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Abstract. We propose a new, widely applicable model for analyzing
knowledge-based (epistemic) and strategic properties of cryptographic
protocols. We prove that the corresponding model checking problem with
respect to an expressive epistemic strategic logic is decidable. As corol-
laries, we obtain decidability of complex security properties including
coercion-resistance of voting protocols, accountability of protocols using
a trusted third party, and abuse-freeness of contract signing protocols.

Introduction

In design and verification of cryptographic protocols, symbolic techniques [DY83]
have proven very successful. A breakthrough result in this area is that secrecy
properties of protocols can be decided in coNP, even if the adversary is allowed to
send arbitrarily complex terms [RT03]. Recently, game-based properties of cryp-
tographic protocols have been studied [KR02]. Such properties are relevant e.g.,
for contract signing [BOGMR90,ASW98,GJM99] and non-repudiation [KR03]
protocols, and can naturally be expressed in Alternating-Time Temporal Logic
(ATL, [AHK02]), a logic explicitly designed to reason about strategies. Decidabil-
ity results for such properties have been obtained in [KKT07,KKW09]. However,
existing symbolic approaches for strategic analysis have the following limitations:

(i) The models and logics that have been applied cannot express epistemic
properties, i.e., properties concerned with knowledge of principals as, e.g.,
abuse-freeness of contract-signing [KKW06] or anonymous broadcast [Cha88].
Similarly, they only consider complete-information strategies: Honest prin-
cipals and the adversary base their decisions on complete knowledge about
the current state, including private messages between other principals and
cryptographically hidden secrets. Thus, capabilities of all parties are over-
approximated, potentially leading to both “false positives” and “false neg-
atives” in the security analysis.

(ii) They do not handle probabilistic protocols that allow random decisions.
These are essential for some security goals [ASW09] and can be used to
model random routing in anonymity protocols.
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We propose an approach overcoming these shortcomings by a thorough treat-
ment of knowledge and probabilism. To express security properties, we use
QAPI [Sch10a], a very expressive extension of ATL∗. In addition to epistemic
and probabilistic aspects, QAPI allows explicit reasoning and quantification of
strategies similarly to strategy logic [CHP07]. This allows to express dependen-
cies between strategies of different coalitions, as for example knowledge that one
coalition has about the behavior of others. Our contributions are as follows:

1. We define a symbolic model for protocol analysis treating explicit knowledge,
incomplete information, and probabilistic protocols.

2. We show that the question whether a protocol satisfies a security property
(specified by a QAPI-formula) is decidable for active and passive adversaries.

Our decidability result holds for finitely many parallel sessions, it is well-
known that even very simple security properties are undecidable for the un-
bounded session case [EG83]. Our proof implies that relevant strategies can
always be finitely represented, hence can be implemented in software.

As a toy example, we consider a coin-flipping protocol: Bob randomly chooses
a bit b1 ∈ {0, 1} and a random string N , and sends hash(〈b1, N〉) to Alice. Alice
randomly chooses b2 ∈ {0, 1} and sends b2 to Bob. He then sends N and b1
to Alice, who verifies that these match the hash. The security property is that
neither Alice nor Bob can dictate the outcome of the protocol, which is the bit
b1⊕ b2. This is only true since Alice’s b2 may not depend on the secret value b2,
hence security of the protocol can only be shown with an epistemic approach.
In addition to this toy example, we give the following applications:

1. We show how accountability and verifiability of protocols that involve a
trusted third party and coercion-resistance of voting protocols can be ex-
pressed in our model, implying decidability of these properties.

2. We prove that abuse-freeness of contract-signing protocols can be formalized
in our model, and obtain decidability as a corollary. This resolves an open
question from [KKW06].

3. We show how coercion-resistance of voting protocols can be expressed in our
model. In addition to the epistemic and strategic properties, this property
has a probabilistic aspect. Again, we obtain decidability as a corollary.

Related Work. In the above-mentioned [KKT07], a decision algorithm for
(non-epistemic, complete-information, non-probabilistic) strategic properties of
protocols is given. In [KKW09] a decidability result for a strategic property (bal-
ance) of contract-signing protocols was established. This result follows from our
decidability result. In the very influential paper [BAN90], a logic for authentica-
tion protocols was introduced, which models knowledge gained during the run of
an authentication protocol. Among the many follow-ups are [AT91,BM93,JYH].

[ASW09] defines a model for probabilistic protocols, however no decidability
result is proven. We significantly generalize that model: First, we treat security
goals that involve epistemic aspects. Second, we treat arbitrary term signatures
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with equational theories instead of only nonces and signatures as in [ASW09].
Further, we allow arbitrarily complex terms.

Organization. In Section 1 and 2, we define syntax and semantics of our
protocol model. In Section 3, we briefly recall the semantics of the logic QAPI.
Section 4 contains our main result: The question whether a given protocol sat-
isfies a given security property (i.e., a formula) is decidable. Section 5 contains
the above-mentioned applications. In Section 6, we give the proof of our main
result. We conclude in Section 7.

This paper is the full version of [Sch12].

1 Syntax: Specifying a Protocol

1.1 Two Examples
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finA00 finA10 finA01 finA11

r1 = ε

ε

true

0 1
2

1
2 1

r3 = ε r3 = ε

bobbit0
bobbit1

bobbit0
bobbit1

ε ε ε ε

Fig. 1. Coin-Flipping Protocol: Specification

The Coin-Flipping Protocol
In the coin-flipping proto-
col (cp. Introduction), Bob
chooses his bit first and
thus cannot dictate the out-
come of the protocol (as Al-
ice verifies consistency with
the hash value). We there-
fore consider the more inter-
esting case of dishonest Al-
ice: Only the hash function
prevents her from dictating
the result unilaterally. Hence
we let Alice be the adver-
sary, and assume that only
Bob follows the protocol, his
specification is presented in
the left-hand side of Fig-
ure 1. Dashed lines represent
messages received by Bob,
solid ones are messages sent
by him. The message 〈α,N〉
is a pair containing the bit
α and the random string N .
The probabilities 1

2 express that Bob chooses the bits 0 and 1 with probability
1
2 each. Omitted probabilities are 1. Different messages from Alice (0 or 1) lead
to different follow-up states for Bob. We omit error states for syntactically in-
correct incoming messages, etc. Since our model is concurrent, we add a dummy
sequence for the step when Alice is active.

In our formalism, this property is expressed as ∀3S¬ 〈〈A : S〉〉>0.5 ♦
(

finB00 ∨ finB11

)
.

The formula expresses that for every strategy S (that cannot break the hash func-
tion, this is specified by the index 3), if the adversary Alice follows S, she only

3



has a probability of 1
2 to reach a state in which both random bits are the same

and hence the result bit is 0; the 1-case is symmetric.
We now show how Alice’s role can be specified in our model. For simplicity,

the graphical representation in the right-hand side of Figure 1 uses the terms ri
for the message Alice received in the ith protocol step (our general notation will
be introduced below). The final receive step made by Alice is the most important
one: Here she receives the pair 〈b1, N〉 from Bob. Alice now checks that Bob did
not cheat (i.e., that this pair is indeed consistent with the hash value received
earlier in the protocol run), and computes the result of the coinflip. For this,
she uses the following test: For α ∈ {0, 1}, the “test” bobbitα is the conjunction
(r2 = hash(r4))

∧
(Π1(r4) = α), this test is true iff the pair sent by Bob in step 4

matches the earlier sent hash value and the bit contained in Bob’s commitment
is α. Here the operator Π1 denotes extraction of the first element of a pair.
Depending on this test and on her own previously chosen bit, Alice then moves
into one the states finA00, finA01, finA10, finA11, where the bit combinations αβ denote
the 4 possible choices of bits by Alice and Bob (the first bit is Bob’s random
choice, the second one Alice’s).

The test true used in the first receive step when the hash value of Bob’s pair
〈b1, N〉 is received always returns true: At this point of the protocol run, no tests
are performed, the value is merely stored for later reference.

1 2 3 4

•

ε ε
ε sigB(text)

abort wait abort wait ok

abort ε 1
2 abort

1
2 ε accept

Fig. 2. Protocol State Example

Wait State in a Contract
Signing Protocol Consider
the protocol excerpt in
Figure 2. There are two
possible incoming messages:
The empty term ε and a
cryptographic signature of
some text. If ε is received,
there are three possible re-
actions: 1. send an abort-
message, and move to an
“aborted” state, 2. move
into a waiting state, 3. ran-

domly choose between the first two alternatives. If the signature is received, an
ok -state is reached and an accept message sent. The random choice in the ex-
ample is contrived, however there are protocols where randomized decisions are
essential, e.g., the contract signing protocol introduced in [ASW09], the coin-
flipping protocol discussed above, and random routing.

1.2 Formalizing Protocol States

Our formal protocol definition is the natural one. The most important aspect is
how principals react to incoming messages. These reactions depend on observable
properties of the message. Such properties are modeled as tests. Let IDs be
a set of identities in a PKI. Let N be the disjoint union of the infinite sets
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NA and Ni for each i ∈ IDs (nonces generated by the adversary and honest
participants). Let X = {x1, x2, . . . } be an infinite set of variables. Let Σt be
a term signature containing function symbols with assigned arities representing
cryptographic primitives. The set of terms TΣt is defined as usual inductively on
N , X, and symbols from Σt. We assume that for each i ∈ IDs, there are terms i,
pki and ski, denoting the name, public and private key of i, and that Σt contains
operations 〈., .〉 to construct tuples and Πi to access their components. For C ⊆
IDs, the set TC is the set of terms constructable from Σt and X ∪

⋃
i∈C Ni∪NA

where no ski for i /∈ C appears. We call these terms C-terms. These can be
constructed with access to the secret keys and nonces of members of C. We write
TA instead of TC if C is clear from the context, to highlight that these terms
can be constructed by the adversary when the identities in C are corrupted.

We write t[t′1/x1, . . . , t
′
n/xn] for the term obtained from t by simultaneously

replacing every occurrence of the variable xi with the term t′i.

decskxi

(
encpkxi

(xt)
xr

)
= xt

verify
(

sigskxi
(xt)

xr , xt, pkxi

)
= ok

for i ∈ {1, 2} , Πi〈t1, t2〉 = ti

Fig. 3. Example equational theory

We assume a convergent equa-
tional theory E. See Figure 3 for
an example theory with public-key
encryption, signatures, and pair-
ing; in the equations xi refers to
an identity, xt is a term, and xr
represents randomization nonces.
The (uniquely determined) normal
form of a term t, denoted with [[t]],

is obtained by exhaustive application of equations from E. In the example, if
t = decskA

(
encpkA(abort)r

)
, then [[t]] = abort.

Formally, an equation over Σt is a pair of Σt-terms (l, r), written as l = r
(our equations are “oriented,” where intuitively, we write the “more complicated”
term on the left-hand side). An equational theory E over Σt is a set of equations

over Σt. For example, the equation decskxi

(
encpkxi

(xt)
xr

)
= xt in the theory

from Figure 3 models that when encrypting a term xt with the public key of an
identity xi with randomness xr, and decrypting the term with the private key of
the same identity, then the result is xt again. This equation is a “simplification
rule,” transforming a complex term (the ciphertext) into a simpler term (the
plaintext). E induces a rewrite relation �E on terms, where t1 �E t2 if t2 can
be obtained from t1 by applying a rule in E in the natural way.

With�∗E, we denote the reflexive and transitive closure of�E, and ≡E is the
closure of�∗E under transitivity, symmetry, and application of function symbols
(i.e., rules can be applied in subterms). Terms t1 and t2 are called E-equivalent,
if t1 ≡E t2. The relation �E is confluent, if for all t, t1, t2 with t �∗E t1 and
t �E t2, there is some t′ with t1 �E t′ and t2 �E t′. The relation �E is
terminating if there is no infinite sequence of terms t1, t2, . . . such that for all
i we have ti 6= ti+1 and ti �E ti+1. The theory E is convergent if �E is both
confluent and terminating.

E is a convergent subterm theory [AC06] if for each (l, r) ∈ E, r is a subterm
of l or a constant, and E is convergent. Convergent subterm theories cover many
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interesting applications including the behavior of usual cryptographic primitives.
Many decision problems for such theories are decidable [AC06].

A term t ∈ TΣt is in normal form or a message if t �∗E t′ implies t = t′. If
�E is convergent, then for each term t there is a unique term t′ in normal form
such that t�∗E t

′, we denote this term with [[t]]. If�E is convergent, then terms
are equivalent if and only if they have the same normal form.

Definition.[KKW06] For a set C of identifies, an atomic C-test is a pair
(M,M ′) of C-terms where exactly one variable x appears in M and M ′. A
message m satisfies (M,M ′), if M [m/x] ≡E M ′[m/x]. A C-test is a Boolean
combination of atomic C-tests, with the obvious semantics. Messages m and m′

are C-indistinguishable if there is no C-test that exactly one of them satisfies.

The definition extends to sequences of messages. Indistinguishibility is also
known as static equivalence [AF01]. We now define protocol states. These specify
how an incoming message is handled in a protocol: Depending on properties
of the message (modeled with tests), there are different possible choices how
a principal can react. In randomized protocols, these choices are probability
distributions over actions, where an action consists of a reply message and a
state change. In the definition below, the parsing sequence corresponds to the
dashed lines in the example above; the send sequence formalizes the solid lines.
A state hence consists of the dashed lines originating at the same point plus
their solid successors. The dashed lines are labeled with tests (the example also
uses ε as the test satisfied by the empty message only), the solid lines are labeled
with terms sent as replies and the probabilities with which they are chosen.

Definition. A protocol state w is a special symbol Finished or consists of

– a parsing sequence t1, . . . , tk, where each ti is a test,
– a send sequence (s11 , α1,1), . . . , (s1,l, α1,l), (s2,1, α2,1), . . . , (sk,l, αk,l), where

each si,j is a term, and αi,j ≥ 0 is a rational number with
∑l
j=1 αi,j = 1 for

all i ∈ {1, . . . , k}.

If w is not Finished, then a number i ∈ {1, . . . , k} is a choice in w, and l is the
randomization degree of w. We also call such states regular protocol states.

A protocol role is a program for a principal (see Figure 1). It combines states
into a tree, with different possible actions in each state. We assume sufficiently
many copies of Finished, so that a protocol role may have different final states.
We model a single protocol session, a finite number of concurrent sessions can
be implemented by expressing the resulting interleaving protocol in our model.

Definition. A protocol role R consists of a finite directed tree (V,E), where
V is a set of protocol states and E is a set of labeled edges such that:

– If w ∈ V has k choices and randomization degree l, then w has k ·l successors
with edges labeled with (i, j) for i ∈ {1, . . . , k} and j ∈ {1, . . . , l}.

– If w ∈ V is a copy of Finished, then w does not have any successor.
– There is an identity i ∈ IDs such that every subterm appearing in R is an
i-term, i is also called the identity of R.
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Requiring an identify for each role ensures it uses a single private key only. A
k-roles protocol is a tuple Pr = (R1, . . . ,Rk), where each Ri is a protocol role.

2 Semantics: Executing a Protocol

We first informally describe the execution of protocols. Again, k is the number
of honest protocol participants. Principals send and receive messages consisting
of (k+1)-ary tuples. An incoming message contains in component i the message
from principal i ∈ {1, . . . , k} or the adversary if i = k + 1. Analogously, the
message sent in each round is a tuple with (k + 1) entries, where the i-th entry
is intended to be sent to principal i, or to the adversary if i = k + 1.

An honest principal h ∈ {1, . . . , k} operates as follows: In each state, h an-
alyzes the incoming message tuple, and checks for each test from the parsing
sequence whether the message satisfies it. The test takes the history of the pro-
tocol run into account, i.e., is applied to the sequence of messages received so far
by h. If test tc is satisfied, a number d ∈ {1, . . . , l} is chosen randomly using the
distribution specified by αc,1, . . . , αc,l, and the term sc,d is the reply sent by h.
Using a variable referring to the sequence of previously received messages, the
reply may depend on previously received messages. The local successor state is
determined by the outgoing edge (c, d) of the current one. If the incoming mes-
sage satisfies more than one of the tests, the principal makes a strategic choice by
choosing the one to apply. This occurs in the above contract-signing example if
the incoming message is the empty term. To avoid cumbersome case distinctions,
we require that for every message, there must be a test that it satisfies.

The adversary may send arbitrary terms that he can construct using the
secret keys from corrupted identities.

2.1 Formal Protocol Model as a Concurrent Game Structure

The formal model combines a set of global states of a protocol run (contain-
ing the protocol state of every participant) with the possible actions (“moves”)
and consequences thereof for every party. A usual way to specify strategic situ-
ations as this one are concurrent game structures (CGS). We use the definition
from [Sch10b], which models probabilistic games and incomplete information:

Definition. A concurrent game structure is a tuple C = (Σ,Q,P, π,∆, δ, eq):
– Σ and P are non-empty, finite sets of players and propositional variables, Q

is a non-empty set of states,
– π : P→ 2Q is a propositional assignment (p is true in all states from π(p)),
– ∆ is a move function assigning to each state q and player a a nonempty set
∆(q, a) of moves available at state q to player a. For A ⊆ Σ and q ∈ Q, an
(A, q)-move is a function c mapping each a ∈ A to a move c(a) ∈ ∆(q, a).

– δ is a probabilistic transition function which for each state q and (Σ, q)-move
c specifies a discrete probability distribution δ(q, c) on Q (the distribution of
the follow-up state of q if all players perform their move as specified by c),
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– eq is an information function eq : {1, . . . , n}×Σ → P(Q×Q), where n is a
natural number, and for each i ∈ {1, . . . , n} and a ∈ Σ, eq(i, a) is an equiv-
alence relation on Q. Each i ∈ {1, . . . , n} is called a degree of information.

A subset A ⊆ Σ is a coalition of C. We write q1 ∼eqi(A) q2 for (q1, q2) ∈
∩a∈Aeq(i, a). If q1 ∼eqi(a)

q2, then player a cannot distinguish states q1 and q2
(if i denotes the degree of information available to him). Multiple degrees of
information allow to dynamically specify the information available to principals,
e.g., whether they are regarded as being able to break cryptography, etc.

We define the protocol execution as CGS, which formalizes the mechanisms
described earlier. In the state description below, C is the set of corrupted iden-
tities, each honest principal h ∈ {1, . . . , k} is in protocol state wh. For each
principal i ∈ {1, . . . , k,A}, the sequence Mi contains the messages received so
far. The sequence movesA records the moves performed by the adversary. The
numbers ch and dh are the strategic and random choices made by h. The propo-
sitional variables allow to reason about the local state of honest principals.

Definition. Let Pr = (R1, . . . ,Rk) be a protocol. The CGS induced by Pr
is CPr = (Σ,Q,P, π,∆, δ, eq), where

– Σ = {1, . . . , k,A},
– Q consists of tuples of the form q = (C,w1,M1, . . . , wk,Mk,MA,movesA),

where C ⊆ IDs, for each i ∈ {1, . . . , k}, wi is a protocol state of Ri,Mi and
MA are sequences of messages, and movesA is a sequence of terms.

– for each protocol state w occurring in Pr and each h ∈ {1, . . . , k} there is a
propositional variable sthw which is true in a state q as above iff wh = w,

– for a state q as above where for all h ∈ {1, . . . , k}, wh has kh choices,
randomization degree lh, parsing sequence th1 , . . . , thkh and send sequence

(sh1,1, α
h
1,1), . . . ,(shkh,lh , α

h
kh,lh

), the available moves are as follows: For A,
every term mA ∈ TA is a move, for an honest principal h ∈ {1, . . . , k},
the number ch ∈ {1, . . . , kh} is a move if and only if Mh satisfies the
test thch . The transition function δ is defined as follows: For the move de-
termined by the adversary move mA and the principal moves c1, . . . , ck
and numbers d1, . . . , dk, where 1 ≤ dh ≤ lh, there is a successor state
q′ = (C,w′1,M′1, . . . , w′k,M′k,M′A,movesA ◦mA), where

• w′h is the successor of wh in Rh connected with the edge labeled (ch, dh),
• to define M′j , we denote with Mi for i ∈ {1, . . . , k,A} the message sent

by i, which is [[sici,di [Mi/x]]] if i ≤ k, or [[mA[MA/x]]] if i = A,
• for all i ∈ {1, . . . , k,A}, the new sequence M′i is obtained by adding

to Mi a (k + 1)-ary tuple containing in its j-th component the i-th
component of Mj (i.e., the term that j sends to i),

• the probability of this successor state is
∏k
h=1 α

h
ch,dh

.

If a principal is in a copy of Finished, he only has dummy moves.
– We define three information degrees: For a player a ∈ Σ,

1. eq(1, a) is the equality relation—this models complete information mod-
ulo ≡E (since the states only contain normal forms of terms),
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2. in eq(2, a), two states are equivalent if and only if principal a is in the
same local state1, and the component Ma is the same in both states
(this models local information with ability to break cryptography)

3. eq(3, a) is the equivalence relation where states are equivalent if and
only if the principal is in the same local state1, and componentsMa are
a-indistinguishable (C-indistinguishable if a = A).

The message received by a principal in each step is a tuple containing mes-
sages from every protocol principal, allowing simulations processing of messages.
Messages are immediately delivered to the intended recipients using secure chan-
nels. Realistically, use of such channels can be restricted by using buffer principals
which the adversary may instruct to delay/drop messages.2 These are modeled as
ordinary protocol roles relaying messages, allowing flexible “implementations” of
channels and various levels of “adversary activeness:” If a protocol does not use
buffers at all, but principals only communicate via the adversary, the adversary
is active without restriction. If all communication uses secure channels (with
copies sent to the adversary), the adversary is passive. Intermediate degrees can
express secure channels to trusted third parties, etc.

For each C ⊆ IDs, there is an initial state qCinit = (C, r1, ε, r2, ε, . . . , rk, ε, ε, ε),
where ri is the root of Ri. In this state, no message has been sent, every principal
is in its initial state, and the adversary knows the keys of all identities in C. This
models static corruption, where a set of identities (fixed before the protocol run)
as adversarial. See Section 5.3 for an example of dynamic corruption. We remove
all states from CPr that cannot be reached from one of the initial states.

We note that there are two ways in which probabilism is relevant in our
model: First, protocol specifications may use random decisions as in the coin-
flipping protocol. Second, some security properties contain success probabilities.
In the coin-flipping protocol, the adversary has a success probability of 1

2 but
not higher, we will sketch a less trivial application in Section 5.4.

3 Probabilistic, epistemic ATL with strategy
quantification

To express security goals, we use the ATL∗-variant QAPI [Sch10a,Sch10b]. QAPI
is not security-specific, but a logic for reasoning about strategic and epistemic
properties of general multi-agent systems. QAPI is very expressive and contains
several related logics. We only discuss the subset of QAPI relevant for this pa-
per, however our results hold for the complete logic. [Sch10a] contains detailed
discussions and comparisons to as well as references to many related logics.

1 The local state of A consists of the set C and the sequence movesA.
2 In order to avoid infinite protocol runs, we forbid rounds in which the adversary

delays every available channel in the obvious way.
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3.1 Formulas

QAPI extends ATL∗ with epistemic features, probabilities, and explicit strate-
gies. Formulas may contain variables S1, . . . , Sn referring to strategies, these will
be bound by quantifiers. This allows explicit reasoning about strategies.

Definition. The set of QAPI-formulas for a CGS C is defined as follows:

– A propositional variable of C is a state formula, conjunctions and negations
of state (path) formulas for C are state (path) formulas for C,

– every state formula is a path formula,
– if A1, . . . , An are coalitions, J is one of ≤, <,≥, >, ψ is a path formula, and

S1, . . . , Sn are variables for strategies, then 〈〈A1 : S1, . . . , An : Sn〉〉Jα ψ is
a state formula,

– if A is a coalition, i is a degree of information, and ψ is a state formula, then
KAi ψ is a state formula,

– If ϕ1 and ϕ2 are path formulas, then so are Xϕ1, Pϕ1, X−1ϕ1, and ϕ1Uϕ2.

Intuitively, 〈〈A1 : S1, . . . , An : Sn〉〉Jα ψ expresses that if the coalitions A1,
. . . , An play the strategies referred to by S1, . . . , Sn, then for every possible
behavior of the remaining players, the probability that the resulting sequence of
states satisfies the formula ψ is J α. The formula KAi ψ expresses “coalition A
knows that ψ is true (with information degree i).” We use standard abbreviations
like ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), ♦ϕ = true Uϕ, and �ϕ = ¬♦¬ϕ.

3.2 Strategies and Semantics

An a-strategy for a player a is a function s assigning a move from ∆(q, a) to
each state q. It is i-uniform, if q1 ∼eqi(a)

q2 implies s(q1) = s(q2): In states
that a player cannot tell apart with information degree i, he performs the same
move. For a coalition A, an A-strategy is a family (sa)a∈A, where each sa is an
a-strategy, it is i-uniform if every sa is. We only consider memoryless strategies,
since each state contains complete information about the preceding protocol run.
Formulas are evaluated on states or on paths, where a path is a sequence λ of
states in a CGS C. With λ[i] we denote the ith state in λ.

Definition. Let C = (Σ,Q,P, π,∆, δ, eq) be a CGS, let ϕ be a state formula,
let ψ1 and ψ2 be path formulas, let S1, . . . , Sn be strategies instantiating the

variables S1, . . . , Sn, let λ be a path, let t ∈ N, let q ∈ Q be a state, let
−→
S be

an abbreviation for (S1, . . . ,Sn). Then

– C,
−→
S , q |= p iff q ∈ π(p) for p ∈ P,

– negation and conjunction are treated as usual,

– (λ, t),
−→
S |= ϕ iff C,

−→
S , λ[t] |= ϕ,

– (λ, t),
−→
S |= Xψ1 iff (λ, t+ 1),

−→
S |= ψ1,

– (λ, t),
−→
S |= Pψ1 iff (λ, t′),

−→
S |= ψ1, for some t′ ≤ t,

– (λ, t),
−→
S |= X−1ψ1 iff t ≥ 1 and (λ, t− 1),

−→
S |= ψ1,
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– (λ, t),
−→
S |= ψ1Uψ2 iff there is some i ≥ t such that (λ, i),

−→
S |= ψ2 and

(λ, j),
−→
S |= ψ1 for all t ≤ j < i,

– C,
−→
S , q |= KAi ϕ1 iff C,

−→
S , q′ |= ϕ1 for all q′ ∈ Q with q′ ∼eqi(A) q,

– C,
−→
S , q |= 〈〈Ai1 : Si1 , . . . , Aik : Sik〉〉

Jα
ψ iff when coalition Aij plays3 the

Aij -strategy Sij for all j, then the resulting path satisfies ψ with probability
J α, for every possible behavior of the players in Σ \ (Ai1 ∪ · · · ∪Aik).

This definition treats formulas where strategies instantiating the variables Si
are given. A quantified strategy formula is a state formula prefixed by a quantifier
block where each strategy variable Si is quantified with ∃i or ∀i for an information
degree i. This expresses “there is (for all) i-uniform strategies,” with the obvious
semantics: ∃i1S1∀i2S2 . . . ∃inSnϕ is true in state q if there is a i1-uniform strategy
S1 such that for all i2-uniform strategies S2, . . . , there is an in-uniform strategy
Sn such that this choice of strategies satisfies ϕ according to the definition above.

3.3 Modeling of Knowledge

The knowledge operator used in QAPI (see above) has the usual semantics from
epistemic logics. For security settings, this is often unsuitable: If a party “knows”
a fact to be true with probability significantly larger than 1

2 , is often enough for a
protocol to be insecure. This, however, is not captured in the standard definition.
Also, a party’s knowledge may sometimes take other principals’ strategies into
account, which also cannot be expressed with the standard epistemic knowledge
operator. However, QAPI’s quantified strategies can be used to address these
issues. As an example, “there is a strategy sA such that B knows (with infor-
mation degree i) whether ϕ holds with probability at least 4

5 , if B knows that
A follows sA,” can be expressed as follows: We modify the protocol for B to
allow an “announcement” proclaiming that B believes ϕ to be true.4 Let belϕ
be a formula true in all states in which B has made this announcement (see
also [HT93]). Then the above can be expressed as

∃SA∃iSB 〈〈A : SA〉〉≥1 〈〈B : SB〉〉≥
4
5 (belϕ ⇐⇒ ϕ) .

Our discussion of coercion-resistance (Section 5.4) contains an example of a
security analysis where such considerations are relevant. The above discussion
shows that explicit uniform strategies are strong enough to express the knowl-
edge operator, although at the cost of modifying the game structure (in our
case, the protocol). Hence the basic knowledge operator can be seen as “syntac-
tic sugar,” which we however keep in the language as it can increase readability.
We are grateful to anonymous reviewers pointing out these issues.

3 If a appears in more than one Aij , he follows strategy Sij with j = min
{
j | a ∈ Aij

}
.

4 This can be done by e.g., introducing a dedicated party who receives messages saying
“I believe ϕ is true/false,” or with several other mechanisms
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4 Main Result

Security of protocols in our model is decidable for convergent subterm theories:

Theorem 4.1. Assume that E is a convergent subterm theory. There is an algo-
rithm which, given a protocol Pr, a set C of corrupted identities, and a quantified
strategy formula ϕ, decides whether CPr, qCinit |= ϕ.

The challenge in the proof is that active adversaries can send arbitrarily
complex messages, leading to an infinite structure CPr. We show that it suffices
to consider “bounded strategies:” Protocols only parse terms up to a bounded
depth; rewriting rules resulting from convergent subterm theories also have
“bounded” effects. It follows that one can restrict the adversary to send terms
of bounded depth. This [RT03]-style argument only directly covers reachability
properties; more involved arguments apply to strategic and epistemic properties.

5 Applications

We now show several examples of application of our result. In addition to our
running coin-flipping example, we also treat abuse-freeness of contract signing
protocols. We briefly mention that standard anonymous broadcast protocols as
the dining cryptographers can be expressed in our model in the straight-forward
way. We also treat two applications that use our framework in a less obvious way,
namely 1. accountability and verifiability, and 2. coercion-resistance of voting
protocols. An in-depth discussion of these properties is out of the scope of this
paper, we treat these properties in as much detail as required to highlight the
features of our approach. In particular, our treatment uses direct reasoning about
strategies, epistemic and probabilistic aspects in an essential way.

5.1 The Coin-Flipping Protocol

The coin-flipping protocol satisfies its previously-mentioned security property:

Proposition 5.1. The state q
{Alice}
init of the CGS induced by the coin-flipping

protocol satisfies the formula ∀3S¬ 〈〈A : S〉〉>0.5 ♦
(

finB00 ∨ finB11

)
.

The formula is satisfied because the messages hash(〈0, N〉) and hash(〈1, N〉)
are indistinguishable for Alice, since she does not knowN . Therefore, a 3-uniform
strategy has to choose the same action for both of Bob’s possible messages.

5.2 Abuse-Freeness of Contract Signing Protocols

If Alice and Bob want to exchange a contract, abuse-freeness requires that there
is no situation where Bob can prove to an outsider Charly that the current
state is unbalanced, i.e., Bob can unilaterally decide whether the contracts are
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successfully exchanged or not. A straight-forward definition of abuse-freeness is
“there is no point in the execution of the protocol where Bob has a strategy
to ensure that Charly knows that the protocol is in an unbalanced state.” This
can be expressed in our model in the obvious way. We now show how the more
complex definition of abuse-freeness given in [KKW06] can be expressed in our
framework. As a consequence, we obtain decidability of abuse-freeness.

The definition from [KKW06] can be strengthened in various ways (see,
e.g., [KST10]), we use their definition as decidability was mentioned as an
open question in [KKW06]. Let ϕ1 and ϕ2 be formulas describing protocol out-
comes (e.g., “Bob obtains a contract”). A state q of a protocol run is (ϕ1, ϕ2)-
unbalanced, if Bob has a strategy ensuring that the remaining run satisfies ϕ1,
and a strategy to ensure ϕ2. Informally, a protocol is (ϕ1, ϕ2)-abusive, if there
is a situation where Bob can prove to an outsider Charly that the current state
is (ϕ1, ϕ2)-unbalanced. We often write “abusive” and “unbalanced” for (ϕ1, ϕ2)-
abusive and (ϕ1, ϕ2)-unbalanced, since ϕ1 and ϕ2 will always be clear from the
context.

In the [KKW06] definition, Charly receives a single message m from Bob,
and plays no active part. Based on m, Charly decides whether to believe Bob.
Since Bob can always delay sending a proof, Bob can only convince Charly that
the current state is or an earlier state was unbalanced. For the epistemic aspects,
the definition from [KKW06] uses tests (see Section 1) that Charly performs on
proofs presented by Bob. A test θ is convincing, if for every state q where Bob
can produce a message m satisfying θ, there is an ancestor state q′ of q such that
1. q′ is (ϕ1, ϕ2)-unbalanced, 2. in q′, Bob can produce a message satisfying θ.

The second condition precludes protocols in which the adversary can produce
proofs of unbalance of a previous state only after the protocol run is over. In
particular, a proof can always be generated in the state that actually is unbal-
anced. A protocol is abusive if there is a convincing test θ and a reachable state
where the adversary can produce a message satisfying θ, such a state is called
θ-possible. This is a state in which the adversary can convince Charly. A protocol
is abuse-free if it is not abusive.

Roughly, a protocol is abuse-free if there is no state where Charly knows that
Bob has strategies satisfying the above. Since our model is concurrent, Charly
obtains, in addition to the message from Bob, timing information about the
protocol run. If Charly is an “outsider,” this information should be unavailable
to him. Therefore, we must ensure that Charly does not take this additional
timing-information into account when deciding on whether to accept Bob’s proof.

Since accepting/rejecting a proof is Charly’s choice, the set of accepted proofs
is a strategy for Charly, which must be constant throughout the protocol run:
Charly may not change his strategy, even if other principals do. This cannot be
expressed in ATL∗, but is easy to express in QAPI, since QAPI can directly as-
sign strategies to players. Therefore, we can express the “consistency” of Charly
and similar aspects.

13



We assume that Alice is honest (as are other parties like a trusted third party,
buffers, etc.), and Bob is the adversary. Since the definition from [KKW06] uses
a deterministic model, we assume that the protocol does not use probabilism.

Theorem 5.2. There is an algorithm which, when given a protocol Pr and path
formulas ϕ1 and ϕ2, produces a protocol Pr′ and a formula ψabuse such that Pr

is (ϕ1, ϕ2)-abusive if and only if CPr′ , q
{B}
init |= ψabuse.

We first give the construction of Pr′, and then prove that it indeed satisfies
the required properties. Pr′ is obtained from Pr as follows:

– we introduce a principal C (Charly) who receives a message from Bob at
some point during the protocol run. In the second-to-last step of the protocol,
Charly forwards the first message received from the adversary to the verifier
(see below), and ignores all other messages. In the final step, Charly chooses
to move into either an “accept” or a “reject” state.

– we introduce a principal, V (Verifier), who ensures that Charly only bases
his decision whether to accept Bob’s proof on the actual proof. To this end,
V receives a message from Charly at the last step of the protocol, and has
access to the same private keys as Charly. V does not send any messages.

Charly makes his decision after the verifier receives Charly’s message. This
allows us to easily express the verifier’s knowledge about Charly’s decision.

The idea of the construction is the following: At some point during the pro-
tocol run, the adversary sends a message to Charly, which provides Charly with
timing information that he should not have. We ensure that Charly’s decision
is independent of the time when the message is received. This is realized by
requiring that V knows Charly’s decision, and the only information that V has
about Charly’s state is the message which Charly received from Bob.

We now construct the formula expressing abusiveness.

– let ϕunbal be the formula
〈〈
A : SA1

〉〉
ϕ1 ∧

〈〈
A : SA2

〉〉
ϕ2 which expresses

that the current state is unbalanced, here SA1 and SA2 will be existentially
quantified in the quantifier block preceding the entire formula,

– let ϕver be the formula KV
3 〈〈C : SC〉〉 Xacc∨KV

3 〈〈C : SC〉〉 Xrej, where acc and
rej are true if Charly is in a local state where he accepts, respectively where
he rejects. ϕver expresses that the verifier knows whether Charly will accept
or reject Bob’s proof, given that Charly plays the strategy SC.

– let rec be a variable true in the states where Charly has previously re-
ceived a message from the adversary, and let ϕA−greedy be the formula
¬P ((〈〈A : SA,C : SC〉〉 ((Xrec) ∧ (♦acc))) ∧ ¬Xrec) . This expresses that (if
strategy SA is all-quantified over complete-information strategies) the strat-
egy played by the adversary up to now in the protocol run is “greedy:” If
at some point in the protocol run the adversary could send an “accepted”
proof to Charly (according to Charly’s strategy SC), then the adversary in
fact did send a message to Charly in the next step (or previously).
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Let end be true at the end of the original protocol run. The formula ψabuse

expressing abusiveness is the following:

∃2SA1 ∃2SA2 ∃3SC∃1SΣ∀3SA 〈〈C : SC〉〉 (�(end→ ϕver)
∧ �(acc→ (ϕA−greedy → (P�(rec′ → X−1ϕunbal))))
∧ 〈〈C : SC, Σ : SΣ〉〉 ♦acc)

Here P�ϕ abbreviates ¬P¬ϕ, (“ϕ is true in the past”) and with slight abuse
of notation Σ denotes the principals in the original protocol (everyone except
Charly and the verifier), and rec′ is true in the states where Charly just received
the first non-empty message from the adversary. 5 Quantifying SΣ over complete-
information strategies quantifies over all reachable states. This expresses

1. After V received the forwarded message from C, V knows whether Charly
accepts the proof. This ensures that Charly bases his decision only on the
information chat Charly can obtain from the first message received from the
adversary, and thus Charly’s decision is determined by a test.

2. whenever Charly moves into an accepting state, the state of the protocol
run in fact was unbalanced in the state where the adversary sent the proof
to Charly—if the adversary played a “greedy” strategy (see above). This
ensures that Charly only accepts proofs that could be generated in an un-
balanced state, and implies that minimal θ-possible states are exactly those
in which Bob sends a convincing proof to Charly.

3. there is a reachable state in which Charly’s strategy accepts.

We now show that the above construction is indeed correct, i.e., we give the
proof of Theorem 5.2:

Proof. First assume that the protocol is not abuse-free. Let θ be a corresponding
test, and let q be a θ-possible and unbalanced state, without loss of generality
assume that no proper ancestor of q is θ-possible (by definition of abusiveness
in the sense of [KKW06], the first θ-possible state in a protocol run must be
unbalanced). We define the strategies for Σ and Charly, instantiating SΣ and
SC, as follows:

– The adversary and the honest principals of the original protocol run perform
all necessary actions to reach the state q. Note that this is a state of the
original protocol, hence they do not need Charly’s help to achieve this.6

After this, the adversary sends a message satisfying the test θ to Charly.
– Charly’s only decision is whether to accept or reject at the end of the protocol

run (the forwarding of the message to the verifier is hard-coded into Charly’s
definition), he moves into the accepting state if the first message he received
from the adversary satisfies θ and in the rejecting state otherwise.

5 The quantification for SA
1 and SA

2 only requires strategies to be uniform for infor-
mation degree 2 to remain compatible with [KKW06].

6 formally, they reach a state q′ of the new protocol which corresponds to q in a nat-
ural way, it is straight-forward to define this relationship—recall that the additional
principals have no influence on the behavior of the principals present in the original
protocol.
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– The strategies instantiating SA1 and SA1 perform appropriate actions to reach
ϕ1 and ϕ2 whenever possible, i.e., contain hard-coded strategies to reach ϕ1

and ϕ2 from every state where this is possible.7

We claim that this choice of strategies satisfies the formula.

1. the first conjunct is satisfied because by definition, the question whether
Charly moves into an accepting or a rejecting state at the end of the protocol
run only depends on the message he received from the adversary, which is a
message that, by construction, the verifier has access to, and by construction,
Charly and the verifier have access to the same secret keys, hence they derive
the same knowledge from the message (recall that Charly’s nonces do not
appear in the protocol run, since Charly does not construct messages on his
own, but only forwards a message received from the adversary).

2. the second conjunct requires that if Charly accepts at the end of the proto-
col run, and the strategy played by the adversary is greedy, then the state
directly before Charly received the first message from the adversary was
unbalanced. This is satisfied because the state q is unbalanced.

3. the final conjunct is satisfied since by construction, the adversary sends a
message satisfying the test θ, and thus by definition of Charly’s strategy, he
moves into an accepting state.

Hence if the protocol Pr is abusive, then the formula is indeed satisfied in the
initial state of the protocol Pr′ in which Bob is corrupted.

For the converse, suppose that the formula is satisfied in the initial state
of the protocol. Note that we can, without loss of generality, assume that the
adversary does not send any messages to the verifier. We construct a test θ
satisfying the requirements. The strategy used to instantiate SC has, by the
first conjunct of the formula, the property that the choice depends only on the
verifier’s knowledge, which (by definition of knowledge in our model) means that
Charly’s decision only depends on the outcome of a test which the verifier can
perform on the message received by Charly, which is (by construction of Charly)
the first message that Charly receives from the adversary. Let θ denote this test.

Obviously, there is a θ-possible state, since a state in which the verifier accepts
is reachable in the protocol due to the final conjunct of the formula.

Hence it remains to show that every reachable θ-possible state is the (not
necessarily direct) successor of an unbalanced state. Thus let q be a θ-possible,
reachable state, without loss of generality assume that no proper predecessor of q
is θ-possible. Now consider a strategy for all principals in Σ that first reaches the
state q without the adversary sending any messages to Charly, and then letting
the adversary deliver a message satisfying θ to Charly. Since the message satisfies
θ, Charly will move to the accepting state at the end of the protocol run. By
construction, since no predecessor of q is θ-possible, the adversary’s strategy is

7 See below for a note on the uniformity issues appearing here; in the current situation,
our definition of these strategies implies that information degree 2 is sufficient to
identify the strategies to apply here.
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greedy, i.e., the protocol run satisfies ϕA−greedy. Therefore, the second conjunct
requires that the state directly preceding the one in which Charly receives the
first message from the adversary. i.e., the state q, is unbalanced. This concludes
the proof.

From the above and our main result, Theorem 4.1, we obtain the following
corollary:

Corollary 5.3. Abuse freeness as defined in [KKW06] is decidable.

On variations of abuse-freeness We note that different notions of abuse-
freeness can also be captured in our model. As mentioned above, the definition of
abuse-freeness in [KKW06] grants the adversary additional knowledge to identify
a strategy, in this section we show that this notion of abuse-freeness can be
defined in our model as well (and thus is decidable). We also comment on natural
variations of the definition of abuse-freeness.

As mentioned before there is a subtle point when dealing with incomplete
information strategies, which is the difference between requiring a strategy to
exist, or to be known. As an illustration, consider the following (contrived) ex-
ample: Assume we have a cryptographic protocol where two outcomes, described
by the formulas ϕ1 and ϕ2, are of interest. Assume that there is a single honest
principal, Alice, and her first move is to choose a successor state out of q1 and q2,
these states are indistinguishable for the adversary. In both cases, the message
unbalanced is sent to the adversary. Now, Alice awaits a message consisting of
a single bit, and behaves as follows:

– In state q1, if the bit is 0, she proceeds in a fashion satisfying ϕ1, if the bit
if 1, she chooses actions satisfying ϕ2.

– In the state q2, she behaves exactly the opposite way, i.e., when receiving
the bit 1 the satisfies ϕ1, and on bit 0, she ensures ϕ2.

(Of course here we assume that it is in Alice’s power alone to ensure that ϕ1

or ϕ2 are satisfied, for example these could be formulas talking only about the
internal state of Alice.)

Consider the state q1. There is a strategy for the adversary to ensure ϕ1

(namely, send bit 0), and a strategy to ensure ϕ2 (send bit 1 instead). These
strategies are constant, therefore in particular, both of them are uniform (or
view -strategies in the terminology of [KKW06]). However, since the adversary
does not have a way of knowing whether the current state is q1 or q2, the mere
existence of such a strategy does not enable the adversary to actually control
the outcome, since he cannot identify the correct strategy. This distinction is
sometimes regarded as the difference between knowledge de dicto and knowledge
de re (see, e.g., [JÅ06]). This topic is not addressed in [KKW06], our formulation
of abuse-freeness does not allow (in the above example) the adversary to choose
different strategies in the states q1 and q2. However, he is allowed to decide to
always act as if the state is q1 and then also is regarded as successful in that state,
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however he is then unsuccessful in q2—this comes with the additional price that
to achieve abusiveness of a protocol, the adversary needs to be able to convince
Charly that he is in state q1, not in state q2, which is only possible if Charly has
some knowledge the adversary does not have. Hence for a passive Charly, the
above situation will be regarded as not abusive in our model, since the adversary
does not have a way to exploit the theoretically available strategies.

However, one might want to give the adversary these additional capabilities,
essentially only demanding that strategies can be implemented, but not neces-
sarily identified with the adversary’s knowledge—formally this corresponds to
existentially quantify the strategies in nested subformulas of a formula, such
that existential quantifiers may return a different strategy in each state. This
can easily be achieved by using strategy choices instead of strategies which can
be used to allow strategies to depend on the state8, details of this can be found
in [Sch10a]—we did not introduce strategy choices in our introduction of QAPI
as the simpler situation where we just consider strategies is sufficient to express
most properties. Using strategy choices in this way essentially simulates the
above-mentioned quantification of strategies in the nested subformulas. How-
ever note that, as mentioned in [Sch10a], it seems very unnatural to allow play-
ers to use knowledge which is not available to them for the identification, but
not the implementation of a strategy (in particular, due to these arguments,
[Sch10a] does not introduce notation for the particular form of strategy choices
used above, but explicitly states that the decidability result remains true for this
generalization).

Similar issues also have been discussed in various papers on epistemic strate-
gic logics, see for example [JvdH04].

Finally, if Charly has inside information about the protocol run (including the
number of steps that have been performed), then the situation is much simpler,
in particular there is no need to introduce a verifier as done above. In this
case, abusiveness can be characterized with a Charly similarly as in the previous
section and the formula ∃1SΣ 〈〈Σ : SΣ〉〉≥1KC

3X−1ϕunbal, which (with additional
quantification for the adversarial strategies mentioned in ϕunbal) simply states
that there is a reachable protocol state in which Charly knows that the previous
state was unbalanced (he cannot know that the current state is unbalanced
because our model is concurrent and Charly does not know actions occurring at
the same time as the adversary presenting his proof to Charly).

As a consequence of our main result Theorem 4.1, the variations of abuse-
freeness discussed above remain decidable.

8 To cover the version of abuse-freeness discussed here, one would consider strategy
choices for the adversary where the choice of strategy can be performed with full
information, i.e., information degree 1, while the strategies themselves have to be
uniform for information degree 2 or 3—the definition in [KKW06] uses what is in-
formation degree 2 in our terminology, which is appropriate there since there are no
relevant strategic decisions by the adversary that depend on the content of cipher-
texts that the adversary cannot decrypt in their situations. In a more general setting,
limiting the cryptographic abilities of the adversary, and thus requiring information
degree 3 may be more appropriate.
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5.3 Accountability and Verifiability

Accountability and verifiability are properties relevant for protocols involving
trusted parties, e.g., voting [KRS10], auctions [PRST08], contract signing [ASW98],
identity-based encryption etc. In [KTV10a], a formal definition of accountability
is given that is independent of the specific application.

Accountability requires that if a protocol run “fails” (i.e., does not achieve
some goal), then a party J (the “judge”) can determine which one of the partic-
ipants in the protocol “misbehaved,” i.e., did not follow the protocol.

Up to now, we modeled principals either as honest, or as part of the adversary.
Accountability is concerned with principals who have a “wanted” behavior (the
protocol), but can start “misbehaving” during the protocol run (i.e., abandon
the protocol and behaving adversary-like from that point on).

To express this we use our model in a different way: We modify every honest
principal of the protocol except J to run an “adversary program” at any time.
This is a new sub-branch of the protocol, and forwards received messages to the
adversary, lets the adversary dictate messages to be sent to the other principals,
and provides an oracle for operations involving the private key of the “misbe-
having” identity, e.g., decrypts ciphertexts and signs messages as instructed by
the adversary (the exact set of services provided depends on the involved cryp-
tographic primitives).9 Since the variables in CPr indicate the current state of
honest principals, for each i we have a formula ϕadv

i that is true iff i runs the
adversary program. Forwarding and oracle access causes delay in the protocol
execution, to account for this we introduce “wait cycles” into the protocol. The
adversary program essentially models dynamic corruption.

In [KTV10a], individual accountability is defined as follows: At the end of
every protocol run in which a goal ϕ is not satisfied, J announces the identity of
some party that did not follow the protocol (using a distinguished state for each
output). Let blamei be a formula that is true if J announced that i “misbehaved.”
Let ϕ be a goal. Then a protocol provides individual accountability for ϕ if the
following formula is satisfied (∀S∅ 〈〈∅ : S∅〉〉 quantifies over all reachable states):

∀S∅ 〈〈∅ : S∅〉〉�(¬ϕ→ ♦(
∨
i∈I

(blamei ∧ ϕadv
i )).

This expresses that if ϕ is not satisfied, then at the end of the run J will correctly
announce one identity from I that did not follow the protocol.

The above does not use epistemic or strategic properties: We merely ex-
pressed that J works “correctly.” Epistemic features come into play when the
situation is less clear than above, i.e., when there is no existing judge procedure
that we can use. We can ask whether a party J has enough information10 to

9 Usually, the adversary only accesses the oracle a finite number of times: Decryptions
and signatures are only necessary for encryptions done by, or signature verifications
performed by, honest principals; these only perform a finite number of operations.
Hence the “oracle” can be implemented in a finite protocol role.

10 Clearly, the protocol must specify which information J has, i.e., which messages J
receives—if J has complete information, accountability trivial.
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serve as a judge, and derive an implementation. The following expresses that if
ϕ is false, then J will know, for some party i, that i did not follow the protocol:

∀S∅ 〈〈∅ : S∅〉〉�(¬ϕ→ ♦(
∨
i∈I

(KJ
3ϕ

adv
i )).

If the formula is true, J has enough knowledge to serve as judge (the index 3
states that J’s knowledge is limited by cryptography). We obtain an “implemen-
tation” of J in a straight-forward way: We allow J (in addition to other instruc-
tions that J follows in the original protocol) to perform “blame” announcements
as earlier. We now ask whether there is a strategy for J to “blame correctly:”

∃3SJ 〈〈J : SJ〉〉 (�(¬ϕ→ ♦(
∨
i∈I

blamei)) ∧
∧
i∈I

(blamei → ϕadv
i )),

in the positive case the strategy for J then encodes a verification program.
Finally, verifiability can be seen as a weaker form of accountability. In [KTV10a],
it is defined as follows: A goal ϕ of a protocol Pr is verifiable by J if J knows
whether ϕ holds when the protocol run is over. This can be easily expressed in
our model: Let end be a propositional variable that is true at the end of the
protocol run. Then the formula

∀S∅ 〈〈∅ : S∅〉〉�(end→ (KJ3ϕ ∨ KJ3¬ϕ))

expresses that J knows whether ϕ holds at the end of every possible protocol
run. Theorem 4.1 now implies decidability of accountability and verifiability.

5.4 Coercion-Resistance of Voting Protocols

Coercion-resistance requires that no voter Alice can prove to a party Charly
that she voted as instructed by him, precluding selling of votes. In [KTV10b],
coercion-resistance was defined11 as follows: For every “coercer strategy” of
Charly, there is a “counter-strategy” for Alice such that Alice’s vote is counted
as she wants to vote, but Charly believes that he controlled her voting process.

Clearly, we cannot require Charly to always fail to “catch” Alice—if Charly’s
chosen candidate receives zero votes, then Charly knows that Alice did not obey
him. We thus allow Charly to correctly guess that Alice voted differently than
promised with some probability, possibly larger than 1

2 . See [KTV10b] for a dis-
cussion of suitable values for the involved probabilities. We model Charly’s belief
as the probability to successfully “guess” whether Alice followed his instruc-
tions. This mirrors the approach of [HT93] to consider probabilistic knowledge
as strategies for a betting game, see also Section 3.3.

11 Their definition is given in a cryptographic model, we present an analogous formu-
lation in our symbolic model. Other definitions [KT09] are expressed in epistemic
terms close to our model. However the game-based definition from [KTV10b] covers
probabilistic aspects that we want to model.
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We express coercion-resistance in our model. We note that our model requires
that the number of communication rounds between Alice and Charly is bounded
by a constant, since this has to be encoded into Alice’s protocol description.
A generalized model with no bounds on the protocol length can be defined,
however, such a model will be undecidable (cp. [KKW09]). We stress that neither
the complexity nor the structure of the messages are restricted in our model.

In coercion-resistance, two principals may deviate from the protocol: Charly
uses a coercer strategy to influence Alice, and Alice runs a counter-strategy to
vote as she intends12. Our model allows arbitrary behavior only for the adversary,
hence we model both the coercer and the counter strategy as adversary-strategies.
We introduce a test principal T whose goal it is to determine whether Alice
follows Charly’s instructions (the adversary plays the “coercer strategy”) or uses
the “counter-strategy.” Since both of these strategies are played by the adversary,
we need a way to distinguish them. To this end, the strategies have to “announce
themselves:” We let Alice expect, in the first message from the adversary, a bit
signaling the performed strategy, she changes local state accordingly. She runs a
copy of the adversary program (see Section 5.3) from then on. We use formulas
ϕA−coerc and ϕA−counter to express that the running strategy signaled coercion
or counter, respectively. A T-strategy is successful if T announces “coercion”
iff the running strategy signaled coercion, and “counter” iff the strategy signals
“counter.” Since T’s epistemic capabilities should match Charly’s, T has access
to the same messages that Charly would see in a protocol run.

To express that the counter-strategy lets Alice vote as she wants, we intro-
duce a principal V (vote) choosing Alice’s (sincere) vote, which he sends to Alice.
V’s strategies then correspond to Alice’s possible votes. Coercion-resistance for
a probability δ is now (semi-formally) expressed as follows13:

for all A-strategies scoerc signaling coerce
there is an A-strategy scounter signaling counter s.t.

scounter lets Alice vote as chosen by V
AND no T-strategy is successful with probability ≥ δ.

This expresses that for every coercer strategy, there is a counter-strategy let-
ting Alice vote as she wants, and the test principal (with information as available
to Charly) cannot identify the performed strategy with probability ≥ δ.

To express this in QAPI, let ϕV express that Alice voted as instructed by V
(this formula depends on the voting system), let ϕA-coerc and ϕA-counter express
that coercion (counter) is signaled. Let ϕT-suc indicate that T guesses correctly.

ϕT<δ = ¬
(

(〈〈T : ST,A : Scounter〉〉≥δ ϕT-suc) ∧ (〈〈T : ST,A : Scoerce〉〉≥δ ϕT-suc)
)

expresses that T’s success probability is less that δ for one of the strategies.

12 Clearly, in many protocols there will be a fixed counter-strategy that Alice can use
which we could directly “implement” into our modeling of Alice; this would simplify
the modeling of coercion-resistance significantly.

13 For readability, we omit the universal quantification over V’s strategy
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ϕsig-coerce = (〈〈A : Scoerc〉〉≥1 ♦ϕA-coerc)

expresses that Scoerc signals coercing correctly, analogously let ϕsig-counter express
that Scounter signals counter. Finally,

ϕvote = 〈〈A : Scounter〉〉≥1 ♦ϕV

expresses that the strategy Scounter lets Alice vote as she wants to. We now
express coercion-resistance as follows:

∀3Scoercer∃3Scounter∀3SV∀3STϕ
sig-coerce → (ϕsig-counter ∧ ϕvote ∧ ϕT<δ).

We stress that the coercer- and counter-strategies are played by the adversary
A and not by Alice.

We point out some subtleties of the above modeling. Note that in order to en-
sure that the test principal T has exactly the same information about a protocol
run that Charly would have, Alice forwards messages to T as instructed by the
adversary. This happens “automatically,” as Alice runs the adversary program,
and hence the adversary (i.e., the coercer- and counter-strategies) completely
control the communication between Alice and T. Hence the coercer strategy will
attempt to include “proofs” into this strategy showing that Alice indeed followed
the instructions. In particular, the coercer strategy will inform T about the com-
plete communication between Alice and the adversary. This communication will
contain any kind of “receipt” that Alice might receive from the voting system,
if such a receipt is issued. The counter-strategy has to simulate this exchange—
including any possible “receipts”—and at the same time make sure that the
actual communication between Alice and the voting system ensures that Alice’s
vote is counted as instructed by V.

Also note that it is not even necessary to only consider coercer-strategies that
signal “coerce” correctly—since such a strategy, as argued above, will attempt
to make itself distinguishable from a counter-strategy, it is in its best interest to
signal correctly. However, we included the requirement in the formula above for
ease of presentation.

Note also that if Alice runs the adversary program, then the adversary knows
which vote V wants Alice to cast—the communication between Alice and V is
visible to the adversary. This allows both the coercer strategy to deliberately
vote differently than Alice wants to, and allows the counter-strategy to depend
on Alice’s vote (which it has to in order to ensure that the vote is counted as
intended, since the counter-strategy completely controls Alice’s communication
with the voting system).

We stress again that both strategies, that of “Charly” and that of “Alice,” are
in fact “played” by the adversary, who in both cases completely takes over Alice’s
communication. It is the task of the verifier to determine—with the knowledge
that Charly would have—whether the strategy that Alice “effectively plays” is
one that lets Charly dictate Alice’s actions, or one that achieves Alice’s own
goal.
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Several key features of our approach are used in the above modeling: It is
clearly necessary to consider only uniform strategies. We also made extensive use
of quantification: Letting the strategy of T depend on the A-strategies is crucial
for the approach, as is the ability to directly talk about specific strategies in
formulas. Finally, reasoning about success probabilities of strategies was required
to express the probabilistic notion of coercion-resistance.

Variations of coercion-resistance can be expressed similarly: One can ex-
change the order of quantification of the counter-strategy and the strategy of
T to only demand that for every fixed test strategy there is a counter-measure,
one can require only that Alice’s counter-strategy is successful with some given
probability, etc. The above implies decidability of coercion-resistance.

6 Proof of the Main Result

In this section, we prove the main result, Theorem 4.1. The section is organized
as follows:

– In Section 6.1, we introduce the central bisimulation-like concepts that allow
us to perform model checking on a finite model CPr/≡ instead of the infinite
model CPr,

– In Section 6.2, we introduce additional notation and a notion of state-
equivalence such that roughly, the model CPr is bisimilar to the (finite) set
of equivalence classes,

– In Sections 6.3 and 6.4, we show how actions of honest principals and the
adversary can be transferred from CPr to the finite structure CPr/≡ and vice
versa,

– Building on concepts established in Sections 6.2 to 6.4, Section 6.5 then
contains the formal definition of the finite model CPr/≡,

– In Section 6.6, we use the previously established building blocks to conclude
the proof of our main theorem 4.1.

– Section 6.7 briefly explains how the proof of decidability result can be gen-
eralized to some extensions of our model.

In many of the following definitions, we omit the protocol Pr, the term
signature Σt, and the equational theory E from the notation—this will always
be clear from the context. For the decidability proof, it is convenient to make
the following assumptions about the protocol Pr, which can be made without
loss of generality:

– in every protocol role, every path from the root of the role to every occurrence
of the special state Finished has the same length, also called the length of the
protocol rule,

– in a protocol, every role has the same length, also called the length of the
protocol.
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Both of these conditions can easily be satisfied by introducing appropri-
ate dummy states and transitions to the protocol roles and replacing in the
QAPI-formulas, variables for original final states with disjunctions including the
relevant added dummy states.

6.1 Bisimulations

Although the main idea of the reason for decidability is simple—since princi-
pals perform operations that consider incoming terms to a “bounded depth”
only and hence the adversary does not gain anything from sending arbitrarily
complicated terms to principals, we can consider a restricted structure with a
maximal depth for adversary-constructed terms—the formalization of this idea
requires some technical details. The intuitive argument is enough to prove de-
cidability for reachability properties, however we also prove that strategic and
epistemic properties are maintained under the above-mentioned simplification
of the protocol structure, i.e., we show that truth of every QAPI-formula is
maintained.

An established tool for showing invariance of properties expressible by a
certain class of formulas is to establish bisimulations between structures, and
this is the tool that we will apply to prove our result: We show that there is a
finite structure which is bisimilar to CPr, and that this finite structure can be
algorithmically constructed. Since QAPI-model checking is decidable for finite
structures, our decidability result then follows (note however that our proof does
not establish that the upper complexity bounds from [Sch10a] hold for protocol
analysis, since the size of the finite structure we construct is not polynomial in
the size of the protocol).

We give the following definition of a bisimulation from [Sch10a] (see also
[Sch10b]) In the following, when Z is a binary relation on state sets, then for a
state q, we write Z(q) to denote the set {q′ | (q, q′) ∈ Z}.

Definition. Let C1 and C2 be CGSs with state sets Q1 and Q2, the same set
of players, the same set of propositional variables, and n degrees of information.
Then a relation Z ⊆ Q1 × Q2 is a probabilistic uniform strong alternating sim-
ulation for a coalition A from C1 to C2 if for all (q1, q2) ∈ Z, all i ∈ {1, . . . , n},
and all players a ∈ A, there is a function ∆1→2

(i,a,q1,q2)
such that for all A′ ⊆ A we

have

– propositional equivalence: q1 and q2 satisfy the same propositional variables,
– for all (A′, q1)-moves c1, the (A′, q2)-move c2 with c2(a) = ∆1→2

(i,a,q1,q2)
(c1(a))

has the
1. Forward Move Property: for each (A′, q1)-move cA

′
1 , there is a (A′, q2)-

move cA
′

2 such that for all q′1 ∈ Q1, we have

Pr
(
δ(q2, c2 ∪ cA

′

2 ) ∈ Z(q′1)
)

= Pr
(
δ(q1, c1 ∪ cA

′

1 ) = q′1

)
.

2. Backward Move Property: for each (A′, q2)-move cA
′

2 , there is a (A′, q1)-

move cA
′

1 such that for all q′1 ∈ Q1, we have
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Pr
(
δ(q2, c2 ∪ cA

′

q2 ) ∈ Z(q′1)
)

= Pr
(
δ(q1, c1 ∪ cA

′

1 ) = q′1

)
.

– Move Uniformity: If (q1, q2), (q′1, q
′
2) ∈ Z with q1 ∼eqi1(a)

q′1 and q2 ∼eqi1(a)
q′2,

then ∆1→2
(i,a,q1,q2)

= ∆1→2
(i,a,q′1,q

′
2)

,

– Uniformity: for all a ∈ A, and all (q′1, q
′
2) ∈ Z, if q2 ∼eqi2(a)

q′2, then q1 ∼eqi1(a)

q′1.
– Knowledge Transfer: if q′1 ∼eq1i (A

′) q1, then there is some q′2 ∈ Q2 such that
q′2 ∼eq2i (A

′) q2 and (q′1, q
′
2) ∈ Z.

– Uniqueness: For all q2 ∈ Q2, there is exactly one q1 ∈ Q1 with (q1, q2) ∈ Z
(i.e., Z−1 : Q2 → Q1 is a function).

If we have probabilistic uniform strong alternating simulations in both direc-
tions, and the two simulations agree on the related states in a certain manner,
we have a bisimulation:

Definition. Let C1 and C2 be concurrent game structures. Then a probabilis-
tic bisimulation for a coalition A between C1 and C2 is a pair of relations (Z1, Z2)
such that

– Z1 is a probabilistic strategy simulation for A from C1 to C2,
– Z2 is a probabilistic strategy simulation for A from C2 to C1,
– Z−11 ◦ Z−12 and Z−12 ◦ Z−11 are idempotent.

Bisimulations ensure that the related structures satisfy exactly the same
formulas:

Theorem 6.1 ([Sch10a]). Let C1 and C2 be concurrent game structures, let A
be a set of coalitions such that (Z1, Z2) is a probabilistic bisimulation for every
A ∈ A between C1 and C2, let q1 be a state of C1, let q2 be a state of C2 such
that (q1, q2) ∈ Z1 and (q2, q1) ∈ Z2. Let ϕ be a quantified strategy formula for C1
(and thus for C2) such that every coalition appearing in ϕ is an element of A.
Then C1, q1 |= ϕ if and only if C2, q2 |= ϕ.

This theorem is the key ingredient for our decidability proof: As mentioned
above, we will establish that there is a finite structure CPr/≡ and a probabilistic
bisimulation between this one and CPr. The construction of CPr/≡ follows the
above intuition: Essentially we disallow the adversary from sending terms ex-
ceeding a certain maximal depth to honest principals, and additionally restrict
the adversary to using only finitely many different nonces. The latter restriction
can be made without loss of generality if the size and number of the terms is
finitely bounded. This results in the finite structure CPr/≡.

Hence our main result, Theorem 4.1 immediately follows from the decid-
ability result for model checking a finite structure and a QAPI-formula proven
in [Sch10a] and the following Theorem:

Theorem 6.2. There is an algorithm which, on input Pr, computes a finite
concurrent game structure CPr/≡ such that there is a relation Z which is a prob-
abilistic bisimulation between CPr and CPr/≡ for every coalition, and the initial
states of CPr and CPr/≡ are identical.
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6.2 Notation and the key equivalence notion on states

For proving the main result, we introduce some additional notation. A lot of
the objects introduced here and in the remainder of Section 6 depend on the
protocol Pr, however in order to increase readability we do not always make
this dependence explicit in the notation—the protocol will always be clear from
the context.

Definition. Let Pr be a protocol over the term signature Σt with equational
theory E, let q be a state in CPr. Then

– ar(Σt) is the maximal arity of a symbol in Σt,
– depth (E) is the maximal depth of a term appearing as the left- or righthand-

side of an equation in E,
– dPr is the product of (the maximal depth of a term appearing in one of the

descriptions of the protocol roles plus 1) and depth (E),
– if q is a state which is not initial, then pred(q) denotes the unique predecessor

state of q in CPr,
– prvst(q) denotes the number of steps needed to reach q in a protocol run,

i.e., if q is an initial state then prvst(q) = 0, and otherwise prvst(q) =
prvst(pred(q)) + 1.

We introduce some notation that allows us to succinctly refer to certain
elements and subterms of larger terms. In the following, we regard terms as
trees in the natural way.

Definition. Let t = (t1, . . . , tn) be a sequence of terms over the signature
Σt, let u be a term over Σt, and let path be a path (i.e., a sequence of natural
numbers bounded by ar(Σt)), let i be a natural number, and let p = (i, path),
then

– p is a position,
– u↓path is the subterm of u whose root is the vertex reached when following

the path path starting in the root of u. If this path uses non-existing succes-
sors in u, then u↓path = error (where error is a special symbol not used
anywhere else),

– u(path) is the label of the root node of u↓path (where the label of error is
error),

– |t| = n,
– if path2 is a path, then p ◦ path2 is defined as the position (i, path1path2)

(in this case we say that p ◦ path2 is a extension of p, and p is a prefix of
p ◦ path2),

– t↓p = ti ↓path and t(p) = ti(path) (both of these are error if i > n)
– depth (p) is the length of path.

The following defines a natural notion of equivalence of term sequences: For
a natural number d, ∼d-equivalence requires that two sequences “look the same”
when we only consider elements and subterms appearing down to depth d: The
elements in these positions must be the same, and equality between positions
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must hold in one sequence if and only if it holds in the other (note however
that the equality of the subterms must hold down to the leaves in the trees,
notwithstanding the depth). We will later use this definition to define a similar
equivalence on states of a cryptographic protocol: These are “equivalent,” if the
honest principals are in the same protocol states and the so-far observed terms
are equivalent to a sufficient degree.

Definition. Let t1 and t2 be sequences of terms, and let d ∈ N. Then
t1 ∼d t2 (t1 and t2 are d-equivalent), if for every pair of positions p1, p2 with
depth (p1) , depth (p2) ≤ d, we have

– t1(p1) = t2(p2), and
– t1 ↓p1 = t1 ↓p2 if and only if t2 ↓p1 = t2 ↓p2.

Note that it t1 ∼d t2 for some d ≥ 0, then
∣∣t1∣∣ =

∣∣t2∣∣ (this follows due to
the equality of elements on the first level, and the fact that such an element is
error if and only if the referenced term does not exist, i.e., |t| ≥ n if and only
if t((n, ε)) 6= error).

Definition. Let Pr be a k-roles protocol, and let q be a state of CPr, then
terms(q) is the sequence containing all terms from the sequences M1, M2, . . . ,
Mk, andMA. For a position p, with q↓p we denote terms(q)↓p, and with q(p)
we denote terms(q)(p).

Hence terms(q) contains the set of all terms sent, received, and parsed by
the adversary and principals. Equivalence of states is now defined in the natural
way:

Definition. Let Pr be a protocol, let q1, q2 be states in CPr, and let d ∈ N.
Then q1 ∼d q2 (q1 and q2 are d-equivalent), if all honest principals are in the
same local state in both q1 and q2, the same set of identities is corrupted in q1
and q2, and terms(q1) ∼d terms(q2).

Note that this definition of equivalence does not refer to the indistinguisha-
bility relations of the principals: If q1 ∼d q2, then there may very well be tests
that a principal can perform to distinguish these states. However, the tests that
occur in the protocol description will yield the same result in states that are
equivalent to a “sufficient” degree (see later), so that the available choices for
the principal are the same. This is the key property of this construction: We use
the above equivalence of states to show that if q1 ∼d q2 for a sufficiently large d,
then both the adversary and the honest principals have exactly the same strate-
gic options in q1 and q2, even if these options take into account the (possible
different) knowledge in the states q1 and q2. In order to make this precise, we
now define the level of ∼d-equivalence we require after each number of protocol
steps, this is done with the function eqdeg (.). The purpose of this function is the
following: If q1 and q2 are states such that all honest principals are in the same
local state in q1 and q2 (and thus in particular prvst(q1) = prvst(q2) =: s) then
d := eqdeg (s) has the property that if q1 ∼d q2, then q1 and q2 are “strategically
equivalent” (proving this is the main work required to show our result). To see
that this degree depends on the state, observe that when the protocol run is
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over, we are not interested in the terms at all anymore, but only need to require
that principals have reached the same local protocol state. In previous states
however, the question which sub-terms of incoming messages for principals are
identical to previously-received messages is very relevant, as the question which
tests performed by honest principals are satisfied in the state clearly depends on
this.

Proposition 6.3. Let q1 and q2 be states in CPr such that q1 ∼0 q2. Then
prvst(q1) = prvst(q2).

Proof. By definition of equivalence, all principals are in the same local state in
q1 and q2. The number of steps performed in the protocol run is the same as
the number of steps performed by any principal (since our model is concurrent).
Hence the claim follows.

We now formally define the function eqdeg (.) as explained above:

Definition. For a k-protocol Pr with length ` and a natural number s, let

– #e(s) = k · (ar(Σt)s),
– mdagdpthA(s) = 2#e · (s+ 1),
– let eqdeg (0) = ` · dPr,
– for s ≥ 1, let
eqdeg (s+ 1) = 2eqdeg (s) + 4 · dPr

+ 2mdagdpthA(eqdeg (s) + 2 · dPr)
+ 2 · ` · dPr.

– for a state q, let eqdeg (q) = eqdeg (`− prvst(q)).
– for two states q1 and q2 of CPr with prvst(q1) = prvst(q2), let q1 ≡ q2 if

1. q1 ∼eqdeg(q1) q2, and
2. either q1 and q2 both are initial states, or pred(q1) ≡ pred(q2)

The condition that if q1 ≡ q2, then pred(q1) ≡ pred(q2) implies that if two
states are equivalent, then their histories are equivalent as well.

6.3 Move Transfer For Honest Principals

We now show that honest principals have essentially “the same options” in states
q1 and q2 if q1 ≡ q2, i.e., essentially we show the forward move property for hon-
est principals. The main work needed to be done here is to prove that the effects
of actions performed by honest principals are limited to a certain depth in the
resulting protocol state. This is intuitively clear, since the operations of honest
principals only use terms with bounded depth—hence both modifications per-
formed and analysis carried out by principals only concern parts of the message
down to some bounded depth.

The following lemma makes this precise by showing that when constructing
new terms from a term sequence using terms constructed from Σt, the resulting
term contains only references of limited depth into the original term sequence.
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Lemma 6.4. Let M be a sequence of messages, let m be a term, and let r =
[[m[M/x]]]. Then there are a term s and positions q1, . . . , qn such that for all
relevant i,

1. depth (qi) ≤ depth (m) · depth (E) =: d,

2. r = s[(M↓q1)/x1, . . . , (M↓qn)/xn],

3. depth (s) ≤ (depth (m) + 1) · depth (E).

In addition, the term s only depends on m and on the entries of M of depth at
most d.

Proof. Let r′ = m[M/x], then by definition r = [[r′]], i.e., r is obtained from r′

by exhaustive application of equations from the theory E. Since E is a subterm
theory, each application of an equation replaces a subterm t of an intermediate
result r′i with a subterm of t or a constant. In the latter case, no reference
to the term M is obtained, hence we only consider the first case. Since M is
a sequence of messages, we know that each application of an equation must
consume a symbol from m (no rewrite rule can be applied to M). Therefore, at
most j applications of equations are required to obtain r from r′, where j is the
size of m (i.e., the number of symbols contained in m).

Each application of an equation from E leading from r′ to r transforms the
intermediate result ri into another intermediate result ri

′
. Since E is a subterm

theory, we again know that some subterm ti or ri was replaced with a subterm
ti

′
of ti (we can again ignore the case of constants). In particular, ti

′
appears in

ri with depth at most depth (E).

Inductively, r is obtained from r′ by using subterms of M that appear
at depth of at most depth (E) · j and adding elements with depth of at most
depth (m). This results in the term s with the claimed properties. Each of the
positions qi in the final term has depth at most depth (m) · depth (E), since each
position is only affected by the operations appearing in one branch of m. The
depth of the term s is at most the depth of m increased by depth (E) in every
step, where again each position is only affected by the operations in a single
branch of m. Hence, the depth of s is at most depth (m) + depth (m) · depth (E).

We now show that ≡-equivalence is maintained under adding specific terms—
the following lemma describes the situation where principals perform their pro-
tocol rules and send out the corresponding terms. In the later application of the
lemma, M1 and M2 will be the sequences of messages received by principals
(including the adversary) in states q1 and q2 with q1 ≡ q2, and M′1 and M′2
will be the messages received in the states q′1 and q′2 obtained from q1 and q2 by
letting the honest principals perform the same move in both steps. The terms mi

are the ones from the send sequence of our protocols, and are used to construct
messages sent by honest principals. The second application of the lemma is when
principals build new messages not to send to other principals, but to perform
the tests as part of their parsing sequence.
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Lemma 6.5. LetM1 andM2 be term sequences, let m1, . . . , mk be terms, and
let d1, d2 ∈ N such that M1 ∼d1 M2, and (depth (mi) + 1) · depth (E) ≤ d2 for
all relevant i.

For a ∈ {1, 2}, letM′a be obtained fromMa by adding the terms [[m1[Ma/x]]],
. . . , [[mk[Ma/x]]]. Then M′1 ∼d−2d2 M′2.

In a protocol run, Lemma 6.5 covers the result of actions performed by honest
principals: The messages sent by honest principals are obtained by construct-
ing new terms, which may reference elements of the sequence of previously re-
ceived messages. Due to Lemma 6.4, we know that the depth of reference into
previously-received terms is limited by a constant that only depends on the pro-
tocol and the equational theory E. This lemma essentially shows that if two states
are “sufficiently” equivalent, and the principals then perform the same moves,
then the resulting states are equivalent (to a slightly lesser degree). This fact
will be an ingredient in the proof of the forward- and backward move properties
required by the bisimulation. We now prove the lemma.

Proof. Due to Lemma 6.4, there are terms s1, . . . , sm and positions q1, . . . , qn
such that the depth of each qi is at most depth (E)·max {depth (mj) | 1 ≤ j ≤ m} ≤
d2, the depth of each si is at most (depth (mi) + 1) · depth (E) ≤ d2, and M′a
is obtained fromMa by adding the terms s1[(M↓q1)/x1, . . . , (M↓qn)/xn], . . . ,
sm[(M↓q1)/x1, . . . , (M↓qn)/xn]. Note that not all of the variables necessarily
appear in all of the si.

For a ∈ {1, 2}, let Ma = (ta1 , . . . , t
a
|Ma|). We denote mi[Ma/x] with sai for

a ∈ {1, 2} and i ∈ {1, . . . , k}.
We can without loss of generality assume that among the positions qi, for

each j ≤ |M1| (which must be identical to |M2| since M1 ∼d1 M2), there is a
position of the form (j, ε). If these are not present, we add these positions and
prove the claim for this extended set of positions (note that these positions have
depth 0). Similarly, we can assume that for each i ∈ {1, . . . , n}, there is some
term sji which is the variable xi. Again, if these are not present we add them
(noting again that all these terms have depth 0). Since we now have terms sji
such that saji is the i-th message in the sequence Ma, it suffices to prove that

u1 = (s11, . . . , s
1
k) and u2 = (s21, . . . , s

2
k) are (d1 − 2d2)-equivalent.

Hence let p1 and p2 be positions, where for b ∈ {1, 2}, we have pb = (ib, pathb),
and |pathb| ≤ d1 − 2d2. Without loss of generality, we assume ib = b.

We first show u1(p1) = u2(p1) (note that in this proof, we only use the fact
that depth (p1) ≤ d1 − d2—we will refer to this slightly stronger result in the
second part of the proof). By construction, (since p1 = (1, path1)), we have
ua(p1) = sa1(path1). If path1 does not visit a position in s1 which is a variable,
then obviously sa1(path1) = s1(path1), and it follows that u1(p1) = s11(path1) =
s1(path1) = s21(path1) = u2(p1) as required. Hence assume that when following
path1 in s1, we encounter a variable, without loss of generality the variable x1.
Let path1 = w1w2, such that s1(w1) = x1. It then follows for a = 1, 2 that
ua(p1) = sa1(path1) = sa1(w1w2) = (sa1 ↓ w1)(w2) = x1[(ua ↓q1)/x1, . . . ](w2) =
(Ma ↓q1)(w2) =Ma(q1 ◦ w2) = ta1(qpath1w2). Since |w2| ≤ depth (p1) ≤ d1−d2,
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and depth (q1) ≤ d2, it follows that depth (q1) + |w2| ≤ d1. Hence we know (since
M1 ∼d1 M2) that M1(q1 ◦ w2) = M2(q1 ◦ w2), and it follows that u1(p1) =
M1(q1 ◦ w2) =M2(q1 ◦ w2) = u2(p1), as required.

We now show that u1 ↓p1 = u1 ↓p2 if and only if u2 ↓p1 = u2 ↓p2. It obviously
suffices to prove one direction, hence assume u1 ↓p1 = u1 ↓p2. We show the claim
by induction over the depth restrictions for the pb, and the si. In the following,
for α, γ ∈ N, we say that the pair (α, γ) holds, if the following implication is true:
For all positions p1, p2, and terms s1, s2, if depth (pb) ≤ α and depth (sb) ≤ γ for
b ∈ {1, 2}, then u1 ↓ p1 = u1 ↓ p2 implies u2 ↓ p1 = u2 ↓ p2. To prove the lemma,
we need to show that (α, γ) holds for all values with α+ γ ≤ d1 − d2 (the claim
of the lemma involves only positions p1, p2 with depth at most d1 − 2d2, and
terms si with depth (si) ≤ d2—recall that we assumed without loss of generality
that the position pb refers to the term sb for b ∈ {1, 2}, hence we only consider
the first two terms).

For the base of the induction, we show that (d1 − d2, 0) holds. In this case,
the terms s1 and s2 have depth 0, i.e., they are variables or constants (where
we treat the empty term ε as a constant), and depth (pb) ≤ d1 − d2 for b = 1, 2.
We can without loss of generality assume that if sb is a variable, then it is the
variable xb, and if sb is a constant, then it is the constant consb. Thus only the
variables x1 and x2, and only the positions q1 and q2 are relevant among the qi.
Again, without loss of generality, we assume that qb = (b, qpathb). Now if sb is
the variable xb, then we have (for a ∈ {1, 2}):

ua ↓pb = sab ↓pathb
= (xb[. . . , (Ma ↓qb) . . . ])/xb ↓pathb
= (Ma ↓qb)↓pathb
= (Ma ↓(b, qpathb))↓pathb
= (tab ↓qpathb)↓pathb
= tab ↓(qpathb ◦ pathb).

If sb is the constant consb, then we have (for a ∈ {1, 2}): ua ↓ pb = sab ↓
pathb = consb ↓pathb. We now make a case distinction.

Assume that both s1 and s2 are variables, i.e., s1 = x1, and s2 = x2. Then
t11 ↓ (qpath1 ◦ path1) = u1 ↓ p1 = u1 ↓ p2 = t12 ↓ (qpath2 ◦ path2). Since |qpathb| +
|pathb| ≤ d2 +d1−d2 = d1, andM1 ∼d1 M2, this implies t21 ↓(qpath1 ◦path1) =
t22 ↓ (qpath2 ◦ path2). Due to the above (and since both sb are variables), we
therefore have u2 ↓p1 = t21 ↓ (qpath1 ◦ path1) = t22 ↓ (qpath2 ◦ path2) = u2 ↓p2, as
required.

Assume that both s1 and s2 are constants, i.e., s1 = cons1, and s2 = cons2.
Then cons1 ↓ path1 = u1 ↓ p1 = u1 ↓ p2 = cons2 ↓ path2. Hence u2 ↓ p1 =
cons1 ↓path1 = cons2 ↓path2 = u2 ↓path2 as required. (Considering “subterms”
of constants here only serves as a unified means to cover the cases where the
path is empty (and thus the term is “legal”) or not (in which the term is the
error-symbol.))

Assume that one is a variable, the other a constant, without loss of gener-
ality, s1 is the variable x1, and s2 is the constant cons2. From the above, we
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thus know that t11 ↓ (qpath1 ◦ path1) = u1 ↓ p1 = u1 ↓ p2 = cons2 ↓ path2. Since
M1 ∼d1 M2, and |qpath1 ◦ path1| ≤ d1, we know that t21(qpath1 ◦ path1) =
t11(qpath1 ◦ path1) = cons2(path2). Note that this “subterm” is either the con-
stant cons2 or the error-symbol. Since each term in the ta is a well-constructed
term over Σt, the occurrence of cons2 in t21 cannot have a successor, thus equal-
ity of elements here implies equality as subterms, hence we have t21 ↓ (qpath1 ◦
path1) = cons2 ↓ path2. Hence it follows that u2 ↓ p1 = t21 ↓ (qpath1 ◦ path1) =
cons2 ↓ path2 = u2 ↓ p2, as required. This covers all possible cases, and thus
completes the proof of the base of the claim that (d1 − d2, 0) holds.

Now assume inductively that (α, γ) is true, where α ≥ 1. We show that
(α − 1, γ + 1) is true. Since we know from the above that (d1 − d2, 0) holds,
this completes the proof of (α, γ) for all α + γ ≤ d1 − d2: Hence assume
that s1 and s2 are terms with depth (s1) , depth (s2) ≤ γ + 1, and assume that
depth (p1) , depth (p2) ≤ α − 1. Without loss of generality, we can assume that
depth (s1) ≥ depth (s2), and hence in particular, depth (s1) = γ + 1 (the case
where both depths are at most γ is covered by (α, γ)). Hence, s1 = f(s′1, . . . , s

′
e)

for an e-ary function symbol f from the signature Σt. Obviously, depth (s′i) <
depth (s1). We consider several cases.

Assume that depth (s1) > depth (s2), and path1 6= ε, then path1 = c ◦ path ′1
for some c ∈ {1, . . . , e} (the case if c > e, i.e., the position leads to an error-
symbol, is covered by part 1 of the proof, since then in all relevant positions,
the error-symbol appears). It follows that for a ∈ {1, 2}, we have ua ↓p1 = sa1 ↓
path1 = s′ac ↓ path ′1 (here, s′ai for some i is defined analogously to sai , where an
occurrence of a variable xj is replaced with Ma ↓qj). Since u1 ↓p1 = u1 ↓p2, we
have that s′1c ↓path ′1 = u1 ↓p2

These positions can be described using terms s′c, s2, where the depth of each
is at most γ, and paths path ′1, path2, where

∣∣path ′1
∣∣ , |path2| ≤ α − 1 ≤ α. Since

(α, γ) holds, we know that the above equality implies s′2c ↓ path ′1 = u2 ↓ p2, and
due to the above this is equivalent to u2 ↓p1 = u2 ↓p2, as required.

Assume that depth (s1) > depth (s2), and path1 = ε, then ua ↓ p1 = sa1 ↓
path1 = sa1 = f(s′a1 , . . . , s

′a
e ). Since u1 ↓ p1 = u1 ↓ p2, we know that u1(p2) =

u1(p1) = f , and from part 1 of the proof we have that u2(p2) = u1(p2) = f . We
further know that for all steps c, we have u1 ↓(p1 ◦ c) = u2 ↓(p2 ◦ c).

Due to the above, we know that u2 ↓p1 = s21, hence we know that u2(p1) =
f = u2(p2). To prove that u2 ↓ p1 = u2 ↓ p2, it thus remains to show that for
all steps c, we have u2 ↓ (p1 ◦ c) = u2 ↓ (p2 ◦ c). From the above, it follows that
ua ↓ (p1 ◦ c) = (ua ↓p1)↓ c = sa1 ↓ c = s′ac . Hence the involved positions in ua can
be described with terms s′c and s2, where the depth of these is ≤ γ, and positions
p′1, p′2 with depth ≤ α (instead of p1 and p2, where depth (p1) , depth (p2) ≤ α−1,
we consider a position p′1 with depth 0, and a position p2 ◦ c, with depth one
more that p2). Since we know that (α, γ) holds, the fact that equality for the
involved positions holds in u1 transfers to equality in u2, as required.

Assume that depth (s1) = depth (s2) = γ + 1, in this case we have sb =
fb(sb,1, . . . , sb,eb), where fb is an eb-ary function symbol from Σt, and sb,i are
terms with depth (sb,i) ≤ γ. Analogously to the sab , for a, b ∈ {1, 2}, and i ≤ eb,
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we define sab,i to be the term obtained from sb,i by replacing every occurrence
of a variable xj with the term Ma ↓ qj . Now observe that if pathb = ε, then
ua ↓pb = sab ↓ ε = sab , and for a step c, we have that ua ↓ (pb ◦ c) = (ua ↓pb)↓ c =
sab ↓c = sab,c.

Analogously, if pathb = cbpath ′b, then ua ↓ pb = sab ↓ (cbpath ′b) = (sab ↓ cb) ↓
path ′b = sab,cb ↓path ′b, and for a step c, we have that ua ↓ (pb ◦ c) = (ua ↓pb)↓ c =

(sab,cb ↓path ′b)↓c = sab,cb ↓(path ′b ◦ c).
We now consider two subcases:
Assume that depth (s1) = depth (s2) = γ + 1 and path1 = path2 = ε. Since

u1 ↓ p1 = u1 ↓ p2, due to the above we have that f1 = u1(p1) = u1(p2) = f2,
and hence e1 = e2 (which we will denote with e). From part 1 of the proof, we
know that u2(p1) = u1(p1) = f1, and analogously u2(p2) = u1(p2) = f1. Hence it
remains to show that for all c ∈ {1, . . . , e}, we have that u2 ↓(p1◦c) = u2 ↓(p2◦c)
(where we know that these equalities hold in u1). From the above, and since
path1 = path2 = ε, we know that ua ↓ (pb ◦ c) = sab,c. Hence the involved
positions can be described with terms s′1, s′2 with depth (s′1) , depth (s′2) ≤ γ, and
positions p′1, p′2 with depth (p′1) , depth (p′2) = 0 ≤ α. Since subterm-equality for
the corresponding positions holds in u1, and we know that (α, γ) holds, equality
also holds in u2 as required.

Assume that depth (s1) = depth (s2) = γ + 1, one pathb is empty, the other
is not. Without loss of generality, assume that path1 = ε, and path2 = c2path ′2.
Then we know that ua(p1) = sa1(ε) = f1. Since u1 ↓ p1 = u1 ↓ p2, it follows
that u1(p2) = u1(p1) = f1, and thus (due to part 1 of the proof), we have
u2(pb) = u1(pb) = f1 for b = 1, 2. It remains to show that for all c ∈ {1, . . . , e1},
we have u2 ↓ (p1 ◦ c) = u2 ↓ (p2 ◦ c) (where we again know that this equality is
true in u1). Due to the above, we know that ua ↓(p1 ◦ c) = sa1,c, and ua ↓p2 ◦ c =

sa2,c2 ↓(path ′2 ◦ c). Hence the involved positions can be described with terms s1,c
and s2,c2 , which have depth ≤ γ, and positions (1, c) and (2, path ′2c), which have
depth 1 ≤ α and depth (p2) ≤ α− 1 ≤ α (note α ≥ 1).

Since subterm-equality for the corresponding positions holds in u1, and we
know that (α, γ) holds, equality also holds in u2 as required.

Assume that depth (s1) = depth (s2) = γ + 1, path1 = c1path ′1, and path2 =
c2path ′2, then due to the above we have that ua ↓ pb = sab,cb ↓ path ′b. Hence the
involved positions can be described with terms s1,c1 and s2,c2 with depth at
most γ, and positions p′1 and p′2 with depth (p′b) = depth (pb) − 1 ≤ α. Again,
we know from induction that (α, γ) holds, and thus equality for the positions in
u1 implies the corresponding equality in u2. This completes the case distinction
and therefore the proof.

To establish the move transfer functions for honest principals, the following
proposition is the key in this construction. It states that in “equivalent” states,
principals have the same moves available.

Proposition 6.6. Let Pr be a protocol, and let q1, q2 be states in CPr such that
q1 ≡ q2. Then for an honest principal a ∈ {1, . . . , k}, we have that ∆(q1, a) =
∆(q2, a).
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Proof. Let d1 = eqdeg (q1), which is identical to eqdeg (q2), since q1 ≡ q2. Let
Ma = terms(qa) for a ∈ {1, 2}. We then have M1 ∼d1 M2.

By definition of dPr, for any test (M,M ′) appearing in the protocol and
m ∈ {M,M ′} we have (depth (m) + 1) · depth (E) ≤ dPr.

Therefore, Lemma 6.5 implies that the terms constructed as left-hand or
right-hand of the comparisons of the tests are (d1 − 2 · dPr)-equivalent. Since
d1−2 ·dPr ≥ 0 if the states are non-final (this follows directly from the definition
of eqdeg (.), since we can without loss of generality assume that the length of
the protocol is at least 1), it follows that the resulting terms are identical in the
state q1 if and only if they are identical in q2. Since due to the definition of CPr
the available moves of an honest principal only depend on the outcome of the
involved tests, it follows that honest principals have the same available moves in
q1 and q2 in any non-final state. The proposition trivially holds in final states of
the protocol as here honest principals only have dummy moves available.

6.4 Move Transfer for the Adversary

We now show the analogous result of Section 6.3 for the adversary: If q1 ≡ q2,
then every move of the adversary in q1 can be transformed into one in q2 such
that the application of these moves again leads to a pair of equivalent states
(provided that the honest principals perform the same moves in q1 and q2, as
they can due to Proposition 6.6).

The situation for adversary moves is more complicated than for principal
moves for several reasons: Adversary moves may be terms of arbitrary complex-
ity, which can reference terms appearing in arbitrary depth in the states q1 or
q2. When transferring an adversary move from one state to the other, we have
to carefully ensure that up to the required depth, the same equalities hold in
both resulting states. Since the adversary cannot send arbitrary terms, but only
those which result from applications of A-terms to the messages he received pre-
viously during the protocol run, we start with an analysis of the structure of
adversary-constructable terms. In the following, the extraction-depth of a term
t with a variable x is the maximal depth of references into M that result in
replacing x with M in t and then determining the normal form with respect to
the theory E. Due to Lemma 6.4, the extraction-depth of a term t is at most
depth (t) · depth (E).

(over all paths in t) sum of, for each operator appearing in the path, the
maximal depth of an equations mentioning the operator in the equational theory
E

Definition. A position p is A-accessible in a state q of CPr, if there is an
A-term tA with extraction-depth at most dPr ·prvst(q) such that for all states q′

obtained from q by replacing the subterm at position p with a term t′, we have
that tA[terms(q′)/x] = t′.

Intuitively, the definition requires that for the adversary, there is a “way to
extract the subterm at position p from the state q.” However, since the subterm
at p may appear in more than one position, the technical definition has to make
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sure that the “extraction” performed by the adversary-term t gives the term at
position p, no matter what the term actually is. Note that the restriction on
the extraction-depth of tA is stronger than only demanding that depth (p) ≤
dPr · prvst(q): The term tA might need to access elements in deeper positions
that allow him to gain access to the term in position p (as an example, this might
be nonces used as symmetric keys). However, if a position p is A-accessible in q,
then obviously depth (q) ≤ dPr · prvst(q).

Obviously, A-accessibility of a position is invariant under state-equivalence,
as long as equivalence holds up to a sufficient degree—this follows trivially from
the definition:

Proposition 6.7. Let q1 and q2 be states in CPr, such that q1 ≡ q2. Then a
position p is A-accessible in q1 if and only if it is A-accessible in q2, and the
same term can be used for extracting.

Proof. This follows since for any state q, we have that eqdeg (q) ≥ dPr ·prvst(q):
By definition, this is true for final states of the protocol. For a non-initial
state q, we have that eqdeg (pred(q)) ≥ eqdeg (q), while obviously prvst(q) >
prvst(pred(q)).

In the following, for a state q, we denote with dA(q) the set of messages that
the adversary can construct in the state q, i.e., the set of terms of the form
[[t[MA/x]]], where t is a term from TA and MA again denotes the sequence of
messages received by the adversary so far in the protocol run leading up to the
state q.

The following proposition states that terms t that the adversary can extract
from the current state, and that cannot be constructed from the adversary him-
self have to be present in a position that is A-accessible to the adversary. The
technical requirement for t in the proposition expresses that the outmost oper-
ation of the term t has not been computed by the adversary, but by an honest
principal. As an example, this may be an encryption performed by a principal
(where the adversary does not know both the nonce used for randomization and
the plaintext), or a signature of a principal where the adversary does not have
the secret signature key. Intuitively, this is clear, as the results of computations
of honest principals appear with limited depth in the state where the computa-
tion was first performed, and while it is possible for the adversary to “copy” a
term containing the subterm in question to a position with higher depth, this
does not help him accessing the subterm: For example, a principal will never
decrypt a ciphertext contained so deeply in an adversary-sent term such that
the normal protocol rules will never even access that position.

Proposition 6.8. Let q be a state in CPr, and let t ∈ dA(q) be a term not of
the form tA[t1/x1, . . . , tn/xn] for a term tA ∈ TA with depth 1, and t1, . . . , tn ∈
dA(q). Then there an A-accessible position p in q with q↓p = t.

Proof. By choice of t, the term was constructed by an honest principal. Consider
the first state q′ in the protocol run leading up to q in which the adversary can

35



construct t, let q′′ be the direct predecessor of q′ (Obviously, the choice of t
implies that q′ is not an initial state of the protocol). First consider the case
that the copy of t that the adversary accesses in the state q′ is constructed by
a principal in the transition from q′′ to q′. In this case the claim holds since
results from principal computations appear with depth at most dPr, and since
the adversary accesses the new copy of t, the position is A-accessible.

This argument also covers the case when t uses more than one extraction
to access the term t: The extraction-depth of each single required extraction is
bound by dPr. Since different extractions are performed in parallel, the depths
do not influence each other, i.e., the extraction-depth of the entire term is bound
by dPr. (An example for such a situation is then access to a symmetric key is
needed to decrypt t itself; if the key appears at a certain depth, this depth does
not add to the depth of the decrypted message.)

Hence assume that the copy of t which the adversary accesses was computed
in a transition leading to a (not necessarily direct) predecessor state of q′′, or
to q′′ itself. Since the adversary cannot extract t in q′′, a partial extraction
must have been performed by a principal, i.e., an honest principal constructed
a message using an extraction referring into the superterm of the relevant copy
of t. Between the root of the extracted superterm and the appearance of t itself,
no adversary-computed subterm can appear, since gaining access to such a term
would not help the adversary in extracting t (this term was constructable by the
adversary in q′′ already).

The path from the root of the extracted subterm to the root of t therefore
contains only principal-computed computations, and thus is restricted in depth
by dPr · prvst(q′′). The result of the partial extraction appears in q′ at depth of
at most dPr. Hence t appears in a position with depth at most dPr · prvst(q′′) +
dPr = dPr · prvst(q′) ≤ dPr · prvst(q). This inequality is true since prvst(q′) =
prvst(q′′) + 1, as q′ is a direct successor of q′′, and since q is a (not necessarily
direct) successor of q′, it follows that prvst(q′) ≤ prvst(q).

Due to the same argument as above, extractions appearing in parallel can be
treated independently.

The following lemma now establishes “Move Transfer” for the adversary:
When two states are equivalent, an adversary move from one can be “trans-
formed” into a move for the other, such that the follow-up states are equivalent—
provided that honest principals perform the same moves (as they can due to
Proposition 6.6). In the following lemma, note that every possible choice of q′

leads to the same number d′.

Lemma 6.9. Let q1 and q2 be non-final states in CPr such that q1 ≡ q2. Let
d′ = eqdeg (q′) + 2 ·dPr, where q′ is a successor state of q1 or q2. Then for every
adversary move m1

A in q1, there exists an adversary move m2
A in q2 such that

terms(q1) ◦m1
A[M1

A/x] ∼d′ terms(q2) ◦m2
A[M2

A/x]

(where M1
A and M2

A are the sequences of messages received by the adversary in
q1 and q2). The move m2

A can be computed from the move m1
A and the informa-

tion that A has above q1 and q2 with information degree 3.
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We note that although the formal proof of Lemma 6.9 below is quite long
and technical, the construction itself is rather straight-forward: The move m2

A
is “almost” the same one as m1

A, with the following modifications:

1. If m1
A uses terms that “extract” terms in q1 that appear in positions with

high depth, the references are changed to positions with “low” depth. This
“rewriting” of the adversary move can be performed due to Proposition 6.8.

2. Since the main idea of the construction is that “we are only interested in
terms down to a certain depth,” we need to ensure that terms below this
depth do not play a role. In order to ensure that positions appearing with
“very high depth” in the adversary move have no effect, we simply “delete”
these subterms—we replace them with new adversary nonces (not appearing
previously anywhere). This implies that our construction does not introduce
any “new equalities” into the system.

The number of cases needed to be considered (considering positions p1 and p2
referring either into the new message, components of the old state, etc) make the
formal proof technical and tedious, however we stress that the above intuitive
idea is the main ingredient to the proof.

Proof. Let d = eqdeg
(
q1
)

= eqdeg
(
q2
)

(these values are identical since q1 ≡ q2).

By definition, it then follows that d = eqdeg
(
`− prvst(q1)

)
. Also by definition,

we know that d′ = eqdeg (q′) + 2 · dPr = eqdeg (`− prvst(q′)) + 2 · dPr. Since
q′ is a successor of q1 or q2, we have that prvst(q′) = prvst(q1) + 1. Let s =
`−prvst(q1)−1. It then follows that d = eqdeg (s+ 1) and d′ = eqdeg (s)+2·dPr.
By definition of ≡ we know that q1 ∼d q2. From the above and the definition of
eqdeg (.), it follows that

d = 2eqdeg (s) + 4dPr
+2mdagdpthA(eqdeg (s) + 2 · dPr) + 2 · ` · dPr

= 2d′ + 2mdagdpthA(d′) + 2 · ` · dPr.

Let m1 = [[m1
A[M1

A/x]]] be the resulting message sequence sent by the ad-
versary, and let ti denote the terms in that sequence, i.e., m1 = (t1, . . . , tk). We
construct a directed acyclic graph m1

DAG with root root having k outgoing edges
leading to trees representing the terms t1, . . . , tk (where k is the number of roles
in the protocol). For a position p = (i, path), with m1

DAG → p we denote the
vertex in m1

DAG obtained when following the path i ◦ path from root , and with
m1

DAG ↓p, we denote the subterm represented by mDAG → p (where the subterm
represented by a vertex is interpreted in the canonical way). We use the same
notation for the other DAGs appearing in the remainder of the proof. It follows
that m1 ↓ p = m1

DAG ↓ p for all positions p. We say that positions p1 and p2
with depth at most d′ are equivalent (written p1 ∼ p2), if m1 ↓p1 = m1 ↓p2. We
modify m1

DAG as follows:

For each equivalence class, let p0 be a representative, and for all p′ ∼ p0,
redirect all incoming edges of m1

DAG → p′ to m1
DAG → p0.
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The construction ensures that if p1 ∼ p2, then m1
DAG → p1 = m1

DAG → p2.
The terms represented by the involved positions remain invariant, i.e., for all
positions p, we have m1 ↓ p = m1

DAG ↓ p. In particular, the resulting graph is
acyclic: A cycle would imply the existence of an infinite subterm that is not
present in m1. For a position p = (i, path), let dagdepth(p) be the length of a
longest path from the root of the term representing ti to m1

DAG → p (which may
be longer than path).

We first establish a bound on the resulting depth for positions that originally
have a depth of at most d′, i.e., those positions for which we want to establish
equivalence.

Fact 1 If p is a position with depth (p) ≤ d′, then dagdepth(p) ≤ mdagdpthA(d′).

Proof. (of Fact 1) Let dagdepth(p, i) be the dagdepth of p after i redirection
steps. We claim that dagdepth(p, i) ≤ 2i · (d′ + 1), if depth (p) ≤ d′. For i = 0,
this is obvious, since dagdepth(p, 0) = depth (p) ≤ d′. Note that on each path
in m1

DAG, at most one edge is redirected in each step. Let p be a position with
depth (p) ≤ d′ whose dagdepth changes in step i. Now let p0 be the representative
chosen in step i. Then there is a position p′ with depth (p′) ≤ d′ and a path path
such that m1

DAG → (p′ ◦ path) = m1
DAG → p after step i − 1, and the set

of incoming edges of m1
DAG → p′ changes in step i (either because p′ is the

representative p0 and thus the vertex gets additional incoming edges, or the
incoming edges of m1

DAG → p′ get rerouted in this step). Let path be a longest
path such that m1

DAG → (p′ ◦ path) = m1
DAG → p before step i. It follows that

|path| ≤ dagdepth(p, i− 1).
After step i, m1

DAG → p′ = m1
DAG → p0. Since on each path, at most one edge

is redirected in the step i, it follows that path is still the longest path from p′ to p
in m1

DAG after step i. Since we assumed that dagdepth(p, i) 6= dagdepth(p, i− 1),
we know that the longest path from root to m1

DAG → p after step i is one visiting
p′. Hence dagdepth(p, i) = dagdepth(p′, i)+|path|. We also know dagdepth(p′, i) =
dagdepth(p′′, i−1), where p′′ is the position in the equivalence class of p0 with the
maximal dagdepth before step i. It follows that dagdepth(p, i) = dagdepth(p′, i)+
|path| = dagdepth(p′′, i − 1) + |path| ≤ dagdepth(p′′, i − 1) + dagdepth(p, i − 1).
Due to induction, since depth (p′′) , depth (p) ≤ d′, we have dagdepth(p′′, i −
1), dagdepth(p, i− 1) ≤ 2i−1 · (d′+ 1), and hence dagdepth(p, i) ≤ 2 · (2i−1 · (d′+
1)) = 2i · (d′ + 1) as claimed.

The number of steps in the construction is the number #e of equivalence
classes. Since a pair of positions where one is a proper prefix of the other cannot
be equivalent, #e is bounded by the number of positions with depth at most
d′ that are no prefixes of each other. This is the number of leaves in a tree at
level d′, where the root vertex has out-degree k, and the remaining vertices have
an out-degree of at most the maximal arity of an operator from Σt. Hence if
depth (p) ≤ d′, then dagdepth(p) = dagdepth(p,#e) ≤ (2#e) · (d′ + 1), which is
exactly the definition of mdagdpthA(d′).

From m1
DAG, we now obtain mDAG as follows: The idea of the construction

is to ensure that every term that appears in the message that is sent to the
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adversary which contains a reference to a subterm of a term appearing in depth
at most d′ in q1, is replaced with a marker which indicates the subterm that
appears at this position. The message that the adversary needs to send in q2

to obtain ∼d′ -equivalence is obtained by instantiating these markers with the
corresponding subterms appearing in q2.

1. For all positions pDAG, p, r and paths path such that m1
DAG ↓pDAG = q1 ↓r,

depth (r) ≤ d′, and m1
DAG → p = m1

DAG → (pDAG ◦ path), replace the vertex
at mDAG → p with a vertex containing the marker (r → path). Remove all
vertices from mDAG that are not reachable from root anymore.

2. For all positions p with dagdepth(p) > mdagdpthA(d′), if mDAG → p still
exists, insert a new adversary nonce into mDAG → p, unless on all outgo-
ing branches, one of the following is true: After ` · dPr steps, the branch
stops or contains a marker referring to an adversary-constructed term or an
A-accessible position in q1. Replace all entries appearing in positions with
dagdepth more than mdagdpthA(d′) + ` · dPr with new adversary nonces.

To make the construction well-determined, we demand that there is an injec-
tive function f such that in the i-th protocol step (i.e., if prvst(q1) = prvst(q2) =
i − 1), the term t is replaced with f(t, i); without loss of generality we assume
that the nonces in the image of f do not appear in the original adversary moves
by using a unique prefix for the name of the newly introduced nonces that does
not appear in the names of nonces in CPr. By construction, the adversary can
access the terms t that need to be replaced (since they do not appear below
markers, they have been constructed by the adversary) and hence the appearing
values f(t, i) can be computed with the knowledge available to the adversary.

Note that m1
DAG → p1 = m1

DAG → p2 does not necessarily imply mDAG →
p1 = mDAG → p2 (there might be a prefix p′ of p1 such that mDAG → p′

contains a marker, then mDAG → p1 does not exist, while mDAG → p2 still
does). In particular, the above can “fail” if for a prefix p′ of p, mDAG → p′ has
already been overwritten with a marker. In this case, the “replace” operation
does nothing. By construction, if mDAG → p contains a marker (r → path), then
|path| ≤ dagdepth(p). and m1 ↓p = q1 ↓(r ◦ path).

Fact 2 Let p be a position such that mDAG → p contains a marker (r → path).
Then |path| ≤ dagdepth(p) ≤ mdagdpthA(d′) + ` · dPr.

Proof. (of Fact 2) Since mDAG → p contains the marker (r → path), there is
no prefix p′ of p such that mDAG → p′ contains a newly introduced adversary
nonce. In particular, this implies dagdepth(p) ≤ mdagdpthA(d′) + ` · dPr. Hence
due to construction, |path| ≤ dagdepth(p) ≤ mdagdpthA(d′) + ` · dPr.

Let m2
DAG be the graph obtained from mDAG by replacing every vertex

containing a marker (r → path) with the term q2 ↓ (r ◦ path), and define
m2 =

(
m2

DAG ↓1, . . . ,m2
DAG ↓k

)
. In particular, if mDAG → p contains a marker

(r → path), then m2 ↓ p = q2 ↓ (r ◦ path). In our construction, m2 will be the
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message sequence actually sent by the adversary as a consequence of the appli-
cation of the move m2

A, i.e., m2 = m2
A[M2

A/x]. We first show that m2 satisfies
the required properties, and then prove that an adversary move m2

A resulting
in this message to be sent can be constructed given the adversary’s information
about q1, q2, and the adversary move mA. The following Fact 3 establishes the
first condition of ∼d′ -equivalence. We prove a stronger statement than required
by ∼d′ -equivalence since we will require it later in the proof.

Fact 3 Let p be a position such that depth (p) ≤ mdagdpthA(d′) + ` · dPr and
there is no prefix of p that contains a new adversary nonce. Then m1(p) = m2(p).

Proof. (of Fact 3) First assume that there is a minimal prefix pr of p such that
mDAG → pr contains a marker (r → path). Let p = pr ◦ w. From Fact 2, it
follows that |path| ≤ mdagdpthA(d′) + ` · dPr, and from the construction, we
know depth (r) ≤ d′. It therefore follows that for a ∈ {1, 2}, we have that

ma(p) = (ma ↓pr)(w)
= (qa ↓(r ◦ path))(w)
= qa(r ◦ path ◦ w) .

We also know that |w| ≤ depth (p) ≤ mdagdpthA(d′) + ` · dPr. It therefore
follows that depth (r ◦ path ◦ w) = depth (r)+|path|+|w| ≤ d′+mdagdpthA(d′)+
` ·dPr + mdagdpthA(d′)+ ` ·dPr ≤ d, and thus due to d-equivalence of q1 and q2,
it follows that m1(p) = q1(r ◦ path ◦ w) = q2(r ◦ path ◦ w) = m2(p) as required.

Now assume there is no prefix of p containing a marker. Since there is also
no prefix of p containing a newly introduced adversary nonce, and it follows that
m1(p) = mDAG(p) = m2(p) as required.

We now prove s1 := terms(q1) ◦ m1 ∼d′ terms(q2) ◦ m2 =: s2. Let p be a
position with depth (p) ≤ d′. We show that s1(p) = s2(p). If p is a position
referring into q1/q2, the claim holds since q1 ∼d q2 and d′ ≤ d. If p refers
into m1/m2, the equality follows from Fact 3 which we can apply since d′ ≤
mdagdpthA(d′) + ` · dPr, and since depth (p) ≤ d′, we know that due to Fact 1,
dagdepth(p) ≤ mdagdpthA(d′), and thus no prefix of p contains a new adversary
nonce.

Now assume s1 ↓p1 = s1 ↓p2 for positions p1, p2 with depth (p1), depth (p2) ≤
d′. Again, when pb is a position of sa referring into qa (or ma), we write qa ↓pb
(or ma ↓ pb) for the term contained in qa (or ma) addressed by pb. In the case
that both positions refer into q1/q2, the claim follows: Since d′ ≤ d and q1 ∼d q2,
we have that q1 ↓ p1 = q1 ↓ p2 implies q2 ↓ p1 = q2 ↓ p2 as required. We make a
case distinction for the non-trivial cases.

Assume both p1 and p2 refer to a term from m1/m2. By construction, since
p1 ∼ p2, m1

DAG → p1 = m1
DAG → p2. We need to show that m2

DAG ↓ p1 =
m2

DAG ↓p2. Obviously, if mDAG → p1 = mDAG → p2, this follows trivially. Hence
assume this is not the case. In particular, a prefix of one of these positions has
been modified in the construction of mDAG from m1

DAG. Since for b ∈ {1, 2}
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we have depth (pb) ≤ d′, Fact 1 implies that dagdepth(pb) ≤ mdagdpthA(d′).
In particular, no new adversary-nonces have been written into a prefix of pb.
Therefore, we assume without loss of generality that there is a prefix p of p1
such that mDAG → p contains a marker. Since in m1

DAG, there is a path from
m1

DAG → p to m1
DAG → p1 = m1

DAG → p2 , a marker was also written into
a prefix of m1

DAG → p2, unless there already was a prefix of p2 containing a
marker. Thus both p1 and p2 have prefixes containing markers, i.e., for i =
1, 2, there are positions p′i which still exist in mDAG and pi = p′i ◦ wi, where
depth (p′i) , |wi| ≤ depth (pi) ≤ d′, and mDAG → p′i contains a marker (ri →
pathi), where depth (ri) ≤ d′. Due to Fact 2, |pathi| ≤ mdagdpthA(d′) + ` · dPr.
It follows that

ma ↓pi = ma ↓(p′i ◦ wi)
= (ma ↓p′i)↓wi
= (qa ↓(ri ◦ pathi))↓wi
= qa ↓(ri ◦ pathi ◦ wi).

Hence q1 ↓(r1 ◦ path1 ◦ w1) = m1 ↓p1 = m1 ↓p2 = q1 ↓(r2 ◦ path2 ◦ w2). Note
that depth (ri ◦ pathi ◦ wi) = depth (ri)+ |pathi|+ |wi| ≤ d′+mdagdpthA(d′)+` ·
dPr +d′ ≤ d. From q1 ∼d q2 and the above it follows that q2 ↓(r1 ◦ path1 ◦w1) =
q2 ↓ (r2 ◦ path2 ◦ w2), and therefore m2 ↓ p1 = q2 ↓ (r1 ◦ path1 ◦ w1) = q2 ↓
(r2 ◦ path2 ◦ w2) = m2 ↓p2 as required.

Assume p1 refers to a term from m1/m2, and p2 to a term from q1/q2. Since
m1 ↓ p1 = q1 ↓ p2, and depth (p2) ≤ d′, by the construction of mDAG, there is a
prefix pr of p1 such that mDAG → pr contains a marker (r → path) for some
path path and position r with depth (r) ≤ d′, and p1 = pr ◦ w for some w with
|w| ≤ depth (p1) ≤ d′. Due to Fact 2, |path| ≤ mdagdpthA(d′)+ ` ·dPr. Note that

ma ↓p1 = ma
DAG ↓(pr ◦ w) = (ma

DAG ↓pr)↓w
= (qa ↓(r ◦ path))↓w = qa ↓(r ◦ path ◦ w).

It follows that q1 ↓p2 = m1 ↓p1 = q1 ↓(r◦path ◦w). Since depth (p2) ≤ d′ ≤ d,
and depth (r ◦ path ◦ w) = depth (r) + |path| + |w| ≤ d′ + mdagdpthA(d′) + ` ·
dPr + d′ ≤ d, the prerequisite q1 ∼d q2 implies q2 ↓p2 = q2 ↓ (r ◦ path ◦ w), and
hence we conclude that q2 ↓p2 = q2 ↓(r ◦ path ◦ w) = m2 ↓p1, as required.

This completes the proof showing that for positions p1, p2 with depth at
most d′, if s1 ↓ p1 = s1 ↓ p2, then also s2 ↓ p1 = s2 ↓ p2. We now show the other
direction: If s2 ↓p1 = s2 ↓p2, then also s1 ↓p1 = s1 ↓p2. We use an analogous case
distinction as in the proof of the previous direction. Again the claim is trivial if
both positions refer into q1/q2.

Assume that p1 refers to a term from m1/m2, and p2 to a term from q1/q2. With
notation as earlier, then m2 ↓p1 = q2 ↓p2. We show m1 ↓p1 = q1 ↓p2, where we
only require that depth (p1) ≤ d′, and depth (p2) ≤ 2 ·d′+mdagdpthA(d′)+` ·dPr
(we will use this stronger result in the sequel). Note that no extension of p1 can
contain a newly introduced adversary nonce: Otherwise, equality with a subterm
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from q2 would not hold. Assume m1 ↓p1 6= q1 ↓p2, and let w be a minimal path
such that m1(p1 ◦ w) 6= q1(p2 ◦ w).

We first show that there is no prefix of p1◦w that refers to a marker in mDAG.
Assume indirectly that there is a prefix p′ of p1 ◦ w such that p′ ◦ w′ = p1 ◦ w
for some path w, and mDAG → p′ contains the marker (r → path). From Fact 2,
it follows that |path| ≤ mdagdpthA(d′) + ` · dPr. Since p′ ◦ w′ = p1 ◦ w, one of
{p′, p1} must be a prefix of the other. We first assume p′ is a prefix of p1, i.e.,
there is some w′′ such that p1 = p′ ◦w′′. Then |w′′| ≤ depth (p1) ≤ d′. It follows
that

ma ↓p1 = ma ↓(p′ ◦ w′′)
= (ma ↓p′)↓w′′
= (qa ↓(r ◦ path))↓w′′
= qa ↓(r ◦ path ◦ w′′).

In particular, q2 ↓ p2 = m2 ↓ p1 = q2 ↓ (r ◦ path ◦ w′′). Since depth (p2) ≤
2 · d′ + mdagdpthA(d′) + ` · dPr ≤ d, and depth (r ◦ path ◦ w′′) = depth (r) +
|path|+ |w′′| ≤ d′+ mdagdpthA(d′) + ` ·dPr +d′ ≤ d, the d-equivalence of q1 and
q2 implies that q1 ↓p2 = q1 ↓(r ◦path ◦w′′). Hence we obtain m1(p1 ◦ w) = (m1 ↓
p1)(w) = (q1 ↓(r ◦ path ◦w′′))(w) = (q1 ↓p2)(w) = q1(p2 ◦ w), a contradiction to
the choice of w.

Now assume p1 is a prefix of p′, and let p′ = p1 ◦w′′ for some path w′′. Since
p′ contains a marker, due to Fact 2, it follows that depth (p′) ≤ dagdepth(p′) ≤
mdagdpthA(d′) + ` · dPr. We have p1 ◦ w = p′ ◦ w′ = p1 ◦ w′′ ◦ w′, and hence
w = w′′◦w′. We know that q2 ↓(p2◦w′′) = m2 ↓(p1◦w′′) = m2 ↓p′ = q2 ↓(r◦path).
Note that depth (p2 ◦ w′′) = depth (p2)+ |w′′| ≤ 2 ·d′+ mdagdpthA(d′)+ ` ·dPr +
depth (p′) ≤ 2 ·d′+2 ·mdagdpthA(d′)+` ·dPr+` ·dPr ≤ d, and depth (r ◦ path) =
depth (r)+|path| ≤ d′+mdagdpthA(d′)+`·dPr ≤ d. Therefore the above equality
and the d-equivalence of q1 and q2 implies q1 ↓ (p2 ◦ w′′) = q1 ↓ (r ◦ path). It
therefore follows that m1 ↓ (p1 ◦ w) = m1 ↓ (p′ ◦ w′) = (m1 ↓ p′) ↓ w′ = (q1 ↓
(r ◦ path)) ↓ w′ = (q1 ↓ (p2 ◦ w′′)) ↓ w′ = q1 ↓ (p2 ◦ w′′ ◦ w′) = q1 ↓ (p2 ◦ w), a
contradiction.

Since we obtained a contradiction in both cases, we know that there is no
prefix of p1 ◦ w referring to a marker.

Since there is also no extension of p1 referring to a new adversary nonce,
it follows that ma(p1 ◦ w) = mDAG(p1 ◦ w). Due to minimality of w, we know
that m1(p1 ◦ w) 6= error, i.e., the position exists. Since no prefix of p1 ◦ w
contains a new adversary nonce or a marker, we know that |w| ≤ depth (p1 ◦ w) ≤
dagdepth(p1 ◦w) ≤ mdagdpthA(d′) + ` ·dPr. Hence depth (p2 ◦ w) = depth (p2) +
|w| ≤ 2d′ + mdagdpthA(d′) + ` · dPr + mdagdpthAd

′ + ` · dPr ≤ d. It therefore
follows from the d-equivalence of q1 and q2 that m1(p1 ◦ w) = mDAG(p1 ◦ w) =
m2(p1 ◦ w) = q2(p2 ◦ w) = q1(p2 ◦ w), again a contradiction.

Assume both p1 and p2 refer to a term from m1/m2. If mDAG → p1 = mDAG →
p2, then by construction, m1 ↓p1 = m1 ↓p2 as required. Hence assume this is not
the case. First assume there is a prefix pr of p1 such that pr contains a marker
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(r → path), i.e., p1 = pr ◦ w for some w with |w| ≤ depth (p1) ≤ d′. Due to
Fact 2, |path| ≤ mdagdpthA(d′) + ` · dPr. It follows that

ma ↓p1 = ma ↓(pr ◦ w)
= (ma ↓pr)↓w
= (qa ↓(r ◦ path))↓w
= qa ↓(r ◦ path ◦ w),

and hence m2 ↓p2 = m2 ↓p1 = q2 ↓(r ◦ path ◦ w).
Since depth (r ◦ path ◦ w) = depth (r)+ |path|+ |w| ≤ d′+mdagdpthA(d′)+` ·

dPr+d′, and depth (p2) ≤ d′, the above case (where we only required the position
referring into q1/q2 to have a depth bounded by 2 · d′+ mdagdpthA(d′) + ` · dPr)
implies q1 ↓(r◦path ◦w) = m1 ↓p2, and thus m1 ↓p2 = q1 ↓(r◦path ◦w) = m1 ↓p1
as required. The case that a prefix of p2 contains a marker is symmetric.

Hence assume no prefix of p1 or p2 leads to a position in mDAG containing a
marker. Assume there is a minimal path w such that m1(p1 ◦ w) 6= m1(p2 ◦ w).
First assume that there is a prefix pr of p1 ◦w or of p2 ◦w containing a marker,
without loss of generality assume that p1 ◦ w = pr ◦ w′, and mDAG → pr con-
tains the marker (r → path). From Fact 2, we know that dagdepth(pr), |path| ≤
mdagdpthA(d′) + ` · dPr. Since no prefix of p1 contains a marker, and there is a
common extension of p1 and pr, pr must be an extension of p1, i.e., there is a path
w′′ such that pr = p1 ◦w′′ for some w′′ with |w′′| ≤ depth (pr) ≤ dagdepth(pr) ≤
mdagdpthA(d′) + ` · dPr. It thus follows that p1 ◦w = pr ◦w′ = p1 ◦w′′ ◦w′, i.e.,
w = w′′◦w′. Obviously, we have mDAG → (p1◦w) 6= mDAG → (p2◦w), and there
is no prefix of p2 ◦w such that m2 at the position of this prefix contains a newly
introduced adversary nonce (otherwise, equality of m2 ↓(p2◦w) with a subterm of
q2 would not hold, but we know that m2 ↓(p2 ◦w) = m2 ↓(p1 ◦w) = m2 ↓(pr ◦w),
which is a term appearing in q2).

We now show that there is also no prefix of p2 ◦ w that contains a marker
(where we are still considering the case that such a prefix does exist for p1 ◦w).
Assume that this is the case, i.e. (since we know that no prefix of p2 itself contains
a marker), there is some prefix w′′′ of w such that p2 ◦w′′′ = p′r and mDAG → p′r
contains a marker (r′ → path ′), where depth (r′) ≤ d′, and we know due to
Fact 2 that

∣∣path ′
∣∣ ≤ mdagdpthA(d′) + `dPr. Since w′′ is also a prefix of w, one

of {w′′, w′′′} must be a prefix of the other. Without loss of generality assume
that w′′ = w′′′′ ◦w′′′ for some w′′′ with |w′′′| ≤ |w′′| ≤ mdagdpthA(d′) + `dPr. It
follows that w = w′′′′ ◦ w′′′︸ ︷︷ ︸

=w′′

◦w′, and for a ∈ {1, 2}, we have

ma ↓(p1 ◦ w′′) = ma ↓pr = qa ↓(r ◦ path),

and

ma ↓(p2 ◦ w′′) = ma ↓(p2 ◦ w′′′′ ◦ w′′′) = (ma ↓p′r)↓w′′′
= qa ↓(r′ ◦ path ′ ◦ w′′′).

Since m2 ↓p1 = m2 ↓p2, it follows that q2 ↓(r ◦ path) = m2 ↓(p2 ◦w′′) = m2 ↓
(p2 ◦ w′′) = q2 ↓ (r′ ◦ path ′ ◦ w′′′). Since depth (r ◦ path) = depth (r) + |path| ≤
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d′ + mdagdpthA(d′) + `dPr ≤ d, and depth
(
r′ ◦ path ′ ◦ w′′′

)
= depth (r′) +∣∣path ′

∣∣ + |w′′′| ≤ d′ + mdagdpthA(d′) + `dPr + mdagdpthA(d′) + `dPr ≤ d, and
q1 ∼d q2, it follows that q1 ↓ (r ◦ path) = q1 ↓ (r′ ◦ path ′ ◦ w′′′), and therefore
m1(p1 ◦ w) = m1(p1 ◦ w′′ ◦ w′) = m1(p1 ◦ w′′)(w′) = q1

(
r′ ◦ path ′ ◦ w′′′

)
(w′) =

q1(r ◦ path)(w′) = m1 ↓(p1 ◦ w′′)(w′) = m1(p1 ◦ w′′ ◦ w′) = m1(p1 ◦ w), which is
a contradiction to the choice of w. We therefore know that no prefix of p2 ◦ w
can contain a marker. Since we also know, due to the above, that no prefix
of p2 ◦ w contains a new adversary nonce, the construction of mDAG implies
that depth (p2 ◦ w) ≤ dagdepth(p2 ◦ w) ≤ mdagdpthA(d′) + ` · dPr, and hence
in particular, |w′| ≤ |w|mdagdpthA(d′) + ` · dPr. Hence depth (r ◦ path ◦ w′) =
depth (r)+|path|+|w′| ≤ d′+mdagdpthA(d′)+`·dPr+mdagdpthA(d′)+`·dPr ≤ d.
Since due to the above, we know that depth (p2 ◦ w) ≤ mdagdpthA(d′) + ` · dPr
and no prefix of this position contains a new adversary nonce, we can apply
Fact 3 and obtain m1(p2 ◦ w) = m2(p2 ◦ w). Since q1 ∼d q2, it follows that
m1(p2 ◦ w) = m2(p2 ◦ w) = m2(p1 ◦ w) = m2(pr ◦ w′) = q2(r ◦ path ◦ w′) =
q1(r ◦ path ◦ w′) = m1(pr ◦ w′) = m1(p1 ◦ w), a contradiction. Therefore, no
prefix of p1 ◦ w or p2 ◦ w contains a marker.

Now assume that a prefix of p1 ◦ w contains a new adversary nonce. Since
depth (p1) ≤ d′, Fact 1 implies that dagdepth(p1) ≤ mdagdpthA(d′), and hence
no prefix of p1 can contain a new adversary nonce.

Therefore, mDAG → (p1 ◦ w′) contains an adversary nonce introduced for a
term t and for a paths w′ such that w = w′ ◦ w′′ for some w′′. Since m2 ↓ p1 =
m2 ↓p2, it follows that mDAG → (p2◦w′) contains the same new adversary nonce
introduced for the same term t. By construction, this implies that m1 ↓(p1 ◦w′)
and m1 ↓(p2 ◦ w′) both contain the same term t, and thus m1 ↓(p1 ◦ w) = (m1 ↓
(p1 ◦ w′)) ↓ w′′ = t ↓ w′′ = (m1 ↓ (p2 ◦ w′)) ↓ w′′ = m1 ↓ (p2 ◦ w), which is a
contradiction to the choice of w. Hence, no prefix of p1 ◦ w contains a newly
introduced adversary nonce, analogously the same is true for p2.

Therefore, no prefix if p1 ◦ w or p2 ◦ w points to a marker or a new adver-
sary nonce, and it follows that m1(p1 ◦ w) = mDAG((p1 ◦ w)) = m2(p1 ◦ w) =
m2(p2 ◦ w) = mDAG(p2 ◦ w) = m1(p2 ◦ w), a contradiction. Hence m1 ↓ p1 =
m2 ↓p2 as claimed.

We now show that there is an adversary move m2
A that results in the message

m2 being sent, and that the adversary can compute this move from the original
move m1

A and the knowledge available to him in the states q1 and q2 in infor-
mation degree 3 (obviously the result for information degrees 1 and 2 follows).
Note that by definition of ∼d, the same set of identities C is corrupted in q1 and
q2. In particular, the set of moves available to the adversary is the same in q1

and q2.

The message m2 that the adversary has to send is obtained from m1 (which
is available to the adversary, as it is computable from m1

A and the information
available in q1) by replacing every position p such that mDAG → p contains
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a marker (r → path) with the term q2 ↓ (r ◦ path), and afterwards replacing
remaining terms at a certain depth with new adversary nonces.

In the following, we show how the adversary can perform these replacement
operations for markers (r → path) such that the position r ◦ path is one that the
adversary can access, i.e., a term computed by a principal that the adversary
accesses, or a subterm of a message sent by the adversary previously in the
protocol run which the adversary constructed himself. Afterwards, we show that
performing the replacements for these cases also ensures that positions with
markers not satisfying these conditions contain the correct terms. Hence, let p
be a position such that mDAG → p contains a marker (r → path), and there is no
proper prefix p′ of p such that mDAG → p′ contains a marker, and the position
r ◦ path is either adversary-constructed, or adversary-accessible. We consider
these two cases separately. Note that for every position p such that mDAG →
p contains a marker, the term m1 ↓ p can be computed by the adversary—
otherwise, a prefix of that position already must contain a marker.

1. Assume that q1 ↓ (r ◦ path) is a term computed by the adversary in the
past (i.e., there is a subterm of a past adversary move that results in this
term). In this case, the term obviously can be constructed by using the
same subterm. To recognize this case, the adversary merely has to compare
every subterm of m1 to every term sent by the adversary previously in the
protocol run leading up to q1, and substitute the corresponding term sent
in the protocol run leading to q2. Note that by construction of the protocol
model, the adversary has access to all terms that he sent to principals in the
protocol run (these are stored in the sequence MA).

2. Assume that q1 ↓ (r ◦ path) is a term that the adversary cannot compute
himself, i.e., a term not of the form mentioned in the statement of Propo-
sition 6.8. Since the adversary can construct q1 ↓ (r ◦ path) in q1, due to
Proposition 6.8 there is an A-accessible position p′ containing this term in
q1. Since depth (r ◦ path) ≤ d′+mdagdpthA(d′)+`·dPr ≤ d, the d-equivalence
of q1 and q2 and q1 ↓ (r ◦ path) = q1 ↓p′ and depth (p′) ≤ ` · dPr imply that
q2 ↓ (r ◦ path) = q2 ↓p′. Due to Proposition 6.7, p′ is A-accessible in q2, and
hence q2 ↓(r ◦ path) is constructable by the adversary. To recognize this case
and determine the correct position p′, the adversary only has to compare ev-
ery subterm of the message m1 to all terms q1 ↓p′ for A-accessible positions
p′. The adversary is able to do that by performing a complete search over all
terms te having extraction depth of at most dPr ·prvst(q1). Note that a finite
bound for the number of terms to be considered can be established, however
this is not necessary for the proof, as we only need to show that the result-
ing adversary move depends only on the available information—the notion
of bisimulation only requires the move transfer functions to exist, without
further requirements of computability or complexity. Due to Proposition 6.7,
the adversary can use the same term to extract the corresponding subterm
as he used in m1

A.

We now show that these operations also ensure that for the remaining mark-
ers, the corresponding positions contain the correct terms. Hence assume that
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q1 ↓ (r ◦ path) is a term that the adversary computed himself, but that has
(also) been computed by a principal, i.e., in the message m1, the term from
q1 ↓(r ◦path) is (partially) recreated and not accessed. Since terms computed by
principals alone (i.e., without adversary input) have depth at most ` · dPr, we
know that on every branch starting from p, after at most ` · dPr steps, there is a
marker referring to one of the cases treated above (or the end of the term), and
this marker has been replaced with the corresponding subterm of q2. Also, by
construction no prefix of the position containing these markers has been replaced
with a new adversary nonce. For the positions above these markers, we know
that, since mA contains a copy of the entries of the subterm q1 ↓(r ◦ path) up to
depth ` · dPr, the d-equivalence of q1 and q2 implies that these terms are also a
copy of the entries of q2 ↓(r ◦ path) up to depth ` · dPr: Since depth (r) ≤ d′ and
|path| ≤ mdagdpthA(d′) + ` · dPr, the depth of the occurring positions is bound
by d′ + mdagdpthA(d′) + ` · dPr + ` · dPr ≤ d. Therefore, the occurring depths
are bound by d, thus equality of the relevant positions of q1 and q2 holds.

Therefore, the above two steps already ensure that these positions contain
the correct terms.

It remains to show that the adversary can determine the set of positions in
which new nonces are to be introduced given the available knowledge. This is
true since the depth in which new nonces are introduced depends only on the
protocol and the question whether terms appearing in that depth are identical
to terms that the adversary can access. Finally, the adversary can compute
dagdepth(p) for every position p where a new nonce has to be introduced, since
the involved positions do not appear below markers, and therefore they and all
of their prefixes are accessible by the adversary, who can therefore compute the
first step of the transformation which reroutes edges in m1

DAG for the positions
that do not appear below markers.

For a more efficient construction, it would be desirable to replace the func-
tion eqdeg () with one that grows more slowly in the number of steps of the
protocol. However, in the above proof, note that there does not seem to be a
straight-forward way to significantly lower the requirements on d = eqdeg (q1)
if we want to show that d′-equivalent moves always exist. We illustrate that
the current proof approach needs to require at least mdagdpthA(d′)-equivalence
of the states q1 and q2 with an example: Assume that there are a position r,
positions p1, . . . , pn, and paths w1, . . . , wn−1 such that

– depth (r) = d′,
– depth (pi) = 0 for all i,
– |wi| = d′ for all i,
– m1 ↓p1 = q1 ↓r,
– m1 ↓pi+1 = m1 ↓(pi ◦ wi).

Since all stated equalities concern positions with depth at most d′, the same
equalities must hold in m2/q2. Now note that ma ↓pn = ma ↓p1◦w1◦· · ·◦wn−1 =
qa ↓ r ◦ w1 · · · ◦ wn−1. Since we want that m1(pn) = m2(pn), it follows that
q1(r ◦ w1 · · · ◦ wn−1) = q2(r ◦ w1 · · · ◦ wn−1). The depth of this position can only
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be restricted by showing a bound on the number of elements in this “chain”
as done in the proof above. However, a better bound than simply the num-
ber of inequivalent positions can probably be shown: In the situation described
above, we compare positions with different depth (since depth (pi) = 0, and
depth (pi ◦ wi) = d′). The situation does not arise when all involved positions
have the maximal depth d′, which was used in the proof to obtain the bound
on the number of equivalence classes. Hence a finer analysis will probably result
in a better bound, and thus a lower requirement for d (i.e., a slower growing
function eqdeg ()). However, for realistic applications, the involved strategies are
usually much simpler. Therefore, the decidability procedure can be optimized
for each security property separately when applying it to real-world problems..
Hence we prove the bounds as stated in the proof, and leave the proof itself
relatively simple.

6.5 The strategy representation of a protocol

We now define CPr/≡, which as mentioned serves as a finite representation of
CPr that contains all of the latter’s strategic and epistemic properties. CPr/≡ is
essentially constructed by allowing the adversary to use only the moves that
result in applying the construction of Lemma 6.9. Note that by construction,
every term appearing in a state in CPr/≡ has depth limited by a constant: The
depth of terms which the adversary may introduce is limited by the construction
of Lemma 6.9, and the honest principals only introduce terms of limited depth
by construction. Hence CPr/≡ is infinite, but only because of an infinite number of
adversary nonces that may be used. Since there are only finitely many positions
in which the adversary can introduce new nonces, we can without generality
assume that the adversary only uses finitely many nonces. We therefore also use
CPr/≡ as name of the finite representation.

The results on move transfer for honest principals and the adversary show
that CPr and CPr/≡ are “strategically” equivalent. To obtain our bisimulation and
result, we also require that they are epistemically equivalent, i.e., that principals
can distinguish terms in a state of CPr if and only if they can do this in CPr/≡.
However, in CPr/≡ as defined above, principals have “more information” than
they have in CPr: In the construction of Lemma 6.9, when subterms are replaced
with new adversary nonces, a function f is used that replaces a term t with
the nonce f(t, i), where i is the number of the protocol step in which the term
was used. Therefore, the terms in CPr/≡ carry additional information about the
protocol step in which a term was sent.

To “remove” this information from CPr/≡, we simply add, to all of the epis-
temic equivalence relations for all players, each pair of states q1 and q2 such that
when we define q′1 and q′2 as resulting from q1 and q2 by identifying all nonces
of the form f(t, i) for the same term t, the states q′1 and q′2 are indistinguishable
with respect to the original equivalence relation. Obviously, these relations can
be computed from the original ones. From now on, we denote with CPr/≡ the
thus-modified structure. We call CPr/≡ the strategy representation of CPr. We
observe:
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Theorem 6.10. There is an algorithm which on input Pr constructs CPr/≡.

Proof. The algorithm constructs the structure in the straight-forward way. By
construction, the depth of the terms allowed to be sent by the adversary in
CPr/≡ is restricted. Therefore, in each reachable state the adversary only has
finitely many moves, and these can be enumerated in the obvious way. Honest
principals only have finitely many moves and finitely many probabilistic choices
by construction. For convergent subterm theories, the normal form of each term
can be computed, therefore, for each state q and total move c, the possible
successor states and their probabilities can be computed. In [AC06], it was proven
that static equivalence is decidable for convergent subterm theories. This allows
the algorithm to compute the pairs of indistinguishable states for each principal.
The additional indistinguishabilities that we introduce can be computed in the
straight-forward way.

6.6 Putting it all together: Proof of Strategy Simulation

We now show that ≡ induces a probabilistic uniform strong alternating simula-
tion in both directions, i.e., from CPr to CPr/≡ and vice versa. In the following, let
Q1 and Q2 be the sets of states of CPr/≡ and CPr, respectively. Let Z ⊆ Q1×Q2

be the relation defined as (q1, q2) ∈ Z if and only if q1 is the state obtained
from q2 as follows: Let λ2 be the protocol run that reaches q2. Then let λ1 be
obtained from λ2 by exchanging each adversary move by the one obtained from
the construction in Lemma 6.9, and letting the honest principals perform the
same moves and random choices. Note that by Lemmas 6.5 and 6.9, it follows
that q1 ≡ q2. On the other hand, in the following let =inj denote the relation
containing two states q1 ∈ Q1 and q2 ∈ Q2 if they identical except that the adver-
sary nonces in q1 have the prefix introduced by the construction in Lemma 6.9.
Hence, seen as a simulation from CPr to CPr/≡, the relation =inj corresponds to
the injection function inj from CPr/≡ to CPr, which strips off these prefixes. Note
that the function inj is the relation (=inj )

−1.

Theorem 6.11. The pair (Z,=inj ) is a probabilistic bisimulation between CPr/≡
and CPr.

Proof. Obviously, Z−1 ◦ inj and inj ◦ Z−1 are idempotent, since both concate-
nations represent projection to the representative in CPr/≡ with introduction or
removal of nonce name prefixes. Hence it remains to show that each of the re-
lations Z and =inj is a probabilistic uniform strong alternating simulation. We
first treat the case =inj , in this case the function Z−1 from the definition of
a probabilistic uniform strong alternating simulation is not the converse of the
relation Z introduced above, but is the injection function inj mentioned above.
Propositional equivalence is trivial, the move properties follows using the iden-
tity as move transfer functions (again, with consistent renaming of adversary
nonces), this function trivially is uniform, hence move uniformity is satisfied.
Recall that due to Proposition 6.6, honest principals have the same available
moves in equivalent states. Uniformity is trivial as well: Clearly, if q2 ∼eqi(a)

q′2,
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then this indistinguishability also holds for inj (q2) and inj (q′2), as this function
only permutes adversary nonces. Uniqueness is satisfied by definition. For knowl-
edge transfer, assume that q1, q′1 are states of CPr with q1 ∼eqi(A) q

′
1, and let q2

be a state of CPr/≡ with (q1, q2) ∈=, in particular then q2 = Z−1(q1), where Z is
the relation defined above. Obviously q′2 = Z−1(q′1) satisfies the required prop-
erty that q′2 ∼eqi(A) q2, since by construction, different nonces introduced for the
same adversary-sent terms are identities in the indistinguishibility relations of
CPr/≡.

Hence, consider the converse direction, in this case, Z−1 : Q2 → Q1 is exactly
the converse of the relation Z as defined above. By construction of Z, Z−1 is
a function, i.e., uniqueness holds as required. The move transfer functions δ1→2

...

are those resulting from the construction of Lemma 6.9 for the adversary, and
the identity function for the honest principals. Again, this choice is valid due to
Proposition 6.6. Let (q1, q2) ∈ Z, i.e., let q1 = Z−1(q2).

Propositional Equivalence
This is trivial, as the propositional variables only depend on the local states
of the principals, and these are the same in ≡-equivalent states.

Move Uniformity
For honest principals this is trivial, as the move transfer function is simply
the identity. For the adversary the claim follows from Lemma 6.9 for the
direction of transferring moves from CPr to CPr/≡.

Uniqueness
Follows from the construction of Z: There is exactly one state q1 such that
(q1, q2) ∈ Z for every reachable state q2.

Move Transfer
This directly follows from Lemmas 6.5 and 6.9. The adversary and the honest
principals perform their moves in parallel, however since the result of the
application of the honest principal’s move does not depend on the adversary’s
move (we can without loss of generality assume that no term sent by the
adversary in the current round is addressed by the terms appearing in the
current move, otherwise we replace these with empty terms), we can assume
that the adversary’s move is performed first, and then the honest principals
perform their actions.
Hence, let d = eqdeg (q1) = eqdeg (q2). Applying the move transfer construc-
tion for the adversary results in a pair of intermediate states that are, due to
Lemma 6.9, equivalent with degree d′eqdeg (q′) + 2 · dPr, where q′ is one of
the two successor states. For the following move of the honest principals, we
apply Lemma 6.5, where we instantiate d1 with d′, and d2 with dPr. It follows
that the states resulting from the application of both moves are equivalent
with degree d′ − 2 · dPr = eqdeg (q′) as required. By construction, the same
local states of honest principals are reached with the same probability.

Uniformity and Knowledge Transfer
These follow in the same way as in the above direction, using the translation
used for uniformity there for knowledge transfer in this direction and vice
versa. Note that the arguments above trivially do not depend on whether we
consider a single player or a coalition.
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Decidability now follows, since we know due to Theorem 6.10 that CPr/≡
can be computed from the representation of Pr, and there is a probabilistic
bisimulation between CPr and CPr/≡. Since the initial states of CPr and CPr/≡
are identical, we have proven Theorem 6.2. This implies Theorem 4.1, since
decidability in the finite model CPr/≡ follows from the results in [Sch10a].

6.7 Decidability for Extension of the Protocol Model

The decision procedure for the extended protocol model suggested in Section 4
proceeds as follows: We add, for every test in the formula, an additional prin-
cipal to the protocol system that performs this test as part of its protocol role
(and modify existing principals to forward the necessary messages to the newly
introduced test principal). The effect of this addition is that the construction
used for the proof of the standard model ensures that the results of the tests
are invariant under bisimulation, this follows directly from Proposition 6.6. Note
that in this case, the structure CPr/≡ does not only depend on the protocol Pr,
but also on the formula that is to be evaluated. Also note that the condition that
every principal only uses the secret keys and nonces of a single identity is not
necessary for the decidability result, but is only required to obtain realistically
executable programs.

It is clear that the addition about dynamically available channels does not
pose a problem for the decidability procedure, since timing information is invari-
ant under the bisimulation used in the main proof. This holds more generally for
every situation in which the set of available channels is a function of the current
protocol states of the principals.

7 Conclusion and Future Research

We introduced a decidable model that treats epistemic and strategic properties
of probabilistic cryptographic protocols. We demonstrated that the expressive-
ness of the logic QAPI allows to express complex epistemic and probabilistic
security properties. Advanced features as quantification, explicit strategies, and
probabilistic reasoning were central in our modeling of the treated security prop-
erties. Open questions are a complexity analysis of the model checking problem,
and extending decidability to a larger class of equational theories.
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