
Breaking pairing-based cryptosystems using ηT pairing over GF (397)

Takuya Hayashi1, Takeshi Shimoyama2,
Naoyuki Shinohara3, and Tsuyoshi Takagi1

1 Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
2 FUJITSU LABORATORIES Ltd., 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan.

3 National Institute of Information and Communications Technology, 4-2-1, Nukui-kitamachi, Koganei, Tokyo,
184-8795, Japan.

Abstract. There are many useful cryptographic schemes, such as ID-based encryption, short signature,
keyword searchable encryption, attribute-based encryption, functional encryption, that use a bilinear pair-
ing. It is important to estimate the security of such pairing-based cryptosystems in cryptography. The
most essential number-theoretic problem in pairing-based cryptosystems is the discrete logarithm problem
(DLP) because pairing-based cryptosystems are no longer secure once the underlining DLP is broken. One
efficient bilinear pairing is the ηT pairing defined over a supersingular elliptic curve E on the finite field
GF (3n) for a positive integer n. The embedding degree of the ηT pairing is 6; thus, we can reduce the
DLP over E on GF (3n) to that over the finite field GF (36n). In this paper, for breaking the ηT pairing
over GF (3n), we discuss solving the DLP over GF (36n) by using the function field sieve (FFS), which is
the asymptotically fastest algorithm for solving a DLP over finite fields of small characteristics. We chose
the extension degree n = 97 because it has been intensively used in benchmarking tests for the imple-
mentation of the ηT pairing, and the order (923-bit) of GF (36·97) is substantially larger than the previous
world record (676-bit) of solving the DLP by using the FFS. We implemented the FFS for the medium
prime case (JL06-FFS), and propose several improvements of the FFS, for example, the lattice sieve for
JL06-FFS and the filtering adjusted to the Galois action. Finally, we succeeded in solving the DLP over
GF (36·97). The entire computational time of our improved FFS requires about 148.2 days using 252 CPU
cores. Our computational results contribute to the secure use of pairing-based cryptosystems with the ηT
pairing.

Keywords: pairing-based cryptosystems, ηT pairing, discrete logarithm problems, function filed sieve

1 Introduction

After the advent of the tripartite Diffie-Hellman (DH) key exchange scheme [20] and ID-based encryption
using pairing [11], plenty of attractive pairing-based cryptosystems have been proposed, for example, short
signature [13], keyword searchable encryption [10], efficient broadcast encryption [12], attribute-based encryp-
tion [29], and functional encryption [27]. Pairing-based cryptosystems have become a major research topic in
cryptography.

Pairing-based cryptosystems are constructed on the groups G1, G
′
1 and G2 of the same order with a bilinear

pairing G1 ×G′
1 → G2. The security of pairing-based cryptosystems is based on the difficulty in solving several

number-theoretic problems such as the computational/decisional bilinear DH problem (CBDH/DBDH), strong
DH problem (SDH), decisional linear problem (DLIN), and symmetric external DH problem (SXDH). However,
the most important number-theoretic problem in pairing-based cryptosystems is the discrete logarithm problem
(DLP) on G1, G

′
1, and G2. All the other number-theoretic problems above are no longer intractable once the

DLP on G1, G
′
1, or G2 is broken. Therefore, it is important to investigate the difficulty in solving the DLP.

One of the most efficient algorithms for implementing the pairing is the ηT pairing [5] defined over a super-
singular elliptic curve E on the finite field GF (3n), where n is a positive integer. Since the embedding degree
of E is 6, the ηT pairing can reduce a DLP over E on GF (3n), which is called an ECDLP, to a DLP over
GF (36n). Joux proposed the (probably) first cryptographic scheme [20] that uses the pairing over E. Boneh et
al. then applied the pairing over E to the short signature scheme [13], where a point (x, y) on E for extension
degree n = 97 can be represented as a signature value, e.g., x = KrpIcV0O9CJ8iyBS8MyVkNrMyE. At CRYPTO
2002, Barreto et al. presented algorithms for efficiently computing Tate pairing over E [6]. Many high-speed
implementations of pairing over E have subsequently been proposed [3, 7–9, 17, 18, 24]. For many of these im-
plementations, benchmark tests using the extension degree n = 97 have been conducted. Therefore, we focus on
the DLP over finite field GF (36·97) in this paper. The cardinality of the subgroup of the supersingular elliptic
curve is 151 bits, and that of GF (36·97) is 923 bits. The size of our target DLP is 247 bits larger than the

2 Takuya Hayashi, Takeshi Shimoyama, Naoyuki Shinohara, and Tsuyoshi Takagi

Table 1. Summary of time data for solving DLP over GF (36·97)

phase method time machine environment

collecting relations lattice sieve 53.1 days 212 CPU cores
linear algebra parallel Lanczos 80.1 days 252 CPU cores

individual logarithm
rationalization and

15.0 days 168 CPU coresspecial-Q descent

total 148.2 days 252 CPU cores

previous world record of solving the DLP over GF (36·71), whose cardinality is 676 bits [19]. The current world
record for solving an ECDLP is the 112-bit ECDLP [14]. Pollard’s ρ method is used for solving the 112-bit
ECDLP, and has not reached the ability for solving the 151-bit ECDLP over the subgroup of E.

In this paper, we analyze the difficulty in solving the DLP over GF (36·97) by using the function field sieve
(FFS), which is known as the asymptotically fastest algorithm [1, 2]. Since the FFS proposed by Joux and
Lercier (JL06-FFS) [23] is suitable for solving the DLP over a finite field whose characteristic is small, we use
the JL06-FFS and propose several efficient techniques for increasing its speed. Note that the FFS generally
consists of four phases: polynomial selection, collecting relations, linear algebra, and individual logarithm, and
the time-consuming phases are collecting relations and linear algebra. For the collecting relations phase, we
applied several techniques; lattice sieve for the JL06-FFS, lattice sieve with single instruction multiple data
(SIMD), and optimization for our parameters. These techniques enable the sieving program to run about 6
times faster. In the linear algebra phase, we applied careful treatments of singleton-clique and merging [15] to
the Galois action originating from extension degree 6 of GF (36·97), with which the size of the matrix used for
the Lanczos method is reduced to approximately 30%. By implementing the JL06-FFS with our improvements,
we succeeded in solving the DLP over GF (36·97) by using 252 CPU cores (Core2 quad, Xeon, etc) for the target
problem discussed in Section 3.1. As shown in Table 1, the computations required 53.1 days for the collecting
relations phase, 80.1 days for the linear algebra phase, and 15.0 days for the individual logarithm phase. Thus, a
total of 148.2 days were required to solve the DLP over GF (36·97) by using 252 CPU cores. Our computational
results contribute to the secure use of pairing-based cryptosystems with the ηT pairing.

This paper is organized as follows: In Section 2, we describe the paring-based cryptosystems, the DLP, and an
overview of the FFS. In Section 3, we present our target problem of the DLP over GF (36·97) and the parameter
settings used for our implementation of the FFS. In Section 4, we propose our efficient implementation techniques
for the lattice sieve and the parallel Lanczos method. In Section 5, we report the computational results of our
implementation of solving the target problem over GF (36·97). Finally we give concluding remarks and a rough
estimation for larger key sizes.

2 Pairing-based cryptosystems and discrete logarithm problem (DLP)

In this section, we briefly explain the security of pairing-based cryptosystems and give a general overview of the
function field sieve (FFS). We also mention its parameters such as the smoothness bound B.

Before beginning the discussion, we define the discrete logarithm problem (DLP) over a finite field. Let gF
be a generator of a large multiplicative subgroup GF of a finite field. For a given TF ∈ GF , a DLP over GF is
the problem of computing an integer X such that TF = gXF . Generally, X is described as loggF TF .

The ECDLP is also defined in the same manner using the additive group operation. Let GE be a generator
of a subgroup GE of an elliptic curve E on a finite field and assume that TE ∈ GE is given. An ECDLP is
defined as the problem of computing an integer Y satisfying TE = [Y]GE . In this case, we also describe Y as
logGE

TE .

2.1 Pairing-based cryptosystems and DLP

Many efficient cryptographic protocols using a bilinear pairing have been proposed (for example [10–13, 20,
27]), and high-speed implementations for the ηT pairing have been reported (for example [3, 6–9, 17, 18, 24]).
We discuss the security of pairing-based cryptosystems with the ηT paring over GF (3n) for an integer n. The
security of pairing-based cryptosystems with the ηT paring depends on the difficulty in solving the DLP over the
supersingular elliptic curves. Additionally, MOV reduction [26] reduces this problem to a DLP over GF (36n)∗

since the embedding degree of the ηT pairing is 6.

Breaking pairing-based cryptosystems using ηT pairing over GF (397) 3

In particular, the ηT pairing is a bilinear map such that ηT : G1×G1 → G2, where G1 is an additive subgroup
of a supersingular elliptic curve over GF (3n), G2 is a cyclic subgroup of GF (36n)∗, and the cardinalities of G1,
G2 are the same prime number P . The security of pairing-based cryptosystems with the ηT pairing depends
on the difficulty of not only an ECDLP over G1 but also a DLP over G2 by MOV reduction. To explain
this fact, we take ID-based encryption constructed on pairing-based cryptosystems as an example. The ID-
based encryption has a master key skey ∈ ZP . Each user ID is deterministically transformed into a point
QID ∈ G1, and the secret key SID is defined by [skey]QID. Therefore, solving the ECDLP over G1, namely
SID = [skey]QID, we obtain the master key skey = logQID

SID. Additionally, for an arbitrary point R ∈ G1, we
compute ηT (SID,R), ηT (QID,R) ∈ G2, and then have ηT (SID,R) = ηT ([skey]QID,R) = ηT (QID,R)skey ∈ G2.
This implies that skey = logηT (QID,R) ηT (SID,R) is also available by solving the DLP over G2. In this paper,

we discuss the DLP over a subgroup of GF (36n)∗.

2.2 General overview of FFS

The FFS is the asymptotically fastest algorithm for solving a DLP over finite fields of small characteristics.
Adleman proposed the first FFS in 1994 [1]. After that, several variants of the FFS have been proposed; Adleman
and Huang improved the FFS [2], and Joux and Lercier proposed two more practical FFS’s, JL02-FFS [22] and
JL06-FFS [23]. The details of JL06-FFS are explained in Sections 3.2.

In this section, we give a general overview of an FFS that consists of four phases: polynomial selection,
collecting relations, linear algebra, and individual logarithm. In the overview, we aim at computing logg T
where T ∈ ⟨g⟩ ⊂ GF (36n)∗.

Polynomial selection phase: We select κ from κ = 1, 2, 3, 6 for the coefficient field of GF (3κ)[x], and a
bivariate polynomial H(x, y) ∈ GF (3κ)[x, y] such that H satisfies the eight conditions proposed by Adleman [1]
and degy H = dH for a given parameter value dH . We compute a random polynomial m ∈ GF (3κ)[x] of degree
dm and a monic irreducible polynomial f ∈ GF (3κ)[x] such that

H(x,m) ≡ 0 (mod f), deg f = 6n/κ. (1)

We then have GF (36n) ∼= GF (3κ)[x]/(f). Moreover, there is a surjective homomorphism

ξ :

{
GF (3κ)[x, y]/(H) → GF (36n) ∼= GF (3κ)[x]/(f)

y 7→ m.

We select a positive integer B as a smoothness bound, and define a rational factor base FR(B) and an algebraic
factor base FA(B) as follows.

FR(B) = {p ∈ GF (3κ)[x] | deg(p) ≤ B, p is monic irreducible}, (2)

FA(B) = {⟨p, y − t⟩ ∈ Div(GF (3κ)[x, y]/(H)) | p ∈ FR(B), H(x, t) ≡ 0 (mod p)}, (3)

where Div(GF (3κ)[x, y]/(H)) is the divisor group of GF (3κ)[x, y]/(H) and ⟨p, y − t⟩ is a divisor generated by
p and y − t. Note that FR(0) = FA(0) = {∅}. We simply call the set FR(B) ∪ FA(B) a factor base and the set
FR(k)\FR(k − 1) ∪ FA(k)\FA(k − 1) a factor base of degree k for k = 1, 2, . . . , B.

Collecting relations phase: We select positive integers R,S and collect a sufficient amount of pairs (r, s) ∈
(GF (3κ)[x])2 such that

deg r ≤ R, deg s ≤ S, gcd(r, s) = 1, (4)

rm+ s =
∏

pi∈FR(B)

pai
i , (5)

⟨ry + s⟩ =
∑

⟨pj ,y−tj⟩∈FA(B)

bj⟨pj , y − tj⟩, (6)

for some non-negative integers ai, bj by using a sieving algorithm such as the lattice sieve discussed in Section
4.1. To efficiently compute bj in (6), we use the following equivalent property instead of (6):

(−r)dHH(x, −s/r) =
∏

⟨pj ,y−tj⟩∈FA(B)

p
bj
j . (7)

4 Takuya Hayashi, Takeshi Shimoyama, Naoyuki Shinohara, and Tsuyoshi Takagi

The (r, s) satisfying (4), (5), and (7) is called a B-smooth pair. Let h be the class number of the quotient field
of GF (3κ)(x)[y]/(H) and assume that h is coprime to (36n − 1)/(3κ − 1). Then the following congruent holds:∑

pi∈FR(B)

ai logg pi ≡
∑

⟨pj ,y−tj⟩∈FA(B)

bj logg sj (mod (36n − 1)/(3κ − 1)), (8)

where sj = ξ(tj)
1/h, ⟨tj⟩ = h⟨pj , y − tj⟩. We call the congruent (8) “relation” in this paper. Moreover, free

relation [19] provides additional relations without computation with a sieving algorithm.

Linear algebra phase: We generate a system of linear equations described as a large matrix from those
collected relations and reduce the rank of the matrix by filtering [15]. The reduced system of linear equations
is solved using the parallel Lanczos method [4, 19] or other methods, and the discrete logarithms of elements in
the factor base are obtained:

logg p1, ..., logg p#FR(B), logg s1, ..., logg s#FA(B).

Individual logarithm phase: Note that our goal is to compute logg T . Therefore, we find integers ai, bj such
that

logg T ≡
∑

pi∈FR(B)

ai logg pi +
∑

⟨pj ,y−tj⟩∈FA(B)

bj logg sj (mod (36n − 1)/(3κ − 1)), (9)

using the special-Q descent [23]. The computational time for the individual logarithm phase is smaller than
those for the collecting relations and linear algebra phases.

3 Target problem for n = 97 and setting of parameters for FFS

We discuss solving the DLP over a subgroup of GF (36·97)∗, where the cardinality of the subgroup is 151 bits.
To estimate the time complexity of solving such a DLP, we unintentionally set a target problem determined
from the circular constant π and natural logarithm e. The details are explained in Section 3.1. To solve the
target problem effectively, we select the parameter values of the FFS and estimate important numbers, e.g., the
number of elements in the factor base, for it. The details are given in Section 3.2.

3.1 Target problem

For pairing-based cryptosystems, many high-speed implementations of the ηT pairing over supersingular elliptic
curves on GF (3n) have been reported [3, 6–9, 17, 18, 24], and many benchmark tests using the ηT pairing have
been conducted for GF (397). In this paper, we deal with a supersingular elliptic curve defined by

E := {(x, y) ∈ GF (397)2 : y2 = x3 − x+ 1} ∪ {O},

where O is the point at infinity. The order of the E is 397 + 349 + 1 = 7P151 where P151 is a 151-bit prime
number as follows:

P151 = 2726865189058261010774960798134976187171462721.

Next, let G1 be the subgroup of E of order P151 and let G2 be the subgroup of GF (36·97)∗ of order P151. Note
that, since orders of G1 and G2 are prime numbers, every element of G1\{O} and G2\{1} is a generator of G1

and G2, respectively. The ηT pairing for n = 97 is a map from G1 ×G1 to G2.
Our goal is to solve the ECDLP in G1. To set our target problem unintentionally, we select two elements

Qπ,Qe in G1, which correspond to the circular constant π and natural logarithm e, respectively. We explain how
we select Qπ and Qe as follows. First, we describe GF (397) as GF (3)[x]/(x97 + x16 + 2), where the irreducible
polynomial x97 + x16 + 2 ∈ GF (3)[x] is well used for the fast implementation of field operations. An element

in GF (397) is represented by
∑96

i=0 dix
i, where di ∈ GF (3) = {0, 1, 2}. To transform π and e to an element in

GF (397) respectively, we define a bijective map ϕ :
∑96

i=0 dix
i 7→

∑96
i=0 di3

i ∈ Z. We then transform π and e to
the 3-adic integer of 97 digits as follows:

⌊π · 395⌋ = (1001021101222201021100211111022122222011120121212120012110010010122202221201201211121012101120022)3,

⌊e · 396⌋ = (2201101121221102011012222102011021222201202222210212212020112112221110001202222112102102010022020)3.

Breaking pairing-based cryptosystems using ηT pairing over GF (397) 5

Table 2. Number of elements p in FR(B) and FA(B) of B = 6

degree of p rational algebraic

1 27 27
2 351 338
3 6552 6552
4 132678 132496
5 2869776 2869776
6 64566684 64563408

total 67576068 67572597

#FR(6) + #FA(6) 135148665

From these values, we define Qπ = (xπ, yπ) and Qe = (xe, ye) ∈ G1 as follows. We first find the non-negative
smallest 3-adic integers cπ and ce such that ϕ−1(⌊π · 395⌋ + cπ) and ϕ−1(⌊e · 396⌋ + ce) become x-coordinates
of the elements Qπ and Qe in the subgroup G1 on the E. In fact we can set xπ = ϕ−1(⌊π · 395⌋ + (11)3)
and xe = ϕ−1(⌊e · 396⌋ + (120)3). There are two points in G1\{O} of the same x-coordinate. We then set the

corresponding y-coordinate by computing yπ = (x3
π−xπ+1)(3

97+1)/4 and ye = (x3
e−xe+1)(3

97+1)/4 in GF (397),
respectively. These values are checkable by scripts given in Appendix B.

Again, our goal is to solve the ECDLP in G1, i.e., for given Qπ, Qe ∈ G1 we try to find integer s such that

Qπ = [s]Qe. (10)

On the other hand, the ηT pairing enables us to reduce the ECDLP in G1 to the DLP over G2 by the relationship
ηT (Qπ,Qπ) = ηT (Qπ,Qe)

s. Therefore, we can find s by computing the discrete logarithm

s = logηT (Qπ,Qe) ηT (Qπ,Qπ) = logg ηT (Qπ,Qπ)/ logg ηT (Qπ,Qe) mod P151, (11)

for a generator g of G2.

3.2 Parameter settings for FFS

In this section, we explain the parameter setting used for our implementations of the FFS. Hayashi et al. [19]
reported that, when n ≤ 509, the JL06-FFS [23] is more efficient for solving the DLP over GF (36n) than the
JL02-FFS [22]. Thus, we use the JL06-FFS for our computation. In the JL06-FFS, the condition that “r is
monic” is introduced into the collecting relations phase in order to compute efficiently. For the remainder of
this paper, the FFS refers to the JL06-FFS.

To solve our DLP over GF (36·97), we have to select several parameter values of the FFS, such that its
computational time is small enough for a fixed extension degree n. The parameter values for n = 97 are listed
in [30, Table 3], and we use those parameter values for our computation.

We can select the parameter κ of the FFS to describe GF (36·97) as GF (3κ)[x]/(f), where κ is in {1, 2, 3, 6}
and f ∈ GF (3κ)[x] is an irreducible polynomial of degree 6 · 97/κ. The appropriate value of κ is given in [30,
Table 3], i.e., κ = 6. However, we select κ = 3 for the following reasons. In the linear algebra phase, filtering [15]
is performed to reduce the size of the matrix. Then it is required that all elements in the factor base correspond
to the memory addresses of the PC for efficient computation. The number of elements in the factor base for
κ = 6 is much larger than that for κ = 3, so κ = 3 is advantageous on this point. Additionally, [30, Table3]
shows that the computational cost of the FFS for κ = 3 is only about twice as much as that for κ = 6. We
conducted test runs for κ = 3, 6 in the collecting relations phase. We then noticed that our implementation for
κ = 3 was much faster than for κ = 6, so we set κ = 3. For the remainder of the paper, κ = 3.

Polynomial selection phase: We select the bivariate polynomial H(x, y) of the form x + ydH for a given
parameter dH of the FFS in the same manner as [19]. Then we search an irreducible polynomial f ∈ GF (3κ)[x]
of degree 6 · 97/κ by factoring H(x,m) for a random polynomial m ∈ GF (3κ)[x] whose degree is dm. In fact, we
randomly pick up m from GF (3)[x], so that f is also in GF (3)[x] for use of the Galois action. From [30, Table
3], we set dH and dm as 6 and 33, respectively. The polynomials f and m, which we used in our experiments,
are provided in Appendix B.

Next, we select the smoothness bound B = 6 by using [30, Table 3] for (2) and (3), i.e., a rational factor
base FR(B) and an algebraic factor base FA(B). The number of elements of FR(B) and FA(B) are listed in
Table 2.

6 Takuya Hayashi, Takeshi Shimoyama, Naoyuki Shinohara, and Tsuyoshi Takagi

Collecting relations phase: In the collecting relations phase, we use the lattice sieve [28] and the free relation
[19] and collect many relations (8); (r, s) ∈ (GF (3κ)[x])2 satisfying (4), (5), (7), where r is monic. The search
range for the lattice sieve depends on the maximum degrees R,S of r, s. We set R = S = 6 based on [30,
Table 3]. The lattice sieve gives a certain amount of relations for one special-Q, which is defined in Section 4.1.
Therefore, we require a sufficient number of special-Q’s so that the number of relations obtained in the collecting
relations phase is larger than that of all elements in the factor base. The minimum sufficient number of special-
Q’s is estimated by the following process. We have to select special-Q’s from the subset FR(6)\FR(5), whose
cardinality is 64566684 (See Table 2). Let θmin be the minimum sufficient ratio of special-Q’s over all elements
in FR(6)\FR(5). For n = 97 and κ = 3, we can estimate θmin = 0.01292 [30, Table 3]. Therefore, the number
of special-Q’s must be larger than ⌈0.01292 · 64566684⌉ = 834202. In our computation, we set 2500000 as the
number of special-Q’s to obtain more relations than we require since we expect that these excess relations will
help us reduce the size of the matrix during filtering, especially in singleton-clique.

4 Implementation

In this section, we propose the following efficient implementation techniques; the lattice sieve for JL06-FFS and
optimization for our parameters in the collecting relations phase, the data structure and the parallel Lanczos
method for the Galois action in the linear algebra phase, for reducing the computational cost of the FFS for
solving the DLP over GF (36·97). Parameters (κ, dH , dm, B,R, S) are fixed as (3, 6, 33, 6, 6, 6). The reasoning for
this is explained in Section 3.2.

4.1 Collecting relations phase

In the collecting relations phase, we used the lattice sieve [28] in a similar fashion to factoring a large integer [25]
and solving discrete logarithm problems [21, 22]. We give an overview of our implementation of the lattice sieve
in the following paragraphs, and more details are described in Appendix A.

Lattice sieve for JL06-FFS: Sieving with the lattice sieve is performed for (r, s) ∈ (GF (33)[x])2 such that
the formula (5) given in Section 2.2 is divisible by an element Q chosen from a subset of the rational factor
base FR(6)\FR(5) (this Q is called a “special-Q”). Recall that deg r and deg s are not greater than R = 6 and
S = 6, respectively. Such (r, s) can be represented as (r, s) = c(r1, s1) + d(r2, s2) for given reduced lattice bases
(r1, s1), (r2, s2) ∈ (GF (33)[x])2 and any c, d ∈ GF (33)[x] such that deg(cr1 + dr2) ≤ 6, deg(cs1 + ds2) ≤ 6, then
sieving is done on the bounded c-d plane. After sieving, we conduct the smoothness test [16] for “candidates”
that are evaluated as B-smooth pairs with high probability by using the lattice sieve. Our implementation of
the smoothness test is described in Appendix A.4.

A problem of applying the lattice sieve to the FFS is the condition “r is monic” described in Section 3.2.
Since r is represented as cr1+dr2, it is difficult to efficiently keep r monic — it might require degree evaluations
and branches. Instead of choosing monic r, we introduce the condition r ≡ 1 mod x. To satisfy this condition,
we restrict r1 and r2 such that r1 ≡ 0 mod x and r2 ≡ 1 mod x. Then sieving is performed on the bounded
c-d plane with restriction d ≡ 1 mod x, whose size is reduced to 1/27 compared with the original bounded c-d
plane. This sieving procedure with the restricted condition can be implemented without extra costs such as
additional degree evaluations and additional branches.

Lattice sieve with SIMD: Since operations of GF (3) can be represented using logical instructions [24],
operations ofGF (33)[x] can be performed using a combination of logical and shift instructions. This means SIMD
implementation is appropriate for efficient computation of the lattice sieve. We represent GF (33) as polynomial
basis GF (3)[ω]/(ω3 − ω − 1), and its element is represented using 6-bit (h1, ℓ1, hω, ℓω, hω2 , ℓω2) ∈ GF (2)6 in
our implementation. We then pack 16 elements of GF (33)[x] of degree at most 7 into 6 registers of 128 bits,
as shown in Fig. 2 in Appendix A.1, and treat 16 elements with the SIMD. Note that the upper bound of the
degree of our SIMD data structure is for efficient access to each element in GF (33)[x]. On the other hand, since
we choose B,R, S as all 6, the upper bound of the degrees of c, d, r1, s1, r2, s2 ∈ GF (33)[x] and p in the factor
base, which are treated in the lattice sieve, is also 6. Therefore, our SIMD structure can be stored elements
treated in the lattice sieve.

Breaking pairing-based cryptosystems using ηT pairing over GF (397) 7

0

50

100

150

200

250

300

350

400

0 day 5 day 10 day 15 day
0.0×10

7

0.5×10
7

1.0×10
7

1.5×10
7

2.0×10
7

Estimated time
Number of relations

Ⅰ.Lattice sieve for JL06-FFS with

SIMD and large prime variation

Ⅱ.Classifiction of the sieving for

the factor base of degree 5

Ⅲ.Optimization of the register

usage and computations

Ⅳ.Omission of the sieving for

 the factor base of degree 1

Ⅴ.Improvement for efficient

usage of 128-bit registers

vertical(left) : estimation days for collecting relations phase
vertical(right) : number of collected relations
horizontal : first two weeks of computing days for collecting relations phase
(Period with no data between 8.4-9.3 days was due to human error in operating PC. (See Section 5.2.))

Fig. 1. Our improvement in collecting relations phase for first two weeks

History of our optimizations: Figure 1 shows the process of our improvements in the collecting relations
phase for the first two weeks. We improved our implementation of the lattice sieve four times during this period.
We first used large prime variation to omit sieving for the factor base of degree 6 and implemented the lattice
sieve for the FFS with the SIMD implementation. We then ran the program for the first four days (stage I in
Fig. 1). At that point, the estimated total number of days for the collecting relations phase was about 360 days.
While the sieving program was running, we found that sieving for the factor base of degree 5 requires heavier
computation than sieving for the factor bases of degree 1, 2, 3 and 4. Therefore, we improved sieving for the
factor base of degree 5; thus, our sieving program became over 3 times faster than before (stage II in Fig. 1).
Next, we optimized register usage for input values and omitted wasteful computations (stage III in Fig. 1).
Additionally, we omitted sieving for the factor base of degree 1 (stage IV in Fig. 1), since that computational
time was larger than the computational time for the factor bases of degree 2, 3, 4, and 5. Moreover, we improved
our sieving program to use 128-bit registers more efficiently (stage V in Fig. 1). Finally, our sieving program
became about 6 times faster than the first one (stage I in Fig. 1) and the estimated total number of days for
the collecting relations phase became about 53.1 days. In the next paragraph, we explain the details of the
improvement in stage II, which is the most effective and important improvement in our implementation of the
lattice sieve.

Details of stage II: In the lattice sieve, the main computation of sieving for given lattice bases (r1, s1),
(r2, s2) ∈ (GF (33)[x])2 is as follows. For fixed d ∈ GF (33)[x], whose degree is upper-bounded by a degree
bound D, we compute c0 ≡ −d(r1t + s1)

−1(r2t + s2) mod p for all pairs (p, t) ∈ {(p, t) | p ∈ FR(B), t ≡ m
(mod p)}∪{(p, t) | ⟨p, y− t⟩ ∈ FA(B)}, and compute c ∈ GF (33)[x], whose degree is upper-bounded by a degree
bound C, such that c = c0 + kp where k ∈ GF (33)[x]. We call the computation “sieving at d” in this section.
For given lattice bases, sieving at d is performed for all d of degree not larger than D. Note that c0 does not
need to be computed when (r1t+ s1) ≡ 0 (mod p); therefore we assume (r1t+ s1) ̸≡ 0 (mod p) in the following
description.

In stage I of our implementation, we found that the time of sieving at d for deg p = 5 takes over 100 msec,
but each sieving time at d for deg p = 1, 2, 3 and 4 takes about 10 mesc or less. Therefore, we tried to improve
the sieving of degree 5. When we compute c0 for p of degree 5, the degree of c0 becomes 4 with probability about
26/27. On the other hand, the degree of the lattice bases r1, s1, r2, s2 is 3 in most cases because the degree of

8 Takuya Hayashi, Takeshi Shimoyama, Naoyuki Shinohara, and Tsuyoshi Takagi

special-Q is 6. On such bases, degree bounds C and D can be chosen as 3 to satisfy condition (4), i.e., deg r ≤ 6
and deg s ≤ 6. These facts show that about 26/27 of the computation of sieving for p of degree 5 are waste
computations. Therefore, we discuss how to sieve only with the polynomial c0, whose degree is not larger than
3, as follows.

Let α ∈ GF (33)[x] be −(r1t + s1)
−1(r2t + s2) mod p, then we have c0 = dα mod p. Let αi ∈ GF (33) be

the coefficient of the fourth-order term of xiα mod p for i = 0, 1, 2, 3. Since deg d ≤ 3, d is represented as
d3x

3 + d2x
2 + d1x + 1 for d3, d2, d1 ∈ GF (33). Recall that we restricted d ≡ 1 mod x in our implementation

of the lattice sieve. Here we know that the degree of c0 is not larger than 3 if d3α3 + d2α2 + d1α1 + α0 = 0.
Therefore, it is sufficient to perform sieving at d for p in the factor base of degree 5 for only d satisfying the
following property:

d1 =

{
−Kα−1

1 if α1 ̸= 0
any element in GF (33) if α1 = 0 and K = 0

(12)

where K = d3α3 + d2α2 +α0. When α1 = 0 and K = 0, we should compute c0 for d whose d1 is any element in
GF (33), and we cannot cut off any d1; therefore, we assume that α1 ̸= 0 in the following description. Suppose
that we now fix lattice bases (r1, s1), (r2, s2) and a pair (p, t) where deg p = 5, then each αi for i = 0, 1, 2, 3 is
also fixed. Therefore, since K depends on d2 and d3, the d1 satisfying (12) is given by d2 and d3 and uniquely
determined for given d2 and d3. This implies that, since d1 is in GF (33) whose cardinality is 27, we can ignore
26 d1’s not satisfying (12) for given d2 and d3. In fact, the time of sieving at d for all pairs (p, t) where deg p = 5
is reduced to about 1.5 msec by ignoring d1 not satisfying (12). Note that we need to compute K for given d2
and d3 for all pairs (p, t). The time of computing K for all (p, t) takes about 150 msec in our implementation.
Therefore, for all pairs (p, t) where deg p = 5, the computations of K and sieving at d require about 7.1 msec
at stage II, which is over 10 times faster than the computation of sieving at d at stage I. As a result, our
implementation of the lattice sieve at stage II becomes over 3 times faster than that at stage I.

4.2 Linear algebra phase

After the collecting relations phase, we obtain a system of linear equations modulo P151, which is described in
Section 2.1. The Galois action [19, 23] can reduce the number of variables of the system of linear equations to
one-third. Additionally, after the Galois action, the numbers of equations and variables of the system of linear
equations can be further reduced using filtering [15], i.e., singleton-clique and merging. To solve the system of
linear equations defined by this reduced matrix, we use the parallel Lanczos method [4, 19].

Galois action: The Galois action to GF (36·97)/GF (33·97) enables us to reduce the number of variables of the
system of linear equations to one-third (details of the Galois action are discussed in [19, 23]). However, when we

use the Galois action, 151-bit large integers such as e0 + e1τ + e2τ
2, where τ = 397

2
mod P151 and ei is a small

integer of a few bits, are added to elements of the system of linear equations. This unfortunate fact eventually
increases the data size of the reduced matrix; therefore, high-capacity memory is required. To allay the increase
in the representation size of the elements, we store only a triplet (e1, e2, e3) in the PC memory, not a large
151-bit integer. Since ei is small enough to be represented by 8 bits, the size of the elements is reduced from
151 to 24 bits on average. We call this representation the “τ -adic structure”. Note that the τ -adic structure is
used for the Galois action and singleton-clique.

Singleton-clique: Singleton-clique [15] deletes unnecessary rows and columns to reduce the size of the matrix.
In our implementation, singleton-clique is performed by maintaining 20000 more rows than columns to prevent
accidentally decreasing the rank of the matrix.

Merging: Merging [15] is a weight-controlled Gaussian elimination, where the weight is the number of non-zero
elements of a matrix. For some small integer k, the column with a weight smaller than or equal to k is deleted by
row eliminations with controlling the pivot selection so that the weight of the matrix is as small as possible. This
operation is called k-way merging. During the merging computation, elements of the matrix generally become
large since row eliminations are computed in merging. On the τ -adic structure, we must conduct merging under
the restriction that ei is not larger than 8 bits; therefore, results of row elimination, which cannot be stored on
the τ -adic structure, often appear. On the other hand, there is no such restriction on a large 151-bit integer
structure because such a structure can represent all integers in ZP151 . This means that the size of the merged
matrix on a large 151-bit integer structure is smaller than that on the τ -adic structure. Thus, a large 151-bit

Breaking pairing-based cryptosystems using ηT pairing over GF (397) 9

integer structure is better for merging than the τ -adic structure if the matrix represented by a large 151-bit
integer structure can be stored on the PC memory. Fortunately, the size of the matrix reduced using singleton-
clique is small enough to store the matrix represented by a large 151-bit integer structure on the PC memory;
therefore, we convert the data representation of the matrix from the τ -adic structure to a large 151-bit integer
structure.

Parallel Lanczos method: By using the parallel Lanczos method [4, 19], we solve the system of linear equa-
tions defined by the matrix reduced via the Galois action, singleton-clique, and merging. For parallel computing,
the matrix should be split into sub-matrices, i.e., split into N = N1 ×N2 sub-matrices for N nodes, and nodes
communicate among N1 nodes or N2 nodes. To reduce the synchronization time before communicating among
N1 nodes or N2 nodes, the matrix is split so that each sub-matrix has almost the same weight. Our machine
environment for the parallel Lanczos method consisted of 22 nodes, and each node had 12 CPU cores and 2 NICs
((h) in Table 9 in Appendix C). The 2 NICs were connected to a 48-port Gbit HUB, i.e., 44 ports were used
for connecting 22 nodes. All 22 nodes could be used, so we had a choice for machine environment; 20 = 5× 4,
21 = 7× 3 or 22 = 11× 2. Using 20 nodes requires the least communication costs but the most computational
costs, and using 22 nodes requires the most communication costs but the least computational costs. Using 21
nodes was the best for our implementation; therefore, we used 21 nodes for the computation of the parallel
Lanczos method.

For computation in the parallel Lanczos method, many modular multiplications of 151-bit integers × 151-
bit integers modulo P151 are required due to the Galois action. We implemented Montgomery multiplication
optimized to 151-bit integers using assembly language. Our program then becomes several times faster than
straightforward modular multiplication using GMP (http://gmplib.org/) for multiple precision arithmetic.

After the computation of the parallel Lanczos method started, we improved our codes of the parallel Lanczos
method (for example, efficient register usage, overlapping communications and computations). These improve-
ments are about 15% faster than our initial implementation.

4.3 Individual logarithm phase

As mentioned in Section 3.1, logg ηT (Qπ,Qπ) and logg ηT (Qπ,Qe) are required to solve our target problem. To
compute them, rationalization and special-Q descent [23] were used. For simplicity, let T be ηT (Qπ,Qπ), or
ηT (Qπ,Qe) in the following paragraphs.

Rationalization: To reduce the computational costs of the special-Q descent, which is described in the next
paragraph, we randomize T such that the randomized element is M -smooth for a small enough integer M > B
by the following process. First, we randomize T by z ≡ gγT (mod f) for a random integer γ ∈ ZP151 . We then
rationalize z as z ≡ z1/z2 (mod f) where degrees of z1 and z2 are about deg f/2. Note that for an integer M ,
the probability that both z1 and z2 are M -smooth is usually higher than the probability that z is M -smooth,
and it is better to rationalize to obtain M -smooth elements. We gather many such pairs (z1, z2) and calculate
upper bounds M1,M2 of the degrees of the irreducible factors of z1, z2 for each pair, respectively. Note that if
both M1 and M2 are small, the computational time of special-Q descent decreases. Therefore, we search a pair
(z1, z2) such that those upper bounds M1,M2 are small enough. Since the logarithm of the target element T is
described as

logg T ≡ logg z1 − logg z2 − γ mod P151,

we perform special-Q descent for all irreducible factors of such z1, z2 to compute those logarithms logg z1, logg z2.

Special-Q descent: Mi smooth elements zi obtained by the rationalization, where Mi > B for i = 1, 2, contain
some irreducible factors of degree larger than B whose logarithms are not computed in the linear algebra phase.
To compute these logarithms, the special-Q descent [23] is usually used. First, we perform special-Q descent for
irreducible factors p of zi, i.e., the lattice sieve is conducted with p as special-Q, and search (r, s) ∈ (GF (33)[x])2

such that the degrees of the irreducible factors of polynomials (5) and (7), except p, are less than deg p. When
a relation generated by such (r, s) has variables corresponding to irreducible polynomials p′ or prime divisors
⟨p′, y − t⟩ such that deg p′ > B = 6, the lattice sieve is continued with p′ or ⟨p′, y − t⟩ as special-Q. Note that
the degree of special-Q is descended by doing such a procedure recursively, finally reaching B = 6. After all
computations of special-Q descent, we can find the logarithm of p by backtracking all obtained relations.

10 Takuya Hayashi, Takeshi Shimoyama, Naoyuki Shinohara, and Tsuyoshi Takagi

Table 3. Number of collected relations in collecting relations phase

lattice sieve 159032292 relations
obtained from 2500000 special-Q’s
(64.91 relations/special-Q, 389 sec/special-Q)
153815493 unique (non-duplicated) relations
obtained from 2449991 unique special-Q’s in the above 2500000 special-Q’s

free relation 33786299 relations
total 187602242 relations (consist of 134697663 elements in the factor base)

5 Experimental results

We succeeded in solving a DLP over GF (36·97) by using the FFS with our efficient implementation techniques
discussed in Section 4. In this section, we report our computation results, such as the computational time of
each phase of the FFS and the number of relations.

5.1 Polynomial Selection:

The FFS has six parameters κ, dH , dm, B,R, and S, as defined in Section 2.2, and we set (κ, dH , dm, B,R, S)
= (3, 6, 33, 6, 6, 6) for our target problem, based on the reason given in Section 3.2. In the polynomial selection
phase, we can extract appropriate polynomials such as the definition polynomial H(x, y) of a function field
described in Section 3.2 in one minute, so the computational cost of the polynomial selection phase is negligibly
small.

5.2 Collecting relations phase

In the collecting relations phase, we search many relations that are equations of the form (8) to generate a
system of linear equations by using the lattice sieve and the free relation. We explain our computational results
of the collecting relations phase, e.g., the number of relations obtained in this phase, the computational time of
the lattice sieve for one special-Q.

Lattice sieve: Each special-Q has to be chosen from FR(6)\FR(5). The number of elements of FR(6)\FR(5) is
64563408, and the size of the table of those elements is about 500 MB. Since our program of the lattice sieve is
computed using many nodes, it is not convenient to pick up the element from that 500-MB table as a special-Q.
Therefore, we selected a special-Q by randomly generating an irreducible polynomial in GF (33)[x] of degree 6,
which is in FR(6)\FR(5), and iterated the computation of the lattice sieve for the special-Q.

We prepared 47 PCs (in total 212 CPU cores) of (a)-(c) and (e)-(g) in Table 9 in Appendix C for the lattice
sieve. The computation of the lattice sieve began on May 14, 2011, and we continued optimizing our program
of the collecting relations phase. Figure 1 shows the process of our improvements in the collecting relations
phase for the first two weeks. The total time for the collection of relations shortened due to our improvements.
In the center of Fig. 1, there is a period in which no relations were obtained, from 8.5 to 9.4 days. This was
due to human error; therefore, we wasted computer power during one day since a set of “seeds” to compute the
program for each PC had been exhausted in the server PC during this period. As discussed in Section 4.1, we
applied several improvements to our program of the collecting relations phase; lattice sieve for JL06-FFS, the
lattice sieve with SIMD, and optimization for our parameters. Finally, as Table 8 in Appendix C shows, the
computation finished on September 9, 2011 and required 118 days including the loss-time of some programming
errors, updating our codes, and power outages. The real computational time of the lattice sieve was equivalent
to 53.1 days using 212 CPU cores such as Xeon E5440.

Table 3 summarizes the process of generating relations in the collecting relations phase. The first to third
rows in the right column in Table 3 mean that we randomly selected 2500000 special-Q’s from 64563408 elements
in FR(B) of degree 6 and obtained 159032292 relations by using the lattice sieve. For one special-Q, our program
generated 64.91 relations on average, and this computation required 389 sec. Since the special-Q’s were randomly
selected from the 64563408 elements, there were several duplicate special-Q’s. Therefore, there also existed
duplicate relations given by those duplicate special-Q’s. The fourth to fifth rows in the right column in Table 3
imply that, after removing such duplicate relations from all the obtained relations, 153815943 unique (non-
duplicated) relations remained. It might seem that the number of duplicate relations is very small compared to
the integer factorization case using the number field sieve. This arises from the fact that the size of the sieving
space in our parameters is so large compared to that case.

Breaking pairing-based cryptosystems using ηT pairing over GF (397) 11

Table 4. Compressing matrix using Galois action, singleton-clique and merging

method size of matrix

before compressing 187602242 equations × 134697663 variables

Galois action 159394665 equations × 45049572 variables

singleton-clique 14060794 equations × 14040791 variables

6-way merging 6141443 equations × 6121440 variables

Table 5. Matrices after merging and computational time of parallel Lanczos method for matrices

k-way merging #row #column weight of matrix weight/#row estimated time (parallel Lanczos method)

- 14060794 14040791 261454353 18.595 236.3 days
2 11156100 11136095 253671023 22.738 158.1 days
3 8573837 8553832 301766399 35.196 108.9 days
4 7324638 7304633 365468344 49.896 92.5 days
5 6622387 6602382 409017570 61.763 84.2 days
6 6141443 6121440 455224330 74.123 80.07 days
7 5754191 5734186 506738984 88.064 77.79 days
8 5479424 5459419 556209807 101.509 77.07 days
9 5251949 5231944 607254883 115.625 77.08 days
10 5076238 5056233 656586248 129.345 77.70 days

Free relation: The free relation gives us additional relations not generated by a sieving algorithm such as the
lattice sieve. The details of the free relation is given in [19]. As shown in the sixth row in the right column in
Table 3, the free relation gave us 33786299 relations. The seventh row in the right column in Table 3 means
that we obtained 187602242 relations in total by adding relations given by the free relation to those generated
using the lattice sieve. Eventually, we obtained a system of linear equations consisting of 187602242 equations
and 134697663 variables. Note that there are 451002 elements in the factor base, which does not appear in the
187602242 relations

5.3 Linear algebra phase

Galois action : As mentioned in Section 4.2, the Galois action reduced the size of the matrix generated in the
collecting relations phase to one-third since κ = 3. In fact, as the third row in the right column in Table 4 shows,
the number of variables was reduced from 134697663 to 45049572, and the number of equations decreased from
187602242 to 159394665. This implies that the Galois action is appropriate for reducing variables of the matrix.
To allay the fact that the size of each element of the matrix increases from a few bits to 151 bits due to the
Galois action, we used the τ -adic structure mentioned in Section 4.2.

Singleton-clique : After using the Galois action, we additionally reduce the variables and equations of the
matrix by singleton-clique [15]. To positively obtain the solutions of the system of linear equations in the linear
algebra phase, we performed singleton-clique while keeping the number of variables larger than that of the
equations by 20000. Therefore, as the fourth row in the right column of Table 4 shows, we obtained the matrix
consisting of 14060794 rows and 14040791 columns. This computation takes 3 hours with a PC of (e) in Table 9
in Appendix C.

Merging : Before using the parallel Lanczos method to solve the system of linear equations reduced by
singleton-clique, we can additionally reduce the matrix by merging [15]. We performed 2- to 10-way merging
for the matrix reduced by singleton-clique, and estimated the computational time of our implementation of the
parallel Lanczos method from the size of the reduced matrix in Table 5. The table shows that the 8-way merged
matrix is better than the others in terms of the computational time of the parallel Lanczos method. However, we
used the 6-way merged matrix in our computation, not the 8-way merged matrix, for the following reason. We
began with the computation of 2-way merging for the matrix reduced by singleton-clique. After finishing this
computation, we started 3-way merging for the 2-way merged matrix. In the same manner, we also performed
2- to 10-way merging in turn. Until 6-way merging, computation was done using a PC of (e) in Table 9 in
Appendix C, which had 16-GB RAM. In 7-way merging, the computation was running out of the 16-GB RAM,
so 7-way merging was not able to be computed on the PC. Therefore, we started the computation of the parallel

12 Takuya Hayashi, Takeshi Shimoyama, Naoyuki Shinohara, and Tsuyoshi Takagi

Table 6. Computational time of parallel Lanczos method for matrix reduced by 6-way merging

calculation time/loop 626.3 msec
synchronization time/loop 46.5 msec
communication time/loop 457.3 msec

total time/loop 1130.1 msec

number of loops 6121438

total time of parallel
80.1 days

Lanczos method

Lanczos method for the 6-way merged matrix. After that, we had an opportunity to use a workstation that
had 128-GB RAM and performed 7- to 10-way merging on the workstation. Eventually, we noticed that the
computational cost of the Lanczos method for the 8-way merged matrix was three days less than that for 6-way
merging. However, by this time, the computation of the parallel Lanczos method for the 6-way merged matrix
had already been running for about seven days, so we continued computing the parallel Lanczos method for
the 6-way merged matrix. The fifth row in the right column of Table 4 means that the 6-way merged matrix
consisted of 6121440 variables and 6141443 equations. The entire computation for our merging took about 10
hours.

Parallel Lanczos method : We used the parallel Lanczos method [4, 19] to solve the system of linear equations
defined by the 6-way merged matrix. Note that this matrix is sparse and defined over ZP151 , where P151 is the
151-bit prime number given in Section 3.1. The computation of the parallel Lanczos method started on January
16, 2012, and was conducted on 21 PCs (in total 252 CPU cores) of (h) in Table 9 in Appendix C, which
were connected via a 48-port Gbit HUB. As mentioned in Section 4.2, we continued improving our codes of
the parallel Lanczos method after computation began. The computational times of our improved codes of the
parallel Lanczos method are listed in Table 6. The number of loops of this method is equal to the rank of
the 6-way merged matrix, and was at most 6121440. The computation for one loop required 626.3 msec on
average. Additionally, for one loop, the synchronization time for communication among nodes was 46.5 msec on
average, and the communication time for exchanging data among nodes was 457.3 msec on average. Therefore,
the average time for one loop was 1130.1 msec. Finally, computation finished on April 14, 2012. The number
of loops was 6121438 and the computation for the parallel Lanczos method took 90 days including time losses
similar to our implementation of the lattice sieve. The real computational time is equivalent to 80.1 days using
252 CPU cores such as Xeon X5650.

5.4 Individual logarithm phase

Our target is to compute the discrete logarithm logg(ηT (Qπ,Qe)) and logg(ηT (Qπ,Qπ)) for some g ∈ G2, as
mentioned in Section 3.1.

Rationalization: Let g be a polynomial (x+ω)(3
6·97−1)/P151 ∈ G2, where ω is a polynomial basis of GF (33) ∼=

GF (3)[ω]/(ω3−ω−1). Note that g is a generator of G2 ⊂ GF (36·97)∗ and x+ω is a monic irreducible polynomial
in FR(B) of degree 1. We search a pair (z1, z2) (and (z′1, z

′
2)) ∈ (GF (33)[x])2 such that ηT (Qπ,Qe) · gγ1 = z1/z2

(and ηT (Qπ,Qπ) ·gγ2 = z′1/z
′
2), where zi (and z′i) are Mi-smooth for some γ1, γ2 ∈ ZP151 and i = 1, 2. To reduce

the computational time of the following special-Q descent, we tried to find as small an Mi as possible within
our computational resources for i = 1, 2. In fact, we found z1 and z2, which are 13- and 15-smooth (and z′1 and
z′2 which are 15- and 14-smooth), respectively. These computations were conducted on 168 CPU cores (PCs of
(a)-(d) in Table 9 in Appendix C) and required 7 days for each computation.

ηT (Qπ,Qe) · gγ1 = (13-smooth)/(15-smooth)

γ1 = 2514037766787322013334785428291787565870435706

ηT (Qπ,Qπ) · gγ2 = (15-smooth)/(14-smooth)

γ2 = 2657516740789758289434702436228062607247517136

Special-Q descent: We performed special-Q descent for each irreducible factor of smooth elements obtained
by the rationalization. First, we discuss the detailed results of the computation for ηT (Qπ,Qe). Table 7 shows

Breaking pairing-based cryptosystems using ηT pairing over GF (397) 13

Table 7. Computational time for special-Q descent in individual logarithm phase

degree of special-Q #special-Q time for one special-Q

15 1 159 sec
14 3 71 sec
13 4 39 sec
12 6 62 sec
11 21 41 sec
10 12 53 sec
9 22 594 sec
8 40 747 sec
7 194 3287 sec

the number of irreducible factors in the computations of special-Q descent and the time for computing them for
each special-Q. These computations were conducted on 168 CPU cores (PCs of (a)-(d) in Table 9 in Appendix C)
and took about 0.5 days in total. The computation for ηT (Qπ,Qπ) also took about 0.5 days in total on the
same machine environment. Thus, as shown in Table 1, the computation of the individual logarithm phase took
15 days; 7 days (for rationalization) × 2 elements + 0.5 days (for special-Q descent) × 2 elements.

By using the logarithms of the corresponding elements in the factor base obtained from the linear algebra
phase, we could compute logg(ηT (Qπ,Qe)) and logg(ηT (Qπ,Qπ)). The logarithm of each element is as follows:

logg(ηT (Qπ,Qe)) = 1540966625957007958347823268423957036469656370,

logg(ηT (Qπ,Qπ)) = 1630281950635507295663809171217833096970449894.

Finally, we obtained the logarithm of the target element logηT (Qπ,Qe)(ηT (Qπ,Qπ)) as follows:

logηT (Qπ,Qe) ηT (Qπ,Qπ) = 1752799584850668137730207306198131424550967300. (13)

This is the solution of the ECDLP of equation Qπ = [s]Qe in (10). Scripts for checking this solution are provided
in Appendix B.

6 Concluding remarks

We evaluated the security of pairing-based cryptosystems using the ηT pairing over supersingular elliptic curves
on finite field GF (3n). We focused on the case of n = 97 since many implementers have reported practically rele-
vant high-speed implementations of the ηT pairing with n = 97 in both software and hardware. In particular, we
examined the difficulty in solving the discrete logarithm problem (DLP) over GF (36·97) by our implementation
of the function field sieve (FFS).

To reduce the computational cost of the FFS for solving the DLP over GF (36·97), we proposed several
efficient implementation techniques. In the collecting relations phase, we implemented the lattice sieve for the
JL06-FFS with SIMD and introduced improvements by optimizing for factor bases of each degree; therefore,
our lattice sieve for the JL06-FFS became about 6 times faster than the first one. The main difference from the
number field sieves for integer factorization is the linear algebra phase, namely, we have to deal with a large
modulus of 151-bit prime for the computation of the FFS. We thus performed filtering (singleton-clique and
merging) by carefully considering the data structure of large integers developing from the Galois action, so that
we can efficiently conduct the parallel Lanczos method. From the above improvements, we succeeded in solving
the DLP over GF (36·97) in 148.2 days by using PCs with 252 CPU cores. Our computational results contribute
to the security estimation of pairing-based cryptosystems using the ηT pairing. In particular, they show that
the security parameter of such pairing-based cryptosystems must be chosen with n > 97.

Finally, we show a very rough estimation of required computational power for solving the DLP over GF (36n)
with n > 97. Our experiment on the DLP over GF (36n) with n = 97 used 252 CPU cores of mainly 2.67 GHz
Xeon for 148.2 days, which are equivalent to 262.9 clock cycles. From the analysis of [30], the computational
complexities of breaking the DLP over GF (36n) with n = 163 and 193 become 215.4 and 219.1 times larger than
that with n = 97, respectively. Therefore, we could estimate that about 278.3 and 282.0 clock cycles are required
for breaking the DLP over GF (36n) with n = 163 and 193, respectively. On the other hand, the currently
fastest supercomputer K has a throughput of about 10.5 petaflop/s from http://www.top500.org/, and it
performs about 278.1 floating-point operations for one year. If one floating-point operation on the CPU of the
K is equivalent to one clock cycle of logical operation on the Xeon core, we might be able to break the DLP
over GF (36·163) using our implementation on supercomputer K for one year.

14 Takuya Hayashi, Takeshi Shimoyama, Naoyuki Shinohara, and Tsuyoshi Takagi

References

1. L. M. Adleman, “The function field sieve,” ANTS-I, LNCS 877, pp. 108-121, (1994).
2. L. M. Adleman and M.-D. A. Huang, “Function field sieve method for discrete logarithms over finite fields,” Inform.

and Comput., Vol. 151, pp. 5-16, (1999).
3. O. Ahmadi, D. Hankerson, and A. Menezes, “Software implementation of arithmetic in F3m ,” WAIFI 2007, LNCS

4547, pp. 85-102, (2007).
4. K. Aoki, T. Shimoyama, and H. Ueda, “Experiments on the linear algebra step in the number field sieve,” IWSEC

2007, LNCS 4752, pp. 58-73, (2007).
5. P. S. L. M. Barreto, S. Galbraith, C. Ó hÉigeartaigh, and M. Scott, “Efficient pairing computation on supersingular

Abelian varieties,” Des., Codes Cryptogr., Vol. 42, No. 3, pp. 239-271, (2007).
6. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient algorithms for pairing-based cryptosystems,”

CRYPTO 2002, LNCS 2442, pp. 354-368, (2002).
7. J.-L. Beuchat, N. Brisebarre, J. Detrey, and E. Okamoto, “Arithmetic operators for pairing-based cryptography,”

CHES 2007, LNCS 4727, pp. 239-255, (2007).
8. J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M. Shirase, and T. Takagi, “Algorithms and arithmetic operators

for computing the ηT pairing in characteristic three,” IEEE Trans. Comput., Vol. 57, No. 11, pp. 1454-1468, (2008).
9. J.-L. Beuchat, N. Brisebarre, M. Shirase, T. Takagi, and E. Okamoto, “A coprocessor for the final exponentiation of

the ηT pairing in characteristic three,” WAIFI 2007, LNCS 4547, pp. 25-39, (2007).
10. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key encryption with keyword search,” EURO-

CRYPT 2004, LNCS 3027, pp. 506-522, (2004).
11. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,” CRYPTO 2001, LNCS 2139, pp.

213-229, (2001).
12. D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast encryption with short ciphertexts and private

keys,” CRYPTO 2005, LNCS 3621, pp. 258-275, (2005).
13. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,” ASIACRYPT 2001, LNCS 2248, pp.

514-532, (2001).
14. J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery, “Solving a 112-bit prime elliptic curve

discrete logarithm problem on game consoles using sloppy reduction,” International Journal of Applied Cryptography,
Vol. 2, No. 3, pp. 212-228, (2012).

15. S. Cavallar, “Strategies in filtering in the number field sieve,” ANTS-IV, LNCS 1838, pp. 209-231, (2000).
16. D. M. Gordon and K. S. McCurley, “Massively parallel computation of discrete logarithms,” CRYPTO’92, LNCS

740, pp. 312-323, (1992).
17. R. Granger, D. Page, and M. Stam, “Hardware and software normal basis arithmetic for pairing-based cryptography

in characteristic three,” IEEE Trans. Comput., Vol. 54, No. 7, pp. 852-860, (2005).
18. D. Hankerson, A. Menezes, and M. Scott, “Software implementation of pairings,” Identity-Based Cryptography, pp.

188-206, (2009).
19. T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi, “Solving a 676-bit discrete logarithm

problem in GF (36n),” PKC 2010, LNCS 6056, pp. 351-367, (2010).
20. A. Joux, “A one round protocol for tripartite Diffie-Hellman,” ANTS-IV, LNCS 1838, pp. 385-394, (2000).
21. A. Joux et al., “Discrete logarithms in GF (2607) and GF (2613),” Posting to the Number Theory List, available at

http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0509&L=nmbrthry&T=0&P=3690, (2005).
22. A. Joux and R. Lercier, “The function field sieve is quite special,” ANTS-V, LNCS 2369, pp. 431-445, (2002).
23. A. Joux and R. Lercier, “The function field sieve in the medium prime case,” EUROCRYPT 2006, LNCS 4004, pp.

254-270, (2006).
24. Y. Kawahara, K. Aoki, and T. Takagi, “Faster implementation of ηT pairing over GF (3m) using minimum number

of logical instructions for GF (3)-addition,” Pairing 2008, LNCS 5209, pp. 282-296, (2008).
25. T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D.

A. Osvik, H. J. J. te Riele, A. Timofeev, and P. Zimmermann, “Factorization of a 768-Bit RSA modulus,” CRYPTO
2010, LNCS 6223, pp. 333-350, (2010).

26. A. Menezes, T. Okamoto, and S. A. Vanstone, “Reducing elliptic curve logarithms to logarithms in a finite field,”
IEEE Trans. IT, Vol. 39, No. 5, pp. 1639-1646, (1993).

27. T. Okamoto and K. Takashima, “Fully secure functional encryption with general relations from the decisional linear
assumption,” CRYPTO 2010, LNCS 6223, pp.191-208, (2010).

28. J. M. Pollard, “The lattice sieve,” The development of the number field sieve, LNIM 1554, pp. 43-49, (1993).
29. A. Sahai and B. Waters, “Fuzzy identity-based encryption,” EUROCRYPT 2005, LNCS 3494, pp. 457-473, (2005).
30. N. Shinohara, T. Shimoyama, T. Hayashi, and T. Takagi, “Key length estimation of pairing-based cryptosystems

using ηT pairing,” ISPEC 2012, LNCS 7232, pp. 228-244, (2012).

A Details of our implementation of collecting relations phase

In this appendix, we describe the details of our implementations of the collecting relations phase discussed in
Section 4.1. As mentioned in Section 3.2, parameters (κ, dH , dm, B,R, S) are fixed as (3, 6, 33, 6, 6, 6).

Breaking pairing-based cryptosystems using ηT pairing over GF (397) 15

Naive lattice sieve: First, we begin with the explanation of the naive lattice sieve for introducing notations.
We define F̄R(B) = {(p, t) | p ∈ FR(B), t ≡ m (mod p)} and F̄A(B) = {(p, t) | ⟨p, y− t⟩ ∈ FA(B)}. In the lattice
sieve, sieving is performed on (r, s) ∈ (GF (3κ)[x])2 such that rm + s (resp. r6x + s6 due to H(x, y) = x + y6)
is divisible by q, where (q, u) ∈ F̄R(B) (resp. F̄A(B)). This Q = (q, u) is called “special-Q”4. The (r, s) in the
lattice sieve is represented as c(r1, s1) + d(r2, s2) for c, d ∈ GF (33)[x] of degree upper-bounded by C and D,
respectively, where (r1, s1), (r2, s2) are reduced lattice bases of (0, q), (1,−t), and sieving is performed on the
bounded c-d plane.

From among such pairs (r, s), we search a pair (c, d) such that rm + s (resp. r6x + s6) is divisible by p,
where (p, t) ∈ SR ⊆ F̄R(B) (resp. SA ⊆ F̄A(B)) is not equal to (q, u). We call sets SR and SA the rational
sieving factor base and algebraic sieving factor base, respectively. The pair (c, d) is represented as (c0 + kp, d)
for k ∈ GF (33)[x] and a fixed d, where

c0 ≡
{
−d(r1t+ s1)

−1(r2t+ s2) (mod p) if (r1t+ s1) ̸≡ 0 (mod p)
any polynomials if (r1t+ s1) ≡ 0 and d ≡ 0 (mod p)

This fact enables us to know which polynomial is the factor of rm+ s (resp. r6x+ s6) without factoring these
polynomials. Thus, by computing c0 + kp for a fixed d and each p ∈ SR (resp. SA), we can obtain (c, d) such
that rm+ s (resp. r6x+ s6) is divisible by p. For one (r, s) and a certain number of factors p of rm+ s (resp.
r6x+s6), if the sum of the degrees of all the p reaches a threshold, the rm+s (resp. r6x+s6) is B-smooth with
high probability. Such (r, s) is called a “candidate”. For each candidate, we determine whether it is a B-smooth
pair by using the smoothness test [16].

In practice, a threshold is given by deg(rm+s)−ϵ (resp. deg(r6x+s6)−ϵ), where ϵ is a non-negative integer,
called a “margin”. For a larger margin, we may obtain more relations but have to conduct additional smoothness
tests. Conversely, for a smaller margin, we may lose some relations; however, the number of computations of
the smoothness test decreases. Therefore, we should optimize the margin for efficient sieving.

A.1 SIMD implementation

In the lattice sieve, we treat elements in GF (33)[x] of the degree at most 6 since parameters B,R, and S are
selected as 6, as mentioned in Section 3.2. As described in Section 4.1, we represent GF (33) as polynomial basis
GF (3)[ω]/(ω3−ω−1) using 6-bit (h1, ℓ1, hω, ℓω, hω2 , ℓω2) ∈ GF (2)6. Then we can compute operations of GF (3)
for coefficients of ωi for i = 0, 1, 2 by logical instructions, as described in [24], so we can also compute operations
of GF (33) by logical instructions. In our implementation, we represent 16 elements in GF (33)[x] of degree at
most 7 using 6 registers of 128 bits, as shown in Fig. 2. Then we can compute an addition and a subtraction
of GF (33)[x] by logical instructions, and a multiplication by x and a division by x by shift instructions. These
operations are computed for 16 elements in GF (33)[x] with the SIMD.

A.2 Large prime variation

As shown in Table 2, the number of elements in the factor base of degree 6 is over 20 times larger than that
of elements in the factor base of degree not larger than 5. Therefore, to compute the lattice sieve efficiently,

4 In Section 4.1, we defined special-Q as Q ∈ FR(B), not Q ∈ F̄R(B) for simplicity.

128-bit register (8-bit × 16 elements)︷ ︸︸ ︷
8-bit︷ ︸︸ ︷

· · · } h1

· · · } ℓ1
· · · } hω

· · · } ℓω
· · · } hω2

· · · } ℓω2︸︷︷︸
x7

︸︷︷︸
x6

︸︷︷︸
x5

︸︷︷︸
x4

︸︷︷︸
x3

︸︷︷︸
x2

︸︷︷︸
x

︸︷︷︸
1

Note: an element in GF (33) ∼= GF (3)[ω]/(ω3 − ω − 1) is represented using 6-bit (h1, ℓ1, hω, ℓω, hω2 , ℓω2) ∈ GF (2)6.

Fig. 2. 128-bit data structure of 16 elements in GF (33)[x] for SIMD implementation

16 Takuya Hayashi, Takeshi Shimoyama, Naoyuki Shinohara, and Tsuyoshi Takagi

we should omit sieving for the factor base of degree 6, i.e., define the rational sieving factor base SR = F̄R(5)
and the algebraic sieving factor base SA = F̄A(5). This means we deal with the factor base of degree 6 as large
primes, which are usually used for efficient computation of the number field sieve. After sieving, rm + s and
r6x+s6 from a candidate (r, s) can be described as a product (

∏
deg p≤5 p)L, where L ∈ GF (33)[x] has no prime

factors of degree less than 6. Note that, since p can be found by sieving, the degree of L is easily computable.
To use large prime variation efficiently, the margin ϵ in the lattice sieve should be large enough. We determined
experimentally that ϵ = 20 is an optimized value in our first implementation (stage I at Fig. 1 in Section 4.1).

A.3 Omitting sieving for factor base of degree 1

In our implementation of stage III, we found that the sieving for the factor base of degree 1 is over 1.5 times slower
than that for factor bases of other degrees. On the other hand, the sieving for the factor base of degree 1 brings
in less information for finding candidates; therefore, we omit the sieving for the factor base of degree 1, i.e., we
define the rational sieving factor base SR = F̄R(5)\F̄R(1) and algebraic sieving factor base SA = F̄A(5)\F̄A(1).
Through our experiment, we found that an optimized value of the margin ϵ changed to ϵ = 21 from ϵ = 20.
This improvement makes our program about 25% faster than that of stage III.

A.4 Smoothness test

To determine that a candidate is truly a B-smooth pair, the smoothness test [16] is frequently conducted.
Therefore, an efficient implementation of the smoothness test is necessary to reduce the total computational
cost of the collecting relations phase.

Let U be rm+ s or r6x+ s6, then U is tested for B-smoothness by computing

U ′
B∏

i=⌈B/2⌉

(x3i − x) mod U, (14)

where U ′ is a formal derivative of U . The (14) is equal to 0 when U is B-smooth.
The main part of the smoothness test is the computation of cubic residue modulo U , i.e., A3 mod U for

A =
∑

Aix
i ∈ GF (33)[x] and Ai ∈ GF (33). In fact, A3 mod U is equal to

∑
A3

i (x
3i mod U); therefore, a

cubic residue modulo U can be computed without a reduction by table lookup for computing x3i mod U .
Moreover, since x3i mod U = (x3(degU−1) mod (Ux3(degU−1−i)))/x3(degU−1−i) for i = 0, . . . , degU − 1, the
table of x3i mod U can be computed by computing a reduction x3(degU−1) mod U . This technique makes our
implementation of the smoothness test several times faster than that of our initial implementation.

Since input elements of the smoothness test are rm + s and r6x + s6, whose degree is much larger than 7,
they cannot be stored on the SIMD structure for the lattice sieve described in Appendix A.1. Therefore, we
introduce a new structure for the smoothness test described in Fig. 3, which uses 6 registers of 128 bits for
efficient computing. Note that an element in GF (33) in the new structure is represented similar to the SIMD
structure for the lattice sieve, i.e., using 6-bit (h1, ℓ1, hω, ℓω, hω2 , ℓω2) ∈ GF (2)6, for converting efficiently from
the SIMD structure to the new structure. As shown in Fig. 3, coefficients of odd degrees of an element in
GF (33)[x] are stored in the left 64 bits of 128-bit registers, and coefficients of even degrees are stored in the
right 64 bits of 128-bit registers. Thus, this data structure can represent an element of GF (33)[x], whose degree
is at most 127, by using 6 registers of 128 bits. Note that we separate coefficients of odd and even degrees so that
it is not necessary to use bit-shift instructions for all 128 bits, which cannot be computed in one instruction.

64-bit (odd degree)︷ ︸︸ ︷ 64-bit (even degree)︷ ︸︸ ︷
· · · · · · } h1

· · · · · · } ℓ1
· · · · · · } hω

· · · · · · } ℓω
· · · · · · } hω2

· · · · · · } ℓω2︸︷︷︸
x5

︸︷︷︸
x3

︸︷︷︸
x

︸︷︷︸
x4

︸︷︷︸
x2

︸︷︷︸
1

Note: an element in GF (33) ∼= GF (3)[ω]/(ω3 − ω − 1) is represented using 6-bit (h1, ℓ1, hω, ℓω, hω2 , ℓω2) ∈ GF (2)6.

Fig. 3. 128-bit data structure of element in GF (33)[x] for smoothness test

Breaking pairing-based cryptosystems using ηT pairing over GF (397) 17

B Scripts for checking solution

We provide the following PARI/GP (http://pari.math.u-bordeaux.fr/) scripts for making sure that the
equation (13) is true. Note that the target problem defined by the left side of (13) is equivalent to the ECDLP on
G1 described in Section 3.1. Therefore, the following scripts use the additive group operation over supersingular
elliptic curve E. The variables Ell, Qpi, Qe, and Sol correspond to E, the points Qπ, Qe, and the solution (13),
respectively. The function ellpow(Ell,Qe,Sol) means the point [Sol]Qe ∈ E.

Ell=ellinit([0,0,0,-1,1])
pi3c=[1,0,0,1,0,2,1,1,0,1,2,2,2,2,0,1,0,2,1,1,0,0,2,1,1,1,1,1,0,2,2,1,2,2,2,2,2,0,1,1,1,2,0,1,2,1,2,1,2,1,2,0,0,1,2,1,1,0,0,1,0,\

0,1,0,1,2,2,2,0,2,2,2,1,2,0,1,2,0,1,2,1,1,1,2,1,0,1,2,1,0,1,1,2,0,1,1,0]
e3c=[2,2,0,1,1,0,1,1,2,1,2,2,1,1,0,2,0,1,1,0,1,2,2,2,2,1,0,2,0,1,1,0,2,1,2,2,2,2,0,1,2,0,2,2,2,2,2,1,0,2,1,2,2,1,2,0,2,0,1,1,2,1,\

1,2,2,2,1,1,1,0,0,0,1,2,0,2,2,2,2,1,1,2,1,0,2,1,0,2,0,1,0,0,2,2,2,1,0]
xpi=Mod(Pol(Mod(pi3c,3)),x^97+x^16+2)
xe=Mod(Pol(Mod(e3c,3)),x^97+x^16+2)
ypi=(xpi^3-xpi+1)^((3^97+1)/4)
ye=(xe^3-xe+1)^((3^97+1)/4)
Qpi=[xpi,ypi]
Qe=[xe,ye]
Sol=1752799584850668137730207306198131424550967300
ellpow(Ell,Qe,Sol)==Qpi

By using the following commands, we can confirm that the target problem is defined by constants π and e
in the manner explained in Section 3.1. Both the following second and third commands must return the output
value 1.

default(realprecision,50)
subst(Pol(pi3c),x,3)==floor(Pi*3^95)+(1*3^1+1*3^0)
subst(Pol(e3c),x,3)==floor(exp(1)*3^96)+(1*3^2+2*3^1+0*3^0)

We also provide the following scripts corresponding to the polynomials f and m, which were explained in
Section 3.2 and selected in the polynomial selection phase of the FFS for our experiments. In our experiments,
the finite field GF (36·97) is described as GF (33)[x]/(f), where f ∈ GF (33)[x] is irreducible of degree 194 and
every coefficient of f is in GF (3). Additionally, we describe the finite field GF (33) as GF [ω]/(ω3 − ω + 1).
The script f vec means the coefficients of f . For m ∈ GF (3)[x] satisfying that H(x,m) ≡ 0 (mod f) of (1)
given in Section 2.2, the script m vec corresponds to the list of the coefficients of m. We can check H(x,m) ≡ 0
(mod f) by the script Mod(m^6+x,f). The scripts etaT pi pi and etaT pi e mean ηT (Qπ,Qπ) and ηT (Qπ,Qe),
respectively. We can make sure that our solution is true by checking that the final command returns the output
value 1.

f_vec=[1,0,1,2,1,1,2,0,1,0,1,2,2,1,0,0,2,0,1,1,1,0,0,2,0,2,1,1,2,0,1,1,1,1,0,0,0,0,0,2,0,2,1,2,2,2,0,0,1,0,1,1,1,0,0,2,0,2,1,2,2,\
1,0,1,2,1,0,2,2,2,0,0,0,0,0,2,0,2,1,2,2,1,0,2,1,2,2,0,0,1,0,1,2,2,1,0,2,2,2,1,0,2,2,2,0,0,1,0,0,2,0,1,1,1,0,0,2,1,2,2,2,0,\
0,2,0,2,2,2,0,0,1,0,1,2,1,2,2,1,0,2,2,0,0,1,0,1,2,0,1,1,0,0,2,2,2,0,1,1,1,0,0,2,2,2,0,1,1,1,2,0,1,0,1,2,2,1,0,0,2,0,1,1,1,\
1,0,0,2,0,2,2,2,0,1,1,1]

m_vec=[1,0,0,1,2,2,2,1,2,1,2,0,2,0,0,1,1,2,1,2,0,2,1,2,1,2,2,2,1,0,2,1,2,0]
f = Pol(Mod(f_vec,3))
m = Pol(Mod(m_vec,3))
Mod(m^6+x,f)
etaT_pi_pi_vec=[\

222,002,100,122,100,010,221,111,001,110,001,222,212,101,112,100,021,101,200,122,221,000,012,000,221,100,120,120,022,001,\
112,011,112,000,121,212,120,121,011,211,111,021,110,100,210,220,101,021,002,211,210,011,022,220,122,112,221,021,011,102,\
202,111,222,101,212,210,121,210,112,120,020,202,200,122,112,211,201,021,021,222,010,200,220,211,012,112,102,010,202,211,\
021,002,122,210,011,011,211,222,000,020,120,002,011,120,011,111,002,022,102,122,221,011,010,000,201,211,022,011,211,212,\
200,221,100,202,102,212,001,002,202,000,111,022,122,120,212,210,021,002,100,120,022,010,022,010,212,112,100,201,210,121,\
010,001,012,222,100,021,010,100,001,021,102,021,222,110,210,211,202,012,112,000,111,000,020,121,001,100,112,011,222,221,\
000,102,000,220,100,210,000,202,012,102,022,200,011,210]

etaT_pi_e_vec=[\
210,122,210,002,221,110,210,120,102,122,020,121,101,222,001,101,121,200,000,212,122,212,012,022,222,111,202,222,210,012,\
201,201,010,010,111,220,100,001,212,001,012,200,020,002,111,020,020,000,011,120,002,001,010,200,101,200,100,220,011,020,\
222,200,211,111,000,221,212,200,222,112,022,100,221,022,200,022,212,111,110,011,120,221,022,020,021,112,020,022,022,201,\
022,121,222,201,101,221,000,001,220,222,111,012,211,201,010,011,221,211,010,220,102,211,000,100,120,122,210,122,000,222,\
222,101,212,111,100,011,111,210,010,110,100,100,011,212,102,122,201,011,102,211,102,012,010,210,010,022,200,202,022,221,\
021,201,011,220,221,100,202,002,112,210,122,110,222,201,211,100,121,112,021,020,010,212,001,022,011,110,101,220,200,121,\
102,222,221,210,201,000,002,200,212,212,002,111,220,122]

vec2poly(list) ={\
local(i,j,c,tmp,poly);\
poly=0;for(i=1,length(list),c=0;tmp=list[i];\
for(j=0,2,c+=Mod(tmp%10,3)*w^j;tmp\=10);\
poly=poly*x+Mod(c,w^3-w-1));\
return(Mod(poly,f));}

etaT_pi_pi=vec2poly(etaT_pi_pi_vec)
etaT_pi_e=vec2poly(etaT_pi_e_vec)
p151=(3^97+3^49+1)/7

Sol=1752799584850668137730207306198131424550967300
lift(etaT_pi_e^Sol) == etaT_pi_pi

18 Takuya Hayashi, Takeshi Shimoyama, Naoyuki Shinohara, and Tsuyoshi Takagi

C Time-line of experiments and machine environment

Here we provide two tables, Table 8 and 9, which present the time-line of our experiments and machine envi-
ronment, respectively.

We begin with Table 8. The second to fourth rows correspond to the computation of the lattice sieve in the
collecting relations phase, the fifth to sixth rows correspond to the computation of the parallel Lanczos method
in the linear algebra phase, and the seventh to tenth rows correspond to the computation of the rationalization
and that of the special-Q descent in the individual logarithm step. The column “days” means our working
time including the loss-time of some programming errors, updating our codes, and power outages. As shown
in Table 8, we required 118 days for computing the lattice sieve, 90 days for computing the parallel Lanczos
method, and 15 days for computing the rationalization and the special-Q descent.

Next, specifications of our machine environment are listed in Table 9. We used PCs (a)-(c) and (e)-(g) for
the collecting relations phase, (e) for computing the filtering, (h) for computing the parallel Lanczos method,
and (a)-(d) for the individual logarithm phase. Note that #cores means the number of CPU cores in a node,
not a CPU, and #nodes means the number of PCs we used. For example, (h) in Table 9 means that we used
22 nodes, each of which had 12 CPU cores of Xeon X5650 and 12-GB RAM. Since a Xeon X5650 has 6 CPU
cores, a node of (h) has 2 CPUs; therefore, each node had 12 CPU cores in total, as shown in the table.

Table 8. Time-line of our experiments

date days remarks

2011.5.14 - The computation of the lattice sieve started. (47 nodes, 212 CPU cores)
2011.6.15 32 Minimal required number of relations was collected. (834202 special-Q’s)
2011.9.9 118 The computation of the lattice sieve finished. (2500000 special-Q’s)

2012.1.16 - The computation of the parallel Lanczos method started. (21 nodes, 252 CPU cores)
2012.4.14 90 The computation of the parallel Lanczos method finished.

2012.2.3 - The computation of the rationalization started. (20 nodes, 168 CPU cores)
2012.2.17 14 The computation of the rationalization finished.
2012.2.27 14 The computation of the special-Q descent started. (20 nodes, 168 CPU cores)
2012.2.28 15 The computation of the special-Q descent finished.

2012.4.24 The obtained logarithm was verified and our experiments completely finished.

Table 9. Machine environment for our experiments

CPU memory #cores #nodes

(a) Core2 quad Q9450 2.66GHz 4GB 4 10
(b) Core2 quad Q9650 3.0GHz 4GB 4 10
(c) Xeon X3460 2.8GHz 8GB 4 10
(d) Xeon E3-1275 3.4GHz 16GB 4 12
(e) Xeon E5440 2.83GHz 16GB 8 5
(f) Xeon X5355 2.66GHz 16GB 8 1
(g) Xeon L5420 2.50GHz 4GB 4 11
(h) Xeon X5650 2.67GHz 12GB 12 22

