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Abstract

Oblivious transfer is one of the most basic and important building blocks in cryptography.
As such, understanding its cost is of prime importance. Beaver (STOC 1996) showed that it
is possible to obtain poly(n) oblivious transfers given only n actual oblivious transfer calls and
using one-way functions, where n is the security parameter. In addition, he showed that it
is impossible to extend oblivious transfer information theoretically. The notion of extending
oblivious transfer is important theoretically (to understand the complexity of computing this
primitive) and practically (since oblivious transfers can be expensive and thus extending them
using only one-way functions is very attractive).

Despite its importance, very little is known about the feasibility of extending oblivious
transfer, beyond the fact that it is impossible information theoretically. Specifically, it is not
known whether or not one-way functions are actually necessary for extending oblivious transfer,
whether or not it is possible to extend oblivious transfers with adaptive security, and whether or
not it is possible to extend oblivious transfers when starting with O(log n) oblivious transfers.
In this paper, we address these questions and provide almost complete answers to all of them.
We show that the existence of any oblivious transfer extension protocol with security for static
semi-honest adversaries implies one-way functions, that an oblivious transfer extension protocol
with adaptive security implies oblivious transfer with static security, and that the existence of
an oblivious transfer extension protocol from only O(log n) oblivious transfers implies oblivious
transfer itself.

∗This research was supported by the israel science foundation (grant No. 189/11). Hila Zarosim is grateful
to the Azrieli Foundation for the award of an Azrieli Fellowship.



1 Introduction

Background – extending oblivious transfer. In the oblivious transfer problem [16, 5], a sender
holds a pair of input bits (b0, b1) and enables a receiver to obtain one of them at its choice. The
security requirements are that the sender learns nothing about which input is obtained by the
receiver, while the receiver learns only one bit.

Oblivious transfer is one of the most basic and important primitives in cryptography in general,
and in secure computation in particular. Oblivious transfer is used in almost all general protocols
for secure computation with no honest majority (e.g., see [18, 7]), and has been shown to imply
essentially all basic cryptographic tasks [14]. Due to its importance, the complexity of computing
oblivious transfer is of great importance. Oblivious transfer can be constructed from enhanced
trapdoor permutations [5, 10] and from homomorphic encryption [1]. In addition, it is known that
it is not possible to construct oblivious transfer from public-key encryption (or one-way functions
and permutations) in a black-box manner [6]. Thus, oblivious transfer requires quite strong hardness
assumptions (at least when considering black-box constructions, and no nonblack-box constructions
from weaker assumptions are known).

Due to the importance of oblivious transfer and its cost, Beaver asked whether or not it is
possible to use a small number of oblivious transfers and a weaker assumption like one-way functions
in order to obtain many oblivious transfers [3]; such a construction is called an OT extension. Beaver
answered this question in the affirmative and in a beautiful construction showed how to obtain
poly(n) oblivious transfers given ideal calls to O(n) oblivious transfers and using a pseudorandom
generator and symmetric encryption, which can both be constructed from any one-way function. In
addition, he showed that OT extensions cannot be achieved information theoretically. These results
of [3] are of great importance theoretically since they deepen our understanding of the complexity
of oblivious transfer. In addition, OT extensions are of interest practically, since oblivious transfer
is much more expensive than symmetric primitives. Thus, OT extensions can potentially be used to
speed up protocols that rely on many oblivious transfers. In this direction, efficient OT extensions
(based on a stronger assumption than one-way functions) were presented in [12].

This paper – a feasibility study of OT extensions. In this paper, we ask the following ques-
tions:

1. What is the minimal assumption required for constructing OT extensions? It has been shown
that one-way functions suffice, and that OT extensions cannot be carried out information
theoretically [3]. However, it is theoretically possible that OT extensions can be achieved
under a weaker assumption than that of the existence of one-way functions. Admittedly, it is
hard to conceive of a cryptographic construction that is not information theoretic and does
not require one-way functions. However, a proof that one-way functions really are necessary
is highly desired.

2. Can oblivious transfer be extended with adaptive security? The known constructions of OT
extensions maintain security only in the presence of static corruptions, where the set of
corrupted parties is fixed before the protocol begins. This is because the messages sent by
the sender in the constructions of [3, 12] are binding with respect to the sender’s input strings,
and so an adaptive simulator cannot explain a transcript in multiple ways. Nothing is known
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about whether or not adaptively secure OT extensions exist without assuming erasures1.

3. How many oblivious transfers are needed for extensions? In the constructions of [3, 12],
one must start with O(n) oblivious transfers where n is the security parameter. These con-
structions can also be made to work when a superlogarithmic number ω(log n) of oblivious
transfers are given. However, they completely break down if O(log n) oblivious transfers only
are available. We ask whether or not it is possible to extend a logarithmic number of oblivious
transfers.

We prove the following theorems:

Theorem 1.1 If there exists an OT extension protocol from n to n+1 (with security in the presence
of static semi-honest adversaries), then there exist one-way functions.

Thus, one-way functions are necessary and sufficient for OT extensions.

Theorem 1.2 If there exists an OT extension protocol from n to n+1 that is secure in the presence
of adaptive semi-honest adversaries, then there exists an oblivious transfer protocol that is secure
in the presence of static semi-honest adversaries.

This means that the construction of an adaptive OT extension protocol involves construct-
ing statically secure oblivious transfer from scratch. This can still be meaningful, since adaptive
oblivious transfer cannot be constructed from static oblivious transfer in a black-box manner [15].
However, it does demonstrate that adaptive OT extensions based on weaker assumptions than those
necessary for static oblivious transfer do not exist.

Theorem 1.3 If there exists an OT extension protocol from f(n) = O(log n) to f(n) + 1 that is
secure in the presence of static malicious adversaries, then there exists an oblivious transfer protocol
that is secure in the presence of static malicious adversaries.

This demonstrates that in order to extend only a logarithmic number of oblivious transfers
(with security for malicious adversaries), one has to construct an oblivious transfer protocol from
scratch. Thus, meaningful OT extensions exist only if one starts with a superlogarithmic number
of oblivious transfers.

We stress that all of our results are unconditional, and are not black-box separations. Rather,
we construct concrete one-way functions and OT protocols in order to prove our results.

Our results provide quite a complete picture regarding the feasibility of constructing OT ex-
tensions. The construction of [3] is optimal in terms of the computational assumption, and the
constructions of [3, 12] are optimal in terms of the number of oblivious transfers one starts with. Fi-
nally, the fact that no OT extensions are known for the setting of adaptive corruptions is somewhat
explained by Theorem 2.

1Note that in the erasures model, an OT extension can be constructed from one-way functions using the original
construction of Beaver and the two-party computation protocol of [?] that is adaptively secure with erasures and is
based on Yao’s protocol.
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Open questions. Theorem 2 shows that there do not exist adaptively secure OT extensions
based on weaker assumptions than what is needed for statically secure OT. However, we do not
know how to construct an adaptively secure OT extension even from statically secure OT. Thus,
the question of whether or not it is possible to construct an adaptively secure OT extension from
an assumption weaker than adaptive OT is still open.

Theorem 3 holds only with respect to OT-extensions that are secure against malicious adver-
saries. For the case of semi-honest adversaries, the question of whether one can construct an an
OT-extension from f(n) = O(log n) to f(n) + 1 from an assumption weaker than statically secure
OT protocol is open.

In this paper, we have investigated OT extensions. However, the basic question of extending
a cryptographic primitive using a weaker assumption than that needed for obtaining the primitive
from scratch is of interest in other contexts as well. For example, hybrid encryption (where one
encrypts a symmetric key using an asymmetric scheme, and then encrypts the message using a
symmetric scheme) is actually an extension of public-key encryption that requires one-way functions
only.

A primitive that could certainly benefit from a study such as this one is key agreement. In this
context, the question is whether it is possible for two parties to agree on an m + 1-bit long key,
given an m-bit key, under assumptions that are weaker than those required for constructing a secure
key-agreement from scratch. In the basic case, it is clear that OWFs are necessary and sufficient
for any nontrivial KA extension that starts with n bits (where n is the security parameter). A
more interesting question regarding this problem relates to the adaptive setting. Specifically, since
adaptive key agreement is very expensive, it would be very beneficial if one could extend this
primitive more efficiently and/or under weaker assumptions.

2 Definitions and Notations

We denote the security parameter by n, and we denote by Un a random variable uniformly dis-
tributed over {0, 1}n. We say that a function µ : N→ N is negligible if for every positive polynomial
p(·) and all sufficiently large n it holds that µ(n) < 1

p(n) . We use the abbreviation PPT to denote

probabilistic polynomial-time. We denote the bits of a string x ∈ {0, 1}n by x1, . . . , xn; for a sub-
scripted string xb, we denote the bits by x1

b , . . . , x
n
b . In addition, for strings x0, x1, σ ∈ {0, 1}n we

denote by xσ the string x1
σ1 , . . . , x

n
σn .

Definition 2.1 Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N be two distribution

ensembles. We say that X and Y are computationally indistinguishable, denoted X
c≡ Y , if for every

PPT machine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently large n:∣∣∣Pr [D(X(a, n), 1n) = 1]− Pr [D(Y (a, n), 1n) = 1]
∣∣∣ < 1

p(n)
.

We say that X and Y are statistically close, denoted X
s≡ Y , if for every a ∈ {0, 1}∗, every positive

polynomial p(·) and all sufficiently large n:

SD(X,Y )
def
=

1

2
·
∑
α

∣∣∣Pr[X(a, n) = α]− Pr[Y (a, n) = α]
∣∣∣ < 1

p(n)
.
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Interactive Protocols. Let π = 〈A,B〉 be an interactive protocol for computing a functionality
f . We denote f = (fA, fB), where fA is the first output of f (for party A) and fB is the second
output of f (for party B). For inputs xA and xB of A and B (respectively) and random tapes
rA and rB, we denote by Transπ(xA, xB, rA, rB) the transcript obtained by running π on inputs
xA and xB and random tapes rA and rB, and by Transπ(xA, xB) the random variable describing
Transπ(xA, xB; rA, rB) where rA and rB are uniformly chosen.

The random variable Viewπ
A(xA, xB) denotes the view of the party A in an execution of π with

inputs xA for A and xB for B, where the random tapes of the parties are uniformly chosen. Note
that a view of a party contains its input, randomness and the messages it has received during the
execution.

The random variable OutputπA(xA, xB) denotes the output of the party A in an execution of
π with inputs xA for A and xB for B, where the random tapes of the parties are uniformly chosen.

Definition 2.2 Let f(·, ·) be a deterministic binary functionality, let π = 〈A,B〉 be an interactive
protocol and let n be the security parameter. We say that π computes the functionality f if there
exists a negligible function negl(·) such that for all n, xA and xB:

Pr [〈A(1n, xA), B(1n, xB)〉 = (fA(xA, xB), fB(xA, xB))] ≥ 1− negl(n).

Definition 2.3 Let π = 〈A, b〉 be a protocol that computes a deterministic functionality f =
(fA, fB). We say that π securely computes f in the presence of static semi-honest adversaries if
there exist two probabilistic polynomial-time algorithms SA and SB such that:{

SA(1n, xA, fA(xA, xB))
}
xA,xB∈{0,1}∗,n∈N

c≡
{
Viewπ

A(1n, xA, xB)
}
xA,xB∈{0,1}∗,n∈N

and {
SB(1n, xB, fB(xA, xB))

}
xA,xB∈{0,1}∗,n∈N

c≡
{
Viewπ

B(1n, xA, xB)
}
xA,xB∈{0,1}∗,n∈N

Security in the presence of malicious adversaries. To define security in the presence of
malicious adversaries, we use the ideal/real framework as defined by Canetti in [4]. Loosely speak-
ing, in this approach we formalize the real-life computation as a setting where the parties, given
their private inputs, interact according to the protocol in the presence of a real-life adversary that
controls a set of corrupted parties. The real-life adversary can be either static (where the set of
corrupted parties is fixed before the protocol begins) or adaptive (where the adversary can choose
to corrupt parties during the protocol execution based on what it sees). At the end of the compu-
tation, the honest parties output what is specified by the protocol and the adversary outputs some
arbitrary function of its view. If the adversary is adaptive, there is an additional entity Z, called
the environment, who sees the output of all of the parties. In addition, there is a “postexecution
phase”, where Z can instruct the adversary to also corrupt parties after the execution of the pro-
tocol ends (and the transcript is fixed, implying that “rewinding” is no longer allowed). At the end
of the postexecution phase, Z outputs some function of its view.

Next we consider an ideal process, where an ideal-world adversary controls a set of corrupted
parties. Then, in the computation phase, all parties send their inputs to some incorruptible trusted
party. The ideal-world adversary sends inputs on behalf of the corrupted parties. The trusted party
evaluates the function and hands each party its output. The honest parties then output whatever
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they received from the trusted party and the ideal-world adversary outputs some arbitrary value.
Similarly to the real-life setting, in the case of adaptive security, there is an environment Z who
sees all outputs and can instruct the adversary to also corrupt parties in the postexecution phase.
At the end of the postexecution phase, Z outputs some function of its view.

Loosely speaking, a protocol π is secure in the presence of static malicious adversaries, if for every
static malicious real-life adversary A, there exists a static malicious ideal-world adversary SIM
such that the distribution obtained in a real-life execution of π with adversary A is indistinguishable
from the distribution obtained in a ideal-world with adversary SIM. Likewise, a protocol π is secure
in the presence of adaptive malicious adversaries, if for every adaptive malicious real-life adversary A
and environment Z, there exists an adaptive malicious ideal-world adversary SIM such that the
output of Z in a real-life execution of π with adversary A is indistinguishable from its output in a
ideal-world with adversary SIM.

Security in the presence of adaptive semi-honest adversaries is defined in the same way as adaptive
malicious adversaries, except that the adversary only sees the internal state of a corrupted party
but cannot instruct it to deviate from the protocol specification. For full definitions see [4].

The hybrid model. Let φ be a functionality. The φ-hybrid model is defined as follows. The
real-life model for protocol π is augmented with an incorruptible trusted party T for evaluating the
functionality φ, and the parties are allowed to make calls to the ideal functionality φ by sending
their φ-inputs to T . If we consider malicious adversaries, the adversary specifies the inputs of all
parties under its control. If the adversary is semi-honest, then even the corrupted parties hand T
inputs as specified by the protocol π. At each invocation of φ, the trusted party T sends the parties
their respective outputs.

We stress that if π is in the φ-hybrid model, then a view of a party A contains also the inputs
sent by A to the functionality φ and the outputs sent to A by T computing φ.

Oblivious transfer and extensions. We are now ready to define oblivious transfer and OT
extensions.

Definition 2.4 The bit oblivious transfer functionality OT is defined by
OT ((b0, b1), σ) = (λ, bσ). The parallel oblivious transfer functionality m × OT is defined for strings
x0, x1, σ ∈ {0, 1}m as follows: m × OT ((x0, x1), σ) = (λ, (x1

σ1 , . . . , x
m
σm)) = (λ, xσ) (recall that xσ

denotes the string x1
σ1 , . . . , x

n
σn).

We denote by OT k the ideal functionality of k independent OT computations. We stress that
OT k is not the same as k×OT , since in the latter all of the inputs are given at once whereas in OT k

the inputs can be chosen over time (in particular, the receiver can choose its inputs as a function
of the previous outputs it received). Using this notation, we have that an OT extension protocol
is a protocol that securely computes m×OT given access to OT k, where k < m. Formally:

Definition 2.5 (OT -extension) Let π be a protocol and let k,m : N→ N be two functions where
k(n) < m(n) for all n. We say that π is an OT-extension from k = k(n) to m = m(n) if π securely
computes the m×OT functionality in the OT k-hybrid model.
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OT extensions – two technical propositions. We present two propositions that we use
throughout the paper. Beaver showed that OT can be precomputed [2]. That is, it is possible
to first compute OT on random inputs and then use the result to later compute an OT on any
input. Stated formally:

Proposition 2.6 (Beaver [2]) Let m = m(n) be a polynomial. If there exists a protocol that
securely computes the m×OT functionality, then there exists a protocol that securely computes the
OTm ideal functionality.

Proposition 2.6 shows that Definition 2.5 could have been stated as a protocol that securely
computes OTm in the OT k (or even the k ×OT ) hybrid model.

The fact that a single extension implies many has been stated many times in the literature
(e.g., [3]) and is well accepted folklore, but has not been formally proved. We sketch a proof of
this here. We stress that this holds irrespectively of how many oblivious transfers you start with
(even if only a constant number), as long as only a polynomial number of transfers are derived.
We state the proposition for adaptive malicious adversaries and observe that it holds for all four
combinations of static/adaptive and semi-honest/malicious adversaries.

Proposition 2.7 Let f : N → N be any polynomially-bounded function, and let n be the security
parameter. If there exists a protocol π that is an OT-extension from f(n) to f(n) + 1 that is
secure in the presence of adaptive malicious adversaries, then for every polynomial p(·) there exists
an OT-extension protocol from f(n) to p(n) that is secure in the presence of adaptive malicious
adversaries.

Proof Sketch: First, we remark that any secure extension protocol π can be converted into a
secure extension protocol π′ with the property that all of the f(n) calls to the ideal OT are made
at the beginning of the protocol. We actually divide the execution of π′ into two phases: in the first
phase the parties make f(n) calls to an ideal OT , and in the second phase they use the results of
the first phase to compute the OT calls in the original extension protocol π. This transformation
follows easily from the fact that OT can be precomputed [2].

We now use π′ to construct a new protocol π̃ that is an OT -extension from f(n) to p(n).
Protocol π̃ iteratively invokes π′ in the following way. First, f(n) calls are made to an ideal OT .
Then, invoke phase 2 of π′ to obtain f(n) + 1 new OT ’s using the result of the f(n) OT ’s from
the previous iteration. The first f(n) of these OT ’s are used to once again obtain f(n) + 1 OT ’s
by invoking phase 2 of π′. Repeating this process p(n) times, and noting that there is one “spare”
OT in each iteration, we have that p(n) OT s remain and can be used for actual transfers.

This is the same methodology as that used to prove that the existence of pseudorandom gener-
ators that stretch the input by a single bit implies the existence of pseudorandom generators that
stretch the input by any polynomial amount (see [9, Sec. 3.3.2]). The proof of security also follows
a hybrid argument in the same way. We stress that since we use a hybrid argument on the number
of times the original extension is applied, it makes no difference how many OT calls are used in
the original extension protocol. Thus, this holds also for small f(n).
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2.1 A Lemma on Statistical Distance

Lemma 2.8 Let D1 and D2 be two distributions over a set U and let E be an event such that
PrD1 [E] = PrD2 [E]. Then, it holds that

SD(D1, D2) ≤ SD(D1 | E,D2 | E) + PrD1 [¬E]

Proof:

SD(D1, D2) =
1

2

∑
x∈U

∣∣∣PrD1 [x]− PrD2 [x]
∣∣∣

=
1

2

∑
x∈U

∣∣∣PrD1 [x | E] · PrD1 [E] + PrD1 [x | ¬E] · PrD1 [¬E]

− PrD2 [x | E] · PrD2 [E] + PrD2 [x | ¬E] · PrD2 [¬E]
∣∣∣

=
1

2

∑
x∈U

∣∣∣PrD1 [x | E] · PrD1 [E]− PrD2 [x | E] · PrD2 [E]

+ PrD1 [x | ¬E] · PrD1 [¬E]− PrD2 [x | ¬E] · PrD2 [¬E]
∣∣∣

≤ 1

2

∑
x∈U

∣∣∣PrD1 [x | E] · PrD1 [E]− PrD2 [x | E] · PrD1 [E]
∣∣∣

+
1

2

∑
x∈U

∣∣∣PrD1 [x | ¬E] · PrD1 [¬E]− PrD2 [x | ¬E] · PrD1 [¬E]
∣∣∣

= PrD1 [E] · SD(D1 | E,D2 | E) + PrD1 [¬E] · SD(D1 | ¬E,D2 | ¬E)

≤ SD(D1 | E,D2 | E) + PrD1 [¬E]

3 OT Extensions Imply One-Way Functions

In this section we show that the existence of an OT extension protocol implies the existence of
one-way functions. We prove the theorem for any OT extension that is secure in the presence of
static semi-honest adversaries (thus the theorem also holds when the OT extension is secure in the
presence of adaptive and/or malicious adversaries).

Theorem 3.1 If there exists a protocol that is an OT-extension from n to n + 1 (where n is
the security parameter) that is secure for static semi-honest adversaries, then there exist one-way
functions.

Proof: By Proposition 2.7, if there exists an OT extension protocol from n to n + 1 then there
exists an OT extension protocol from n to 2n + 1. We therefore prove the theorem by showing
that the existence of a protocol π that is an OT-extension from n to 2n+ 1 implies the existence of
two polynomial-time constructible probability ensembles that are computationally indistinguishable
and yet their statistical distance is noticeable. The fact that this implies one-way functions was
shown in [8]. We begin by defining the probability ensembles and then provide intuition as to why
they fulfill the above property.

Let X0, X1, X
′
0, X

′
1,Σ be (dependent) random variables chosen as follows:
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1. Σ ∈R {0, 1}2n+1 is a uniformly distributed string (representing the receiver’s input)

2. X0, X1, X
′
0, X

′
1 ∈ {0, 1}2n+1 (representing the sender’s possible inputs) are uniformly dis-

tributed under the constraint that for every i = 1, . . . , 2n + 1 it holds that Xi
Σi

= X ′iΣi ,

where Σ = Σ1, . . . ,Σ2n+1 and X0 = X1
0 , . . . , X

2n+1
0 (likewise for X1, X

′
0, X

′
1). (Thus, the

pairs (X0, X1) and (X ′0, X
′
1) “agree” on the bits chosen by Σ and are independent otherwise.)

Let Transπ(x0, x1, σ) be a random variable over the transcript of π on sender-inputs (x0, x1) and
receiver-input σ. We stress that the transcript contains all of the messages sent between the parties,
but does not contain the n input/output values sent by the parties to the ideal OT functionality
within the extension protocol. We are now ready to define the two probability ensembles E1 ={
E1
n

}
n∈N and E2 =

{
E2
n

}
n∈N:

E1
n = (X0, X1,Σ,Transπ(X0, X1,Σ)) and E2

n = (X ′0, X
′
1,Σ,Transπ(X0, X1,Σ)),

where Σ denotes the bitwise complement of Σ. Observe that in E1 the transcript is generated from
the given inputs (X0, X1,Σ), whereas in E2 the given inputs are (X ′0, X

′
1) and Σ (and (X ′0, X

′
1)

“agree” with (X0, X1) on Σ and are independent of each other on Σ).
Intuitively, these ensembles are computationally indistinguishable by the privacy properties of

oblivious transfer (the change from (X0, X1) to (X ′0, X
′
1) cannot be distinguished or a receiver with

input Σ could learn more than allowed, and the change from Σ to Σ cannot be distinguished or the
sender could learn something about the receiver’s input). Furthermore, they are statistically far
apart because the transcript must contain meaningful information about the inputs being used (in
which case, the transcript will be consistent with the inputs in E1 but not in E2). In order to see
why this is the case, observe that since the number of calls made to the ideal OT functionality is
only n, it cannot be the case that all information regarding the inputs is transferred via the use of
the ideal OT calls. Thus the transcript itself must contain some meaningful information, and this
information will not be consistent in E2.

We begin by proving that E1 and E2 are computationally indistinguishable. Intuitively, this
follows from the privacy property of secure oblivious transfer.

Lemma 3.2 The ensembles E1 and E2 are computationally indistinguishable.

Proof: We prove the lemma by separately considering the privacy guarantees with respect to the
receiver’s input and the sender’s inputs. Towards this goal, consider the following hybrid ensemble:
Let Eh =

{
Ehn
}
n∈N be the following probability ensemble:

Ehn = (X ′0, X
′
1,Σ,Transπ(X0, X1,Σ)).

Note that in Ehn we change only the inputs of the sender, whereas in E2
n both the inputs of the sender

and the receiver are changed (and in E1
n none of the inputs is changed). We prove the claim by

proving that E1 and Eh are computationally indistinguishable and Eh and E2 are computationally
indistinguishable. We sketch the proof of computational indistinguishability:

1. The only difference between E1 and Eh is that E1 contains the actual input used by the sender
whereas Eh outputs a pair of strings that are random in the locations that are not part of the
receiver’s output. Intuitively, these are indistinguishable since otherwise a corrupted receiver
could obtain information about the sender’s inputs that it did not choose, in contradiction
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to the security of oblivious transfer. This can be formalized by defining an experiment in
which the receiver’s input σ is chosen at random, and then two sets of sender inputs are
chosen randomly under the constraint that they are the same for the bits to be received for
the receiver input σ. The oblivious transfers are run using one of the two sender inputs, and
an adversary receiving the receiver’s view attempts to guess which one was used. It is easy to
show that the privacy of oblivious transfer implies that no adversary can succeed in guessing
correctly with probability non-negligibly greater than 1/2.

2. The only difference between Eh and E2 is that in Eh the receiver’s actual input appears whereas
in E2 the complement of the receiver’s input appears. As above, these are indistinguishable
since otherwise a corrupted sender could obtain some information about the receiver’s input,
in contradiction to the security of oblivious transfer. Again, this can be formalized by defining
an experiment where a string σ is chosen at random and given to the sender. Then, the
oblivious transfer implies that no adversary can succeed in guessing if the receiver input was
σ or σ with probability non-negligibly greater than 1/2.

The formal proofs of the above are straightforward and are therefore omitted.

We now prove that the ensembles are statistically far apart.

Lemma 3.3 There exists a polynomial p(·) such that for all large enough n’s, SD(E1
n, E2

n) ≥ 1
p(n) .

Proof: Given the input σ ∈ {0, 1}2n+1 of the receiver and a transcript t, let {(τi, ωi)}ni=1 denote a
sequence of size n containing the inputs {τi}ni=1 sent by the receiver in the n calls to the ideal OT
and the respective outputs {ωi}ni=1 obtained from these calls. We use the following notation:

• For every sequence {(τi, ωi)}ni=1, let RAll(σ, t, {(τi, ωi)}ni=1) denote the set of all random tapes
of the receiver that are consistent with σ, t and {(τi, ωi)}ni=1. Moreover, for every string x ∈
{0, 1}2n+1, let Rout(x, σ, t, {(τi, ωi)}ni=1) denote the set of all random tapes of the receiver that
are consistent with σ, t and {(τi, ωi)}ni=1 and lead the receiver to output x. Note that for every
x, it holds that Rout(x, σ, t, {(τi, ωi)}ni=1) ⊆ RAll(σ, t, {(τi, ωi)}ni=1). Let pπ(x, σ, t, {(τi, ωi)}ni=1)
denote the ratio between the size of these two sets; that is:

pπ(x, σ, t, {(τi, ωi)}ni=1) =
|Rout(x, σ, t, {(τi, ωi)}ni=1)|
|RAll(σ, t, {(τi, ωi)}ni=1)|

• Let LikelySet(σ, t) denote the set of all strings x ∈ {0, 1}2n+1 for which there exists a
sequence of n pairs {(τi, ωi)}ni=1 such that

pπ(x, σ, t, {(τi, ωi)}ni=1) >
1

2
(LikelySet(σ, t) is empty if no such x exists). From the definition, for a given receiver-input
σ and transcript t, the set LikelySet(σ, t) contains all of the strings x for which there exists
a sequence {(τi, ωi)} so that the receiver outputs x after the execution of π with probability
greater than 1/2.

To prove the statistical distance, we construct an unbounded distinguisher A and show the
existence of a polynomial p(·) such that for all sufficiently large n’s:∣∣Pr[A(E1

n) = 1]− Pr[A(E2
n) = 1]

∣∣ ≥ 1

p(n)
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We define our (computationally unbounded) distinguisher A as follows: A receives as input
a tuple (x̃0, x̃1, σ̃, t) that was chosen from either E1 or E2 and outputs 1 if and only if x̃σ̃ ∈
LikelySet(σ̃, t). Observe that x̃σ̃ is the correct receiver output in the case that the parties’ inputs
were x̃0, x̃1, σ̃.

The intuition behind this construction is as follows. If (x̃0, x̃1, σ̃, t) was sampled from E1,
then x̃0, x̃1 and σ̃ are the inputs used to generate the transcript t, and by the correctness of the
protocol the receiver should output x̃σ̃ with probability close to 1. Thus, with high probability x̃σ̃ ∈
LikelySet(σ̃, t). In contrast, if (x̃0, x̃1, σ̃, t) was sampled from E2 = (X ′0, X

′
1,Σ,Trans(X0, X1,Σ)),

then t is a transcript generated from (x0, x1, σ), where x0, x1 are uniform and independent of (x̃0, x̃1)
on the bits chosen by σ̃, and σ̃ = σ. This implies that x̃σ̃ = x̃σ is a random string of size 2n + 1
that is independent of t and so the probability that x̃σ̃ ∈ LikelySet(σ̃, t) cannot be too large.

We show that A distinguishes E1 from E2 with probability close to 1/2. Surprisingly, the main
challenge is actually to show that A outputs 1 when receiving a sample from E1 with probability
close to 1. We explain the difficulty involved at the beginning of the proof of Claim 3.5.

Claim 3.4 For every n, it holds that Pr[A(E2
n) = 1] ≤ 1

2 .

Proof: Recall that upon input (x̃0, x̃1, σ̃, t), distinguisher A outputs 1 if and only if x̃σ̃ ∈
LikelySet(σ̃, t); that is, if and only if there exists a sequence of pairs {(τi, ωi)}ni=1 such that
pπ(x̃σ̃, σ̃, t, {(τi, ωi)}ni=1) > 1

2 . As we have described, in this case of ensemble E2, the string x̃σ̃ is
independent of t. To stress this point, the distribution E2 can be generated by choosing X0, X1,Σ
and generating t, and only then choosing the bits of X ′0, X

′
1 corresponding to Σ (observe that x̃σ̃

corresponds exactly to these bits chosen last). Now, for every given (σ, t, {(τi, ωi)}ni=1) there exists
at most one x such that pπ(x, σ, t, {(τi, ωi)}ni=1) > 1

2 (since it is required that the probability be
strictly greater than 1/2). Since t depends only on random coins generated before the remaining
bits of X ′0, X

′
1 and so x̃σ̃ are chosen, this implies that for every series {(τi, ωi)}ni=1,

Pr

[
pπ(x̃σ̃, σ, t, {(τi, ωi)}ni=1) >

1

2

]
=

1

22n+1
.

We therefore have that for every n,

Pr
[
A(E2

n) = 1
]

= Pr

[
∃{(τi, ωi)}ni=1 s.t. pπ(x̃σ̃, σ, t, {(τi, ωi)}ni=1) >

1

2

]
≤

∑
{(τi,ωi)}ni=1

Pr

[
pπ(x̃σ̃, σ, t, {(τi, ωi)}ni=1) >

1

2

]

≤ 22n · 1

22n+1
=

1

2
.

Denote by outputπR(x0, x1, σ; 1n) the output of the receiver R after an execution with sender-
inputs (x0, x1), receiver-input σ, and security parameter n. We prove:

Claim 3.5 Let µ(·) be the negligible function so that Pr [outputπR(x0, x1, σ; 1n) = xσ)] ≥ 1−µ(n)
(from the correctness requirement). Then, for every n it holds that Pr[A(E1

n) = 1)] ≥ 1− 2µ(n).
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Proof: Recall that E1 samples tuples (x0, x1, σ, t) such that t is a transcript of π on inputs x0, x1

and σ, where x0, x1 and σ are uniformly chosen. Intuitively, this claim follows from the correctness
of the oblivious transfer protocol. That is, if xσ /∈ LikelySet(σ, t) then the receiver would output
the correct output xσ with probability less than 1/2, contradicting the correctness requirement.
Unfortunately, this intuitive argument is far more involved to prove. The reason for this is that
the correctness requirement is based on the probability over the random coins of both parties.
In contrast, LikelySet is defined based on the random coins of the receiver only. In order to
demonstrate why this could be problematic, consider the situation where for any given transcript t
and sequence {(τi, ωi)}ni=1, the majority of receiver coins rR result in an incorrect output. However,
there are only very few sender coins rS that are consistent with t and the bad receiver coins rR.
Therefore, when taking the probability over both the sender and receiver coins, the incorrect output
is received with only very small probability. However, when considering the receiver’s coins only,
the incorrect output is obtained very often. We stress that such an event is easily shown to not
be possible in a standard protocol where the transcript contains all information. This is because
there is no dependence between the sender’s coins and the receiver’s coins, for all possible coins
that are consistent with the transcript. However, in our scenario where ideal OT calls are included
(and the inputs and outputs to these calls are not part of the transcript), such dependence may be
introduced via the ideal OT calls. Proving that such a case cannot occur constitutes the majority
of the proof of this claim.

For inputs x0, x1, and σ, let Good(x0, x1, σ) denote the set of all transcripts t such that xσ ∈
LikelySet(σ, t); i.e., Good(x0, x1, σ) = {t | xσ ∈ LikelySet(σ, t)}. Intuitively, this is the set of
all transcripts that are “good” in the sense that in those executions the receiver (may) output
the correct output with a good probability (it won’t necessarily output the correct output because
this just means that there exists a sequence {(τi, ωi)}ni=1 for which it outputs the correct output
with probability greater than 1/2). Recall that A on input (x0, x1, σ, t) returns 1 if and only if
xσ ∈ LikelySet(σ, t) and hence A outputs 1 if and only if t ∈ Good(x0, x1, σ). Thus, it suffices to
prove that Pr[t ∈ Good(x0, x1, σ)] > 1− 2µ(n), when (x0, x1, σ, t) are sampled from E1.

In order to prove this, we use the fact that

Pr[outputπR(x0, x1, σ; 1n) = xσ]

= Pr[outputπR(x0, x1, σ; 1n) = xσ | t ∈ Good(x0, x1, σ)] · Pr[t ∈ Good(x0, x1, σ)]

+ Pr[outputπR(x0, x1, σ; 1n) = xσ | t 6∈ Good(x0, x1, σ)] · Pr[t 6∈ Good(x0, x1, σ)]

≤ Pr[t ∈ Good(x0, x1, σ)]

+ Pr[outputπR(x0, x1, σ; 1n) = xσ | t 6∈ Good(x0, x1, σ)] · Pr[t 6∈ Good(x0, x1, σ)]

Below, we will prove that

Pr[outputπR(x0, x1, σ; 1n) = xσ | t 6∈ Good(x0, x1, σ)] ≤ 1

2
. (1)

Combining the above calculation with Eq. (1) and with the correctness requirement of the protocol
stating that Pr[outputπR(x0, x1, σ; 1n) = xσ] ≥ 1− µ(n), we have:

1− µ(n) ≤ Pr[t ∈ Good(x0, x1, σ)] +
1

2
· Pr[t 6∈ Good(x0, x1, σ)]

= 1− 1

2
· Pr[t 6∈ Good(x0, x1, σ)]
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and so Pr[t 6∈ Good(x0, x1, σ)] ≤ 2µ(n). Thus, Pr[A(E1
n) = 1] = Pr[t ∈ Good(x0, x1, σ)] > 1− 2µ(n)

as required.
It therefore remains to prove Eq. (1) in order to prove Claim 3.5. By the definition of Good,

for every t 6∈ Good(x0, x1, σ) we have that xσ 6∈ LikelySet(σ, t), which by the definition of
LikelySet(σ, t) implies that for every sequence {(τi, ωi)}ni=1, it holds that

pπ(xσ, σ, t, {(τi, ωi)}ni=1) =
|Rout(xσ, σ, t, {(τi, ωi)}ni=1)|
|RAll(σ, t, {(τi, ωi)}ni=1)|

≤ 1

2
. (2)

Fix x0, x1, σ and fix t /∈ Good(x0, x1, σ). We prove Eq. (1) by showing that for all {(τi, ωi)}ni=1

Pr[outputπR(x0, x1, σ; 1n) = xσ | t ∧ {(τi, ωi)}ni=1] ≤ 1

2
.

For every t /∈ Good(x0, x1, σ) and {(τi, ωi)}ni=1 we define the following two sets (recall that x0, x1

and σ are fixed):

1. Let RSAll(t, {(τi, ωi)}ni=1) contain all pairs of random tapes (rR, rS) for which the execution
〈S(x0, x1; rS), R(σ; rR)〉 results in transcript t and the sequence of input/output ideal calls
{(τi, ωi)}ni=1.

2. Let RSgood(t, {(τi, ωi)}ni=1) contain all pairs of random tapes (rR, rS) for which the execution
〈S(x0, x1; rS), R(σ; rR)〉 results in transcript t, sequence {(τi, ωi)}ni=1 and receiver-output xσ.

It follows immediately from the definition of these sets that

Pr[outputπR(x0, x1, σ; 1n) = xσ | t ∧ {(τi, ωi)}ni=1] =
|RSgood(t, {(τi, ωi)}ni=1)|
|RSAll(t, {(τi, ωi)}ni=1)|

. (3)

In order to see this, denote by All the set of all pairs of random tapes, and observe that

Pr[outputπR(x0, x1, σ; 1n) = xσ ∧ t ∧ {(τi, ωi)}ni=1] =
|RSgood(t, {(τi, ωi)}ni=1)|

|All|
and

Pr[t ∧ {(τi, ωi)}ni=1] =
|RSAll(t, {(τi, ωi)}ni=1)|

|All|
.

Observe that this is very similar to Eq. (2), except that Eq. (2) refers to RAll and Rout which
are based on the receiver’s random tape only, and here we refer to RSAll and RSgood which refer to
both the receiver and sender’s random tapes. Thus, it remains to show that they have the same
ratio, and this will imply that Pr[outputπR(x0, x1, σ; 1n) = xσ | t ∧ {(τi, ωi)}ni=1] ≤ 1/2.

Let SAll(x0, x1, t, {(τi, ωi)}ni=1) be the set of all random tapes of the sender that are consistent
with x0, x1, t and {(τi, ωi)}ni=1. We prove:

RSAll(t, {(τi, ωi)}ni=1) = SAll(x0, x1, t, {(τi, ωi)}ni=1)× RAll(σ, t, {(τi, ωi)}ni=1) (4)

RSgood(t, {(τi, ωi)}ni=1) = SAll(x0, x1, t, {(τi, ωi)}ni=1)× Rout(xσ, σ, t, {(τi, ωi)}ni=1) (5)

(Recall that this is trivial in the case that there are no ideal calls to a functionality. However, in
this case, it is conceivable that the ideal calls may introduce dependence and thus it requires a
proof; see Footnote 2 below.) We begin by proving Eq. (4). Let rS ∈ SAll(x0, x1, t, {(τi, ωi)}ni=1)
and let rR ∈ RAll(σ, t, {(τi, ωi)}ni=1). We show that (rR, rS) ∈ RSAll(t, {(τi, ωi)}ni=1) by showing that
the execution 〈S(x0, x1; rS), R(σ; rR)〉 results in transcript t and sequence {(τi, ωi)}ni=1.

12



This can be proved by a simple induction on the round number k. Assume that up to the kth

round, the execution 〈S(x0, x1; rS), R(σ; rR)〉 is consistent with t and the n pairs {(τi, ωi)}ni=1; we
show that this argument holds also after the k + 1th round. There are three cases for the k + 1th

round:

• The sender sends a message: By the induction hypothesis, all the information that S has up
to this point is consistent with t and {(τi, ωi)}ni=1. Since rS ∈ SAll(x0, x1, t, {(τi, ωi)}ni=1), it
follows that the message sent by the sender in this round is consistent with t.

• The receiver sends a message: Exactly as above, using the fact that rR ∈ RAll(σ, t, {(τi, ωi)}ni=1).

• The parties make the jth call to the ideal OT functionality: By a similar argument to the
previous cases, we deduce that the input sent by the sender to the ideal OT functionality is
consistent with (τj , ωj) and the input sent by the receiver is consistent with (τj , ωj). Hence,
letting m0,m1 be the input of the sender to the OT functionality, we have that mτj = ωj and
the input of the receiver is τj . This implies that the output of the receiver is ωj and hence
(rR, rS) remains consistent after this call to the OT functionality.2

We therefore conclude that Eq. (4) holds; the proof of Eq. (5) is almost identical (with the addition
that the output remains the same). Combining Equations (2) to (5), we obtain that for every fixed
x0, x1, σ, t /∈ Good(x0, x1, σ) and for every sequence {(τi, ωi)}ni=1,

Pr[outputπR(x0, x1, σ; 1n) = xσ | t ∧ {(τi, ωi)}ni=1]

=
|SAll(x0, x1, t, {(τi, ωi)}ni=1)| · |Rout(xσ, σ, t, {(τi, ωi)}ni=1)|
|SAll(x0, x1, t, {(τi, ωi)}ni=1)| · |RAll(σ, t, {(τi, ωi)}ni=1)|

=
|Rout(xσ, σ, t, {(τi, ωi)}ni=1)|
|RAll(σ, t, {(τi, ωi)}ni=1)|

= pπ(xσ, σ, t, {(τi, ωi)}ni=1) ≤ 1

2
.

This completes the proof of Eq. (1), thereby implying Claim 3.5.

Combining Claims 3.5 and 3.4, we obtain that the statistical distance of E1 and E2 is greater
than 1/2− 2µ(n), completing the proof of Lemma 3.3.

We have demonstrated that the existence of an OT extension protocol implies the existence of two
ensembles that are computationally indistinguishable and yet statistically far apart, which in turn
implies the existence of one-way functions, by [8].

4 Adaptive Security

In this section we consider the feasibility of constructing OT -extension protocols that are secure in
the presence of adaptive adversaries. It is easy to see that the OT -extension protocols of Beaver [3]

2We stress that this argument does not hold if we considered only the outputs ωj of the ideal OT calls, and not
both the input τj and output ωj . This is because the consistency of rS with t and {ωi}ni=1 just guarantees that one
of the inputs sent by S is ωj ; it does not guarantee that this is the output received by R. For example, consider the
case that R inputs a random bit, and the sender inputs (b, b) for a random b. The sender’s tape rS is consistent with
t and any ωj ∈ {0, 1} since there exists a receiver’s tape rR for which R receives ωj . However, there also exists a
receiver’s tape r′R that is in RAll (because there exists a sender tape providing consistency), but the pair (rS , r

′
R) is

not consistent. Thus, although seemingly trivial, this argument requires care and only holds since we consider both
the inputs and outputs to the ideal OT calls.
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and Ishai et al. [12] are not secure when considering adaptive security. This is because the receiver’s
view is essentially a binding commitment to all of the sender’s inputs.3 This raises the question
as to whether there exists an OT extension protocol at all in the presence of adaptive adversaries.
Of course, if the existence of an OT extension protocol (that is secure for adaptive adversaries)
implies OT that is secure for adaptive adversaries, then this means that only a trivial OT extension
that constructs OT from scratch exists. We provide a partial answer to this question and show
that a protocol for OT -extension that is secure in the presence of adaptive adversaries implies the
existence of an OT protocol that is secure in the presence of static adversaries. Thus, any protocol
for extending OT that maintains adaptive security needs to assume, at the very least, the existence
of a statically secure protocol for OT . We state and prove this for semi-honest adversaries; an
analogous theorem for malicious adversaries can be obtained by applying a GMW-type compiler.
Formally, we prove the following theorem (the intuition appears immediately after Protocol 4.2
below):

Theorem 4.1 Let n be the security parameter. If there exists an OT -extension protocol from n to
n + 1 that is secure in the presence of adaptive semi-honest adversaries, then there exists an OT
protocol that is secure in the presence of static semi-honest adversaries.

Proof: We prove the theorem by building an OT protocol that is secure in the presence of
static adversaries from any OT extension from n to 4n that is secure in the presence of adaptive
adversaries. (Note that by Proposition 2.7, an OT extension from n to 4n exists if there exists
an extension from n to n + 1.) We first present the construction of the OT protocol for static
adversaries and then provide intuition as to why it is secure.

Let π = 〈S,R〉 be a protocol that securely computes the 4n × OT functionality in the OTn-
hybrid model in the presence of adaptive semi-honest adversaries. Without loss of generality, we
assume that all of the ideal calls to OT in π are such that S plays the sender and R plays the
receiver. This is without loss of generality since the roles in OT can always be reversed [17]. We
construct an OT protocol π̂ in the plain model (i.e., with no calls to an ideal OT functionality), as
follows:

Protocol 4.2 (OT protocol π̂ = 〈Ŝ, R̂〉 for Static Adversaries)

• Inputs: The input of the sender Ŝ is b0, b1 ∈ {0, 1} and the input of the R̂ is σ ∈ {0, 1}.
• The protocol:

1. Ŝ chooses two random strings α0, α1 ∈ {0, 1}4n.

2. Ŝ and R̂ run the extension protocol π as follows:

(a) Ŝ plays the sender S in π with inputs (α0, α1).

(b) R̂ plays the receiver R in π with input σ4n (i.e., the string of length 4n with all bits
set to σ)

(c) The parties follow the instructions of π exactly except that whenever π instructs
them to make an ideal call to the OT functionality with input (β0, β1) for S and
input τ for R, the sender Ŝ sends the pair (β0, β1) to R̂, and R̂ proceeds to run R
with output βτ from the simulated ideal call.

3In [3] a Yao garbled circuit is used which is binding when instantiated with known encryption methods. Like-
wise, [12] uses correlation-robust hash functions for which it is hard to find collisions, which is exactly what is needed
in order to “explain the transcript” in different ways as is needed for proving adaptive security.
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(d) Let γ ∈ {0, 1}4n denote the output of R in the execution of π.

3. Ŝ chooses two random strings r0, r1 ∈R {0, 1}4n and sets:

z0 = 〈α0, r0〉 ⊕ b0 and z1 = 〈α1, r1〉 ⊕ b1.
Ŝ sends (r0, z0) and (r1, z1) to R̂.

• Output: R̂ outputs zσ ⊕ 〈γ, rσ〉.

It is clear that π̂ correctly computes the OT functionality. This is because by the correctness
of the OT extension protocol, R will output γ = ασ in Step 2d, except with negligible probability.
Thus, zσ ⊕ 〈γ, rσ〉 = zσ ⊕ 〈ασ, rσ〉 = bσ, as required.

We proceed to prove that π securely computes the OT functionality in the presence of semi-
honest adversaries. We begin with the intuition. If Ŝ and R̂ were to run the original extension
protocol π with the ideal calls, then it is clear that π̂ is a secure OT protocol. This is because Ŝ
learns nothing about σ, and R̂ learns ασ but nothing about α1−σ. Thus, R̂ learns bσ but nothing
about b1−σ (observe that 〈α1−σ, r1−σ〉 hides b1−σ by the fact that α1−σ is random). Now, in π̂
the difference is that Ŝ sends both inputs to R̂ in every ideal OT call within the execution of π.
Clearly, Ŝ’s view can be simulated since its view is identical to the case that π with the ideal OT
calls is used. In contrast, R̂ learns more information since it obtains both sender inputs in all ideal
OT calls. Since the inputs to each ideal call are a single bit, we have that R̂ obtains n more bits of
information than in the original extension protocol using ideal OT calls. However, α1−σ is 4n bits
long and so still must have high entropy even given the n additional bits of information learned.
This entropy is enough to hide b1−σ since 〈α1−σ, r1−σ〉 is a perfect universal hash function, and so
a good randomness extractor.

The above seems to have nothing to do with the fact that the extension protocol π is secure in
the presence of adaptive adversaries. However, the argument that just n more bits of information
are obtained is valid only in this case. Specifically, by the definition of security in the presence of
adaptive adversaries, the simulator must be able to simulate in the case that the receiver is corrupted
at the onset, and the sender is corrupted at the end after the protocol concludes (formally, in the
“post-execution corruption phase”). This means that the simulator must first generate a receiver-
view (given the receiver’s input and output), and must then later generate a sender-view (given the
sender’s input) that is consistent with the already fixed receiver-view that it previously generated.
This sender-view contains, amongst other things, the inputs that the sender uses in all of the n
ideal calls to the OT functionality within the extension protocol π. Thus, it is possible to add these
inputs of the sender to the previously generated receiver-view (we call this the extended receiver
view) and the result is the receiver-view in the modified extension protocol used in Step 2 of π̂; in
particular, both sender’s inputs to all ideal OT calls appear. Observe that only n bits of additional
information are added to the receiver view in order to obtain the extended view, and so there are
at most 2n extended views for any given receiver view. However, there are 24n different possible
strings α1−σ. The crucial point here is that the above implies that many different possible strings
α1−σ must be consistent with any given extended view (except with negligible probability). This
relies critically on the fact that the receiver-view is fixed before the sender corruption and so the
same extended receiver-view must be consistent with many different sender inputs to the ideal OT
calls. Now, once we have that many different possible α1−σ strings are consistent, we can use the
fact that α1−σ is randomly chosen to apply the leftover hash lemma and conclude that 〈α1−σ, r1−σ〉
is a bit that is statistically close to uniform. We now proceed to the formal proof.
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Corrupted sender: The case of a corrupted sender is straightforward since the sender Ŝ receives
no information in Step 2 of π̂ beyond what it receives in a real execution of π with ideal OT calls.
Thus the simulator that is assumed to exist for the sender S in π can be used to generate the exact
view of Ŝ in Step 2 of π̂. Since Ŝ receives no messages beyond in Step 2, there is nothing more to
be added to the view of Ŝ.

Corrupted receiver: In order to construct our simulator SR̂ for the corrupted receiver R̂ in π̂,
we first define a specific simulator SIM for the extension protocol π for the adaptive setting. Let
A and Z be the following real-life semi-honest adversary and environment for π; see Section 2 for a
brief overview of the definition of adaptive security and [4] for full definitions. At the beginning of
the execution of π, the adversary A corrupts the receiver and learns its input σ ∈ {0, 1}4n. It then
follows the honest strategy for R and at the end of the execution, outputs its entire view. In the
post-execution phase, Z generates a “corrupt S” message, sends it to A who corrupts S and hands
Z the internal view of S. Z then outputs its internal view (note that it contains views of both R
and S). Let SIM be the ideal-process adversary that is guaranteed to exist for this A and Z by
the security of π. We remark that SIM generates a view of an execution of π in the OT -hybrid
model, where ideal calls are used for the n invocations of OT . We use SIM to construct the
simulator SR̂ for the case of a corrupted receiver in π̂.

Construction 4.3 (SR̂) SR̂ receives σ and bσ as input and works in three stages as follows:

1. Stage 1 – obtain simulated receiver-view in π:

(a) Choose a random string ασ ∈R {0, 1}4n as the “output of π” and a random tape rSIM
for SIM of the appropriate length.

(b) Start an execution of SIM with random-tape rSIM. When SIM corrupts the receiver,
hand σ4n to SIM as the input of R.

(c) In the computation stage, play the role of the trusted party and send ασ to SIM as the
output of R from 4n×OT . (Since we are in the semi-honest setting, R always sends its
specified input σ4n and so the output that it would receive is always ασ.)

(d) Let vR be the output of SIM at the end of the execution phase (this consists of a view for
the receiver). If vR is not consistent with σ4n and ασ,4 return ⊥ and abort. Otherwise,
proceed to the next stage.

2. Stage 2 – obtain extended receiver-view:

(a) Choose a random string α1−σ ∈ {0, 1}4n.

(b) Send a “corrupt S” message to SIM on behalf of Z. When SIM corrupts the sender,
hand (α0, α1) to SIM as the input of S.

(c) Let vS be the view of the sender sent by SIM to Z. If vS is not consistent with vR and
the inputs, output ⊥ and abort. If vS is consistent with vR and the inputs, then for each
of the n calls for the ideal OT functionality, extend vR by appending the other input used
by the sender (as appear in vS) into the view vR (note that vR already contains one of
the inputs used by the sender in each call since the receiver receives one output in each
ideal call). Let v′R be the extended view.

4We say that a view is consistent with inputs and outputs if when running the party on the given view and input,
it outputs the correct output.
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3. Stage 3 – complete simulation:

(a) Choose two random strings r0, r1 ∈ {0, 1}4n; let zσ = 〈ασ, rσ〉 ⊕ bσ (where bσ is from the
input of SR̂) and let z1−σ be a random bit.

(b) Output v′R, r0, r1, z0, z1.

We now prove that SR̂ is a good simulator. That is, we prove that:{
SR̂(1n, σ, bσ)

}
b0,b1,σ∈{0,1},n∈N

c≡
{
Viewπ̂

R̂
(1n, b0, b1, σ)

}
b0,b1,σ∈{0,1},n∈N

(6)

To prove Eq. (6), we consider a hybrid simulator Sh that receives as input b1−σ in addition to the
input (σ, bσ) of SR̂. It then works exactly as SR̂ except that in Stage 3 of the simulation it sets
z1−σ = 〈α1−σ, r1−σ〉 ⊕ b1−σ (instead of setting z1−σ to a random bit as SR̂ does).

We first prove that the output of the hybrid simulator is indistinguishable from the receiver
view in a real execution. That is, we prove that:{

Sh(1n, σ, b0, b1)
}
b0,b1,σ∈{0,1},n∈N

c≡
{
Viewπ̂

R̂
(1n, b0, b1, σ)

}
b0,b1,σ∈{0,1},n∈N

(7)

Note that the only difference between the two distributions is that in Viewπ̂
R̂

(1n, b0, b1, σ), the
“extended view of R” (including both inputs used by the sender in each ideal OT call) is generated
in a real execution of π, whereas in Sh(1n, σ, b0, b1) the extended view is generated by SIM after
the corruption at the end. So intuitively the guarantee that SIM is a good simulator implies that
the two ensembles are computationally indistinguishable. Formally, we define a machine D that
receives the output of Z after an execution of π in the adaptive setting, and attempts to determine
whether it obtained a pair of receiver/sender views from a real or ideal execution. D generates
an extended receiver-view from the pair of receiver/sender views that it received, and in addition
computes the messages (r0, z0), (r1, z1) using the correct sender inputs b0, b1 (that it’s given as
auxiliary input) and using the strings α0, α1 that appear in Z’s output. Finally, D outputs the
extended receiver-view together with the last message; this constitutes a view of the receiver R̂ in
π̂. It is immediate that if D received a pair of views from a real execution of π then it outputs a
view which is identical to Viewπ̂

R̂
(1n, b0, b1, σ). In contrast, if D received a pair of views generated

by SIM in an ideal execution, then it outputs a view which is identical to Sh(1n, σ, b0, b1). Thus,
Eq. (7) follows from the security of π with simulator SIM.

We now proceed to prove that the output of SR̂ is statistically close to the output of the hybrid
simulator Sh. That is:{

SR̂(1n, σ, bσ)
}
b0,b1,σ∈{0,1},n∈N

s≡
{
Sh(1n, σ, b0, b1)

}
b0,b1,σ∈{0,1},n∈N

(8)

First note that SR̂ and Sh work identically in the first two stages of the simulation and differ only
in how z1−σ is computed. In particular, the distributions over the extended views generated by SR̂
and by Sh are identical; let V ′R(1n, σ) denote this distribution.

The first step is to show that with probability negligibly close to 1, there are exponentially
many strings α1−σ that are consistent with an extended view generated by SIM (as run by Sh
or equivalently SR̂). Fix σ ∈ {0, 1} and bσ (the following holds for all σ, bσ and we fix them here
for clarity). For a given random tape rSIM of SIM and a given ασ, let vR be the (regular, non-
extended) view generated by SIM with random tape rSIM and ασ in the execution phase. Let
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∆(rSIM, ασ) be the set of all strings α1−σ of size 4n for which the views vR, vS generated by SIM
with random tape rSIM and inputs ασ and α1−σ in the computation and post-execution phases,
respectively, are all consistent (we have already fixed σ and bσ so consistency is also with respect
to these values; see Footnote 4). Note that if Sh or SR̂ would output ⊥ in the first stage (i.e., if vR
is not consistent with the input and output) when choosing rSIM, ασ then ∆(rSIM, ασ) is empty.

We now prove that for every σ, bσ ∈ {0, 1}, there exists a negligible function µ such that

PrrSIM,ασ

[
|∆(rSIM, ασ)| ≥ 23n

]
≥ 1− µ(n).

Intuitively, this holds because if ∆(rSIM, ασ) is “small”, then this means that SIM would fail with
high probability. Formally, assume that PrrSIM,ασ [|∆(rSIM, ασ)| ≥ 23n] is non-negligibly smaller
than 1. We consider two cases:

1. With non-negligible probability, the view vR generated by SIM with random tape rSIM and
ασ cause Sh and SR̂ to output ⊥ (i.e., it is not consistent with the inputs/outputs): In this
case, a distinguisher Z easily distinguishes the output of SIM from the views of vR, vS in a
real execution of π since in a real execution the views are consistent except with negligible
probability.

2. With non-negligible probability, the view vR is consistent but |∆(rSIM, ασ)| < 23n: In this
case, it is possible to distinguish a real execution of π from an ideal execution with SIM
because the probability that a random α1−σ is in ∆(rSIM, ασ) is less than 23n

24n
= 2−n. Thus,

the environment Z can just supply a random α1−σ and see if in the post-execution corruption
it receives a consistent view. In the real execution it will always receive a consistent view.
However, in the ideal (simulated) execution, it will receive a consistent view with probability
less than 2−n. This is due to the fact that when α1−σ /∈ ∆(rSIM, ασ) the view is not
consistent. Thus, Z distinguishes with probability (1 − 2−n) times the probability that this
case occurs, which is non-negligible.

We stress that the calculation in the second case holds since the view of the receiver vR is fixed
before the post-execution phase and thus is fixed before α1−σ is essentially chosen.

We now fix r∗SIM and α∗σ for which |∆(r∗SIM, α
∗
σ)| ≥ 23n and prove that the outputs of Sh and

SR̂ are statistically close for such r∗SIM and α∗σ. First, recall that an extended view v′R is obtained
by concatenating the other (previously not received) input of the sender in the n calls to the ideal
OT to the view vR. Since there are 2n possible “other sender inputs” in the n ideal OT calls, it
follows that for any given receiver-view vR (which is fully determined by r∗SIM and α∗σ; recall that
σ, bσ are already fixed) there are at most 2n possible associated extended views. (Again, this relies
on the fact that the receiver-view is fixed before the post-execution corruption phase.)

Now, since there are 2n possible extended views, we can partition the at least 23n consistent
strings α1−σ ∈ ∆(r∗SIM, α

∗
σ) so that each partition contains the set of strings α1−σ that yield

the extended view v′R. Equivalently, we associate α1−σ with v′R if SIM with r∗SIM and α∗σ out-
puts the extended view v′R when given α1−σ in the post-execution corruption phase. We denote
by Γ(v′R, r

∗
SIM, α

∗
σ) the set of all strings α1−σ ∈ ∆(r∗SIM, α

∗
σ) which are associated with v′R, as

described above.
We argue that the probability of obtaining an extended view v′R for which |Γ(v′R, r

∗
SIM, α

∗
σ)| < 2n

is at most 2−n (i.e., an extended view for which the set of associated strings α1−σ is small is obtained
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with probability at most 2−n). We stress that the probability is over the choice of α1−σ (all other
randomness is fixed).

In order to see this, observe that the fact that |∆(r∗SIM, α
∗
σ)| ≥ 23n implies that there are at

least 23n strings α1−σ that are associated with some extended view v′R. Now, for every v′R for
which |Γ(v′R, r

∗
SIM, α

∗
σ)| < 2n, we have that v′R is generated by less than 2n of those 23n strings.

Thus, such a v′R is obtained with probability less than 2n/23n = 2−2n. By union bound over
the 2n possible extended views v′R (which also bounds the number of extended views for which
|Γ(v′R, r

∗
SIM, α

∗
σ)| < 2n) we conclude that

Pr
[ ∣∣Γ(v′R, r

∗
SIM, α

∗
σ)
∣∣ < 2n

]
< 2n · 1

22n
=

1

2n
(9)

where the probability is over the choice of α1−σ.
From Eq. (9), we know that when choosing α1−σ at random, the probability that we will obtain

an extended view v′R such that Γ(v′R, r
∗
SIM, α

∗
σ) is small (with less than 2n strings α1−σ associated

with it) is less than 2−n. We therefore proceed by conditioning further over views v′R for which
|Γ(v′R, r

∗
SIM, α

∗
σ)| ≥ 2n. Specifically, we argue that the distributions generated by SR̂ and Sh are

statistically close, conditioned on r∗SIM, α
∗
σ such that |∆(r∗SIM, α

∗
σ)| ≥ 23n and conditioned on the

extended view being a specific v′∗R for which
∣∣Γ(v′∗R, r

∗
SIM, α

∗
σ)
∣∣ ≥ 2n.

First, observe that since α1−σ is chosen uniformly and independently of r∗SIM, ασ, it is uniformly
distributed in Γ(v′∗R, r

∗
SIM, α

∗
σ), when conditioning on all of the above. (The conditioning over

v′∗R is equivalent to saying that α1−σ is uniform in Γ(v′∗R, r
∗
SIM, α

∗
σ) instead of being uniform

in {0, 1}4n.) Second, recall that Γ(v′∗R, r
∗
SIM, α

∗
σ) is a set of size at least 2n. Third, note that

Hr1−σ(x) = 〈r1−σ, x〉) is a universal hash function from {0, 1}4n to {0, 1}. Thus, by the Leftover
Hash Lemma (the version given in [13]), it holds that:

SD
(

(r1−σ, 〈r1−σ, α1−σ〉), (r1−σ, U1)
)
≤ 1

2(n−1)/2

where SD denotes statistical distance and U1 denotes the uniform distribution over {0, 1} (as above,
this statistical distance is computed when conditioned over v′∗R, r

∗
SIM, α

∗
σ). Thus, these random

variables are statistically close, conditioned on v′∗R, r
∗
SIM, α

∗
σ as above. Noting that in the output

of SR̂ we have (r1−σ, z1−σ) = (r1−σ, U1), and in the output of Sh we have that (r1−σ, z1−σ) =
(r1−σ, 〈r1−σ, α1−σ〉), we conclude that{
SR̂(1n, σ, bσ) | v′∗R, r∗SIM, α∗σ

}
b0,b1,σ∈{0,1},n∈N

s≡
{
Sh(1n, σ, b0, b1) | v′∗R, r∗SIM, α∗σ

}
b0,b1,σ∈{0,1},n∈N

where the conditioning is as described above. We reiterate that this holds since the extended views
and the pair (rσ, zσ) are generated in an identical way by SR̂ and Sh, and the only difference is
with respect to (r1−σ, z1−σ). Eq. (8) follows from the fact that we condition here on events that
occur with all but negligible probability (and the events have identical probability with SR̂ and Sh;
see Lemma 2.8). Combining Eq. (7) with Eq. (8), we derive Eq. (6), thereby completing the proof
of Theorem 4.1.

Corollary – lengthening string OT. Observe that in our proof above the receiver always uses
σ4n for input. Thus, it follows that the theorem holds even if the receiver is interested in only
obtaining the string of all of the “0 inputs” or the string of all of the “1 inputs”. Stated differently,
our proof holds also for the problem of lengthening string OT; i.e., for the problem of obtaining a
single string OT for strings of length n+1 or more, given a single string OT for strings of length n.
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5 OT Extensions Require Super-Logarithmic Calls

Theorem 5.1 Let f : N → N be a function such that f(n) ∈ O(log n), and let n be the security
parameter. Then, if there exists a protocol π that is an OT-extension from f(n) to f(n) + 1 that is
secure in the presence of malicious adversaries, then there exists a protocol for the OT functionality
that is secure in the presence of malicious adversaries.

Proof: Intuitively, in an OT extension protocol using only O(log n) ideal OT calls, it is possible
for the receiver to guess the bits that it would receive as output from these calls instead of actually
running them. Since there are only O(log n) calls, the probability that the receiver guesses correctly
is 2−O(logn) = 1/poly(n). This idea can be used to construct an OT protocol that is weak in the
sense that full privacy is maintained, but correctness only holds with probability 1/2 + 1/poly(n).
We stress that a naive attempt to implement the above idea will not work since it is necessary
to ensure that if the receiver’s guesses are incorrect then it still outputs the correct output of
the protocol with probability almost 1/2. Otherwise, the “advantage” in obtaining the correct
output when the receiver guesses correctly can be canceled out by the “disadvantage” when the
receiver guesses incorrectly. We therefore use a similar technique as in the proof regarding adaptive
adversaries above. Specifically, we use the fact that an extension from f(n) to f(n) + 1 implies
an extension from f(n) to n, and then use this to obliviously transfer n random bits. The actual
oblivious transfer is carried out by applying a universal hash function to the random strings and
using the result to mask the actual bits being transferred. This ensures that we obtain correctness
that is noticeable greater than 1/2 and so can be amplified. However, in addition, we also have
to claim that privacy is maintained. This is not immediate since the receiver does not follow the
specified protocol (rather, it chooses the outputs from the ideal OT calls at random, and this may
effect the other messages that it sends). By requiring that the extension protocol be secure for
malicious adversaries, this ensures that the receiver cannot learn more by behaving in this way. In
addition, we show that a malicious sender can also achieve the same affect by inputting a random
bit (for both sender inputs) in each ideal OT call. This implies that a malicious sender can also
not learn anything by the receiver behaving in this way. We now proceed to the formal proof.

Throughout the proof, we will construct protocols that are secure for semi-honest adversaries
only. This suffices since semi-honest OT implies malicious OT [7, 11]. Let f : N→ N be a function
such that f(n) ∈ O(log n) and let π = 〈S,R〉 be a protocol such that on security parameter n and
inputs x0, x1 ∈ {0, 1}f(n)+1 and σ ∈ {0, 1}f(n)+1 securely computes the (f(n)+1)×OT functionality
in the OT f(n)-hybrid model (that is, making at most f(n) calls to an ideal OT). We assume that π
is secure in the presence of malicious adversaries. We assume that in all of these calls, R is the one
to receive output (this is without loss of generality since oblivious transfer is symmetric [17] and so
the roles can be reversed by adding additional messages in π). We show how to construct a protocol
for computing the OT functionality without any further assumptions other than the existence of
an extension protocol π with the parameters in the theorem statement. This is achieved in two
steps. First, we use the OT-extension from f(n) = O(log n) to n to construct a protocol π̃ which
is simulatable and therefore fully secure, but whose error might be large. Then we amplify the
correctness of the protocol using multiple execution. As we show, this can be done once the basic
protocol is fully secure.
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Step 1 – constructing a weak-OT. We begin by formally defining weak-OT, which is an
oblivious transfer for semi-honest adversaries that has weak correctness but full simulation security.5

We then show how to construct a weak-OT protocol π̃ = 〈S̃, R̃〉 from an OT-extension from f(n)
to n. Note that by Proposition 2.7, if there exists an extension protocol from f(n) to f(n) + 1,
then there exists an extension protocol from f(n) to n.

Definition 5.2 (Weak-OT) A two-party protocol π = 〈S,R〉 is a weak-OT if the following hold:

• Weak-correctness: There exists a polynomial p(·) such that for all b0, b1, σ ∈ {0, 1} and all
sufficiently large n’s, it holds that Pr[OutputπR(1n, b0, b1, σ) = bσ] ≥ 1

2 + 1
p(n) .

• Privacy: There exists PPT machines SR and SS such that

{SR(1n, σ, bσ)}b0,b1,σ∈{0,1},n∈N
c≡ {Viewπ

R(1n, b0, b1, σ)}b0,b1,σ∈{0,1},n∈N
{SS(1n, b0, b1)}b0,b1,σ∈{0,1},n∈N

c≡ {Viewπ
S(1n, b0, b1, σ)}b0,b1,σ∈{0,1},n∈N

Let α0, α1, c ∈ {0, 1}n be n-bit strings. Let α0 = α1
0, . . . , α

n
0 , α1 = α1

1, . . . , α
n
1 , and c = c1, . . . , cn.

Recall that αc = α1
c1 , α

2
c2 , . . . , α

n
cn ; that is, the ith bit of αc is either αi0 or αi1, depending on the

value of ci.
Let π = 〈S,R〉 be an OT-extension protocol from f(n) = O(log n) to n. We construct a weak

OT protocol π̃ = 〈S̃, R̃〉 as follows:

Protocol 5.3 (A weak-OT with no ideal OT calls)

• Inputs: The sender S̃ has two bits b0, b1 ∈ {0, 1} and the receiver R̃ has σ ∈ {0, 1}.

• The protocol:

1. S̃ chooses two random strings α0, α1 ∈R {0, 1}n.

2. R̃ chooses a random string c ∈R {0, 1}n.

3. S̃ and R̃ simulate an execution of the extension protocol π, as follows:

(a) S̃ plays the role of the sender S with input α0, α1 ∈ {0, 1}n and R̃ plays the role of
the receiver R with input c ∈ {0, 1}n.

(b) Whenever π instructs the parties to make an OT call, the parties make no call and
R̃ chooses a random bit as its output from the call. We denote by β1, . . . , βf(n) the

random bits chosen by R̃ as the OT outputs.

(c) Let γ ∈ {0, 1}n denote the receiver-output of the simulation of π received by R̃.

4. R̃ chooses a random c′ ∈R {0, 1}n and sends (c0, c1) to S̃, where cσ = c and c1−σ = c′.

5. S̃ chooses two random strings r0, r1 ∈R {0, 1}n, computes z0 = 〈r0, αc0〉 ⊕ b0 and
z1 = 〈r1, αc1〉 ⊕ b1, and sends (r0, z0), (r1, z1) to R̃.

• Output: S̃ outputs nothing and R̃ outputs out = zσ ⊕ 〈rσ, γ〉.
5Note that we cannot cast this as a special case of Definition 2.3 since full correctness is required there by stating

that π computes f .
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We now prove that Protocol 5.3, also denoted π̃, is a weak-OT protocol. We begin by showing the
weak-correctness of π̃; that is we show that the receiver R̃ outputs the correct bit bσ with probability
at least 1

2 + 1
2f(n)+2 . This suffices since f(n) = O(log n) and thus 1

2 + 1
2f(n)+2 = 1

2 + 1
2c·logn+2 = 1

2 + 1
4nc

for some constant c. Intuitively, weak correctness holds because R̃ correctly guesses the outputs of
the OT calls with probability 1/2f(n) in which case γ = αc (except with negligible probability) by
the correctness of π and thus 〈rσ, γ〉 = 〈rσ, αc〉 and out = bσ. In addition, when the guesses made
by R̃ are not correct, it still outputs bσ with probability 1/2.

Let b0, b1 and σ be the inputs of S̃ and R̃. Note that out = zσ⊕〈γ, rσ〉 = 〈αcσ , rσ〉⊕bσ⊕〈γ, rσ〉 =
〈αc, rσ〉 ⊕ bσ ⊕ 〈γ, rσ〉 and thus out = bσ if and only if 〈γ, rσ〉 = 〈αc, rσ〉, where rσ is a random
string. Thus,

Pr [out = bσ] = Pr [〈αc, rσ〉 = 〈γ, rσ〉]
= Pr [〈αc, rσ〉 = 〈γ, rσ〉 | γ = αc] · Pr [γ = αc]

+ Pr [〈αc, rσ〉 = 〈γ, rσ〉 | γ 6= αc] · Pr [γ 6= αc]

= 1 · Pr [γ = αc] + Pr [〈αc, rσ〉 = 〈γ, rσ〉 | γ 6= αc] · (1− Pr [γ = αc])

Now, let Correct denote the event that the guesses made by R̃ for the outputs of the f(n) ideal-OT’s
are the correct outputs. Then, by the correctness of protocol π, Pr[γ = αc | Correct] ≥ 1− negl(n).
This is because when all the outputs from the ideal calls are correct, the execution is exactly the
same as in a real execution of π. We therefore have:

Pr[γ = αc] ≥ Pr[γ = αc | Correct] · Pr[Correct] ≥ (1− negl(n)) · Pr[Correct].

Noting that π makes f(n) calls to the ideal OT and thus Pr[Correct] = 1
2f(n)

, we have that

Pr[γ = αc] ≥
1

2f(n)
· (1− negl(n)) ≥ 1

2f(n)
− negl(n). (10)

In addition, since the inner-product function Hrσ(x) = 〈x, rσ〉 is a universal hash function (for
randomly chosen rσ) it holds that Pr [〈αc, rσ〉 = 〈γ, rσ〉 | γ 6= αc] = 1

2 . Combining the above, we
conclude that:

Pr[out = bσ] = Pr[γ = αc] + Pr[〈αc, rσ〉 = 〈γ, rσ〉 | γ 6= αc] · (1− Pr[γ = αc])

= Pr[γ = αc] +
1

2
· (1− Pr[γ = αc])

=
1

2
+

1

2
· Pr[γ = αc]

=
1

2
+

1

2
· 1

2f(n)
− negl′(n) ≥ 1

2
+

1

2f(n)+2

for all large enough n’s (the last inequality may not hold for small values of n).
We proceed to prove privacy, by constructing SS̃ and SR̃ as required. We start by constructing

the simulator SS̃ for the case that the sender is corrupted. To prove this we use the fact that
the original protocol π is secure in the presence of malicious adversaries. Consider a malicious
adversary A for π that controls the sender and learns its input α0, α1 ∈ {0, 1}n. A follows the
honest strategy for S except that it chooses random bits β1, . . . , βn and then in the jth call to the
ideal OT functionality, it uses βj as both sender inputs to the OT call (ensuring that R receives
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βj). We stress that in the rest of the execution, it behaves as if it has used the correct inputs
that were supposed to be sent to the OT calls. Observe that the view of A in an execution of π
is identically distributed to the view of S̃ in the simulation of π run in Step 3 of Protocol 5.3. Let
SIM be the simulator that is guaranteed to exist for A by the security of π. We construct the
simulator SS̃ using SIM:

Construction 5.4 (SS̃) : Upon input b0, b1 ∈ {0, 1}, simulator SS̃ works as follows:

1. SS̃ chooses two random strings α0, α1 ∈R {0, 1}n and runs SIM with sender-inputs α0, α1.
Let vS be the sender-view output by SIM at the end of its execution (SIM also sends input
to the trusted party, but this is ignored by SS̃).

2. SS̃ chooses two random strings c0, c1 ∈R {0, 1}n as the message received from R̃ in Step 4 of
Protocol 5.3, and outputs vS̃ = (vS , c0, c1).

The fact that SS̃ is a good simulator follows immediately from the fact that SIM generates a
sender-view that is indistinguishable from what A would see in a real execution of π. Since we have
already observed that the view of S̃ in Step 3 of Protocol 5.3 is identical to the view of A above in
π, it follows that vS is indistinguishable from S̃’s view in Step 3 of Protocol 5.3. Next observe that
a distinguisher D for SIM and π obtains the input/output used (α0, α1, c) and thus can extend
the view of the sender to include c0, c1 where cσ = c, and c is the input of R into the execution of
π with A (we can assume that D knows σ as auxiliary input). Thus, the view of S̃ in Protocol 5.3
(resp., as generated by simulator SS̃) can be perfectly constructed by D from the real view vS of S
in π (resp., from a simulated view vS of S as generated by SIM). This implies that if the output
of SS̃ can be distinguished from the view of S̃ in a real execution of Protocol 5.3, then the output
of SIM can be distinguished from the view of A in a real execution of π, in contradiction to the
security of π with simulator SIM. The formal reduction is straightforward.

We now proceed to construct a simulator SR̃ for the case that the receiver is corrupted. As above,
we consider a malicious adversary A for π as follows. A receives the receiver’s input c ∈ {0, 1}n and
follows the honest receiver strategy except that in each of the calls to the ideal OT functionality,
it chooses a random bit βj and proceeds with βj as the output of the ideal OT . Let SIM be the
simulator that is guaranteed to exist for A by the security of π. We use it construct the simulator
SR̃ (recall that SIM works in the setting for malicious adversaries and thus interacts with a trusted
party and sends a receiver-input which is not necessarily the prescribed receiver-input):

Construction 5.5 (SR̃) : Upon input σ, bσ ∈ {0, 1}, simulator SR̃ works as follows:

1. SR̃ chooses three random strings α0, α1, c ∈R {0, 1}n.

2. SR̃ runs SIM with receiver input c.

3. When SIM sends some c∗ ∈ {0, 1}n to the trusted party, SR̃ hands αc∗ as the receiver-output
to SIM from the trusted party. Let vR be the output of SIM.

4. SR̃ chooses random strings c′, r0, r1 ∈R {0, 1}n, and sets cσ = c and c1−σ = c′. Then, SR̃
computes zσ = 〈rσ, αcσ〉 ⊕ bσ and sets z1−σ ∈R {0, 1} to be a random bit.

5. SR̃ outputs a receiver view (c0, c1, vR, r0, z0, r1, z1). (Note that c0, c1 are actually part of R̃’s

random tape, since they are chosen by R̃.)
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In order to show that SR̃ is a “good simulator”, we construct a hybrid simulator Sh and show
that its output is indistinguishable both from the output of the real simulator and the view of the
receiver in the real execution of the protocol.
Sh receives as input σ and b0, b1 (in contrast to SR̃ which receives only σ and bσ) and works

exactly as SR̃ except that it lets z1−σ = 〈r1−σ, αc1−σ〉 ⊕ b1−σ (rather than a random bit).
We begin by proving that the output of Sh is indistinguishable from the output of the receiver

R̃’s view in a real execution of Protocol 5.3. That is:{
Sh(1n, σ, b0, b1)

}
b0,b1,σ∈{0,1},n∈N

c≡
{
Viewπ̃

R̃
(1n, b0, b1, σ)

}
b0,b1,σ∈{0,1},n∈N

The only difference between the two distributions is that in Viewπ̃
R̃

(1n, b0, b1, σ), π is actually

executed and hence elements in Viewπ̃
R̃

(1n, b0, b1, σ) include a real view of the adversarial receiver

A in π, whereas in
{
Sh(1n, σ, b0, b1)

}
b0,b1,σ∈{0,1},n∈N, π is not executed and hence elements in this

distributions contain an output of SIM. Hence intuitively the assumption that SIM is a good
simulator implies that the two distributions are indistinguishable. The formal proof of this is almost
identical to the proof of Eq. (7) in Theorem 4.1.

We now prove that the output of the hybrid simulator Sh is statistically close to the output of
the actual simulator SR̃. That is,{

SR̃(1n, σ, bσ)
}
b0,b1,σ∈{0,1},n∈N

s≡
{
Sh(1n, σ, b0, b1)

}
b0,b1,σ∈{0,1},n∈N

The only difference between the two is that in SR̃(1n, σ, bσ), it holds that z1−σ is a random bit
whereas in Sh(1n, σ, b0, b1), we have that z1−σ = 〈r1−σ, αc1−σ〉⊕ b1−σ. However, we show that since
c1−σ = c′ is chosen at random independently of the execution, and since SIM learns only the bits
in the sender’s input that correspond to c∗, with high probability there is enough uncertainty about
〈αc1−σ , r1−σ〉 and thus z1−σ is statistically close to a random bit.

To prove this formally, we first note that a receiver-view vR̃ of Protocol 5.3 contains a receiver-
view vR in π, the strings c and c′ and r0, r1, z0, z1. We note that it does not necessarily contain c∗ and
αc∗ (yet we include them anyway for clarity, and since this only strengthens the claim). Moreover,
note that vR, c, c

′, c∗, αc∗ , r0, r1 and zσ are generated exactly the same in both distributions and
hence are identically distributed. We now restate what we want to prove. For every σ, b0, b1 ∈ {0, 1},
we show that{

vR, c, c
′, c∗, αc∗ , r0, r1, 〈rσ, αc〉, 〈r1−σ, αc′〉

} s≡
{
vR, c, c

′, c∗, αc∗ , r0, r1, 〈rσ, αc〉, U1

}
(11)

where U1 is a random variable that is uniformly distributed over {0, 1}. It suffices to show that,
except with negligible probability, there exists an index j ∈ {1, . . . , n} such that c′j 6= c∗j , r

j
1−σ = 1

and rjσ = 0. This is due to the fact that if this holds then since c′j 6= c∗j the receiver does not learn

anything about αj
c′j

(by the security of π). In addition, since the jth bit of αc is zeroed by rjσ, the

value 〈rσ, αc〉 reveals nothing about αj
c′j

(note that αjc may be correlated with αj
c′j

and thus this is

needed). Finally, since rj1−σ = 1, it follows that rj1−σ ·α
j
c′j

= αj
c′j

and so is uniformly distributed. This

implies that 〈r1−σ, αc′〉 is uniformly distributed since 〈r1−σ, αc′〉 = (
∑

i 6=j r
i
1−σ · αic′i) + αj

c′j
mod 2.

Observing now that r0, r1, c
′ are all chosen at random and are of length n, a straightforward

calculation yields that such a j exists except with at most negligible probability. This completes
the proof of Eq. (11), demonstrating that Protocol 5.3 is a weak-OT protocol.
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Step 2 – full-OT from weak-OT. It remains to show that any weak-OT protocol can be
transformed into an OT that is fully correct and secure in the presence of semi-honest adversaries.
This is achieved by simply running multiple executions of the weak-OT protocol and taking the
majority result. By the Chernoff bound, if enough executions are run (say, n·p2(n) where correctness
is guaranteed with probability 1

2 + 1
p(n)), then the majority result will be the correct one, except with

negligible probability. Furthermore, the simulation is carried out by simply running the simulators
of the weak-OT for each repetition; a standard hybrid argument (as used to prove sequential
composition) shows that this yields a satisfactory simulation for the repeated protocol.

We conclude that the existence of an OT extension protocol that is secure for malicious adver-
saries and uses a logarithmic number of calls implies the existence of semi-honest OT. In order to
show the existence of OT secure in the presence of malicious adversaries, one can simply apply the
GMW compiler [7] (using the fact that OT implies one-way functions), or alternatively one could
use the compilation of [11]).
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