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SUMMARY

Authentication codes (A-codes) are a well studied technique to provide unconditionally secure
authentication. An A-code is defined by a map that associates a pair formed by a message and a key
to a tag. A-codes linear in the keys have been studied for application to distributed authentication
schemes. In this paper, we address the dual question, namely the study of A-codes that are linear in the
messages. This is usually an undesired property, except in the context of network coding. Regarding
these A-codes, we derive some lower bounds on security parameters when key space is known. We
also show a lower bound on key size when security parameter values are given (with some special
properties) and construct some codes meeting the bound. We finally present a variant of these A-
codes that authenticate multiple messages with a same key while preserving unconditional security.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider the following network coding scenario: a source is transmitting data over a network
that implements linear network coding, that is, each node transmits on its outgoing edges linear
combinations of the packets it received on its incoming edges.

In order to perform authentication, a tag, or signature, should be appended to messages sent
over the network. As mentioned in [2] (and references therein), classical authentication schemes
are not possible: since network coding is used, the received packets are most likely different
than those sent, and thus one cannot check a tag or signature without accessing the original
packets. An alternative would be to first decode the message, however, the receiver does not
know a priori which of the packets it receives are corrupted, thus it will have to try to decode
subsets of received messages until it can first decode, then only check the authentication, and
start all over if authentication fails. Yet, authentication mechanisms are indeed necessary,
especially in the context of pollution attacks, to prevent rogue packets to be combined to
legitimate data, thus propagating bogus vectors.

When a node performs coding on its input vectors, the newly generated vector will have
as tag a linear combination of the received tags. It is desirable to use a homomorphic
authentication mechanism, such as [3, 4] or [5] particularly for wireless sensor networks, where
the linear combination of the received tags is indeed the proper tag corresponding to the newly
created vector. A receiver can then perform authentication directly on the received packets.

This is a property which is usually undesirable, since it permits an adversary to forge
illegitimate data with a valid tag, by exactly computing a linear combination of observed
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packets. However in this setting, any linear combination of the sent messages and their
corresponding tag might be considered as a legitimate vector, in that they will serve the
right purpose: provide linear equations to decode the original message. This means that the
authentication is then not really performed on the messages themselves, but rather on the
subspace spanned by the data vectors, an idea which is now well understood in the context of
network coding authentication.

The idea of considering the vector space spanned by the data vectors is also present in the
context of network coding error correction (e.g. [6]), an alternative way to deal with insertion
of errors in the network.

In this paper, we are interested in the study of authentication codes (see Section 2 for more
details), which fall in the category of unconditional security. Most works in the literature related
to network coding authentication focus on either computational security, or error-correction,
see [7] for one example of unconditional scheme that deals with multiple receivers.

1.1. Organization and contributions

In Section 2, we recall authentication codes, particular those linear in the keys. We call an A-
code homomorphic if it is linear in messages. We present a definition of homomorphic A-codes
with parameters introduction in Section 3.

The contributions of this paper mainly exist in Sections 4, 5 and 6. In Section 4 we show some
bounds on security parameters for a general homomorphic A-code (see Theorem 1) and a lower
key size bound for a homomorphic A-code (with some special properties) (see Theorem 2).
Afterwards, in Section 5, we construct some codes meeting the key size bound (see Theorem 3
and Corollary 1). In Section 6 we propose a variant of homomorphic A-code that authenticates
multiple messages with a same key while preserving unconditional security.

We review the related work in Section 7. Oggier and Fathi [7] proposed a multi-receiver
A-code for a network coding setting. We firstly recall their proposed A-code and point out
that it is not homomorphic. We then twist it a little bit to make it homomorphic (see Lemma
6) and finally evaluate the key size and security parameters for the resulting homomorphic
A-code ( see Lemma 8).

We conclude and propose future work in Section 8.

2. LINEAR A-CODES

A-codes (standing for authentication codes) were first proposed in [8], while the framework for
unconditionally secure authentication was established in the seminal work by Simmons [9].

A systematic A-code (or A-code without secrecy) consists of a quadruple (S,K,A, f) where
S,K,A denote the source space, key space and tag space respectively and f is a function
from S × K → A. An A-code is used to perform authentication as follows: the sender and
the receiver secretly share a common key k ∈ K. To send a message s ∈ S, the sender firstly
generates a tag t = f(s,k) ∈ A and transmits the message-tag pair (s, t) to the receiver. The
receiver checks the authenticity of the received message s by verifying whether the received
message-tag pair (s, t) satisfies t = f(s,k). If the equality holds, s is accepted; otherwise it is
rejected.

Let (S,K,A, f) define an A-code. For each key k ∈ K, the authentication map f : S × K →
A induces a mapping ψk : S → A, given by

ψk(s) = f(s,k), ∀ s ∈ S

and similarly, for each s ∈ S, the same map f induces another mapping φs : K → A, defined
by

φs(k) = f(s,k), ∀ k ∈ K.
In both cases, the A-code is characterized by the families {ψk,k ∈ K} and {φs, s ∈ S}
respectively.
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In [10], linear A-codes were studied, where {φs, s ∈ S} forms a family of Fq-linear mappings
from K to A, and K and A are thus assumed to be vector spaces over the finite field Fq. This
means that by fixing a basis of K and one of A, every φs can be represented by a matrix S
with coefficients in Fq such that

φs(k) = kS, ∀ k ∈ K.

Advantages of A-codes which are linear in keys were discussed [10] in the context of distributed
authentication schemes.

One could consider the reverse scenario, where linearity in messages is asked instead of
linearity in keys. This in turn means that {ψk,k ∈ K} becomes a family of Fq-linear mappings
from S to A, that S and A are vector spaces over Fq, and that every ψk can be written as a
matrix K such that

ψk(s) = sK, ∀ s ∈ S.

The security of A-codes is usually evaluated via two security parameters: (1) the probability
PI of impersonation, which represents the probability of an adversary successfully inserting a
new message tag pair without prior observation, and (2) the probability PS of substitution,
where an adversary first observes a valid message tag pair (s, t) and then succeeds in inserting
(s′, t′) with s 6= s′. Formally [10]

PI = max
s∈S,t∈A

P ((s, t) valid) (1)

where a message tag pair (s, t) is valid if there exists a key k ∈ K such that

t = f(s,k),

while
PS = max

s∈S,t∈A
max
s 6=s′,t′

P ((s′, t′) valid | (s, t) observed). (2)

One easily observes that there is a problem with PS : suppose that (s, t) is observed, then the
adversary can pick s′ = αs where α ∈ Fq, α 6= 1. Now using the Fq-linearity of the A-code in
s, we have that

f(s′,k) = ψk(αs) = αsK = αψk(s),

and the adversary can forge the tag t′ = αt. The message-tag pair (s′, t′) = (αs, αt) will be
accepted and PS = 1. This explains why the literature on classical A-codes has avoided this
scenario so far. We will show below that this apparent disadvantage becomes useful in the
context of network coding, where A-codes linear in messages make sense, with however a
proper reformulation of PS .

3. HOMOMORPHIC NETWORK CODING A-CODES

Suppose now that transmissions occur over a network. Given a file s to be sent to a receiver,
the source (or sender) cuts the file into m packets s1, . . . , sm of length say n, which can be
represented as vectors with coefficients in Fq, that is, si ∈ Fn

q , i = 1, . . . ,m. We assume that a
linear network code over Fq is used, where every node in the network computes an Fq-linear
combination of the received vectors on its incoming edges, before forwarding the resulting
linear combination on its outgoing edges. Decoding at the receiver is performed, to recover the
file s.

Since each received message is a linear combination of the input, it is possible to give the
receiver a so-called transfer matrix, which describes how the output linearly depends on the
input message. Alternatively, before transmission, each vector si can be appended a vector ei,
where ei denotes a whole zero vector of length m, with a 1 at the ith position. The vectors
(si, ei) ∈ Fn+m

q , i = 1, . . . ,m are then sent over the network, and the receiver can use the m
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last symbols to recover the linear transformations the vector went through. In both cases, the
receiver needs to obtain m non-corrupted linearly independent vectors encoding s to be able
to decode.

Let V denote the vector space spanned by the vi, where vi denotes a transmitted packet,
which is either si or (si, ei). Note that when V is the span of the vectors (s1, e1), . . . , (sm, em),
it forms a vector space of dimension m since by construction, the addition of the ei vectors
ensure that the (si, ei) are linearly independent. When V = span(s1, . . . , sm), it is a vector
space of dimension at most m.

We use an A-code {ψk, k ∈ K} which is linear in messages, as described in the previous
section, for authentication purposes. By authenticating every vi, we consequently provide an
authentication for the subspace V . More precisely, we define a (q, n,m) homomorphic A-code
as an A-code which can be used to authenticate any m-dimensional subspace V ⊆ S when S
is an n-dimensional vector space over Fq.

Definition 1
An A-code (S,K,A, f) is a (q, n,m)-homomorphic A-code if

i) S and A are finite-dimensional vector spaces over Fq, with dim(S) = n,
ii) for everym-dimensional subspace V ⊆ S, and every v =

∑m
i=1 αivi ∈ V , f(v,k) = ψk(v)

satisfies

f(
m∑

i=1

αivi,k) =
m∑

i=1

αif(vi,k).

The second property is a rephrasing of the fact that ψk is linear in messages. In what follows,
we will assume that S = Fn

q , A = Ft
q and K ⊆ Fn×t

q . It might be convenient to think of {ψk}
as a set of |K| matrices of size n× t parameterized by |K| keys.

Given a homomorphic A-code (S,K,A, f), the tag generation and verification are similar to
that of classic A-codes. Assume that the recipient shares a private key k ∈ K with the source,
message authentication is then carried out as shown in Figure 1. The security of homomorphic

– Tag Generation: The sender generates a tag ti = f(vi,k) ∈ A for each of vi for i =
1, . . . ,m.

– Combination: Assume that each intermediate node receives some message-tag pair (xj , txj
)

for some index j, where each xj is already a linear combination of vi. The intermediate node
computes

∑
j αjtxj as the tag ty corresponding to an output vector y =

∑
j αjxj , where

the sum is over some subset of the received tags.
– Verification: The recipient takes as input a received message-tag pair (v, t) and the shared

key k, and checks if t = f(v,k). If the equation holds, the recipient accepts (v, t); otherwise it
rejects. Note that indeed, any output v can be written as

∑m
i=1 gvivi. We call (gv1, . . . , gvm)

as a global encoding vector of v.

Figure 1. Definition of homomorphic A-code scheme.

A-codes can be evaluated via three security parameters PI , PIsub
and PS .

1) PI represents the success probability of message impersonation attack where an adversary
forges a valid tag for a message 0 6= v ∈ S without prior observation.
A message impersonation attack is similar to the impersonation attack of a classical
authentication code. The adversary blindly sends to the receiver a message v ∈ S to
which it appends a random tag t picked in A. The source is in fact sending some subspace
V from S, but the adversary does not know which one. In all cases, the adversary has to
generate a valid tag. Even if the attack is successful in that a valid tag is generated, it
does not mean that the attack actually hurts the receiver, since there is still a chance that
the message randomly chosen by the adversary was in fact inside V . We will thus from
now on focus on the probability of guessing a valid tag. Note that if (v, t) is accepted,
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then a linear combination involving (v, t) would be accepted as well, since

f(x + αv,k) = f(x,k) + αf(v,k) = tx + αt

where tx is a valid tag corresponding to a legitimate packet x. Conversely, and for the
same reason, if (v, t) is not accepted, then neither would a linear combination of (v, t)
mixed with other packets. Thus (1) holds, and assuming that k and v are uniformly
distributed, becomes [10]:

PI = max
v∈S,t∈A

|k ∈ K | f(v,k) = t|
|K|

= max
v∈S,t∈A

|k ∈ K | ψk(v) = t|
|K|

.

2) PIsub represents the success probability of subspace impersonation attack where an
adversary creates a valid tag for a previously unseen m-dimensional subspace V =
span(v1, · · · ,vm). A subspace-tag (V, (t1, · · · , tm)) is valid if there exists a key k ∈ K
such that

ti = f(vi,k), 1 ≤ i ≤ m.

Formally, we have:

PIsub
= max

V⊆S,ti∈A
P ((V, (t1, · · · , tm)) valid). (3)

Moreover, assuming that k and V are uniformly distributed, we have:

PIsub
=max

V,ti

|{k ∈ K | f(vi,k) = ti}|
|K|

=max
V,ti

|{k ∈ K | ψk(vi) = ti}|
|K|

.

To our best knowledge, it is a first time to introduce PIsub
as a security parameter in

A-codes arena. Indeed, usually it is not an important criterion unless applications can
be found as in our network coding scenario where an adversary possibly intends to forge
entire files (mathematically formalized as subspaces) that will be accepted as authentic.
We here use PIsub

to measure the probability of an adversary successfully forging an
entire file to be accepted in a network coding transmission.

3) PS denotes the success probability of subspace substitution attack where an adversary
forges a valid tag for message v when he/she observes a tag for an m-dimensional
subspace V = span(v1, · · · ,vm) with v /∈ V .
A subspace substitution attack in a homomorphic A-code is different from a substitution
attack in a classical authentication code. To see why, for the former one we need to
consider subspaces instead of messages in the latter one: the adversary sees a subspace
V and its tags, and it has to fake a vector v 6∈ V , since replacing a linear combination of
the vi by another is possible and is not a problem. Furthermore, the maximization has
to be done over all possible observed subspaces instead of observed messages.
A subspace substitution attack is certainly different from a message impersonation
attack. In a message impersonation attack, the adversary performs an attack blindly,
and in the context of network coding does not know which subspace V ⊂ S is being sent.
Thus the best strategy consists of guessing a valid tag. If then the message randomly
picked is in V , then even though the tag was guessed successfully, the attack will not
hurt. In the case of subspace substitution instead, the adversary mounts an attack after
observing some transmissions. Since we assume the adversary observes all themmessages
sent from the source, that is V = span(v1, . . . ,vm), we have

PS = maxV,ti maxv/∈V,t P ((v, t) valid |(v1, t1), . . . , (vm, tm) observed).

Note that since the adversary knows the network code, knowing any linearly independent
vectors is the same as knowing v1, . . . ,vm, and vice-versa.
Apart knowing which subspace is sent, another difference with a message impersonation
attack is that a single key k is used to sign V , that is ti = f(vi,k) for all i, thus the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6

adversary might guess some information about k, and consequently be able to fake a
message tag pair with t = f(v,k), v /∈ V , that will be validated with k.
Assuming again that the keys and messages are uniformly distributed, we get, for
i = 1, . . . ,m

PS =max
V,ti

max
v/∈V,t

|{k ∈ K | f(vi,k) = ti, f(v,k) = t}|
|{k ∈ K | f(vi,k) = ti}|

= max
v/∈V,V

max
t,ti

|{k | ψk(vi) = ti} ∩ {k | ψk(v) = t}|
|{k ∈ K | ψk(vi) = ti}|

where

{k | ψk(vi) = ti, i = 1, . . . ,m} =
m⋂

i=1

{k | ψk(vi) = ti}.

When adopting homomorphic A-code into linear network coding for authentication, it is
always assumed that the source space, tag space, and the subspace to authenticate are all
given as a priori, in other words, the parameters q, n,m, t are fixed. The performance of a
(q, n,m)-homomorphic A-code is thus determined by the efficiency (in terms of storage cost)
parameter |K|, and three security parameters PI , PIsub

, PS . We certainly expect high security
(that is, small PI , PIsub

, PS) and small storage cost (namely, small |K|), however, in fact high
security always requires big storage cost. Therefore, it would be interesting to study a trade-off
between efficiency and security. In the next section, we show some lower bounds on the three
security parameters when key space is given and a lower bound on key size when security
parameter values are provided.

4. BOUNDS

4.1. Definitions and notations

We represent a random variable W̃ as the collection of all message-tag pairs in a homomorphic
A-code {ψk,k ∈ K}, that is, W̃ = {w = (v, t) : v ∈ S, t ∈ A}.† With this notation, we call w
is valid and/or k incident with w if there exists a k ∈ K such that t = ψk(v). Particularly, we
represent W as the collection of all the valid message-tag pairs in {ψk,k ∈ K}.
In order to study PIsub

and PS , we introduce a sequence w = (w1, · · · , wm) where each
wi ∈ W. We call a sequence w valid if wi’s are linearly independent from each other in Fq and
there exists a k ∈ K incident with wi for all i; in this situation, we call k incident with the
sequence w. We use Wm

= W1 × · · · ×Wm to denote the collection of all such valid sequences
w = (w1, · · · , wm) with wi ∈ Wi(1 ≤ i ≤ m). For any valid sequence (w1, · · · , wm) = w ∈ Wm

,
we introduce another element w′ ∈ W; we call w′ is valid when w observed if it satisfies that
w′ /∈ span(w1, · · · , wm) and there exists a k ∈ K incident with w′, wi(1 ≤ i ≤ m). We use a
random variable W ′ to denote the collection of all such w′’s for Wm

.

We follow some notations from [11] and [12] in the whole article. For any random
variable X,Y, Z, we use following notations for probability distributions induced by a current
system. We use P (x) to denote the probability distribution when X = x; P (x, y) to denote
the probability distribution when X = x and Y = y; P (y|x) the conditional probability of
Y = y when provided X = x; H(X) the entropy of X; H(Y |X) the conditional entropy of Y
given X; I(Y ;X) the mutual information between Y and X; and I(Z;Y |X) the conditional
mutual information of Z and Y given X.

4.2. Bounds on PI , PIsub
and PS

In this section, we show some bounds on security parameters for a general homomorphic A-code
when K is given.

†Here, certainly we can directly use (S,A) instead of W̃ , however, we adopt the shorter notation W̃ for
expression convenience.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



7

Theorem 1
Let PI , PIsub

, PS be defined as above in Section 3, we have:

(i) PI ≥ 2−I(K;W); (ii) PIsub
≥ 2−I(K;Wm

); (iii) PS ≥ 2−I(W′;K|Wm
).

Proof

(i) We define a characteristic function XI(w,k) on W̃ × K by:

XI(w,k) =

{
1 if k is incident with w;
0 otherwise.

From the definition of PI , we have:

PI = max
w∈W̃

{P (w valid)} ≥
∑
w∈W̃

P (w)P (w valid). (4)

On the other hand, we have:

I(K; W̃) =
∑

w∈W̃,k∈K

P (w,k) log
P (w,k)
P (w)P (k)

=
∑

w∈W̃,k∈K

P (w)P (k|w) log
P (w,k)
P (w)P (k)

=
∑

w∈W̃
P (w)6=0

P (w)
∑
k∈K

P (k|w) log
P (w,k)
P (w)p(k)

=
∑

w∈W̃
P (w)6=0

P (w)
∑
k∈K

P (k|w) log
P (w)P (k|w)
P (w)P (k)

=
∑

w∈W̃,P (w)6=0

P (w)
∑
k∈K

P (k|w) log
P (k|w)
P (k)

We note here that, when P (w) 6= 0, if XI(w,k) = 0, then P (k|w) = 0. So, the summation
taken over K above is restricted to all k for which XI(w,k) = 1. Henceforth, we have:

I(K; W̃) =
∑

w∈W̃,P (w)6=0

P (w) (
∑
k∈K

P (k|w)XI(w,k) log
P (k|w)XI(w,k)
P (k)XI(w,k)

).

By log-sum inequality, we furthermore have:

I(K; W̃) ≥
∑

w∈W̃,P (w)6=0

P (w) (
∑
k∈K

P (k|w)XI(w,k)) log
∑

k∈K P (k|w)XI(w,k)∑
k∈K P (k)XI(w,k)

. (5)

Again, as we have observed, for each w, if P (w) 6= 0 and XI(w,k) = 0, then P (k|w) = 0.
This implies ∑

k∈K

P (k|w)XI(w,k) = 1 (6)

and ∑
k∈K

P (k)XI(w,k) = P (w valid). (7)

Based on (6) and (7) above, we continue (5) and have:

I(K; W̃) ≥ −
∑
w∈W̃

P (w) logk∈K P (k)XI(w,k) = −
∑
w∈W̃

P (w) logP (w valid). (8)
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We now return to investigate PI shown in (4). By Jensen’s inequality, it follows that

logPI ≥
∑
w∈W̃

P (w) logP (w valid) (9)

Considering (8) together with (9), we have:

PI ≥ 2−I(K;W̃).

Furthermore, it is obvious to see that I(K; W̃) = I(K;W). Indeed, if we write I(K; W̃)
as I(K; W̃) = I(K;W) + I(K; Ŵ ′) where Ŵ ′ = W̃\W, then it holds trivially that
I(K; W̃ ′) = 0.
Finally, we have PI ≥ 2−I(K;W̃) = 2−I(K;W) and thus complete the proof of (i) in the
theorem.

(ii) We denote Wm = W × · · · ×W as the collection of all m-tuple elements, each of
which is from W; formally, Wm = {(w1, . . . , wm) : wi ∈ W, 1 ≤ i ≤ m}. We can prove
the inequality (10) below, in a quite similar way as the proof above for (i) (we don’t
repeat the proof details here due to space constraints.):

PIsub
≥ 2−I(K;Wm). (10)

Furthermore, we claim that

I(K;Wm) = I(K;Wm
). (11)

Indeed, if we write Wm = Wm\Wm
, we can prove that all the mutual information

between K and Wm is included in the mutual information between K and Wm
, which

proves our claim (11). We demonstrate the claim by investigating a random sequence
(y1, · · · , ym) = y ∈ Wm. There are two cases:

Case 1: if there is any key k incident with all the m elements y1, . . . , ym ( in this
case, yi’s are not all linearly independent, which leads to y /∈ Wm

); then in this case
there always exists a sequence (x1, · · · , xm) = x ∈ Wm

such that k is incident with
x and yi ∈ span(x1, · · · , xm), 1 ≤ i ≤ m; therefore the the information contained in
y which is useful for the adversary to disclose the key k, can be considered as a
proper subset of and thus included in the useful information contained in x; in other
words, with holding this additional y, the adversary cannot have more information
helpful for disclosing k than holding only x.
Case 2: if there is any key k incident with j < m of the m elements, say,
they are yi1 , · · · , yij

; then similar to Case 1 above, we can always find a
sequence (x1, · · · , xm) = x ∈ Wm

such that k is incident with x and yih
∈

span(x1, · · · , xm), 1 ≤ h ≤ j; therefore the information contained in y which can
help the adversary reveal the key k, can be regarded as a proper subset of and thus
included in the helpful information contained in x; in other words, with holding this
additional y, the adversary cannot have more information helpful for disclosing k
than holding only x.

Since the above analysis can be generalized into all sequences y ∈ Wm, we henceforth
demonstrate that all the mutual information between K and Wm is included in the
mutual information between K and Wm

.
Combining (10) and (11), we finally have PIsub

≥ 2−I(K;Wm
) and thus complete the

proof of (ii) in the theorem.

(iii) We define a characteristic function XS(w′, w,k) on W ′ ×Wm ×K by :

XS(w′, w,k) =

{
1 if k is incident with w′ and w;
0 otherwise.
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For convenience of expression, we later employ “∆” as a condition identical to: “w′ /∈
span(w1, · · · , wm)”. According to the definition of PS , we have:

PS = max
w∈Wm

w′∈W′,∆

{P (w′ valid |w observed} ≥
∑

w∈Wm

P (w)
∑
∆,

w′∈W′

P (w′|w)P (w′ valid|w observed).

(12)

On the other hand, we compute I(W ′;K|Wm
) as below:

I(W ′;K|Wm
) =

∑
k∈K,w′∈W′,w∈Wm,∆

P (w′,k, w) log
P (w′,k|w)

P (w′|w)P (k|w)

=
∑

k∈K,w′∈W′,w∈Wm,∆

P (w′, w)P (k|w′, w) log
P (w′|w)P (k|w′, w)
P (w′|w)P (k|w)

=
∑

w′∈W′,w∈Wm,∆,P (w′,w)6=0

P (w′, w)
∑
k∈K

P (k|w′, w) log
P (k|w′, w)
P (k|w)

.

We note here that, when P (w′, w) 6= 0, if XI(w′, w,k) = 0, then P (k|w′, w) = 0. So,
the summation taken over K above is restricted to all k for which XI(w′, w,k) = 1.
Henceforth, we have:

I(W ′;K|Wm
) =

∑
w′∈W′,w∈Wm

∆,P (w′,w)6=0

P (w′, w)
∑
k∈K

P (k|w′, w)XS(w′, w,k) log
P (k|w′, w)XS(w′, w,k)
P (k|w)XS(w′, w,k)

).

By log-sum inequality, we furthermore have:

I(W ′;K|Wm
) ≥

∑
w′∈W′,w∈Wm

∆,P (w′,w)6=0

P (w′, w)
∑
k∈K

P (k|w′, w)XS(w′, w,k)(log
∑

k∈K P (k|w′, w)XS(w′, w,k)∑
k∈K P (k|w)XS(w′, w,k)

).

(13)

Again, as we have observed, for each (w′, w) pair, if P (w′, w) 6= 0 and XS(w′, w,k) = 0,
then P (k|w′, w) = 0. This implies∑

k∈K

P (k|w′, w)XS(w′, w,k) = 1, (14)

and ∑
k∈K

P (k|w)XS(w′, w,k) = P (w′ valid|w observed). (15)

Based on (14) and (15), we continue (13) and have:

I(W ′;K|Wm
) ≥

∑
w′∈W′,w∈Wm,∆

P (w′, w) logP (w′ valid|w observed)

= −
∑

w∈Wm

P (w)
∑

w′∈W′,∆

P (w′|w) logP (w′ valid|w observed) (16)

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



10

We now return to the computation of PS shown in (12). By Jensen’s inequality, we have:

logPS ≥ −
∑

w∈Wm

P (w)
∑

w′∈W′,∆

P (w′|w) logP (w′ valid|w observed) (17)

Combining (16) and (17), we have

PS ≥ 2−I(W′;K|Wm
).

We therefore finish the proof of (iii) in the theorem.

4.3. Bounds on |K|

In this part, we derive a bound on |K| for a special class of homomorphic A-codes, that is, we
require PIsub

≤ (PI)m in {ψk,k ∈ K}.
If we denote PD = max{PI , PS} and γ as a pre-determined value (for security consideration
in application), then we have the following theorem for |K|.

Theorem 2
Given a (q, n,m)-homomorphic A-code {ψk,k ∈ K} where PIsub

≤ (PI)m and PD ≤ 1
γ , we have

|K| ≥ γn in {ψk,k ∈ K}.

Proof
We consider an adversary Adv who is conducting a subspace impersonation attack on a given
subspace V = span(v1, · · · ,vm), and n−m times of independent subspace substitution attacks
when he/she observes a valid tag for V . We explain the meaning of “n−m times of independent
subspace substitution attacks”. Assume Adv is able to conduct n−m times of subspace
substitution attacks after seeing a valid tag for V , where he/she chooses the message-tag pair
‡ (vi, ti) = ui ∈ W ′

i for the i-th attack; here W ′
i = span(ui) with vi /∈ span(v1, · · · ,vm) (this

is defined in subspace substitution attack). We say such n−m times of subspace substitution
attacks are independent if it holds that W ′

1 6= W ′
2 · · · 6= W ′

n−m−1 6= W ′
n−m. Since V is an

m-dimensional subspace of the source space S which is an n−dimensional vector space (over
Fq), it is reasonable to assume that Adv conducts such n−m times of independent subspace
substitution attacks after observing a tag for V .

Since PIsub
≤ (PI)m and PD ≤ 1

γ in {ψk,k ∈ K}. Exploiting results from Theorem 1,
we have:

(
1
γ

)n ≥ (PI)m (PS)n−m ≥ PIsub
(PS)n−m ≥ 2−I(K;Wm

)2−(I(W′
1;K|W

m
)+···+I(W′

n−m;K|Wm
))

(18)

Now it is sufficient to prove the inequality below:

I(W ′
1;K|W

m
) + · · ·+ I(W ′

n−m;K|Wm
) ≤ H(K|Wm

). (19)

Since if (19) is proved, we continue (18) and then have:

(
1
γ

)n ≥ 2−(I(K;Wm
)+I(W′

1;K|W
m

)+···+I(W′
n−m;K|Wm

)) ≥ 2−(I(K;Wm
)+H(K|Wm

))

= 2−H(K) ≥ 2− log |K| =
1
|K|

,

‡Here, the adversary forges a tag ti for the message vi.
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which implies that |K| ≥ γn and our theorem is proved.
Indeed, we can prove (19) as follows:

H(K) = I(K;W ′
1, · · · ,W ′

n−m,W
m

) +H(K|W ′
1, · · · ,W ′

n−m,W
m

), H(K|W ′
1, · · · ,W ′

n−m,W
m

) ≥ 0 ⇒

H(K) ≥ I(K;W ′
1, · · · ,W ′

n−m,W
m

) ⇒

H(K) ≥
n−m∑
i=1

I(K;W ′
i,W

m|W ′
i−1,W ′

i−2, · · · ,W ′
1,W

m
) ⇒

H(K) ≥ I(K;W ′
1,W

m
) + · · ·+ I(K;W ′

n−m,W
m

) ⇒

(n−m− 1)H(K) ≤ (n−m)H(K)− (I(K;W ′
1,W

m
) + · · ·+ I(K;W ′

n−m,W
m

)) ⇒

(n−m− 1)H(K) ≤ (H(K)− I(K;W ′
1,W

m
)) + · · ·+ (H(K)− I(K;W ′

n−m,W
m

)) ⇒

(n−m− 1)H(K) ≤ H(K|W ′
1,W

m
) + · · ·+H(K|W ′

n−m,W
m

) ⇒ (20)

(n−m− 1)H(K|Wm
) ≤ H(K|W ′

1,W
m

) + · · ·+H(K|W ′
n−m,W

m
) ⇒

H(K|Wm
)−H(K|W ′

1,W
m

) + · · ·+H(K|Wm
)−H(K|W ′

n−m,W
m

) ≤ H(K|Wm
) ⇒

I(W ′
1;K|W

m
) + · · ·+ I(W ′

n−m;K|Wm
) ≤ H(K|Wm

).

As above, the transition (20) is due to n > m and H(K) ≥ H(K|Wm
) ≥ 0.

The lower bound shown in Theorem 2 is tight, as in the next section we have a construction
which meets this bound.

5. CONSTRUCTIONS

In this section, we construct a class of (q, n,m)-homomorphic A-codes. These codes will show
that, the lower bound derived in Theorem 2 can be achieved when PIsub

= (PI)m, and PI = PS .

Definition 2
A (q, n,m)-homomorphic A-code {ψk,k ∈ K} is called an [M,d1, d2, d3] (q, n,m)-homomorphic
A-code, if |K| = M,PI = d1, PIsub

= d2 and PS = d3.

We use a natural (in terms of homomorphism) mapping for our A-code {ψk,k ∈ K}, that
is, ψk(v) = vk for ∀v ∈ S and k ∈ K. It is easy to see that an A-code with this mapping
is always homomorphic in the source space S. After the mapping is given, the construction
of a [M,d1, d2, d3] (q, n,m)-homomorphic A-code is essentially a construction of K ⊆ Fn×t

q

satisfying |K| = M,PI = d1, PIsub
= d2, PS = d3.

Before constructing such a K, we need some prerequisites.
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5.1. Key Linearity

The A-code {ψk,k ∈ K} we are constructing is Fq-linear in K as well as in S. When focusing
on an A-code with a property of key linearity, we are able to evaluate the security parameters
as below:

Lemma 1
If the homomorphic A-code {ψk} is Fq-linear in K, we have

PI = max
v∈S,v 6=0

|{k ∈ K | v ∈ kerψk}|
|K|

,

PIsub
= max

V

|{k ∈ K | vi ∈ kerψk}|
|K|

,

PS = max
v/∈V

|{k | vi ∈ kerψk} ∩ {k | v ∈ kerψk}|
|{k ∈ K | vi ∈ kerψk}|

.

Here v ∈ S and V = span(v1, · · · ,vm) is an m-dimensional subspace.

The proof of this lemma can be found in Appendix A.

5.2. Invariant Property

In an A-code which is Fq-linear in the keys, the key space K is always a subspace over Fq.
From now on in this section, unless otherwise mentioned, we always assume the key space K
is a subspace of Fn×t

q over Fq.
In addition to requiring K be a subspace over Fq, we impose another property on K, with
which we can have a convenient way to compute PI , PIsub

and PS . We say it is “convenient”
since, as will be seen, if we follow Lemma 1 to compute the security parameter values, the
computation will be independent from message and/or the subspace choices. In other words,
the computation will be the same for different choices on v and V .
We say K satisfies invariant property if it holds that AB ∈ K for any B ∈ K and any
non-singular matrix A ∈ Fn×n

q .

Lemma 2
We evaluate security parameters based on Lemma 1. If K satisfies invariant property, we have:
PI obtains the same value for different choices of v; PIsub

obtains the same value for different
choices of V (with a fixed dimension); PS obtains the same values for different choices of v
and V (with a fixed dimension). Moreover, if we denote Ki ⊆ K as the set of matrices where
entries in the first i rows are all zeros, we have PI = |K1|

|K| , PIsub
= |Km|

|K| and PS = |Km+1|
|Km| .

We defer Appendix B to the proof of this lemma.

5.3. A necessary and sufficient condition to satisfy invariant property

We now give a necessary and sufficient condition for a key space K to satisfy invariant property.
We firstly give some notations. For any matrix A ∈ Fh×l

q , we use 〈A〉R to denote the row space
of A, namely, the set of all possible Fq-linear combinations of its row vectors. Formally, if we

write A as A =


A1

·
·
·
Ah

 with Ai ∈ Fl
q its i-th row, we have 〈A〉R = {

∑h
i=1 ciAi, ci ∈ Fq}.

Lemma 3
K is a subspace over Fq and satisfies invariant property if and only if : A ∈ K and 〈B〉R ⊆ 〈A〉R
implies that B ∈ K.

Reader can find the proof of this lemma in Appendix C.
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5.4. Constructions

Example 1
Letting A ∈ Fn×t

q be a matrix with rank(A) = d, we denote KA as the set of all matrices BA

where BA ∈ Fn×t
q and each row of BA belongs to 〈A〉R. Formally,

KA = {B =


B1

·
·
·
Bn

 : Bi ∈ 〈A〉R}.

Theorem 3
Given a matrix A ∈ Fn×t

q where rank(A) = d, if we let K = KA (defined in Example 1 above),
then the A-code {ψk(v) = vk | k ∈ K} is a [qnd, q−d, q−md, q−d] (q, n,m)-homomorphic A-code
for all q,m, n, t, d with m < n and 1 ≤ d ≤ t.

Proof
It is equivalent to show that, if we let K = KA in the (q, n,m)-homomorphic A-code {ψk(v) =
vk | k ∈ K}, we have:

|K| = qdn, PI = q−d, PIsub
= q−md, PS = q−d. (21)

Firstly, according to the definition of K = KA, it is easy to see that |K| = qdn since each row has
qd choices and there are totally n rows. We next prove PI = q−d, PIsub

= q−md and PS = q−d

in this setting.
We firstly claim that KA is a subspace over Fq and satisfies invariant property. After that,
we will compute PI , PIsub

and PS based on Lemma 2. Indeed, from the definition of KA, we
know that 0 ∈ KA; for any X ∈ KA, Y ∈ KA, we have (X + Y ) ∈ KA; for any X ∈ KA and
c ∈ Fq, cX ∈ KA. This shows that KA is a subspace over Fq. In addition, it is easy to check
that KA satisfies the condition exhibited in Lemma 3, which implies that KA satisfies invariant
property.
We then exploit Lemma 2 to compute our security parameter values. We have |K1| = qd(n−1)

because we have qd choices for each of the last n− 1 rows. Similarly, we have |Km| = qd(n−m)

and |Km+1| = qd(n−m−1). With these, we compute as below:

PI =
|K1|
|K|

=
qd(n−1)

qdn
= q−d, PIsub

=
|Km|
|K|

=
qd(n−m)

qdn
= q−dm, PS =

|Km+1|
|Km|

=
qd(n−m−1)

qd(n−m)
= q−d.

Finally, we prove (21). It is easy to check that the proof above is true for all q,m, n, t, d with
m < n and 1 ≤ d ≤ t. We therefore complete the proof in the theorem.

Comparing Theorem 3 with the bound from Theorem 2, it is trivial to have a following
corollary:

Corollary 1
The parameters in Theorem 3 meets the bounds in Theorem 2.

As a further step, we next show a lemma that K = KA is simultaneously a minimal subspace
K for a given A to satisfy invariant property. In other words, given a matrix A ∈ Fn×t

q ,
the smallest size of all the key spaces being a subspace and satisfying invariant property,
is |K| = |KA| = qdn. Recall that this bound exactly matches the lower key size bound derived
in Theorem 2.

Lemma 4
Let A ∈ Fn×t

q , then the minimal key space K, where A ∈ K and K satisfies invariant property
as well as being a subspace over Fq, is K = KA.
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We defer the proof of this lemma to Appendix D.

Example 2
We would like to give a toy example to conclude our construction in this section. More

precisely, assuming q = 2, n = 3, t = 2,m = 2 and a matrix A =

1 0
0 0
1 0

, we show that the

key space KA =
{1 0

0 0
1 0

 ,
1 0

0 0
0 0

 ,
0 0

0 0
1 0

 ,
0 0

1 0
1 0

 ,
0 0

1 0
0 0

 ,
1 0

1 0
0 0

 ,
1 0

1 0
1 0

 ,
0 0

0 0
0 0

} is

the minimal subspace (over Fq) which makes PIsub
= (PI)m = (PS)m = 2−2 = qm×rank(A). This

demonstrates that our construction meets the bound shown in Theorem 2 (since |K| = 8 =
qn×rank(A)) and the bound is tight (due to minimality). Indeed, readers can check one fact
that, for any homomorphic A-code {ψk|k ∈ K} with K = K′ ( KA and K′ being a subspace
over Fq, we have: PI = 1, PS = 1, PIsub

= 1
2 . This fact implies that the bound in Theorem 2

cannot be satisfied unless we make K = KA.

Following construction, one interesting problem might be how to convert a given key space
K ⊆ Fn×t

q into a new key space K′ ⊇ K such that K′ satisfies invariant property and K′ is
minimal. Our lemma below shows that we can always find such a minimal key space K′. We
use the same notation KA as in Example 1.

Lemma 5
For any given key space K ⊆ Fn×t

q written as K = {A | A ∈ K}, the new key space K′ =
{KA | A ∈ K} is the minimal space where K′ ⊇ K and K′ satisfies invariant property.

Proof
It is easily to check from Lemma 3 that K′ = {KA | A ∈ K} satisfies invariant property and
from Lemma 4 that it is the minimal one.

6. HOMOMORPHIC A-CODES FOR MULTIPLE FILE AUTHENTICATION

One main concern regarding practical use of our scheme might be that keys cannot be reused
for multiple files authentication due to information theoretic security. However, as we will show
in this section, we can use one key to authenticate multiple files.

Let us assume that we have to authenticate a sequence of η files. Clearly, a trivial,
straightforward way to do that is to use one key per file, implying that we require η independent
keys. However, inspired by the work of Atici and Stinson [1], we show that we can do better
than that. We present a variant of our scheme that requires only one key for all the η files,
while achieving unconditional security. Particularly, we use one key comprising k ∈ K and
an (η − 1)-tuple (a1, . . . , aη−1) ∈ Aη−1 to authenticate η consecutive files. We show that for
each additional file, the sender and the verifier needs a key of size log |A| bits. By contrast
with the aforementioned trivial approach, which requires a log |K|-bit key at the sender and
the verifier for each additional file, our scheme is more efficient since |A| ≤ |K|. To illustrate
with a more concrete example using the homomorphic A-code shown in Theorem 3, we have
qt = |A| ≤ |K| = qnd where t ≤ n, 1 ≤ d.

Recall from Figure 1 that we use (gv1, . . . , gvm) as a global encoding vector for the message
v =

∑m
i=1 gvivi. In the following scheme, each message v is required to carry one additional

bit to keep track of the value
∑m

i=1 gvi. With this, given a (q, n,m)-homomorphic A-code
(S,K,A, f) complying with Definition 1 and assuming that the verifier and the source share
a secret key (k, a1, . . . , aη−1) where k ∈ K and (a1, . . . , aη−1) ∈ Aη−1, we are ready to specify
our homomorphic A-code for the l-th (1 ≤ l ≤ η) file transmission, as illustrated in Figure 2.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



15

– Tag generation: If l = 1, then it follows Tag generation in Figure 1. Otherwise, For each
message vi ∈ S (1 ≤ i ≤ m), the source computes f(vi,k) + al−1 as the corresponding tag
ti and sends out the packet (1,vi, ti).

– Combination: If l = 1, then it follows Combination in Figure 1. Otherwise, Assume that
each intermediate node receives some packet (

∑m
i=1 gxhi,xh, txh

) for some index h, where
each xh is already a linear combination of some messages vi. The intermediate node computes
gy =

∑
h αh

∑m
i=1 gxhi and ty =

∑
h αhtxh

corresponding to an output vector y =
∑

h αhxh,
where the sum is taken over some subset of the received tags. The intermediate node sends
out the packet (gy, y, ty) when there is any transmitting opportunity regarding y.

– Verification: If l = 1, then it follows Verification in Figure 1. Otherwise, assume that
the verifier possesses a private key (k, a1, . . . , aη−1) and it receives a message v and the
corresponding tag tv. The verifier checks if f(v,k) + gval−1 = tv; it accepts (v, tv) if the
equation holds; otherwise it rejects.

Figure 2. Definition of homomorphic A-code scheme for multiple file transmission (1 ≤ l ≤ η).

We first show the correctness of the scheme in Figure 2. For v =
∑m

j=1 gvjvj we have:

tv =
m∑

j=1

gvj(f(vj ,k) + al−1) =
m∑

j=1

gvjf(vj ,k) + (
m∑

j=1

gvj)al−1.

Since our homomorphic A-code (S,K,A, f) is a (q, n,m)-homomorphic A-code, we furthermore
have:

m∑
j=1

gvjf(vj ,k) + (
m∑

j=1

gvj)al−1 = f(
m∑

j=1

gvjvj ,k) + (
m∑

j=1

gvj)al−1 = f(v,k) + gval−1.

and thus the verification is correct.
We claim that the security for the l-th (2 ≤ l ≤ η) file transmission is the same as the 1-st

file transmission. To see this, we have:

max
v∈S,t∈A,al−1∈A

|k ∈ K | f(v,k) + al−1 = t| = max
v∈S,t∈A

|k ∈ K | f(v,k) = t|,

which implies that from the view of the attacker, guessing a key (k, al−1) associated with the
l-th file transmission is equivalent to guessing a key k associated with the 1-st file transmission.
Therefore, the attacker has the same success probability at the l-th file transmission as
with that of the 1-st file transmission. With that, we infer that our scheme for multiple file
transmission based on homomorphic A-code (S,K,A, f) achieves the same security level as
with the A-code (S,K,A, f) for one single file.

7. RELATED WORK

An example of multireceiver authentication codes for network coding has been proposed
in [7], which can be adapted to suit the single receiver case. The source has m messages
s1, . . . , sm ∈ Fn

q to be sent. Before transmission, one symbol in Fq is appended to the message,
that is (si, 1) is actually transmitted for every i, however, since this one symbol is not
authenticated, we have vi = si. A tag for si is computed by

ψk(si) = Asi
(X) = P0(X) + siP1(X) + sq

iP2(X) + . . .+ sql−1

i Pl(X) ∈ Fqn [X],

where P0(X), . . . , Pl(X) are private polynomials of degree d with coefficients in Fqn owned by
the source, namely

k = (P00, . . . , P0,d−1, P10, . . . , P1,d−1, . . . , Pl0, . . . , Pl,d−1).
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The parameter l refers to the number of usage of the key, which should be at least m, thus we
can assume that l = m for one round of transmissions, while d is 1 here, since d− 1 refers to
the number of internal adversaries, that is the number of dishonest receivers which can collude
against others. Thus Pi(X) are constant polynomials, which we write Pi(X) = Pi. The tag ti

contains the coefficients of the polynomial Asi
(X), which in the one receiver case is simply a

constant element in Fqn . We then have that S = Fqn , K = Fm+1
qn , A = Fqn . This is essentially

a particular case where t = n in our A-code definition.
The vector space V = span(s1, . . . , sm) associated to the source message obtains the tag

(t1, ..., tm). It could be that this tag is redundant, in the case where V is of dimension less
than m.

The homomorphic property does not hold immediately §, but instead does for a similar
construction.

Lemma 6
Set k = (P0, . . . , Pm) ∈ K and v =

∑m
i=1 αivi. The map

ψk(v) = P0v + P1vq + P2vq2
+ . . .+ Pmvqm

∈ Fn
q (22)

satisfies that

ψk(v) =
m∑

i=1

αiψk(vi).

Proof
We have by definition that

ψk(v) =

(
m∑

i=1

αivi

)
P0 +

(
m∑

i=1

αivi

)q

P1 + . . .+

(
m∑

i=1

αivi

)qm

Pm

=

(
m∑

i=1

αivi

)
P0 +

(
m∑

i=1

αiv
q
i

)
P1 + . . .+

(
m∑

i=1

αiv
qm

i

)
Pm

=
m∑

i=1

αi

(
viP0 + vq

iP1 + . . .+ vqm

i Pm

)
=

m∑
i=1

αiψk(vi),

which concludes the proof.

The above lemma means that {ψk,k ∈ K} as defined is in fact a Fq-linear mapping from
Fqn to itself, thus, by fixing an Fq-basis ν = {ν1, . . . , νn} of Fqn , it can be written in matrix
form as ψk(v) = vAk where Ak is an n× n matrix over Fq. Indeed, let MPi

be the matrix of
multiplication by Pi and v = (v1, . . . , vn) both in the chosen basis. We have that

vPi =
n∑

j=1

vj(Piνj) = (v1, . . . , vn)MPi

 ν1
...
νn


and similarly, for any 1 ≤ x ≤ m, writing νqx

j as
∑n

h=1 bxjh
νh, with Bx = (bxij

), we have:

vqx

Pi =
n∑

j=1

vjν
qx

j Pi =
n∑

j=1

vj(bxj1 , . . . , bxjn)

 ν1
...
νn

Pi = (v1, . . . , vn)BxMPi

 ν1
...
νn


§Though this A-code is lack of homomorphism, the paper [7] still implemented a successful authentication.
They required a knowledge about network coding coefficients, which are traced by the last “1’ bit in (si, 1).
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so that

Ak = MP0 +B1MP1 + · · ·+BmMPm
. (23)

From now on, we fix an Fq-basis of Fqn , say ν mentioned above. Then, we use Mu to denote
the multiplication matrix for an u ∈ Fn

q . Furthermore, we represent M as the set of all
multiplication matrices for elements from Fqn , formally, M = {Mu | u ∈ Fqn}.
It is known that, M is a subspace over Fq, and thus we can continue (23) and rewrite Ak as:

Ak = MP0 +B1MP1 + · · ·+BmMPm =
m∑

i=0

Mui . (24)

BY the second equation of (24), we particularly mean that we let Mu0 = MP0 and Mui
=

BiMPi for 1 ≤ i ≤ m. Since Pi ∈ Fqn(0 ≤ i ≤ m) while Bi(1 ≤ i ≤ m) is a fixed nonzero
multiplication matrix, we are easy to see that Mui can be any multiplication matrix from
M. We therefore can redefine the homomorphic A-code as below:

Lemma 7
In the (q, n,m)-homomorphic A-code {ψk,k ∈ K} as defined in Lemma 6, we have: K = {k =
(k0, . . . ,km) : ki ∈M} and ψk(v) = Ak =

∑m
i=0 vki.

We next evaluate security parameters and key size for this homomorphic A-code.

Lemma 8
In the (q, n,m)-homomorphic A-code {ψk,k ∈ K} as defined in Lemma 6, we have:

|K| = q(m+1)n, PI =
1
qn
, PIsub

=
1
qn
, PS = 1. (25)

Proof
The key size |K| = q(m+1)n can been seen immediately from the expression of K in Lemma 7.
We now evaluate the security parameters.
Firstly, again K is a subspace over Fq, so we can compute based on on Lemma 1. That is:

PI = max
v∈S,v 6=0

{|k ∈ K |
∑m

j=0 vkj = 0}|
q(m+1)n

, (26)

PIsub
= max

V

|{k ∈ K |
∑m

j=0 vikj = 0}|
q(m+1)n

, (27)

and

PS = max
v/∈V

|{k ∈ K |
∑m

j=0 vikj = 0} ∩ {k |
∑m

j=0 vkj = 0}|
|{k ∈ K |

∑m
j=0 vikj = 0}|

. (28)

Here k = (k0, . . . ,km) with each ki ∈M, v ∈ K and V = span(v1, · · · ,vm) is an m-
dimensional subspace to authenticate.
Secondly, it is known that all non-zero multiplication matrices are non-singular matrices and
their sums are non-singular matrices as well, which implies that, for any k = (k0, . . . ,km):

For ∀v 6= 0,
m∑

j=0

vkj = 0 ⇐⇒
m∑

j=0

kj = 0;

For ∀ V,
m∑

j=0

vikj = 0 ⇐⇒
m∑

j=0

kj = 0;
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For ∀ v /∈ V,
m∑

j=0

vikj = 0,
m∑

j=0

vkj = 0 ⇐⇒
m∑

j=0

kj = 0.

Now, since |{k |
∑m

j=0 kj = 0}| > 0 (due to 0 ∈ {k |
∑m

j=0 kj = 0}), we can immediately
continue (28) and compute PS as:

PS =
|{k |

∑m
j=0 kj = 0}|

|{k |
∑m

j=0 kj = 0}|
= 1.

We still have to calculate the number |{k |
∑m

j=0 kj = 0}|, in order to compute PI and PIsub
.

In fact, we can find all such keys k satisfying
∑m

j=0 kj = 0 in a following way. We let each of the
first m elements, that is, ki(0 ≤ i ≤ m− 1), randomly chosen from M; in other words, there
are |M| = |qn| random choices for each of them. We then declare that there is one and only
one km ∈M that leads to

∑m
j=0 kj = 0. Indeed, if we denote ki = Mui for 0 ≤ i ≤ m− 1, then

the candidate km = M(qn−
∑m−1

i=0 ui)
always exists and is the only one to make

∑m
j=0 kj = 0

happen. As a result, the number is:

|{k |
m∑

j=0

kj = 0}| = qnm. (29)

Finally, together with (26) and (29), we have: PI = qmn

q(m+1)n = 1
qn . Computing (27) with (29),

we have: PIsub
= qmn

q(m+1)n = 1
qn . We therefore finish the proof in the lemma.

8. CONCLUSION AND FUTURE WORK

We studied a class of A-codes that are linear in messages, which are useful in network coding
scenario for authentication. We derive some lower bounds on security parameters when key
space is known for a general homomorphic A-code. We also obtain a lower bound on key size
when security parameter values are given with some special properties, and constructed some
codes meeting this bound. It would be interesting to show a bound on key size for general
security parameter values and find constructions meeting the corresponding bounds. Another
future work is to show an efficient scheme for a network with multiple verifiers, moreover, a
network with dynamic sender(s) which would be particularly beneficial for network coding-
based wireless sensor network applications.
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A. PROOF OF LEMMA 1

Proof
We firstly prove it for PI . It suffices to prove the statement below for ∀ 0 6= v ∈ S and
∀ 0 6= t ∈ A:

|{k ∈ K | v ∈ kerψk}| ≥ |{k ∈ K | ψk(v) = t}|.

We claim as below:
Claim:
|{k ∈ K | v ∈ kerψk}| > |{k ∈ K | ψk(v) = t}| if {k ∈ K | ψk(v) = t} = ∅. (∗)
|{k ∈ K | v ∈ kerψk}| = |{k ∈ K | ψk(v) = t}| if {k ∈ K | ψk(v) = t} 6= ∅. (∗∗)

Indeed, since K is a subspace over Fq, we always have 0 ∈ K, which implies that
|{k ∈ K | v ∈ kerψk}| ≥ 1 for ∀ v ∈ S. This way, if {k ∈ K | ψk(v) = t} = ∅, we have
|{k ∈ K | v ∈ kerψk}| > |{k ∈ K | ψk(v) = t}|, henceforth the (*) part is proved. We can
prove the (**) part by exploiting the trick from [10]. That is, if {k ∈ K | ψk(v) = t} 6= ∅,
then there always exists an k0 ∈ {k ∈ K | ψk(v) = t}. We define a function φ from
{k ∈ K | ψk(v) = t} to {k ∈ K | v ∈ kerψk} by φ(k) = k− k0. We can easily see that φ is
one-to-one, which implies that

|{k ∈ K | ψk(v) = t}| ≤ |{k ∈ K | v ∈ kerψk}|. (A.1)

On other hand, we can define another function ϕ from {k ∈ K | v ∈ kerψk} to {k ∈ K | ψk(v) =
t} via ϕ(k) = k + k0. We can also check that ϕ is one-to-one, which implies that

|{k ∈ K | v ∈ kerψk}| ≤ |{k ∈ K | ψk(v) = t}| (A.2)

A combination of (A.1) and (A.2) demonstrates that |{k ∈ K | v ∈ kerψk}| = |{k ∈
K | ψk(v) = t}|.
With the claim, it is easy to see that the theorem holds for PI .

We now prove the theorem for PIsub
, PS . In an analogous way of demonstrating

the aforementioned claim, we can prove that for ∀ V, ti(1 ≤ i ≤ m) we have
|{k ∈ K | ψk(vi) = ti}| = 0 or |{k ∈ K | ψk(vi) = ti}| = |{k ∈ K | vi ∈ kerψk}|. It then
follows that we can compute PIsub

as:

PIsub
= max

V

|{k ∈ K | vi ∈ kerψk}|
|K|

.

To compute PS , we only consider the situation where |{k ∈ K | ψk(vi) = ti, 1 ≤ i ≤ m}| 6= 0,
that is, where |{k ∈ K | ψk(vi) = ti, 1 ≤ i ≤ m}| = |{k ∈ K | vi ∈ kerψk, 1 ≤ i ≤ m}|. We now
compute PS for this case. We now have:

PS = max
v/∈V,V

max
t,ti

|{k | ψk(vi) = ti} ∩ {k | ψk(v) = t}|
|{k ∈ K | ψk(vi) = ti}|

= max
v/∈V,V

max
t,ti

|{k | ψk(vi) = ti} ∩ {k | ψk(v) = t}|
|{k ∈ K | vi ∈ kerψk}|

Again, using the same way of proving the claim above, we can easily see that:

|{k | vi ∈ kerψk, 1 ≤ i ≤ m} ∩ {k | v ∈ kerψk}| ≥ |{k | ψk(vi) = ti, 1 ≤ i ≤ m} ∩ {k | ψk(v) = t}|.
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Henceforth, we compute PS as:

PS = max
v/∈V,V

|{k | vi ∈ kerψk} ∩ {k | v ∈ kerψk}|
|{k ∈ K | vi ∈ kerψk}|

Finally, we complete the proof of the theorem.

B. PROOF OF LEMMA 2

Proof
We firstly prove it for PI . From Lemma 1, we have:

PI = max
v∈S,v 6=0

|{k ∈ K | v ∈ kerψk}|
|K|

.

It therefore suffices to prove that for any 0 6= v1 ∈ S and 0 6= v2 ∈ S, we have:

|{k ∈ K | v1 ∈ kerψk}|
|K|

=
|K1|
|K|

=
|{k ∈ K | v2 ∈ kerψk}|

|K|
.

We define K(v) = {k ∈ K | v ∈ kerψk} for any 0 6= v ∈ S. This way, it is sufficient to prove
the statement as below:

|K(v1)| = |K1| = |K(v2)|. (B.1)

We now prove the first equation for statement (B.1). For any 0 6= v1 ∈ S, in terms of basic linear
algebra, we can always choose a non-singular n× n matrix P so that v1P = (|v1|, 0, · · · , 0)
where |v1| represents the Euclidean norm of v1. According to the definition of K(v), we
have |K(v1)| = |{A ∈ K | v1A = 0}| and |K(v1P )| = |{B ∈ K | v1PB = 0}|. Since K satisfies
invariant property, we have the equation below:

|K(v1)| = |PK(v1P )| (B.2)

By definition again, we have:

K(v1P ) = {k ∈ K | v1P ∈ kerψk}.

Note that v1P = (|v1|, 0, · · · , 0), according to the definition of K1, it is easy to see that:

K(v1P ) = K1. (B.3)

On the other hand, since K satisfies invariant property which ensures that Pk ∈ K for all
k ∈ K, it always holds that PK(v1P ) ⊆ K. We therefore have

|PK(v1P )| = |K(v1P )|. (B.4)

Combining (B.2), (B.3) and (B.4), we have:

|K(v1)| = |PK(v1P )| = |K(v1P )| = |K1|.

which immediately shows that:
|K(v1)| = |K1|.

And thus the proof for v1 is completed. Since v1 is randomly chosen from S\{0}, then the
equation for v2, namely, the second equation of (B.1), is proved as well. This implies that the
whole statement of (B.1) is proved and thus we finish the proof for PI .
We can prove the theorem for PIsub

and PS in a similar way. Indeed, according to Lemma 1,
we have:

PIsub
= max

V

|{k ∈ K | vi ∈ kerψk}|
|K|

.
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and

PS = max
v/∈V

|{k | vi ∈ kerψk} ∩ {k | v ∈ kerψk}|
|{k ∈ K | vi ∈ kerψk}|

.

It then suffices to prove:
|{k ∈ K | vi ∈ kerψk}| = |Km| (B.5)

and
|{k | vi ∈ kerψk} ∩ {k | v ∈ kerψk}| = |Km+1|. (B.6)

We prove (B.5) firstly. Given m, we consider a special m-dimensional subspace V =
span(v1, · · · ,vm) with vi a vector where all entries are zeros but the i-th position. It is easy
to see that for this specific V , it holds that |{k ∈ K | vi ∈ kerψk}| = |Km|. Then it suffices
to prove that for any other m-dimensional subspace V ′ = span(v′1, · · · ,v′m), it also holds that
|{k ∈ K | v′i ∈ kerψk}| = |Km|.
Indeed, firstly, we claim that we can always find a non-singular matrix W ∈ Fn×n

q such that
v′iW = vi for all 1 ≤ i ≤ m. To see why, if we denote Z as the collection of the row vectors
v1, · · · ,vm, and consider all the column vectors in Z, we will find that the column vectors
of Z span to the vector space Fm

q . Then, since K satisfies invariant property, with this W we
can have |{k ∈ K | v′i ∈ kerψk}| = |W{k ∈ K | vi ∈ kerψk}| and |W{k ∈ K | vi ∈ kerψk}| =
|{k ∈ K | vi ∈ kerψk}| = |Km|, which implies that |{k ∈ K | v′i ∈ kerψk}| = |Km| and (A.5)
is proved.
We can prove (B.6) in a similar way but choosing a special v as a vector where all entries are
zeros but the (m+ 1)-th position. Details are omitted due to space limitations.
We thus finish the proof for PIsub

and PS , and thus the whole lemma.

C. PROOF OF LEMMA 3

Proof
It can be seen from the definition of invariant property and the knowledge that left multiplying
by the non-singular n× n matrix P is equivalent to doing row operations described by P .
More precisely, we consider all the row operations on A. Since every row operation described by
P results in a matrix B = PA where 〈B〉R ⊆ 〈A〉R, the “only if” part is proved. On the other
hand, for each B satisfying 〈B〉R ⊆ 〈A〉R, there always exists an n× n non-singular matrix P
such that B = PA, the “if” part is proved.

D. PROOF OF LEMMA 4

Proof
As it has been proved in Theorem 3 that KA is a subspace and satisfies invariant property, we
only need to prove that KA is the minimal one. Assume rank(A) = d (1 ≤ d ≤ t) and denote
BAr

as all the set of B ∈ Fn×t
q with each row of B belongs to 〈A〉 and rank(B) = r. It is easy

to see that KA = {BAr , 1 ≤ r ≤ d}. Let KS represent the minimal subspace K where A ∈ K
and K satisfies invariant property. This way, to prove KA is the minimal one is equal to prove
that KS ⊇ {BAr

, 1 ≤ r ≤ d}. We next prove this point. Note that as below we use MT to
denote the transpose of matrix M .

Firstly, it is obvious that KS ⊇ BAd
, so we thus only need to prove KS ⊇ {BAr , 1 ≤ r < d}.

(1): When r = 1. We prove KS ⊇ BA1 .
If d = 1, then we are done. So it is sufficient to prove that KS ⊇ BA1 when d > 1.
[Case 1: q = 2] We will prove that, in this situation, we have[

v v 0 · · · 0
]T = Cv ∈ KS , for ∀ 0 6= v ∈ 〈A〉. (D.1)
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Once (D.1) is proved, we have KS ⊇ {BCv} where BCv ∈ Fn×t
q with each row of BCv belonging

to 〈Cv〉. Since v is randomly chosen from 〈A〉, we then have KS ⊇ BA1 . We now prove (D.1)
as below:
Since d > 1, we have for any 0 6= v ∈ 〈A〉, there exists v1 ∈ 〈A〉, v2 ∈ 〈A〉, v1 6= v2 such
that v = v1 + v2. Moreover, there always exists two matrices C1 ∈ BAd

, C2 ∈ BAd
such

that the first two rows of them are exchanged but the other rows of them are equal
to each other. Formally, we can write them as: C1 =

[
v1 v2 C13 C14 · · · C1n

]T , and

C2 =
[
v2 v1 C23 = C13 C24 = C14 · · · C2n

= C1n

]T . It is easy to see Cv = C1 + C2 =[
v v 0 · · · 0

]T . Now, since KS is a subspace, then C1 + C2 ∈ KS , which implies that
Cv ∈ KS .
[Case 2: q > 2] We will prove that, in this situation, we have[

v 0 · · · 0
]T = Cv ∈ KS , for ∀ 0 6= v ∈ 〈A〉. (D.2)

Once (D.2) is proved, then similar to Case 1 above, we have KS ⊇ BA1 .
Indeed, we always have such a v1 ∈ 〈A〉 that 2v1 = v, and we also have two
matrices C1 ∈ BAd

, C2 ∈ BAd
described as below: C1 =

[
v1 C12 C13 · · · C1n

]T , and

C2 =
[
v1 C22 = (q − 1)C12 C23 = (q − 1)C13 · · · C2n = (q − 1)C1n

]T . Again, it is easy

to see Cv = C1 + C2 =
[
v 0 · · · 0

]T . Since KS is a subspace, then C1 + C2 ∈ KS , which
implies that Cv ∈ K.

(2): When 1 < r < d. We prove KS ⊇ BAr . It is sufficient to take D1, D2, · · · , Dr−1, Dr as
below, and claim (D1 +D2 + · · ·+Dr−1 +Dr) ∈ KS :

D1 =
[
v1 0 0 0 0 · · · 0 · · · 0

]T
, D2 =

[
0 v2 0 0 0 · · · 0 · · · 0

]
T
, · · · ,

Dr−1 =
[
0 0 · · · 0 vr−1 0 0 · · · 0

]T
, Dr =

[
0 0 · · · 0 0 vr 0 · · · 0

]T
where randomly chosen v1, v2, · · · , vr−1, vr ∈ 〈A〉 are linearly independent from each other.
Indeed, We have proved in (1) above that D1, D2, · · · , Dr−1, Dr ∈ KS , since KS is a subspace,
then (D1 +D2 + · · ·+Dr−1 +Dr) ∈ KS .
When we consider all such v1, v2, · · · , vr−1, vr, we get KS ⊇ BAr

.

Combing (1) and (2) above, we complete the proof in the lemma.
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