
2)
, (22)

x5 =
(c2/c0)x

2
1 − 2µc2(1 + x21)

2

µc0(1 + x21)
2 − 2x21

, (23)
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where µ = c0/(c
2
0+4c22). The computation of x3 and x5 costs 1I+1M+1S+1m and 1I+2S+3m

operations,respectively. To avoid inversions, let xi = Xi/Zi for i = 1, 2, 3, 4, 5 where [X : Z]
parametrizes the projective space P1(K). Over any �nite �elds, formulas (22) and (23) become:{

X3 =
c20−4c22
c0c2

Z4X1X2Z1Z2 −X4(X
2
1X

2
2 + Z2

1Z
2
2 )

Z3 = Z4(X
2
1X

2
2 + Z2

1Z
2
2 )

, (24){
X5 = (c2/c0)Z

2
1 ·X2

1 − 2µc2(Z
2
1 +X2

1 )2

Z5 = µc0(Z
2
1 +X2

1 )2 − 2Z2
1X

2
1

. (25)

The computation of [X3 : Z3] and [X5 : Z5] costs 6M + 2S+ 1m and 1M + 3S+ 3m operations,
respectively, over non-binary �elds. The computational cost of the di�erential addition can be
reduced to 4M + 2S + 1m if Z4 = 1. Similarly, over �elds of characteristic 2, formulas (22) and
(23) become: {

X3 = (c0/c2)Z4X1X2Z1Z2 +X4(X1X2 + Z1Z2)
2

Z3 = Z4(X1X2 + Z1Z2)
2 , (26){

X5 = (c2/c0)(Z1·X1)
2

Z5 = (Z1 +X1)
4 . (27)

The formulas (26) and (27) cost 6M +1S+1m and 1M +3S+1m operations, respectively, over
�elds of characteristic 2. If Z4 = 1, formulas (26) can be reduced to 4M + 1S + 1m operations
over binary �elds. Formulas (26) correspond to Stam [StamPKC02] formulas and formulas
(27) correspond to Gaudry and Lubicz formulas [GauLubKummer09].

5.3 Comparisons with previous work on di�erential addition

Over non-binary �elds, Brier and Joye [BJ02] generalize the idea of Montgomerry [MontECM87]
on general Weierstrass model v2 = u3 + b2u + b6. The method of [BJ02] uses 6M + 2S + 2m
per bits for a scalar multiplication, i.e. multiply a point on Kummer line by a scalar. The best
known formula, see table 2, uses 3M + 6S + 3m per bits and is due to Gaudry and Lubicz in
[GauLubKummer09] on Kummer model of Legendre form v2 = u(u− 1)(u− b). Our formula
costs 4M + 3S+ 4m on the level 4 theta model and 5M + 5S+ 2m on the Edwards model. Over
non-binary �elds, we can assume that S = M and consequently, our formula requires 7M + 4m
which is better than formula in [GauLubKummer09] which requires 9M + 3m. Moreover if
we assume that m = M , then our method saves one multiplication.

model di�erential doubling di�erential addition Total

Montgomerry [MontECM87] 2M + 2S + 1m 3M + 2S 5M + 4S + 1m

Weierstraÿ 4M + 3S + 2m 6M + 2S + 2m 10M + 5S + 4m

Gaudry and Lubicz [GauLubKummer09] 4S + 2m 3M + 2S + 1m 3M + 6S + 3m

Level 4-theta model 1M + 3S + 3m 3M + 1m 4M + 3S + 4m

Our Edwards model 1M + 3S + 1m 4M + 2S + 1m 5M + 5S + 2m

Table 2: Comparisons of di�erential addition over non-binary �elds

Over binary �elds, the best known formula, see table 3, due to Gaudry and Lubicz [GauLubKummer09]
costs 5M + 5S + 1m on Kummer model of the ordinary elliptic curve v2 + uv = u3 + b6. Our
formulas requires 4M + 3S+ 2m on the level 4 theta model and 5M + 4S+ 2m on the Edwards
model. The formulas on the level 4 theta model are the best to compute on Kummer line over
binary �elds.
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model di�erential doubling di�erential addition Total

Weierstraÿ of [StamPKC02] 1M + 3S + 1m 4M + 1S 5M + 4S + 1m

Binary Edwards of [BLF08] 1M + 3S + 1m 4M + 1S + 1m 5M + 4S + 2m

Hu� of [DevJoyBinHu�11] 1M + 3S + 1m 4M + 2S 5M + 5S + 1m

Edwards model of [Wu:2010:608] 1M + 4S + 1m 4M + 2S 5M + 6S + 1m

Gaudry and Lubicz [GauLubKummer09] 1M + 3S + 1m 4M + 2S 5M + 5S + 1m

Level 4-theta model 1M + 3S + 1m 3M + 1m 4M + 3S + 2m

Our Edwards model 1M + 3S + 1m 4M + 1S + 1m 5M + 4S + 2m

Table 3: Comparisons of di�erential addition over binary �elds

6 Conclusion

We successfully introduced an Edwards model of elliptic curves de�ned over �elds of all char-
acteristic. We used a model of elliptic curve called level 4 theta model, comming from theta
functions of level 4. We have shown that the group law on this theta model is complete and is
the fastest in characteristic two, among common curves such as Weierstrass, Edwards, Hu� and
Hessian curves. As future work, one may compute pairings using theta functions in binary �elds
and Miller algorithm on these curves. Pairings computation over non-binary �elds using theta
funtions is published [LuRo10].
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A Addition laws formulas on the level 4 theta model

The Riemann theta formulas give 16 relations that are classi�ed according to j. Recall that
c0 = a0, c2 = a2/2 = θ2(0)/2 and a3 = a1 = 1. Let K be �eld of characteristic p ≥ 0 and
let c0, c2 ∈ K? and let Eλ1,λ2 : X2

0 + X2
2 = λ1X1X3, X

2
1 + X2

3 = λ2X0X2 be the level 4 theta
model de�ned over a �eld K. The arithmetic (addition and doubling) on Eλ1,λ2 is given by the
following theta formulas:

θi(z1 + z2)θj(z1 − z2) =
akB(i′, j′, k′, l′)− ak+2B(i′, j′, k′ + 2, l′)

al
.

This formula give 4× 4 formulas that give 4 equivalent group laws on Eλ1,λ2 . The 4 group laws
formulas are:

θi(z1 + z2)θ0(z1 − z2) =
a0B(i′, 0, 0, i′)− a2B(i′, 0, 2, i′)

ai
,

θi(z1 + z2)θ1(z1 − z2) =
a0B(i′, 1, 0, i′ + 1)− a2B(i′, 1, 2, i′ + 1)

ai+1
,

θi(z1 + z2)θ2(z1 − z2) =
a0B(i′, 2, 0, i′ + 2)− a2B(i′, 2, 2, i′ + 2)

ai+2
,

θi(z1 + z2)θ3(z1 − z2) =
a0B(i′, 3, 0, i′ + 3)− a2B(i′, 3, 2, i′ + 3)

ai+3
.

1©



θ0(z1 + z2)θ0(z1 − z2) =
c0

(
θ20(z1)θ

2
0(z2) + θ22(z1)θ

2
2(z2)

)
− 4c2θ1(z1)θ3(z1)θ1(z2)θ3(z2)

c0
,

θ1(z1 + z2)θ0(z1 − z2) = c0

(
θ0(z1)θ1(z1)θ0(z2)θ1(z2) + θ2(z1)θ3(z1)θ2(z2)θ3(z2)

)
−2c2

(
θ2(z1)θ3(z1)θ0(z2)θ1(z2) + θ0(z1)θ1(z1)θ2(z2)θ3(z2)

)
,

θ2(z1 + z2)θ0(z1 − z2) =
c0θ0(z1)θ2(z1)θ0(z2)θ2(z2)− c2

(
θ21(z1)θ

2
3(z2) + θ23(z1)θ

2
1(z2)

)
c2

,

θ3(z1 + z2)θ0(z1 − z2) = c0

(
θ0(z1)θ3(z1)θ0(z2)θ3(z2) + θ1(z1)θ2(z1)θ1(z2)θ2(z2)

)
−2c2

(
θ0(z1)θ3(z1)θ1(z2)θ2(z2) + θ1(z1)θ2(z1)θ0(z2)θ3(z2)

)
.

2©



θ0(z1 + z2)θ1(z1 − z2) = c0

(
θ0(z1)θ1(z1)θ0(z2)θ3(z2) + θ2(z1)θ3(z1)θ1(z2)θ2(z2)

)
−2c2

(
θ0(z1)θ3(z1)θ1(z2)θ2(z2) + θ1(z1)θ2(z1)θ0(z2)θ3(z2)

)
,

θ1(z1 + z2)θ1(z1 − z2) =
c0θ0(z1)θ2(z1)θ1(z2)θ3(z2)− c2

(
θ23(z1)θ

2
0(z2) + θ22(z1)θ

2
1(z2)

)
c2

,

θ2(z1 + z2)θ1(z1 − z2) = c0

(
θ0(z1)θ3(z1)θ2(z2)θ3(z2) + θ1(z1)θ2(z1)θ0(z2)θ1(z2)

)
−2c2

(
θ0(z1)θ3(z1)θ0(z2)θ1(z2) + θ1(z1)θ2(z1)θ2(z2)θ3(z2)

)
,

θ3(z1 + z2)θ1(z1 − z2) =
c0

(
θ20(z1)θ

2
3(z2) + θ22(z1)θ

2
1(z2)

)
− 4c2θ1(z1)θ3(z1)θ0(z2)θ2(z2)

c0
.
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3©



θ0(z1 + z2)θ2(z1 − z2) =
c0θ0(z1)θ2(z1)θ1(z2)θ3(z2)− c2

(
θ21(z1)θ

2
1(z2) + θ23(z1)θ

2
3(z2)

)
c2

,

θ1(z1 + z2)θ2(z1 − z2) = c0

(
θ0(z1)θ3(z1)θ1(z2)θ2(z2) + θ1(z1)θ2(z1)θ0(z2)θ3(z2)

)
−2c2

(
θ0(z1)θ3(z2)θ0(z2)θ3(z2) + θ1(z1)θ2(z1)θ1(z2)θ2(z2)

)
,

θ2(z1 + z2)θ2(z1 − z2) =
c0

(
θ20(z1)θ

2
2(z2) + θ22(z1)θ

2
0(z2)

)
− 4c2θ1(z1)θ3(z1)θ1(z2)θ3(z2)

c0
,

θ3(z1 + z2)θ2(z1 − z2) = c0

(
θ0(z1)θ1(z1)θ2(z2)θ3(z2) + θ2(z1)θ3(z1)θ0(z2)θ1(z2)

)
−2c2

(
θ0(z1)θ1(z1)θ0(z2)θ1(z2) + θ2(z1)θ3(z1)θ2(z2)θ3(z2)

)
.

4©



θ0(z1 + z2)θ3(z1 − z2) = c0

(
θ0(z1)θ3(z1)θ0(z2)θ1(z2) + θ1(z1)θ2(z1)θ2(z2)θ3(z2)

)
−2c2

(
θ0(z1)θ3(z1)θ2(z2)θ3(z2) + θ1(z1)θ2(z1)θ0(z2)θ1(z2)

)
,

θ1(z1 + z2)θ3(z1 − z2) =
c0

(
θ20(z1)θ

2
1(z2) + θ22(z1)θ

2
3(z2)

)
− 4c2θ1(z1)θ3(z1)θ0(z2)θ2(z2)

c0
,

θ2(z1 + z2)θ3(z1 − z2) = c0

(
θ0(z1)θ1(z1)θ1(z1)θ2(z2) + θ2(z1)θ3(z1)θ0(z2)θ3(z2)

)
−2c2

(
θ0(z1)θ1(z1)θ0(z2)θ3(z2) + θ2(z1)θ3(z1)θ1(z2)θ2(z2)

)
,

θ3(z1 + z2)θ3(z1 − z2) =
c0θ0(z1)θ2(z1)θ1(z2)θ3(z2)− c2

(
θ21(z1)θ

2
0(z2) + θ23(z1)θ

2
2(z2)

)
c2

.

B Sage veri�cation

This sage script veri�es that addition formulas (8) are valid.

R.<c0,c2,X0,X1,X2,X3,Y0,Y1,Y2,Y3> = QQ[]

lbd1 = c0^2 + 4*c2^2; lbd2 = 1/(c0*c2)

LB = numerator(lbd1 - lbd2)

E1 = numerator(X0^2 + X2^2 - lbd1*X1*X3); E2 = numerator(X1^2 + X3^2 - lbd2*X0*X2)

F1 = numerator(Y0^2 + Y2^2 - lbd1*Y1*Y3); F2 = numerator(Y1^2 + Y3^2 - lbd2*Y0*Y2)

S = R.quo([E1,E2,F1,F2,LB])

Z0 = (X0^2*Y0^2 + X2^2*Y2^2) - 4*(c2/c0)*X1*X3*Y1*Y3

Z1 = c0*(X0*X1*Y0*Y1 + X2*X3*Y2*Y3) - 2*c2*(X2*X3*Y0*Y1 + X0*X1*Y2*Y3)

Z2 = (X1^2*Y1^2 + X3^2*Y3^2) - 4*(c2/c0)*X0*Y0*X2*Y2

Z3 = c0*(X0*X3*Y0*Y3 + X1*X2*Y1*Y2) - 2*c2*(X0*X3*Y1*Y2 + X1*X2*Y0*Y3)

G1 = Z0^2 + Z2^2 - lbd1*Z1*Z3; G2 = Z1^2 + Z3^2 - lbd2*Z0*Z2

S(numerator(G1)) == 0; S(numerator(G2)) == 0
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