
Practical Polynomial Time Known Plaintext Attacks on a

Stream Cipher Proposed by John Nash

Adi Shamir and Eldad Zinger

Faculty of Mathematics and Computer Science
Weizmann Institute of Science

{adi.shamir,eldad.zinger}@weizmann.ac.il

Abstract. In this paper we present two known plaintext attacks on a stream cipher which was
developed by John Nash in the early 1950’s but whose design was declassified by the NSA only
in 2012. The main attack reduces the claimed security of the scheme from ((n− 1)! · 2n)2 to
O
(

n2 log3 n
)

, where n is a security parameter. This attack succeeds with high probability for
randomly chosen keys even when the only thing we know about the plaintext is that a small
fraction of isolated plaintext bits are slightly biased, but always fails for a certain well defined
class of keys which is exponentially large but a negligibly small fraction of all the possible keys.
To show that it would not suffice to simply restrict the choice of keys to this class, we develop
a different attack which works best for the subset of keys which are hardest to find by the first
attack. This attack reduces the security of the scheme from 2O(n) to O

(

n2
)

. Both attacks were
verified with actual simulations, finding cryptographic keys which are thousands of bits long in
just a few minutes on a single PC.

Keywords: Cryptanalysis, Stream cipher, Permutation, John Nash.

1 Introduction

John Nash is known today mostly for his seminal contributions to the field of Game Theory
and as the winner of the 1994 Nobel Memorial Prize in Economic Sciences. What was not
known for many years is that in the early 1950’s he wrote a series of letters to the National
Security Agency (NSA) in which he described a new design for a stream cipher [1]. His design
was not adopted by the NSA but both the letters and their analysis by the NSA were kept
classified. In 2012, the NSA declassified and published the correspondence [3], but did not
reveal any details about its internal evaluation process. Naturally, this led to considerable
speculation about the actual security of this scheme.

Nash’s letters have a great historical significance, and here is what Noam Nisan wrote
about them in February 2012 in his blog [2]:

“Nash goes on to put forward an amazingly prescient analysis anticipating computational
complexity theory as well as modern cryptography. In the letter, Nash takes a step beyond
Shannon’s information-theoretic formalization of cryptography (without mentioning it) and
proposes that security of encryption be based on computational hardness — this is exactly the
transformation to modern cryptography made two decades later by the rest of the world (at
least publicly. . .). He then goes on to explicitly focus on the distinction between polynomial
time and exponential time computation, a crucial distinction which is the basis of computa-
tional complexity theory, but made only about a decade later by the rest of the world. He
conjectures that almost all cipher functions (from some — not totally clear — class) are one-
way. He is very well aware of the importance of this “conjecture” and that it implies an end to
the game played between code-designers and code-breakers throughout history. Indeed, this is
exactly the point of view of modern cryptography. He is very well aware that this is a conjec-
ture and that he cannot prove it. Surprisingly, for a mathematician, he does not even expect

it to be solved. Even more surprisingly he seems quite comfortable designing his encryption
system based on this unproven conjecture. This is quite eerily what modern cryptography
does to this day: conjecture that some problem is computationally hard; not expect anyone to
prove it; and yet base their cryptography on this unproven assumption. All in all, the letter
anticipates computational complexity theory by a decade and modern cryptography by two
decades.”

In his letters, Nash proposed a particular class of stream ciphers with an unspecified secu-
rity parameter n, and conjectured that the security of his cryptographic scheme is equivalent
to the number of keys, which is ((n− 1)! · 2n)2. His design shares many ideas with the earlier
generation of Enigma-like designs (and in particular the idea of composing several fixed per-
mutations in many possible ways), but goes beyond them by exploiting the transition from
electro-mechanical to electronic implementations in order to greatly expand the number of
internal states (from the 263 = 17576 possible settings of three mechanical rotors to the 2n

possible values of a general n-bit register). The design is mathematically clean and intention-
ally minimalist, using only one register, two permutations, and the ability to move and to
complement each state bit in one of two possible ways. It was described in the letter with the
small hand drawn figure depicted in Fig. 1, which contained everything one has to know about
the scheme.

In this paper, we first show in Section 3 that by using a different but equivalent description
of the scheme, we can easily reduce the effective number of keys to (n− 1)! · 2n+1. We then
describe two new types of known plaintext attacks on such schemes, where each attack is
applicable to a different key distribution.

In the standard model of uniformly chosen keys, we exploit the fact that when we compose
two (secret) random permutations over a domain of n positions in multiple random orders,
then for any i, j ∈ [n]1 there exists with high probability (w.h.p) some (unknown) sequence
of about log n permutation steps which move the bit occupying position i to the new position
j. By exploiting this property, we develop in Section 4 a known plaintext attack with time
and data complexities of just O

(

n2 log3 n
)

. In fact, this is almost a pure known ciphertext
attack in the sense that it suffices to know only that an arbitrarily small fraction of (possibly
isolated) plaintext bits are slightly biased in order to recover the full key. We simulated the
attack for many randomly chosen keys whose length exceeded 10,000 bits, and were always
able to find the key within a few minutes on a single PC.

The first attack always fails when the two permutations can move each bit only a limited
distance to the left or to the right in the register, since in this case it is impossible to move bits
from one end of the register to the other end in a logarithmic number of steps. The hardest
case for this type of attack is when in each step one of the permutations is limited to distance
1, and the other permutation is limited to distance 2. There are exponentially many possible
choices of such pairs of permutations, and thus one can try to salvage the scheme by restricting
the choice of permutations to this particular subset. Our second attack, described in Section
5, exploits a different vulnerability of the scheme in order to show that this choice of keys can
also be broken using O

(

n2
)

time and O
(

n1.5
)

data. We will conclude this part with actual
simulation results of our attack for various key sizes.

A different attack on the Nash cipher, which has a similar polynomial time complexity but
requires the much stronger attack model of chosen messages, was independently developed
by Ron Rivest and his students (private communication [4]). Such attacks are much easier to
carry out, since the attacker can use his ability to fill the register at any desired moment with

1 We will use the notation [n] = {1, . . . , n}.

bits of his choice by carefully choosing the next sequence of n plaintext bits. In particular, he
can repeatedly reset the register to the same state, and test the effect of any single bit change
in it, which makes it very easy to recover the full key after a small number of experiments.

2 The Stream Cipher Proposed by Nash

The following description of Nash’s cipher is based on Fig. 1 (copied directly from his letter)
which provides a simple example of the scheme. It contains a permuter, which is a state
consisting of n bits2, that evolves by repeatedly permuting the order and flipping the value of
these bits.

The permuter uses a secret key which consists of two single-cycle permutations
(

P 0, P 1
)

over n positions and two n-bit vectors
(

K0,K1
)

. For example, in Fig. 1, P 0 is described by the
blue arrows and P 1 is described by the red arrows. By labeling all 7 positions clockwise with 1
being the left-most position, P 0 is the permutation (1, 7, 3, 4, 5, 2, 6) and P 1 is the permutation
(1, 3, 5, 6, 2, 7, 4). Each permutation consists of a single-cycle if we add an edge from the last
position back to position 1 (along which it is XOR’ed with the next plaintext bit).

The permuter is controlled by a decider, which is a single bit register that contains the
previously generated ciphertext bit. At each step, this bit d is used to choose P d and Kd

among the two possibilities. The permuter uses P d to move all the state bits according to the
corresponding arrows, setting the bit in position 1 to d and using the bit from the last position
as the output of the bit generator. This bit is XOR’ed with the next plaintext bit and the
result is used both as the ciphertext bit, and as the next value of the decider, as described in
Fig. 2. Whenever bit number i is moved to a new position j, it may be flipped according to
the i-th bit in Kd.

The decryption process uses the same permuter with the same key since the decider always
uses the previous ciphertext bit which is known to both the sender and the receiver. From the
point of view of the cryptanalyst, in known plaintext attacks he knows (but cannot influence)
which symbolic sequence of operations were applied to the state, while in chosen plaintext
attacks he can choose any sequence he wants.

Fig. 1: An example of a permuter (marked with a dashed line) in Nash’s own handwriting. The
vectors K0 and K1 are described as the “+” and “-” markings on the arrows, “-” means that
the bit is flipped and “+” means that the bit is not flipped.

2 Nash originally defined n as the number of positions excluding the first position (which plays a special role
in his design), but we prefer to denote by n the total number of positions including this first position.

3 A Simplified Representation of the Scheme

In his letter, Nash conjectured that the cost of breaking his scheme (presumably with a known
plaintext attack, even though this is not clearly specified) is the cost of trying all the possible
keys, which is ((n− 1)! · 2n)2. In this section, we describe a simplified representation of the
stream cipher, which uses only (n− 1)! ·2n+1 possible keys. This is still exponential but only a
square root of the conjectured complexity, which trivially disproves Nash’s conjecture. In the
rest of the paper, we will use this alternative representation to simplify the description of our
polynomial time attacks.

Since the labels of the bits in the state could be chosen arbitrarily, we can relabel their
positions according to the order of the arrows of P 0, and modify the definition of P 1 as
described in the graph G in Fig. 2. The new key will be equivalent to the original key in the
sense that it will encrypt the same plaintexts to the same ciphertexts. Since P 0 is now known,
this immediately reduces the effective number of keys to (n− 1)! · 22n.

Permuter

d 1 2 3 4 5 6 7

plaintext

ciphertext
K0

1
K0

2
K0

3
K0

4
K0

5
K0

6
K0

7

K1

1
K1

3
K1

5

K
1

7

K
1

6
K

1

2

K
1
4

Fig. 2: An example of a graph G arranged by the order of the blue arrows. This is the same
permuter as in Fig. 1.

Our next observation is that a permuter affects the encryption/decryption process only
through the bits it outputs, and not through the bits it stores. Each such bit (except for
the initial n − 1 bits) was at some stage in position 1, and then a sequence of permutation
steps moved it to the output. Each intermediate position p ∈ {2, . . . , n} in the register has two
incoming and two outgoing edges as described in Fig. 3. If we simultaneously flip the 4 key-bits
of these edges, then we will store the complement of the original bit, but operate in the same
way. By choosing to flip the 4 key-bits in a left to right order according to the key-bit of the
incoming blue edge, we can force all the blue key-bits from K0 except the last one to be zero,
and this simplified key will be equivalent to the original key. However, in this representation
the register will have to be initialized into a key-dependent value rather than into the all zero
value, which can slightly complicate some of our attacks.

p
K0

p−1
K0

p

K 1
q K

1
p

p0
K0

p−1
⊕ K0

p

K 0
p
−1 ⊕ K 1

q K
0
p−

1
⊕ K

1
p

Fig. 3: An illustration of the process of flipping 4 key-bits.

4 A Known Plaintext Attack with Time and Data Complexities of

O
(

n
2 log3

n
)

For any i, j ∈ [n+ 1], let a path from i to j in G be a sequence of edges which connects node
i to node j. Since each edge is either a blue or a red arrow, every path can be represented by

a sequence of permutation steps that maps position i to position j. Each permutation step is
defined by the value of the decider bit during the specific encryption step, so a path can be
represented by a contiguous substring of the ciphertext.

The attack will focus on finding the secret random permutation P 1 while K0 and K1 are
unknown. After discovering P 1, a set of linear equations in GF(2) can be formulated and
solved to find K0 and K1. Each such linear equation is derived from a different path in G

which is fully identified when P 1 is known. By noticing that a path moves a bit from the
input of the permuter to its output and that the input and output values of this bit can be
determined from the known data, an equation in the key-bits of K0 and K1 that correspond
to the arrows along the path can be formulated. Focusing only on short paths of length up
to 2 log n + 2 log log n + c, each such equation will contain only this many variables, as will
be explained in Sect. 4.1. The complexity of solving a sparse system of linear equations over
GF(2) is essentially proportional to the product of the number of variables, the number of
equations, and the number of ones per row, [6]. Since in our case this product is O

(

n2 log n
)

,
the additive complexity of solving the final system of linear equations is comparable to that
of applying the actual attack, and thus we will ignore it in the rest of our analysis.

This particular attack will make two assumptions about the distribution of the keys and
plaintexts. Later we will discuss what happens when these assumptions do not hold.

1. Uniform key distribution: P 1 is chosen uniformly from the set of all single-cycle permuta-
tions over n positions. K0 and K1 are chosen uniformly from the set of all n-bit vectors. A
different known plaintext attack which assumes a different choice of P 1 will be described
in Sect. 5.

2. Uniform plaintext distribution: Each plaintext bit pi is chosen uniformly and independently
in {0, 1}. Notice that since each ciphertext bit ci is computed as pi ⊕ output, and output

depends only on previous choices of pi, ci (which is used in the decider) is also distributed
uniformly. Simulations show that this assumption can be relaxed, as explained in Sect. 4.4
and 4.5.

The next two subsections explain the two main ideas used in this attack.

4.1 The Length of the Shortest Input to Output Path in G Is at Most log n

Bits w.h.p for a Random P
1

Each path in G is defined by a sequence of invocations of P 0 and P 1 such that a bit from
position 1 is transferred (with possible complementations) to the output by the corresponding
sequence of blue and red arrows. Such a path is uniquely represented by a sequence of decider
bits x1, . . . , xm. Notice that this sequence appears as a contiguous substring in the ciphertext,
and the previous bit in the ciphertext determines the input bit for that path.

The length of the shortest path from position 1 to the output is a random variable over
the distribution of P 1. We can provide a simple intuitive argument why the expected length
of the shortest path is about log n. This estimate was verified in actual simulations which
demonstrated that at least 85% of the tested random permutations had such paths with fewer
than log n edges.

Consider all the strings of length up to log n bits. Each string can be interpreted as a
path from position 1. Some paths reach the output at some point, while others reach only
inner positions. We can consider all these strings as the root-to-leaf paths in a full binary tree
of depth log n. Each node in this tree represents some state position, except for nodes that
one of their ancestors was already the output. Since we are looking for the probability that

the output does not occur in the tree, we can ignore such cases. The number of nodes in a
full binary tree of depth log n, including the inner nodes, is about 2n, so about 2n random
positions are sampled out of n available positions {2, . . . , n, output}. If we make the (non-
rigorous) assumption that they are independent and uniformly distributed, then w.h.p there
is a string of length up to log n bits that reaches the output. The actual probability can be
estimated by considering the balls and bins problem, in which we throw 2n balls into n bins
and we count how many bins are covered, that is have at least one ball in them. The expected
number of covered bins is n

(

1− 1
e2

)

≈ 0.864 · n. The ratio of 0.864 represents the probability
of reaching the particular output bin at least once after following at most log n edges, and is
in excellent agreement with our simulations.

A generalized argument can be used to claim the same bound on the length of the shortest
path from position 1 to any position and for the length of the shortest path from any position
to the output. However, as will be explained in the actual attack, we would like to have all these
paths simultaneously, and thus we have to consider slightly longer paths with lengths of up
to log n+ log log n edges. Since the number of paths starting at or ending at any intermediate
position is about n log n, we expect all these paths to exist w.h.p. This generalized claim was
also verified by actual simulations.

4.2 Checking the Validity of Paths

A path in G (defined by a subsequence of ciphertext bits used as deciders) is said to be valid

if it is a sequence of invocations of P 0 and P 1 that moves a bit from position 1 to the output.
A random path is valid with probability of about 1

n
(with some exceptions such as an all 0’s

or an all 1’s, which reach the output after exactly n jumps regardless of the choice of key).
We would like to be able to answer queries of the form “does the following string represents
a valid path?” even when we know nothing about K0 and K1. If the substring is short, it is
likely to occur many times in the ciphertext stream. In all these occurrences, the bit follows
the same path, and is thus flipped the same number of times by the same subset of bits in
K0 and K1. In known plaintext attacks, we know the input bit b and the output bit o that
corresponds to each path which happens to be valid, and thus we can verify the path’s validity
by checking that in all these occurrences b⊕o is the same value (which we call the path parity).
Such a decision procedure can introduce one-sided errors, and we call a subsequence of bits
k-positive if it occurs k times in the ciphertext and in all the occurrences b ⊕ o is the same.
Clearly, a valid path with k occurrences will always appear k-positive. A non valid path with
k occurrences will appear k-positive with probability about 2−k+1, since such an event occurs
only when the k values of b⊕ o happen to be the same by chance.

Taking k = c log n for a sufficiently large constant c, will result in a polynomially small
error probability. As will be described in the next subsection, the total number of subsequences
we query about is n2 log n, so we can make the expected number of errors smaller than 1, and
thus with a good probability no query is expected to err.

4.3 The Actual Attack

We will define an order over the strings in which, for a and b strings of bits, a < b iff a is
shorter than b or if both lengths are equal but a < b lexicographically. The attack will create
two mappings. The first mapping is between any position p ∈ {2, . . . , n} to the first path in
this order in G that moves a bit from p to the output. The second mapping is between the
end position of the i-th arrow of P 1 to the first path in this order that moves a bit from that

position to the output, for i ∈ [n− 1]. Clearly, these n − 1 end positions are the positions
{2, . . . , n}, but each end position is unknown. Since every position is uniquely defined by the
first path in this order from it to the output, and all the paths in the mappings are chosen first
in this order, then every path in the mappings appears twice. By setting every end position
of an arrow of P 1 to be the position that shares the same first path in this order as described
above, P 1 is discovered. We will divide the attack into three phases: data processing, path
mapping, and discovering P 1.

Data processing and query specification In order to efficiently answer queries about the validity
of suggested paths, we represent the known ciphertext stream as a suffix tree [5]. For each suffix
(a leaf in the suffix tree) we save the index in the ciphertext stream that the suffix began at.
Given a suggested path s, a query will use the suffix tree to decide if s is a valid path or not.
The query will travel along the suffix tree twice in order to verify that all occurrences of s

agree on the same path parity value, as described in Sect. 4.2. The first tree traversal will find
all the suffixes that start with 0 ◦ s3. Each such suffix is an occurrence of the suggested path
in the data. For each occurrence we calculate the index of the output bit in the plaintext and
ciphertext streams in order to find the output bit value. If not all the output bits are the same,
return false. Else, remember this output bit as x. The second tree traversal is similar but will
consider all the suffixes that start with 1◦ s. As before, if not all the output bits are the same,
return false. Else, remember the output bit as y. Return true only if 0 ⊕ x is equal to 1 ⊕ y

and the number of occurrences is at least k (as defined in Sect. 4.2).

Paths mapping We build a dictionary of n − 1 paths of length at most log n + log log n + c

bits. This dictionary holds for each position p ∈ {2, . . . , n}, the first path in the order defined
above in G from p to the output, tp. An example of such a dictionary is given in Table 1.
We start by finding t2. We query iteratively the validity of 0 ◦ s for an increasing order of the
string s, by the order defined above, until a valid path is identified. This valid path begins
in position 1, moves to position 2 by a single step of P 0 and then moves to the output by s.
Therefore, s is the first path in that order from position 2 to the output (with length at most
log n + log log n + c bits as was explained in Sect. 4.1), t2 = s. We store t2 in a dictionary
with t2 as the search-key and 2 as the data. Intuitively, in order to map other positions to
their first paths in that order, we have to query for the validity of paths with the structure:
0i ◦ s for i ∈ [n− 1] and some string s. Since each such path might have a length of Ω (n)
bits, fewer than k occurrences of it are expected to be in the data so these queries will always
fail. In order to work around this difficulty, after finding tp we find hp, which is the first path
in that order from position 1 to position p, for each p ∈ {2, . . . , n}. Given tp, the method we
use to find hp is very similar to the method we use to find t2: querying iteratively the validity
of s ◦ tp for an increasing order of the string s, by that order, until a valid path is identified.
This valid path begins in position 1, moves to position p by s and moves to the output by
tp, therefore hp = s. In the next iteration, we use hp to find tp+1 by querying iteratively the
validity of hp ◦ 0 ◦ s for an increasing order of the string s, by that order, until a valid path is
identified. This technique ensures that the queries are always up to 2 log n+2 log log n+ c bits
long while we keep track of p. Store each tp in the dictionary with tp as the search-key and p

as the data. At the end of this phase, a dictionary with the first path in that order from every
position p ∈ {2, . . . , n} to the output is available.

3 We will use the notation a ◦ b as the concatenation of the strings a and b.

Table 1: An example of a dictionary of first paths in the order defined in Sect. 4.3, for the per-
muter illustrated in Fig. 2. The search-keys are the stored paths and the data is the positions.

position p 2 3 4 5 6 7

tp 11 01 1 10 00 0

Discovering P 1 This phase is very similar to the previous phase but instead of querying paths
of the form 0i ◦ s we query paths of the form 1i ◦ s, for i ∈ [n− 1]. Another difference is
that we do not write to the dictionary but we use the dictionary to find position values. The
first step in discovering P 1 is discovering the end position of the first red arrow. As explained
above, we query iteratively the validity of 1 ◦ s for an increasing order of the string s, by the
order defined above, until a valid path is identified. This valid path begins in position 1, moves
to some unknown position P 1 (1) ∈ {2, . . . , n} by a single step of P 1 and then moves to the
output by s. Therefore, s is the first path in that order from position P 1 (1) to the output.
Since the dictionary already contains the mapping of each position p ∈ {2, . . . , n} to its first
path in that order to the output, we can discover P 1 (1) by finding it in the dictionary using
s as the search-key. We continue this attacking phase using the same method we used in the
previous phase until all the end positions of the red arrows are discovered, which means that
P 1 is discovered.

Complexities The length of each path is at most len = 2 log n + 2 log log n + c bits and we
would like each string of this length to have at least k = O (log n) occurrences to get a
low error probability. A stream of k · 2len bits is expected to contain k occurrences for each
string of length len bits. Setting the stream longer will increase the probability for such an
event. The probability that a string of length len bits will not occur in a stream of length
2len bits is about 37%. Intuitively, the probability that this string will occur fewer than k

times in a stream of length O
(

k · 2len
)

is less than 2−O(k) (by Chernoff’s inequality) which is
polynomially decreasing. Therefore, it is enough to have a stream of that length, so we need
a total of O

(

n2 log3 n
)

bits of data.

Building the suffix tree is done in linear time in the size of the data, which is O
(

n2 log3 n
)

.
Each query to the suffix tree costs O (log n) clock cycles since the query length is O (log n)
and the number of leaves to consider for each query is not more than O (log n) leaves4. For
p ∈ [n− 1], finding tp and hp in the two attacking phases costs O (n log n) suffix tree queries,
so the total number of suffix tree queries processed during the attack is O

(

n2 log n
)

. The
dictionary can be implemented with a simple table which requires constant time insertion and
lookup. The total time complexity of the attack is thus O

(

n2 log3 n
)

.

4.4 Experimental Results

We implemented the full attack on a PC using Intel Xeon X5355 CPU and a single thread
simulator written in the C programming language.

Table 2 describes the actual time complexity of the attack for various key sizes (without
solving the resultant sparse system of linear equations whose programming is tedious and
whose time complexity is well understood). The first column is the size of the permuter. The
second column is the full key size ⌈log ((n− 1)!)⌉+2n in bits. The third column is the partial
key size ⌈log ((n− 1)!)⌉ in bits, without the additional key-bits needed to define K0 and K1.

4 Even if more leaves happen to be available, there is no need to consider them.

The forth column is the attack time in seconds on a single PC. The fifth column is the value

of n2 log3 n
205000 , which is the expected complexity with an appropriate chosen constant. For each

key size, we repeated the attack 100 times and did not encounter any failures. For each test,
we uniformly chose a random key and a random plaintext.

Known plaintexts which contain no inherent randomness, such as alternating bits 01010...
were also tested in combination with random keys with success probability of 97%. The small
decrease in the success probability is mainly due to the fact that some paths were not available
in the ciphertext, and thus the paths that the attack uses are not always the shortest and
longer paths have fewer occurrences in the data. Consequently, many long paths fail to pass
the threshold of k occurrences. This resulted in some end positions of red arrows which were
left unknown, and thus the attack failed to discover the full key.

Table 2: Results for uniform key and plaintext distribution.

n full key size [bits] size of P 1 [bits] attack time [sec] n2 log3 n

205000

24 73 41 0.115 0.08

25 177 113 0.7 0.62

26 418 290 4.85 4.32

27 966 710 24.7 27.4

28 2188 1676 160 163

29 4891 3867 917 932

210 10808 8760 5125 5115

4.5 Extension to Weaker Attack Models

So far, we described the key recovery process in the standard model of known plaintext attack,
in which the attacker knows a single long (or several short) sequences of corresponding plaintext
and ciphertext bits. However, we can easily extend the attack to weaker models in which the
attacker knows all the ciphertext bits but only a small fraction of plaintext bits (which may
be isolated, as in the case of arbitrary ASCII characters, where the only known property of
the plaintext is that every 8-th bit in it is zero). The crucial observation in this case is that
all the decider bits (and thus also all the inputs to the register) are determined by the known
ciphertext bits. The attacker uses each available plaintext bit only in order to determine the
validity of the short subsequence of ciphertext bits that preceded it, and thus he can use any
constant fraction of known plaintext bits (regardless of their locations) in order to carry out
the attack with the same asymptotic time and data complexities. Since the test of validity is
statistical in nature, it can be based on a majority vote rather than on unanimity and thus
it suffices to know that some plaintext bits are slightly biased (without knowing their actual
values). For example, it should suffice to know that every hundredth plaintext bit is zero with
probability 0.51 in order to carry out the attack. This is an extremely weak attack model,
which is almost a pure known ciphertext attack.

5 A Known Plaintext Attack for Jump-Bounded Keys

The previous attack assumed that P 1 is chosen uniformly from all the single-cycle permutations
over n positions. Using this assumption we showed that there are short paths from position 1

to the output, as described in Sect. 4. Since each such path is very short, we could find many
occurrences of it in the data. However, a cryptographer could try to salvage this scheme by
using only a subset of keys in which short paths cannot exist. In this section we assume that
P 1 is chosen from a particular distribution that assures that all the paths have length of Ω (n).
In particular, we would like to consider cases in which P 1 is chosen from the set of single-cycle
permutations over n positions, where the length of any red arrow is bounded from above by
2. This choice of P 1 is the hardest for the previous attack since it creates the longest possible
input to output paths. For example, the permutation: 1 → 3 → 2 → 4 → 5 → 6 → 8 → 7 → 9
maps every position to a position that is up to two positions away. We will not look for short
paths in the stream like we did in the previous attack, since they do not exist. Instead, we
will describe a certain characteristic in such keys that allows us to split the key into O (n)
independent parts and discover these parts iteratively. Another difference from the previous
attack is that we will use several short streams, while in the previous attack we could use one
long stream. The next two subsections explain the two main ideas used by this attack.

5.1 Analyzing the Structure of Any Distance-2 Permutation

We would like to show that any choice of a single-cycle permutation P 1, as described above,
has a certain characteristic which we will exploit in the actual attack in Sect. 5.3.

Definition of a primitive We will regard P 1 as a sequence of jumps along n positions where
each jump is described in a relative notion (i.e. a jump from position 4 to position 6 is a “+2
jump”). Let a primitive be a minimal sequence of relative jumps such that the sequence travels
through all the positions greater than the starting position, i, and less than the ending position,
j > i, and visits these positions only. For example, the primitive (+1) is a single relative jump
of +1. Given that this primitive starts in position i, its ending position is j = i + 1. Since
all relative jumps are bounded to ±1 and ±2, only two primitives are possible: (+1) and
(+2,−1,+2) as demonstrated in Fig. 4. Note that (−1) and (−2,+1,−2) are not primitives,
since they move in the reverse direction.

The structure of P 1 By considering all the possible ways to generate a single-cycle permutation
over n positions with each jump bounded by 2, we show that P 1 must consist of a sequence of
the primitives (+1) and (+2,−1,+2). It is easy to see that the jump from position 1 is either
a +1 jump, which is a complete primitive, or a +2 jump, in which the next two jumps of P 1

must be (−1,+2) (in order to reach position 2 and be able to continue to other positions),
so either way P 1 starts with a primitive. The same argument can be claimed for the next
possible jumps, since P 1 cannot visit the same position twice. An exceptional case in which
the primitive (+2,−1,+2) can not be used because the starting position is too close to the
output, is solved by using the primitive (+1) until reaching the output. Therefore, P 1 is built
by alternating between the two primitives, as illustrated in Fig. 4. Notice that while building
P 1, each time a primitive reaches its ending position, all smaller positions are covered and all
larger positions are free. By exploiting this characteristic we will develop a known plaintext
attack.

The number of such permutations follows the recurrence relation f (n) = f (n− 1) +
f (n− 3) with initial values f (1) = f (2) = 1 and f (3) = 2. This expression behaves asymp-
totically as O (αn) for5 α ≈ 1.4656. The effective size of the key

(

P 1,K0,K1
)

is thus linear in
the state size n, if we use an efficient encoding procedure.

5 α = 1
3

[

1 + 3

√

1
2

(

29− 3
√
93

)

+ 3

√

1
2

(

29 + 3
√
93

)

]

.

Fig. 4: The two primitives as building blocks for P 1.

5.2 The Number of Required Plaintext Streams

We will use the notion of a state as a particular assignment of values to the bits in the
permuter. Let bi be the bit in position i. As will be explained in Sect. 5.3, the actual attack
will try to find a state in which bi = bi+1 and another state in which bi 6= bi+1, for each
i ∈ [n− 1]. Intuitively, each invocation of a permutation results in another state, so a long
stream, in which each ciphertext bit triggers a permutation invocation, would generate many
states. However, as will be explained in Sect. 5.3, each sequence of permutation invocations
that we want to apply to the initial state should be available in two different streams.
Therefore, each such sequence cannot be too long. In order to work around this limitation,
we will use S streams, all encrypted by using the same initial value (of zeros) for the state
and the decider. In the following analysis, we will give an intuitive argument for the value of
S such that enough states will be available for the actual attack, which was verified
successfully in actual simulations.

Let k be some integer whose value will be specified later. Let an available state be a state
that is generated during the encryption of the first k bits in each stream. Although such a
state is unknown (since it depends on the secret key), the actual attack will manage to process
it. Intuitively, by setting S to be O

(

2k
)

, all the states that result from any sequence of k′ ≤ k

permutation invocations6 applied to the initial state are available. The requirement to find a
state in which bi 6= bi+1, for some i ∈ [n− 1], will not be satisfied if every sequence q of up to k

permutation invocations applied to the initial state results in a state in which bi = bi+1. Since
the initial state is all zeros, such an event happens when q applies the same complementation
when moving a bit from its initial position to position i and when moving another bit from
its initial position to position i + 1. Intuitively, this event happens when certain bits in K0

and K1 are equal. Let us consider which bits in K0 and K1 define these complementations by
considering a path that is defined by q. A path that starts with an initial jump of P 0 and then
applies k jumps can take a state-bit and transfer it k+1 positions ahead if the path uses only
(+1) primitives (or steps of P 0), ⌈1.5k⌉+1 positions ahead if the path uses only (+2,−1,+2)
primitives, or ⌈λk⌉ + 1 positions ahead for a general permutation P 1, where 1 ≤ λ ≤ 1.5
depending on P 1 and on the target position i. Therefore, about λk bits from K0 and about λk
bits from K1 can define the complementations. Since K0 and K1 are random, the probability
that these bits are the same decreases like 2−2λk. A similar failure probability can be explained
for the case that there is no available state in which bi 6= bi+1.

The total success probability is about
(

1− 2−2λk
)n

>
(

1− 2−2k
)n

. Setting k = 1
2 log n will

provide a constant success probability as was verified in actual simulations. In the rest of this
section we assume that k has this value, and thus we use S = O (

√
n) plaintext streams.

6 The actual number of permutation invocations to the initial state is k′ + 1 because there is a mandatory
initial invocation of P 0 that is caused by the initial value of the decider.

5.3 The Actual Attack

For this attack, we define, for d ∈ {0, 1} and j ∈ [n], the value Kd
j as the complementation

of the j-th arrow by the order derived from the permutation P d. The attack will discover
the primitives of P 1 iteratively, from the last primitive to the first. In each iteration we will
discover all the key-bits related to a specific primitive. Each iteration consists of up to 4
phases: discovering bits of K0, discovering the last bit of K1 in a primitive, discovering the
last jump in a primitive, and if we discover the primitive (+2,−1,+2) then the fourth phase
is revealing the rest of the bits of K1 for this primitive. We will describe the i-th iteration,
assuming that the end position of the current attacked primitive is x, so all the jumps with
their complementation bits from any position x ≤ y ≤ n were already discovered. The first
iteration will start with x = n+ 1, which is the output of the permuter.

Discovering the bits K0
x−3, K

0
x−2 and K0

x−1 Assuming that one of the ciphertext streams begins
with 00, we consider 3 sequential invocations of P 0 on the initial state (including the mandatory
initial invocation due to the initial value in the decider). These 3 invocations will set bx, bx+1

and bx+2 to be K0
x−3⊕K0

x−2⊕K0
x−1, K

0
x−2⊕K0

x−1⊕K0
x and K0

x−1⊕K0
x ⊕K0

x+1 respectively.
Since all the jumps and their complementations are known from previous iterations, we can
apply any sequence of permutations to the state and be able to track the position of these
3 state-bits, along with their complementations, until they are outputted from the permuter.
Therefore, we can use the sequence of invocations of the current stream (after the first two
bits 00) to propagate these state-bits to the output, where we are able to compute the values
of the secret key-bits K0

x−3, K
0
x−2 and K0

x−1.

Discovering the bit K1
x−1 We would like to find a string α of up to k bits such that by applying

the sequence of invocations of P 0 and P 1 defined by α immediately after the initial mandatory
invocation of P 0, the state develops into a state in which bx−1 = bx−2. In order to check if
a specific string results in such a state and in order to use this string in case that the state
is suitable, we choose the string α only if there are two ciphertext streams, C00 and C1, that
begins with α ◦ 00 and with α ◦ 1 respectively. By choosing S large enough, we can assume
that such streams exist for any string of up to k bits. The values of bx−1 and bx−2 can be read
by using the technique mentioned above for C00. That is, after the string α was encrypted, the
next two invocations of P 0 will set the bits in positions x and x+1 to be bx−2⊕K0

x−2⊕K0
x−1

and bx−1⊕K0
x−1⊕K0

x respectively. We propagate these bits to the output as described above.
Since we already know K0

x−2 and K0
x−1 from the previous phase and K0

x from the previous
iteration, we can compute bx−2 and bx−1 of the state generated by α. We go over all strings of
length up to k and check in each string if bx−1 = bx−2, until we find such a string. Once we find
this string, the value of K1

x−1 can be computed using C1. Since C1 develops the same state as
C00 does after inserting the bits of α, then applying P 1 to the state in which bx−1 = bx−2 will
set the bit in position x to either bx−1 ⊕K1

x−1 or bx−2 ⊕K1
x−1. We will propagate this bit to

the output. Since bx−1 = bx−2 and their values are known (from using C00), we can compute
K1

x−1.

Discovering the last jump of P 1 in the i-th primitive We would like to discover the starting
position of the last jump of P 1 in the current primitive. This jump is either a +2 jump from
position x− 2 to position x or a +1 jump from position x− 1 to position x. An example for
an attack phase is illustrated in Fig. 5, in which all the right side was already discovered and
all the left side is still unknown. Once a bit is moved to a position greater or equal to x, we

can track its position and complementation while applying any sequence of permutation steps
until the bit is outputted. Intuitively, once we discover a primitive, the gray area expands to
the left and we begin to discover the next primitive. We find a string β of up to k bits such
that by applying the sequence of invocations of P 0 and P 1 defined by β immediately after the
initial mandatory invocation of P 0, the state develops into a state in which bx−1 6= bx−2. In
order to check and use this, we add another requirement that there are two ciphertext streams,
C00 and C1, that begins with β ◦ 00 and with β ◦ 1 respectively. The values of bx−1 and bx−2

can be read by using the same technique as described in the previous phase. Once we find this
string, the starting position of the jump of P 1 to position x can be computed using C1. Since
C1 develops the same state as C00 does after inserting the bits of β, then applying P 1 to the
state will set the bit in position x to either bx−1 ⊕K1

x−1 or bx−2 ⊕K1
x−1. We will propagate

this bit to the output. Since bx−1 6= bx−2 and their values are known (from using C00) and
also K1

x−1 is known, we can identify the starting position of the x − 1-th jump of P 1: if this
jump is +1 then the output bit is bx−1 ⊕K1

x−1 and if the last jump is +2 then the output bit
is bx−2 ⊕K1

x−1.

Discovering the rest of a primitive We would like to end each iteration after discovering a
complete primitive. If the last jump is +1 then we can continue to the next iteration. If the
last jump is +2, then it must be the last jump of the primitive (+2,−1,+2). In this case the
jumps are known, but we still have to discover K1

x−2 and K1
x−3. K

1
x−2 can be identified by

using any ciphertext stream that starts with 11. The initial invocation of P 0 will set the value
of bx−1 to K0

x−2. The next invocation of P 1 will move the bit from position x− 1 to position
x− 2, setting the value of bx−2 to K0

x−2 ⊕K1
x−2. The second invocation of P 1 will move the

bit from position x− 2 to position x with a value of K0
x−2 ⊕K1

x−2 ⊕K1
x−1. We propagate this

bit to the output. Since K0
x−2 and K1

x−1 are already known, we can compute K1
x−2. K

1
x−3 can

be identified by using two ciphertext streams C01 and C10. The ciphertext stream C01 starts
with 01 and will set the bit in position x to be K0

x−4 ⊕K0
x−3 ⊕K1

x−1, revealing K0
x−4 (after

propagating the bit to the output). The ciphertext stream C10 starts with 10 and will set the
bit in position x to be K0

x−4 ⊕K1
x−3 ⊕K0

x−1, revealing K1
x−3 (after propagating the bit to the

output).

xx− 1x− 2 n1

Already knownNot known yet

Fig. 5: An illustration of an attack phase.

Complexities The time complexity is the number of primitives times the average work done to
discover each primitive. In order to identify a primitive we follow bits across O (n) positions7.
The number of such bits depends on the number of prefixes of length up to k that we test. In
order to discover some primitives out of the O (n) primitives that construct P 1, we may have
to check many prefixes. Such an event happens when some bits in K0 and K1 are correlated

7 Unless loops happen. Such loops will occur for example when the ciphertext is 010101... and a state bit is
stuck in the sequence of jumps +1,-1,+1,-1,.... Such loops should be rare so we won’t regard them.

as explained in Sect. 5.2. While we cannot provide an absolute upper bound for the number
of prefixes needed to discover a primitive in P 1, simulations show that the average number of
prefixes we test over all the primitives in a single randomly chosen permutation of this type is
about 4. The number of primitives is O (n) so the total time complexity is O

(

n2
)

.
The data complexity is the number of streams times the length of each stream. The first k bits
of a stream are used to generate a random state, as explained above. The rest of the stream is
used to move a bit from some position to the output. Since it takes at most n jumps to output
a bit from any position, n additional bits are sufficient for the rest of the stream. Therefore,
each stream will be about k + n bits long. The number of streams is S = O (

√
n) so the total

data required is expected to be O
(

n1.5
)

bits.

5.4 Experimental Results

We implemented the full attack in python programming language on a PC using Intel Xeon
X5472 CPU.

Table 3 describes the actual time complexity of the attack for various key sizes. The first
column is the size of the permuter. The second column is the effective key size in bits, defined
as ⌈log (f (n))⌉+2n where f (n) is the number of single-cycle permutations as described above.

The third column is the attack time in seconds. The fourth column is the value of n2

551000 , which
is the expected complexity with an appropriate chosen constant. For each key size, we repeated
the attack 100 times where in each test we uniformly chose a random key and 4

√
n random

plaintexts of length 1.5n. None of our experiments resulted in a failure.

Table 3: Results for limited jumps permutations.

n key size [bits] attack time [sec] n2

551000

24 41 0.002 0.0005

25 81 0.004 0.002

26 163 0.009 0.007

27 326 0.031 0.03

28 653 0.123 0.119

29 1306 0.477 0.475

210 2612 1.897 1.903

211 5225 7.593 7.612

212 10451 30.461 30.448

6 Conclusions and Open Problems

In this paper we presented several attacks on the stream cipher proposed by John Nash which
showed how to break it even in extremely weak attack models. The main remaining open
problem is to extend the attack in Sect. 5 to cases in which P 1 can jump a bounded distance
greater than 2, since our technique will require a very tedious analysis of how P 0 and P 1 can
interact in this case.

References

1. John Forbes Nash Jr. Cryptosystem proposal letters. http://www.nsa.gov/public_info/_files/nash_

letters/nash_letters1.pdf, January 1955.

http://www.nsa.gov/public_info/_files/nash_letters/nash_letters1.pdf
http://www.nsa.gov/public_info/_files/nash_letters/nash_letters1.pdf

2. Noam Nisan. John Nash’s Letter to the nsa. http://agtb.wordpress.com/2012/02/17/

john-nashs-letter-to-the-nsa/, February 2012.
3. NSA Press Release. National Cryptologic Museum Opens New Exhibit on Dr. John Nash. http://www.

nsa.gov/public_info/press_room/2012/nash_exhibit.shtml, January 2012.
4. Ron Rivest and his students. A chosen plaintext attack on nash’s cipher. private communication.
5. Peter Weiner. Linear pattern matching algorithms. In SWAT (FOCS), pages 1–11, 1973.
6. Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information

Theory, 32(1):54–62, 1986.

http://agtb.wordpress.com/2012/02/17/john-nashs-letter-to-the-nsa/
http://agtb.wordpress.com/2012/02/17/john-nashs-letter-to-the-nsa/
http://www.nsa.gov/public_info/press_room/2012/nash_exhibit.shtml
http://www.nsa.gov/public_info/press_room/2012/nash_exhibit.shtml

	Practical Polynomial Time Known Plaintext Attacks on a Stream Cipher Proposed by John Nash

