
RSA modulus generation in the two-party case

Gérald Gavin

ERIC Lab - University of Lyon - France
E-mail: gavin@univ-lyon1.fr

Abstract. In this paper, secure two-party protocols are provided in
order to securely generate a random k-bit RSA modulus n keeping its
factorization secret. We first show that most existing two-party protocols
based on Boneh’s test are not correct: an RSA modulus can be output in
the malicious case. Recently, Hazay et al. [13] proposed the first proven
secure protocol against any polynomial active adversary. However, their
protocol is very costly: several hours are required to output a 1024-bit
RSA modulus on a standard platform. In this paper, we propose an other
approach consisting of post-processing efficient existing Boneh’s based
protocols. The running time of this post-processing can be neglected
with respect to the running time of the whole protocol.

Keywords: RSA modulus, Boneh’s test, keys share.

1 Introduction

Many cryptographic schemes are based on RSA moduli, for example RSA
and Paillier. Many threshold versions have been proposed [20], [19], [11],
[9], [7]. In these versions, parties must generate an RSA modulus n and
distribute public and private keys such that the factorization of n is kept
secret. A solution consists of invoking a third party, called the trusted
dealer, which generates RSA moduli and shared keys.

The natural question is to know whether the dealer can be efficiently
removed. Boneh and Franklin [3] provided a positive answer when the
number of parties is larger than 3. This result is based on an adap-
tation of the Fermat’s primality test for RSA moduli, called Boneh’s
test. It is shown secure against passive adversaries. Frankel et al. [22],
Algesheimer et al. [1] have proposed a robust protocol for the multi-party
case in the presence of a minority of arbitrarily misbehaving malicious
parties. Damgard and Mikkelsen [10] have proposed an other biprimality
test with a better error estimate, but it cannot be used directly in the
two-party setting with active adversaries. The security of threshold Pail-
lier’s scheme requires that moduli are safe, i.e the product of safe primes.
Fouque and Stern [11] have shown that it suffices that the sub-group

QR(n) of quadratic residues is cyclic to ensure security. They provide
secure multi-party protocols for RSA moduli having this property.

This paper deals with the two-party case. Gilboa [12] Poupard and
Stern [18] and Straub [21] have proposed a solution based on Oblivious
Transfert (OT). They propose a robust protocol ModulusGeneration which
computes n = (pA + pB)(qA + qB) where pA, qA and pB, qB are two k-bit
integers randomly chosen respectively by Alice and by Bob. They then
apply Boneh’s test [4]. For concreteness, this biprimality test consists
of randomly choosing a ∈ Z∗

n such that (an) = 1, then Alice computes

vA = a(n−pA−qA+1)/4 mod n and Bob computes vB = a(pB+qB)/4 mod n.
If vA/vB ̸= ±1 mod n then the test fails. If the test does not fail for
several values of a there is a high probability that n is an RSA modulus.
However, let us imagine that n is not an RSA modulus and that Alice
knows the factorization of n while Bob does not (Alice could have greater
resources or better factorization algorithms). In this case, Alice can guess
(with non negligible probability) pB + qB and thus vB. She could there-
fore force Bob to believe that n is an RSA modulus. It proves that this
solution is only secure against passive adversary (see appendix A for a
concrete presentation and evaluation of this attack). In [2], the authors
have proposed solutions against this attack. However their protocols have
not been proven secure and above all their solution is not at all practical.
For instance, 1, 6.108 El Gamal encryptions/decryptions are required to
output a 1024-bit RSA modulus. Recently, Hazay et al. [13] proposed the
first proven secure protocol against any polynomial active adversary. To
reach this security level, authors propose a zero-knowledge proof to prove
that vA and vB are correctly computed. However, this zero-knowledge
proof is executed for each candidate n. This protocol based on a cut-
and-choose approach is very costly: it requires O(l) (l being a security
parameter) exponentiations per loop in Boneh’s test. As the number of
candidates n which should be tested is about O(k2), the number of expo-
nentiation of their protocol is O(l2k2). We roughly estimate that several
hours are needed to output a 1024-RSA modulus with this protocol (more
than 107 modular exponentiations are required).

The key idea of this paper consists of post-processing existing (effi-
cient) protocols based on Boneh’s test with a running time in O(l) (few
seconds are requiring for 1024-bit numbers): this post-processing can be
neglected with respect to the whole protocol. This idea was already sug-
gested in [13] (section ”Practical considerations”) in order to drastically
improve efficiency. However, security was not proven in this setting: au-
thors claim: ”We cannot simply postpone all proofs; care must be taken

to allow simulation and not to reveal information that would allow a ma-
licious party to, e.g., fake some zero-knowledge proof at a later point”.
While our approach differs from theirs, this paper can be seen as a posi-
tive answer to this claim.

For concreteness, the output n of classical Boneh’s test based protocols
is tested again. Here, it is assumed the existence of a correct and private
protocol ModulusGeneration computing n = (pA + pB)(qA + qB) (many
versions can be found in the literature [12], [3], [18], [21]). The parties
then test whether n is an RSA modulus with the classical Boneh’s test
(see [4]). As discussed before, this test may be incorrect against active
adversaries. Thus, if (and only if) n has been determined an RSA modulus
previously, it is tested again with a test directly derived from Boneh’s test.
This test is implemented in protocols Gamma and RSAModulusTest. The
efficiency improvement comes from the fact that this second test is applied
only once. The main protocol of this paper, RSAModulusGeneration is an
implementation of the following generic scheme:

1. Each party generates a public key and a secret key of an additively
homomorphic encryption scheme S. EA (resp. EB) refers to the en-
cryption function generated by Alice (resp. Bob).

2. They invoke ModulusGeneration to get moduli n until n succeeds the
classical Boneh’s test. Each time the test fails, each party checks that
the other party has behaved honestly.

3. Alice (resp. Bob) invokes Gamma to get an encryption ΓB = EB((p−
1)(q − 1)) (resp. ΓA = EA((p− 1)(q − 1))) where n = pq

4. Alice (resp. Bob) invokes RSAModulusTest (as party 1) on the input
ΓB (resp. ΓA) to be convinced that n is really an RSA modulus. If
the test fails, the protocol fails (it means that a party has behaved
dishonestly in step 2.)

It is important to notice that an adversary does not gain any advantage
when RSAModulusGeneration fails. This is used to simplify and improve
protocols and their security proof. We propose original tools to prove
that an adversary cannot learn the factorization of n without making
the protocol fails: this is captured in the definition of the property nPri-
vate introduced in section 2. This property is dedicated to factorization
problem but can be straightforwardly extended to other problems.

2 Problem and security statements

Let us make explicit the conjecture intrinsically made in Boneh’s test
based protocols. This conjecture is related to the difficulty of factorizing
RSA moduli.

Conjecture 1. Let k ∈ N and n = pq be an RSA modulus chosen at
random such that p ≡ q ≡ 3 mod 4, p ∈ [pA + 2k, pA + 2k+1[

∩
N and

q ∈ [qA+2k, qA+2k+1[
∩

N where pA, qA are two arbitrary integers. There
exists a negligible function δ such that for all probabilistic polynomial-
time (p.p.t) algorithms A, A outputs the factorization of n with a prob-
ability smaller than δ(k) only given n, pA and qA.

In this paper we wish to design a two-party protocol for securely generat-
ing RSA moduli. Existing protocols for securely computing RSA moduli
are decomposed in two parts. First, parties securely compute a candidate
n = pq by using a secure protocol called here ModulusGeneration, they
then test n with Boneh’s test. In this paper, we assume the existence of
such a protocol ModulusGeneration whose the specifications are detailed
in the next definition. In particular, it should be correct and private (see
[14]).

Definition 1. ModulusGeneration is protocol implementing the following
ideal scheme. Alice chooses two secret positive integers pA, qA and Bob
chooses two secret positive integers pB, qB. Then, they send these values
to a trusted party which outputs n = pq where p = pA + pB and q =
qA + qB if and only if pA ≡ qA ≡ 3 mod 4 and pB ≡ qB ≡ 0 mod 4.
ModulusGeneration is assumed to be secure against any active polynomial
adversary in the stand-alone setting.

ModulusGeneration checks that pA + pB ≡ qA + qB ≡ 3 mod 4 because
it is required for Boneh’s test but ModulusGeneration does not need to
verify the size of the input integers pA, qA, pB and qB. It will be done in
the protocol Gamma only once, i.e. on the first modulus n which success-
fully passes Boneh’s test. Versions of ModulusGeneration can be found in
the literature (see [12], [18]). In section 3, we present a two-party proto-
col, called RSAModulusGeneration, which securely (we will clarify what it
means below) generates RSA moduli. The idea consists of generating an
RSA modulus n in the classical way (ModulusGeneration + Boneh’s test).
If n is determined to be an RSA modulus then it is tested again (Gamma
+ RSAModulusTest). The second test make RSAModulusGeneration fail if
n is not an RSA modulus. Thus, the second test is applied only once. The

RSAModulusGeneration security proof exploits the fact that an adversary
A does not gain any advantage when the protocol fails. For this reason,
weaker security requirements will be considered by restricting the security
analysis of RSAModulusGeneration to the two following issues :

1. RSAModulusGeneration is correct, i.e. the output n is not a k-bit RSA
modulus with negligible probability with respect to k.

2. Assuming conjecture 1, for any polynomial adversary A, the proba-
bility that the protocol does not fail and that A factors the output n
is negligible with respect to k.

In order to prove the second issue, we introduce a property dedi-
cated to our problem, called nPrivate. This property can be interpreted
as the difficulty for an adversary to learn the factorization of n during
the execution of P without making P fail. This composable property is
formalized in the next definition. In section 4, we will show that Gamma
and RSAModulusTest satisfy this property. Roughly speaking, these pro-
tocols are private against adversaries which do not make the protocol fail
with non-negligible probability.

Definition 2. For any k ∈ N, Γk refers to the set of k-bit integers. Let
P be an arbitrary two-party protocol where a public integer n ∈ Γk is
input to P by both parties. Parties may have arbitrary other inputs. Let
us assume that the party 1 is honest and the party 2 is controlled by a
polynomial adversary A.

1. For any k ∈ N, Dk denotes a probability distribution over Γk×{0, 1}∗.
A family of such probability distributions D = (Dk)k∈N is said nPri-
vate1 if for any p.p.t algorithm F , the probability that F outputs the
factorization of n given (n, zn)← Dk is negligible.

2. Let D = (Dk)k∈N be an arbitrary nPrivate probability distribution fam-
ily. We propose the following experiment :

(a) a pair (n, zn) ∈ Γk × {0, 1}∗ is randomly generated according to
Dk, i.e. (n, zn)← Dk.

(b) The corrupted party receives (n, zn)

(c) The honest party receives n and arbitrary information about n.

(d) Parties execute P where the honest party inputs n (and arbitrary
other inputs).

1 Assuming conjecture 1, such distributions exist.

We say that P is nPrivate against A if the probability that P has not
failed and A outputs the factorization of n at the end of the previous
experiment is negligible

This definition is maybe difficult to understand because it is not only
a security definition but it also depends on the functionality computed
by P : for instance, P is not nPrivate against passive adversary if the
factorization of n is expected to be output. On the other hand, classi-
cal Boneh’s test is trivially nPrivate meaning that if an RSA modulus is
tested, an adversary cannot learn the factorization of n without cheating
the test (even by making it fail). Typically, the vector zn contains the
information learnt during the previous protocols. For instance, before the
execution of Boneh’s test (at the end of the execution of ModulusGenera-
tion), (n, zn) is computationally indistinguishable of (n, pA, qA) assuming
ModulusGeneration is stand-alone secure. A can use zn

2 to behave (mali-
ciously) within P . Party 1 may know the factorization of n or may have
partial information regarding n which he may use in the execution. At
the end of the execution of P , A knows an information set zn,A,P ”big-
ger” than zn which intuitively contains zn and its view in P . Roughly
speaking, if an adversary cannot factor an integer n (chosen at random
and input by the honest party) before the execution of an nPrivate pro-
tocol, it cannot collect enough information to factor n without making
the protocol P fail. Let us see informally the link between the property
nPrivate and UC-security3. In Gamma and RSAModulusTest parties output
an encryption. Under the assumption of semantic security of the under-
lying encryption scheme, such output cannot ”help” them to factor n.
In such protocols (where the output is not informative about the factor-
ization of n), it is easy to see that UC-security implies ”nPrivateness”:
otherwise the ideal case and the real case could be distinguished with
non negligible probability (factorization possible in the real-case but not
the ideal-case). However the converse is not true. In particular, Gamma
will be shown nPrivate but trivially not UC-secure. The property nPrivate
especially dedicated to our problem allows to simplify the sub-protocols
Gamma and RSAModulusTest and their security proofs. The price to pay
is to understand why the next generic protocol GenFact is nPrivate. It will

2 zn can been interpreted as prior information about n known by A before the
execution of P (see [17]).

3 The UC-model was developed by R. Canetti [5]. Here UC stands for universally
composable, which denotes that if a protocol is UC-secure according to the formal
definition, then it is secure to use in any context (where it would have been secure
to use the ideal functionality).

be used to prove that Gamma and RSAModulusTest, which are restricted
implementations of this generic protocol, are nPrivate.

Definition 3. Let k be a security parameter. GenFact is a protocol be-
tween an arbitrary oracle O and a party 2. The oracle O inputs a public
k-bit integer n and it is assumed that O answers (correctly or not, de-
pending of the characteristics of O) to any binary question4 (a question
whose answer is ”yes” or ”no”). Party 2 first asks an arbitrary binary
question. If the answer is ”no” the protocol fails. If the protocol does not
fail, party 2 can ask a second binary question. If the answer is ”no” the
protocol fails and so on.... The number of questions is assumed polyno-
mial in k. Moreover, it is assumed that party 2 receives arbitrary
information (e.g. the factorization of n) when the protocol fails.

The next result states that a polynomial adversary controlling party
2 cannot ”learn” the factorization of n without making GenFact fails.
Intuitively, ifA wants to learn r bits, GenFact fails with probability 1−2−r.

Lemma 1. GenFact is nPrivate against any polynomial adversary A con-
trolling party 2.

Proof. (Sketch.) Let D = (Dk)k∈N be an nPrivate probability distribution
family (see definition 2) and A be a polynomial adversary controlling
party 2. Let (n, zn) ← Dk. The probability that A factors n without
making GenFact fail is denoted by PA. Let us suppose that GenFact is not
nPrivate by assuming that PA > p(k) where p is a polynomial.

GenFact fails if A receives at least one ”no” to any of the arbitrary
binary questions mentioned in definition 3. Thus, when A chooses its ith

question, it has received i−1 positive answers5, i.e. (”yes”, ”yes”,...,”yes”).
Thus, the received messages are not informative (the transcript of the
protocol can be exactly simulated in polynomial time without knowing
the factorization of n) to choose its ith question. Consequently, A can
choose the polynomial-size list L of its questions a priori, i.e. before the
execution of GenFact.

Let us show that there exists a polynomial adversary A′, only given
n, zn, able to factor n with probability larger than p(k) without interacting
with the oracle O. Indeed, A′ chooses the same list L of questions a priori,
assumes that the answers are ”yes” and then computes the factorization

4 For instance, ”Does God exist?” is a binary question. In order to factor n, the party
2 should ask questions relative to n, e.g. n is a RSA-modulus n = pq? Is the ith bit
of p equal to 1? etc...

5 Otherwise the protocol has failed previously.

of n as A would do (one could imagine that A′ invokes A on the same
list L of questions with positive answers). We consider the three following
events S, F, F ′:

1. S = Genfact does not fail.
2. F = A factors n
3. F ′ = A′ factors n

The protocol does not fail when all the questions of L get a positive
answer. In this case, A′ correctly assumes that all the answers are positive
implying that A and A′ have the same information: consequently they
factor n with the same probability (by construction of A′), i.e.

P (F |S) = P (F ′|S)

By noting that PA = P (F |S)P (S), we have

P (F ′) ≥ P (F ′|S)P (S) = P (F |S)P (S) = PA

It implies that P (F ′) ≥ PA > p(k) meaning that A′ factors n with non
negligible probability. It contradicts that D is nPrivate. Consequently,
PA < p(k) proving that GenFact is nPrivate.

�

As expected, this lemma implies that Boneh’s test is nPrivate (but
not correct) against any polynomial adversary. Indeed, this protocol can
be seen as a restricted implementation of GenFact where the oracle is

replaced by the honest party and the ith binary question is tia
sB

?≡ 1
mod n, ti being an arbitrary value chosen by A (recall that in GenFact,
party 2 receives arbitrary information if the protocol fails: in Boneh’s test,
it receives tia

sB).
The next intuitive result (see appendix C for the proof) states that

the property nPrivate is stable by (serial) composition.

Proposition 1. (Composition.) If R and S are two nPrivate protocols
then the composed protocol P = R → S consisting of executing R and S
successively (where honest parties input the same integer n in R and S)
is also nPrivate.

3 RSA Moduli Generation

In this section, we propose a secure (according to the security require-
ments presented in the previous section) implementation of the main

protocol of this paper, i.e. RSAModulusGeneration. This protocol is based
on the protocols RSAModulusTest and Gamma as schematically explained
in the introduction. These protocols assume the existence of a semanti-
cally secure additively homomorphic public key encryption scheme S =
(G,E,D). It is also assumed the existence of the following UC-secure
protocols:

1. CorrectKey is a ZK-proof proving correctness of keys.

2. EncryptProof is a ZK-proof allowing the private key owner to prove
that a public encryptionX encrypts a public value x without revealing
anything about the private key.

3. Multiplication. Alice has 2 secret encryptions X = EB(x) and Y =
EB(y) of 2 unknown values x and y. She outputs an encryption of
Z of xy, i.e. Z = EB(xy), without learning and without revealing
anything about x and y.

4. Bound is ZK-proof allowing Alice to prove that an encryption XA =
EA(x) is a valid encryption of a value x smaller than some public
threshold B without revealing anything else about x.

Paillier’s encryption scheme is a good candidate. Indeed to prove that
X encrypts x, the private key owner sends the random value r of the
encryption, i.e. X = gxrn mod n2, obtained in the decryption phase6.
A version of CorrectKey (which consists of proving that n and ϕ(n) are
co-prime) can be found in [13]. A version of Multiplication can be found
in appendix B and A version of Bound can be found in [8]. The classic
solution for the protocol Bound is to provide encryptions to the individual
bits and prove in zero-knowledge that they are bits using a zero-knowledge
proof (e.g. see [8]). A more sophisticated solution for Bound requiring only
O(1) exponentiations is presented in [13].

Throughout the paper, the security of the protocols will be studied
in the (CorrectKey, EncryptProof, Bound and Multiplication)-hybrid model
where these protocols can be replaced by an oracle. According to the
composition theorem (see [5]), provided that CorrectKey, EncryptProof,
Bound and Multiplication are UC-secure, the security in the hybrid model
ensures security in the classical model.

In this paper, Alice (resp. Bob) generates an encryption function EA

(resp. EB) defined over ZnA (resp. ZnB) where nA (resp. nB) is a 5k-size
integer. Generally, XA (resp. XB) will refer to an encryption done with
EA (resp. EB). Parties invoke CorrectKey to prove correctness of keys.

6 El Gamal’s encryption scheme does not satisfy this property.

3.1 Protocol Gamma.

In this section, we suppose that the parties have already computed n =
(pA+ pB)(qA+ qB) with ModulusGeneration assumed secure in the stand-
alone setting: pA, qA (resp. pB, qB) refer to the secret values input by
Alice (resp. Bob) in this protocol. Let us recall that pA, qA, pB, qB are
expected to be k-bit integers such that pA ≡ qA ≡ 3 mod 4 and pB ≡
qB ≡ 0 mod 4. ModulusGeneration is not required to check the size of
pA, qA, pB, qB because it is done here (and thus only once). Gamma aims
to securely compute an encryption of γ = (p − 1)(q − 1)/2 such that
n = pq. For concreteness, at the end of the execution of Gamma, Al-
ice obtains an encryption ΓB = EB(γ); Bob does not output anything
ensuring correctness against any adversary controlling Alice. Let A be a
polynomial adversary controlling Bob. If the parties honestly behave then
p = pA + pB and q = qA + qB. If the adversary modifies Bob’s inputs, it
might happen that p ̸= pA + pB or q ̸= qA + qB but it is ensured that
pq = n with p and q two k-bit such that p ≡ q ≡ 3 mod 4. In this sense,
Gamma is correct against any polynomial adversary Bob. We denote the
secret (k−2)-bit size integers by p′A, q

′
A, p

′
B, q

′
B such that p′A = (pA−3)/4,

q′A = (qA−3)/4, p′B = pB/4 and q′B = qB/4. Bob publicizes encryptions of
p′B and q′B and proves that these encryptions encrypt (k− 2)-bit integers
with Bound.

By using homomorphic properties, Alice gets encryptions PB and QB

of p and q. Alice then invokes Multiplication to get an encryption NB of pq
and checks (by asking Bob to decrypt it) that pq ≡ n. She then invokes
Multiplication to securely compute an encryption of γ = (p− 1)(q − 1)/2.

Proposition 2. Assume that the encryption scheme S is semantically
secure. Gamma is correct and nPrivate against any polynomial adversary
in the (Multiplication, Bound, EncryptProof)-hybrid model.

Proof. The protocol is intrinsically correct against adversary control-
ling Alice because Bob is not expected to output anything. Let A be
a polynomial adversary controlling Bob. In the (Multiplication, Bound,
EncryptProof)-hybrid model, A does not interact with Alice except in the
choice of the input values. Let us imagine that A inputs (k − 2)-bit in-
tegers p′′B and q′′B such that p′′B ̸= p′B or q′′B ̸= q′B. In this case, either the
protocol fails (step 3) or ΓB encrypts (p′ − 1)(q′ − 1)2−1 mod nB with
p′ = 4(p′A+p′′B)+3, q′ = 4(q′A+q′′B)+3 and p′q′ ≡ n mod nB (recall that
EB is an encryption function over ZnB). As nB was chosen sufficiently
large (5k-bit integer), there are not modular reductions and the equalities
remain true over Z).

Protocol 1 : Gamma.

Require : Let k be a security parameter. Let n be a public composite odd integer.
Alice (resp. Bob) knows two (k − 2)-bit integers p′A, q

′
A (resp. p′B , q

′
B) such that n =

(4(p′A + p′B) + 3)(4(q′A + q′B) + 3).

1. Bob publicizes encryptions A = EB(p
′
B) and B = EB(q

′
B). He then proves that A

and B encrypt a (k − 2)-bit integer by invoking Bound.
2. Alice computes, by using homomorphic properties, encryptions PB , QB of respec-

tively p = 4(p′B + p′A) + 3 and q = 4(q′B + q′A) + 3. By invoking Multiplication, she
then computes an encryption NB of pq.

3. Alice sends NB and Bob decrypts it and he sends the decrypted value and proves
the decryption with EncryptProof. If NB does not encrypt n, the protocol fails.

4. Alice computes encryptions of p−1 and q−1 by using homomorphic properties and
invokes Multiplication on these encryptions to compute an encryption of (p−1)(q−
1). By using homomorphic properties She computes and outputs an encryption
ΓB of (p− 1)(q − 1)/2, i.e. 2−1(p− 1)(q − 1) mod nB .

In the (Multiplication, Bound, EncryptProof)-hybrid model, the pro-
tocols Multiplication, Bound, EncryptProof can be replaced by a trusted
party. Thus, the steps (1)+(2) and the step (4) can be seen as sub-
protocols without direct interaction between parties (just with the trusted
party). Moreover parties only receive encryptions (and ”true” from the
trusted party simulating Bound). Assuming S semantically secure, these
sub-protocols are nPrivate. According to the composition property (see
proposition 1), it suffices to prove that step (3) (interpreted as a sub-
protocol) is nPrivate.

Let A be a polynomial adversary controlling Alice. In step 3, A can
send any encryption NB. However if NB does not encrypt n, the pro-
tocol fails. This step can be seen as a restricted implementation of the
nPrivate protocol GenFact, described in section 2, where A asks only one
question, i.e. n =? DB(NB). It proves that Gamma is nPrivate against any
polynomial adversary controlling Alice.

Let A be a polynomial adversary controlling Bob. In the same way, A
can send encryptions of p′′B and q′′B such that p′′B ̸= p′B or q′′B ̸= q′B. The
protocol fails if NB does not encrypt n. Thus Gamma can be also seen
for A as a restricted implementation of GenFact, described in section 2,
where A only asks if n =? (4(pA+ p′′B)+ 3)(4(qA+ q′′B)+ 3). According to
lemma 1, Gamma is nPrivate against any polynomial adversary controlling
Bob.

�

It is easy to see that that Gamma is not UC-secure. Indeed, A can
send an encryption NB of pB for instance. By doing this, A can learn the
Bob’s private value pB but the protocol would fail in step 3. To avoid this,
it suffices that Bob checks that DB(NB) = n before to send DB(NB).

3.2 Protocol RSAModulusTest

RSAModulusTest is used to check that a non-RSA modulus has not erro-
neously succeeded Boneh’s test (because of a malicious behavior). Thus,
RSAModulusTest simply consists of checking that n is an RSA modulus.
The party 1, Alice by convention, wants to be convinced with a high prob-
ability that n is an RSA modulus: Alice (note that Bob does not output
anything) outputs ok if n is an RSA modulus and otherwise RSAModu-
lusTest fails (in RSAModulusGeneration, at the beginning of the execution
of RSAModulusTest, n should be an RSA modulus if parties honestly be-
haved). RSAModulusTest implements the following test derived from the
classical Boneh’s test:

1. choose at random a ∈ Z∗
n such that (an) = 1 and choose a random

integer α ∈ {n, n+ 1}
2. compute v = aαγ mod n with γ = (p− 1)(q − 1)/2
3. If v ̸= 1 then n is not an RSA modulus.

This test is less efficient than Boneh’s test in the sense that a non-
RSA modulus n has a larger probability of succeeding the test. Indeed,
if aγ ̸= 1 mod n, the probability (over the choice of α) that aαγ/2 = 1
mod n is less than 1/2 (because a(n+1)γ/2 = anγaγ). As the probability
(over the choice of a ∈ Zn assuming that p, q are not Carmichael integers)
that aγ ̸= 1 mod n is larger than 1/2 (see [4]), the probability (over the
independent choices of α and a) that aαγ ≡ 1 mod n is smaller than 3/4.

In RSAModulusTest, αγ is shared by using homomorphic properties of
the underlying homomorphic cryptosystem S. For concreteness, Alice has
a secret encryption ΓB of γ with pq = n. Alice and Bob jointly choose
a random number a over Z∗

n such that (an) = 1. Then, she randomly
chooses α ∈ {n, n+1}, randomly chooses s1 ∈ [18αn,

3
8αn]

∩
N, computes

t1 = as1 mod n, commits it and sends an encryption of s2 = αγ −
s1.

7 Bob decrypts it and sends t2 = as2 mod n. If t2t1 ̸= 1 mod n the
test fails. Let us suppose that n is not an RSA modulus and that an
adversary A controlling Bob has guessed γ ̸= λ(n)/2 before the execution

7 Note that these numbers can be encrypted by EB defined over ZnB because nB is
assumed to be large enough, i.e. a 5k-bit integer.

of RSAModulusTest. As s2 has been randomly chosen in a set statistically
indistinguishable from [18n

2, 38n
2]
∩

N, A is shown unable to choose t2 ∈
Z∗
n, with probability larger than 3/4, such that t1t2 = 1 mod n. This

ensures correctness against any polynomial adversary controlling Bob.
RSAModulusTest is trivially nPrivate against any polynomial adversary.
Furthermore, RSAModulusTest can be seen, for Alice, as an instance of
the generic protocol GenFact. It ensures that this protocol is nPrivate
against any polynomial adversary controlling Alice (according to lemma
1).

Protocol 2 : RSAModulusTest

Require : Let k be a security parameter and l ∈ N be indexed by k. Let n = pq be
an odd composite integer where p and q are k-bit integers such that p ≡ q ≡ 3 mod 4.
Party 1 (Alice by convention) has a secret encryption ΓB of γ = (p− 1)(q − 1)/2.

For i = 1 to l

1. Alice and Bob jointly choose a ∈ Z∗
n at random such that (a

n
) = 1

2. Alice randomly chooses α ∈ {n, n + 1} and s1 ∈ [1
8
αn, 3

8
αn]

∩
N and sends U =

EB(αγ − s1) where U is computed only by using homomorphic properties. She
computes an encryption T1 of t1 = as1 mod n with the encryption function EA,
i.e. T1 = EA(t1) and sends it (t1 is committed).

3. Bob decrypts U , i.e s2 = DB(U) and sends t2 = as2 mod n
4. Alice sends t1 = DA(T1) and proves the decryption with EncryptProof.
5. Alice and Bob compute v = t1t2 mod n. If v ̸= 1 then the protocol fails.

End for

Alice outputs ok

Proposition 3. Assuming the encryption scheme S is semantically se-
cure, RSAModulusTest is correct and nPrivate against any polynomial ad-
versary in the (EncryptProof)-hybrid model.

Proof. First, let us note that the encryption domain ZnB of EB was cho-
sen large enough (nB is a 5k-bit integer and all the considered integers are
at most 4k-bit integers) to avoid modular reductions8 (modulo nB). Let
A be a polynomial adversary controlling Bob. Let us prove that RSAMod-
ulusTest is correct against A. As the only possible output is ok, RSAMod-
ulusTest is intrinsically correct if n is an RSA modulus. Let us suppose

8 It can be imagined that the encryption domain of EB is N.

that n is not an RSA modulus such that A knows its factorization, λ(n)
and γ ̸= λ(n)/2. RSAModulusTest is correct if Alice outputs ok with a
negligible probability. Let 9 a ∈ Z∗

n s.t. aγ ̸= 1 mod n. In order to make
Alice output ok, A should guess, at each iteration, t−1

1 mod n (and send
it to Alice at step 3). If A knows γ, it knows that

t−1
1 ∈ {a

s2−iγ mod n|i ∈ {n, n+ 1}}

By assuming aγ ̸= 1 mod n, this set contains two distinct elements m1

and m2. A receives a value s2 such that s1 + s2 = αγ (the equality holds
because the domain size ZnB of EB is sufficiently large) where s2 is a
random number over a distribution statistically indistinguishable to the
uniform distribution over [18n

2, 38n
2]
∩

N: the statistical indistinguishabil-
ity holds by noticing that γ − n/2 = O(n

1
2) (here, it is assumed that p

and q are k-bit integers) is negligible implying that for any α ∈ {n, n+1}

[αγ − 3

8
αn, αγ − 1

8
αn]

∩
N s≡ [

1

8
n2,

3

8
n2]

∩
N

Consequently, A cannot distinguish between α = n or α = n+1 implying
that it cannot distinguish between t−1

1 ≡ m1 mod n or t−1
1 ≡ m2 mod n

with probability significantly larger than 1/2. The probability to choose
a ∈ Z∗

n such that aγ ̸= 1 mod n is larger than 1/2 see [4]10. Therefore
the probability that A guess t−1

1 mod n is smaller than 3/4. Also, the
probability to do this at each iteration is smaller than (3/4)k.

RSAModulusTest is trivially nPrivate against A. Indeed, the view of A
(when the protocol does not fail) can be simulated by a list of k indepen-
dent triplets of values (T1, a

−s2 , s2) where T1 is randomly chosen in the
ciphertext domain of EA, s2 is chosen at random in a set statistically in-
distinguishable from [18n

2, 38n
2]
∩

N. Assuming the semantic security of S,
the simulation and the real view are computationally indistinguishable.

Let A be a polynomial adversary controlling Alice. Correctness is implicit
because Bob does not output anything. RSAModulusTest can be seen, for
A, as a restricted implementation of GenFact, described in section 2, where
the k questions are as2 ≡? t−1

1 mod n (the commitment of t1 is required
to get this). According to lemma 1, RSAModulusTest is nPrivate against
any polynomial adversary controlling Alice.

�
9 Throughout this paper, we neglect the probability that n is a Carmichael modulus.

10 By supposing that n is not a Carmichael RSA modulus.

3.3 Protocol RSAModulusGeneration

The following protocol RSAModulusGeneration implements the function-
ality described in section 2. As mentioned in section 2, ModulusGeneration
denotes a stand-alone secure (in the malicious case) protocol computing
n = (pA + pB)(qA + qB). This protocol is used to build an RSA modulus
candidate n = pq. The parties then use the classical Boneh’s test to test
if n is an RSA modulus. If not, the parties exchange the current values
pA, pA, pB, qB (which do not need to be kept secret anymore) and check
that the other party behaved honestly before generating an other modulus
n (by executing a new iteration of the loop). If Boneh’s test claims that n
is an RSA modulus, the parties then invoke Gamma to get an encryption
of (p− 1)(q− 1)/2. They then check that n is really an RSA modulus by
executing RSAModulusTest twice (exchanging their positions each time).
The idea is to execute RSAModulusTest only if n is an RSA modulus or if
the adversary did not behave honestly. RSAModulusTest will distinguish
these two cases. Note that either RSAModulusGeneration outputs the first
RSA modulus n0 output by ModulusGeneration in step 1.a.: it will be used
in the security analysis of RSAModulusGeneration.

Theorem 1. Let A be a polynomial adversary controlling Alice or Bob.
Assume that the encryption scheme S is semantically secure, the fol-
lowing assertions are true in the (CorrectKey, EncryptProof, Bound and
Multiplication)-hybrid model.

1. RSAModulusGeneration is correct against A, i.e. the probability that
the output n is not an RSA modulus is negligible.

2. Assuming conjecture 1, the probability that the protocol does not fail
and that A factors the output n is negligible.

Proof. Let k be the security parameter. Let us suppose that Bob is honest
and that Alice is controlled by an active adversary A.

ModulusGeneration is assumed to correctly compute n = (pA+pB)(qA+
qB). If n is not an RSA modulus and A cheats Boneh’s test in step (1.b),
the protocol fails in step (4) according to proposition 1. Thus, RSAMod-
ulusGeneration cannot output a non-RSA Modulus. If pA or qA is not a
k-bit size integer, if pA ̸≡ 3 mod 4 or if qA ̸≡ 3 mod 4 then the protocol
fails in step 2. Thus, the output is a well-formed RSA modulus. It proves
correctness.

Let us show that either the first RSA modulus generated by Mod-
ulusGeneration is output or RSAModulusGeneration fails. Let n0 = pq =
(pA + pB)(qA + qB) be the first (by assuming the protocol has not failed

Protocol 3 : RSAModulusGeneration

Require : Let k be a security parameter. Alice (resp. Bob) generates an encryption
function EA (resp. EB) defined over ZnA (resp. ZnB) where nA (resp. nB) is a 5k-size
integer. Parties invoke CorrectKey to prove correctness of keys.

1. While Boneh’s test fails

(a) Alice and Bob randomly choose k-bit numbers, respectively pA, qA and
pB , qB such that pA ≡ qA ≡ 3 mod 4 and pB ≡ qB ≡ 0 mod 4. They then
invoke ModulusGeneration to get n = (pA + pB)(qA + qB).

(b) Alice and Bob invoke Boneh’s test to decide if n is an RSA modulus or not.
(c) if n failed Boneh’s test then parties broadcast pA, qA, pB , qB and verify that

n = (pA + pB)(qA + qB) and pA + pB or qA + qB are not prime. If n is an RSA
modulus then the protocol fails.

End while

2. Alice and Bob invoke Gamma twice (by exchanging their position) on the private
inputs ((pA−3)/4, (qA−3)/4), (pB/4, qB/4) and the public input n. Alice gets the
encryption ΓB and Bob gets the encryption ΓA.

3. Alice invokes RSAModulusTest on the input n, ΓB (Alice is party 1)

4. Bob invokes RSAModulusTest on the input n, ΓA (Bob is party 1)

5. If Alice and Bob have output ok in the previous steps, n is output.

before) RSA modulus output by ModulusGeneration in loop 1. If A cheats
Boneh’s test in step (1.b) then the protocol fails in step (1.c) else the step
2 is executed. If p or q are not k-bit size integers then the execution of
Gamma makes RSAModulusGeneration fails in step 2. As RSAModulusTest
is correct, either n0 is output or the protocol fails in step 4. Thus, the
output RSA modulus n0 is randomly chosen such that p ≡ q ≡ 3 mod 4,
p ∈ [pA +2k, pA +2k+1[

∩
N and q ∈ [qA +2k, qA +2k+1[

∩
N where pA, qA

are two arbitrary k-bit integers (chosen by the adversary). According to
conjecture 1 and assuming that ModulusGeneration is secure (in the stand-
alone setting), A cannot factor n0, with non negligible probability, at the
end of step 1.a.. Indeed, in the ideal case (see [17]) an adversary AI knows
n, pA, qA and in the real case the adversary A knows n0, zn0,A (zn0,A being
the view of A in ModulusGeneration). Indeed, according to conjecture 1,
there there does not exists any polynomial adversary AI able to factor n0

with non negligible probability in the ideal case (given n0, pA, qA). Thus,
if there exists a polynomial adversary A able to factor n0 with non negligi-
ble probability, then the real view and the ideal view can be distinguished
with non negligible probability: it contradicts that ModulusGeneration is
secure. Thus, such an adversary A does not exist. In other words, by de-
notingDk the distribution of n0, zn0,A, the family of distributions (Dk)k∈N
is nPrivate. Boneh’s test is nPrivate and according to proposition 2 and
3, Gamma and RSAModulusTest are nPrivate. According to the composi-
tion property (see proposition 1), the sub-protocols composed by steps
(1b.)(2),(3) and (4) is nPrivate. According to the definition 2, A cannot
output the factorization of n0 without making the nPrivate sub-protocol
composed of the steps (1.b.)(2),(3),(4) (thus RSAModulusGeneration) fail
with non negligible probability.

�

Efficiency Analysis. Classical Protocols generating RSA moduli corre-
spond to the steps (1a) (1b) of RSAModulusGeneration. The steps (1c)
(2), (3), (4) were introduced in order to make the protocol robust against
active adversaries. Let us evaluate the supplementary cost of these steps.

In a first analysis, we only take into account modular exponentiations,
encryptions and decryptions (ME/E/D) that Alice (and symmetrically
Bob) must compute (neglecting, for instance, modular multiplications).
The underlying encryption scheme S is assumed to be the Paillier cryp-
tosystem. The number of iterations of the loop is approximatively equal
to log2 n on average. As (1c) consists of doing log2 n primary tests, the
cost of (1c) is approximately equal to log2 n exponentiations. However,

(1c) should be added in all classical Boneh’s test protocols to not allow
an adversary to cheat Boneh’s test on RSA moduli. Furthermore, (1c)
does not need to be executed at each iteration but only with a given
probability.

Gamma and RSAModulusTest are executed twice. Gamma requires
O(log n) ME/E/D (assuming Bound requiresO(1) ME/E/D) and RSAMod-
ulusTest requires O(1) ME/E/D. Thus, steps (2),(3),(4) can be neglected
with respect to step (1) (which requires O(log2 n) ME/E/D) when log n
is large. Let us detail our analysis.

In Gamma, the protocol Bound is invoked twice. For classical security
level, approximatively 103 ME/E/D are required. Without any optimiza-
tion, the total running time of steps (2), (3), (4) is a few minute on a
standard platform.

However, as far as we know, there does not exist two-party really
efficient Boneh’s test based protocols (while there exists such efficient
protocol in the multi-party case [16]): hours are required to output a
1024-bit RSA modulus. It is very challenging to find such a protocol.

Complementary approaches to reach efficiency consist of modifying
the distribution of the inputs (see [15]). For instance, it should be asked
to Alice to choose pA, qA as multiples of some small primes and it should
be asked to Bob to choose pB, qB as multiples of other small primes. By
doing this pA + pB and qA + qB are not multiple of the involved small
primes increasing their probability to be prime.

4 Conclusion and future work

We first showed that existing two-party protocols based on Boneh’s test
are not secure against actives adversaries. In this paper, we have provided
a provably secure (with security requirements dedicated to our applica-
tion) protocol to solve this problem. We propose a simple and efficient
”patch” making most Boneh’s test-based protocols correct against any
polynomial active adversaries. We develop ad-hoc security tools to prove
that a polynomial adversary cannot learn the factorization of n with-
out making the protocol fail. These new security tools could be re-used
for other applications. A natural extension would consist of considering
the multi-party case in presence of an arbitrary number of misbehaving
parties.

References

1. J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation modulo a
shared secret with application to the generation of shared safe-prime products. In
CRYPTO, pages 417–432, 2002.

2. Simon R. Blackburn, Simon Blake-Wilson, Mike Burmester, and Steven D. Gal-
braith. Weaknesses in shared rsa key generation protocols. In IMA Int. Conf.,
pages 300–306, 1999.

3. D. Boneh and M.K. Franklin. Efficient generation of shared rsa keys (extended
abstract). In CRYPTO, pages 425–439, 1997.

4. D. Boneh and M.K. Franklin. Efficient generation of shared rsa keys. J. ACM,
48(4):702–722, 2001.

5. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

6. R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In EUROCRYPT, pages 280–299, 2001.

7. I. Damg̊ard and K. Dupont. Efficient threshold rsa signatures with general moduli
and no extra assumptions. In Public Key Cryptography, pages 346–361, 2005.

8. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In Public Key Cryptography, pages
119–136, 2001.

9. Ivan Damg̊ard and Maciej Koprowski. Practical threshold rsa signatures without
a trusted dealer. In EUROCRYPT, pages 152–165, 2001.

10. Ivan Damg̊ard and Gert Læssøe Mikkelsen. Efficient, robust and constant-round
distributed rsa key generation. In TCC, pages 183–200, 2010.

11. P. Fouque and J. Stern. Fully distributed threshold rsa under standard assump-
tions. In IACR Cryptology ePrint Archive: Report 2001/2008, February 2001.

12. N. Gilboa. Two party rsa key generation. In CRYPTO, pages 116–129, 1999.
13. Carmit Hazay, Gert Lsse Mikkelsen, Tal Rabin, and Tomas Toft. Efficient rsa

key generation and threshold paillier in the two-party setting. Cryptology ePrint
Archive, Report 2011/494, 2011. http://eprint.iacr.org/.

14. Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In CRYPTO,
pages 36–54, 2000.

15. Daniel Loebenberger and Michael Nüsken. Analyzing standards for rsa integers.
In AFRICACRYPT, pages 260–277, 2011.

16. Michael Malkin, Thomas D. Wu, and Dan Boneh. Experimenting with shared
generation of rsa keys. In NDSS, 1999.

17. O.Goldreich, S.Michali, and A.Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–
229, 1987.

18. G. Poupard and J. Stern. Generation of shared rsa keys by two parties. In Asi-
acrypt’98, LNCS 1514, Springer-Verlag, pages 11–24, 1998.

19. Tal Rabin. A simplified approach to threshold and proactive rsa. In CRYPTO,
pages 89–104, 1998.

20. Victor Shoup. Practical threshold signatures. In EUROCRYPT, pages 207–220,
2000.

21. T. Straub. Efficient two party multi-prime rsa key generation. In IASTED In-
ternational Conference on Communication, Network, and Information Security,
2003.

22. P. MacKenzie Y. Frankel and M. Yung. Robust efficient distributed rsa key gen-
eration. In STOC’98, pages 663–672, 1998.

A Attack on Boneh’s test

Boneh and Franklin [3] have proposed a test to decide if n = pq is an RSA
modulus assuming that p ≡ q ≡ 3 mod 4. This test consists of randomly
choosing a ∈ Z∗

n such that (an) = 1, computing11 v = a(p−1)(q−1)/2 mod n
and checking if v ̸= 1. For a value n which passes the test t times, n is not
an RSA modulus with probability smaller than 2−t. This test is not a com-
plete probabilistic test in the sense that there are some integers n, which
are not RSA moduli, but which succeed the test for any basis a. However,
this probability can be considered as negligible (around 10−60) for the
number sizes considered in our application. In existing protocols [4], [12],
[18], [21], Alice and Bob generate n = (pA + pB)(qA + qB) with a secure
protocol ModulusGeneration where pA ≡ qA ≡ 3 mod 4 and pB ≡ qB ≡ 0
mod 4. Alice then computes sA = (n − pA − qA + 1)/2 and Bob com-
putes sB = −(pB + qB)/2 in order to additively share (p − 1)(q − 1)/2,
i.e. sA + sB = (p− 1)(q − 1)/2. Finally, Alice computes asA mod n, Bob
computes asB mod n and they check that asAasB = 1 mod n. This test
is secure against passive adversary. However, this protocol may be inse-
cure against an active adversary because there is nothing to ensure that
parties send the correct value as mod n in Boneh’s test. To secure the pro-
tocol, each party should prove that it sends as mod n. Classical methods
(based on zero-knowledge proofs which ensure two values as mod n and
gs mod n have the same discrete logarithm s) cannot be used because
the shared values s are chosen before n (they are used to build n). In the
next section, an attack in a dissymmetric environment is presented and
evaluated (note that nothing excludes that other attacks exist, even in a
symmetric environment).

A.1 Presentation of a brute force attack

This attack works in a dissymmetric environment where one party has
more resources than the other.12 Let us suppose that an active polynomial
adversary A controls Alice. We suppose that A has more resources than
Bob. We denote the ratio of resources between Alice and Bob by r > 1.

11 The original Boneh test consists of checking if a(p−1)(q−1)/4 = ±1 mod n. This
formulation is equivalent to ours. Indeed, as it is assumed that p ≡ q ≡ 3 mod 4,
1 and -1 are the two square roots of 1 with a Jacobi symbol equal to 1. Thus,
a(p−1)(q−1)/2 = 1 ⇔ a(p−1)(q−1)/4 = ±1.

12 The ”power ” party ressource can be, for instance, only linear with respect to the
resource of the other. It is obviously assumed that the ”power” party is not able to
factor output RSA moduli, i.e. 1024-bit RSA moduli.

Typically, A computes r times faster than Bob. In Boneh’s test, each
party computes a modular exponentiation. We denote the time needed
by Bob to compute the modular exponentiation, by te. A can try to
factorize n during (1 − 1/r)te time units and keeps te/r time units to
compute a modular exponentiation. Let us suppose that q = qA + qB
is prime and that Alice manages to decompose n in prime factors, i.e.
n = p1p2...pmq. This situation can be identified by A with probability
1/2 (A cannot distinguish it from the symmetric case where p = pA + pB
is prime) because |q| = k > |pi|. Thus, A can deduce pB = p1p2...pm− pA
and qB = q− qA. Consequently A can compute Bob’s secret share sB. By
sending a−sB mod n instead of asA mod n, Boneh’s test succeeds and
Bob is convinced that n is an RSA modulus. A first naive approach would
consist of letting time tB to Bob to test if n is a RSA modulus after the
Boneh’s test. In the next section, we experiment with this type of attack
against this naive approach.

A.2 Concrete scenario of the attack

In this section, Bob’s simulations were implemented on a standard PC
(Pentium 2 GHz) with the java class BigInteger. The factorization al-
gorithm is ECM. This algorithm is particularly efficient for discovering
small factors in large integers. In a sense this algorithm is very relevant
for Bob’s problem which consists of checking whether n is an RSA modu-
lus or not. In our simulations, A computes on the same platform but the
obtained computations times are divided r.

In order to correctly evaluate this attack, we should evaluate the prob-
ability of getting ”malicious” values of n. A malicious n = p1...pmq can
be factored in a small amount of time by A while Bob cannot find any
factor pi. Typically, p1, .., pm should be large enough but not too large. In
the following experiment, we simulate the attack with the following pa-
rameters |n| = 1024, r = 105 and te = 100ms (this is approximately the
time that Bob needs to compute a modular exponentiation considering
1024-bit size integers). We denote the time available to Bob after apply-
ing Boneh’s test in order to check if n is an RSA modulus by tB. We wish
to estimate the probability of finding n such that A is able to factorize
it in (1 − 1/r)te ≈ te time units and such that Bob is not able to find
a factor within tB time units. In our experiments, if |pi| ∈ {80, ..., 110}
(and |q| = 512) then A is able to factorize n within te = 100ms (3h with
our platform) and Bob needs at least 3mins to find a factor.

Now, let us evaluate the ratio between the probability of getting an
RSA modulus and the probability of finding such malicious values of n.

This ratio provides a lower bound of the probability to output a non-
RSA modulus. A short analysis 13 based on prime theorem shows that
this ratio is approximately equal to 10−4.

To summarize, if the ratio of performance between Bob and A is larger
than 105 and if Bob is given less than 3 minutes after applying Boneh’s
test in order to verify whether n is an RSA modulus, then the adversary
is able to convince Bob that a non-RSA modulus is a RSA-modulus with
probability larger than 10−4.

In this paper, we propose a ”patch” to the classical Boneh’s test in
order to ensure that a value n is an RSA modulus against any polynomial
adversary, in particular against a more powerful adversary (whatever the
performance ratio r is). The computation of this patch requires only few
seconds.

B Protocol Multiplication

MultProof. A party builds 3 encryptions X,Y, Z from 3 values x, y, z such
that z = xy. MultProof is a Σ− protocol which proves that Z encrypts
xy without revealing anything about x and y.

A version of MultProof is dedicated to Paillier’s encryption scheme.
It can be found in [6] (generic versions can also be found). We have as
inputs encryption Cx = gxrn mod n2, Cy = gysn mod n2, D = Cy

xγn

mod n2 and a player Pi who knows in addition s, y, γ. What we need is a
proof that D encrypts xy mod n. We proceed as follows:

1. Pi chooses a ∈ Zn and b, c ∈ Z∗
n at random, computes and sends

A = Ca
xb

n mod n2, B = gacn mod n2

2. The verifier sends a random challenge e
3. Pi computes and sends

w = a+ ey mod n, z = csegt mod n2, z′ = bCt
xγ

e mod n2

where t is defined by a+ ey = w + tn.

13 We assume that the number of primes smaller than any integer t is equal to t/ log t.
By using this approximation, we can estimate the number Pk of primes of size k.
To estimate the number of 512-bit size integers p = p1...pm with |pi| ∈ {80, ..., 110},
it suffices to consider each possible value of 7 ≥ m ≥ 5, each possible size (without
taking into account permutations) of p1, p2, ..., pm belonging to {80, ..., 110}. Given
m and |p1|, ..., |pm|, it is easy to count the numbers of 512-bit size integers p knowing
P|p1|, ..., P|pm|. By considering all size configurations, we approximately obtain the
number of 512-bit size integers which can be written as product of {80, ..., 110}-bit
size primes pi.

4. The verifier checks that

gwzn = BCe
y mod n2, Cw

x y
n = ADe mod n2

and accepts if and only if it is the case.

This zero-knowledge proof is shown secure under composition. Based
on such proofs, a secure protocol Multiplication can be easily built.

Multiplication

Require : Alice has two encryptions EB(x), EB(y) of unknown values x, y ∈ ZnB

1. Alice sends EB(r + x), EB(s + y) where r and s are random numbers chosen in
ZnB

2. Bob computes and sends Z = EB((x+r)(y+s)). He then proves that Z encrypts
the correct value with MultProof.

3. Alice computes an encryption of (x+r)(y+s)−sx−ry−rs by using homomorphic
properties and outputs it.

C Proof of proposition 1

Let D = (Di)i∈N be an nPrivate probability distribution family (see defi-
nition 1) and k be a security parameter. Let A be a polynomial adversary
and (n, zn) ← Dk. Without loss of generality, an adversary A in P can
be decomposed in two adversaries AR, AS , denoted by A = AR → AS

as follows: AR receives (n, zn) ← Dk before the execution of R, outputs
(n, zn,A,R) and sends it to AS which starts the protocol S given (n, zn,A,R).

Let us change the rules of interaction with the adversary A. If R fails,
A is given ”another chance” by letting it execute S but by deleting the
information it learns about n. More formally, this can be interpreted as
the interaction between party 1 and a new polynomial adversary A′ =
A′

R → AS in a new composed protocol P ′ = R′ → S: R′ is the same
protocol as R except that the A′

R outputs zn (the honest party outputs
an arbitrary value) when R fails and A′

R outputs zn,A,R otherwise (note
that R′ never fails). By summary

zn,A′,R′ =

{
zn,A,R, if R does not fail;
zn, otherwise.

It is clear that the probability that A′ outputs the factorization of n
without making P ′ fail is larger than the probability that A outputs the
factorization of n without making P fail. Let us show that this probability
is negligible. Let D′

k be the probability distribution of (n, zn,A′,R′). As S
is nPrivate, it suffices to prove that (D′

k)k∈N is nPrivate.
Let us suppose that it is not the case and that there exists a p.p.t algo-

rithm F able to factor n, with non negligible probability, given n, zn,A′,R′ .
This implies that one of the two following issues is satisfied with non
negligible probability:

1. F factors n given n, zn
2. F factors n given n, zn,A,R and R does not fail.

If F cannot factor n, with non negligible probability, given n, zn because
(Dk)k∈N is nPrivate. Let A′′ be a polynomial adversary behaving like A in
R and applying F on n, zn,A,R. Issue 2 implies that the probability that
A′′ factors n without making R fail is not negligible. Thus, issue 2 cannot
hold assuming that R is nPrivate. It proves that (D′

k)k∈N is nPrivate.

