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Abstract Elliptic curve cryptography (ECC) is an efficient public cryptosystem with
a short key size. For this reason it is suitable for implementing on memory-constraint
devices such as smart cards, mobile devices, etc. However, these devices leak information
about their private key through side channels (power consumption, electromagnetic
radiation, timing etc) during cryptographic processing. In this paper we have examined
countermeasures against a specific class of side channel attacks (power analysis) called
Zero-Value Point Attack (ZVP), using elliptic curve isomorphism and isogeny. We found
that these methods are an efficient way of securing cryptographic devices using ECC
against ZVP attack. Our main contribution is to extend the work of Akishita and Takagi
[3,2] to binary fields. We also provide a more detail analysis of the ZVP attack over
prime fields.
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1 Introduction

The advantage of elliptic curve based cryptosystems over other cryptosystems (RSA, etc.) is
their short key size. For this purpose it is suitable for implementing on memory-constrained
devices such as smart cards, mobile devices, etc. A cryptographic device uses a private key
to process input information. The designer of the cryptosystem assumes that the attacker
has pairs of plaintext/ciphertext, key sizes, but other secrets will be manipulated in closed
and safe computing environments. However these devices leak information about the private
key through side channels (power consumption, electromagnetic radiation, timing, etc.) during
cryptographic processing. The term “side channel” is used to describe the leakage of unintended
information during cryptographic processing from a supposedly tamper-resistant device, such
as smart cards. Hence, the side channel attacks are practical attacks as opposed to theoretical
attacks (e.g. differential cryptanalysis attack onDES, etc). There are many kinds of side channel
attacks such as timing attacks, power analysis attacks, electromagnetic attacks, etc. The side
channel attack we are interested in is power analysis. More specifically we are interested in
Zero-Value Point Attack (ZVP), which is a kind of power analysis attack. Note that we will
assume throughout this chapter that we are working on elliptic curves defined over prime fields
Fp, with p > 3 or binary fields F2m , m ≥ 1. Akishita and Takagi [3] and their predecessors,
Coron [6], Goubin [8], Okeya and Sakurai [14] proposed power analysis attacks on elliptic curve
cryptosystems that would allow an adversary to recover the private key by monitoring the power
consumption of cryptographic devices.

In this paper we assess the application of elliptic curve isomorphisms and isogenies (rational
homomorphisms between elliptic curves) for defence against the ZVP attack [3].
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2 Contribution of the Paper

In [2], Akishita and Takagi examined the isogeny defence against ZVP attack on some standard
curves over prime fields (they examined SECG standards but not NIST). They also did not
discussed any defence against ZVP attack or existence of ZVP points over F2m [2,3]. Over
prime fields they only examined ZVP points 3x2 + a = 0 and (0, y) and did not consider the
point 5x4 + 2ax2 − 4bx+ a2 = 0. The contributions of this paper are the following:

– We found that most standard curves (NIST,SECG) over F2m have ZVP points. We showed
that a certain class of standard curves over F2m can be defended efficiently against ZVP
attack using elliptic curve isomorphisms. We show that the remaining classes of curves
can be defended efficiently using isogenies. We also investigate the isogeny defence against
ZVP attack for both SECG and NIST) curves and found that if we use an isogeny defence
against all ZVP points, then in some curves the isogeny degree increases dramatically.

– We calculate the additional cost of the isogeny and an elliptic curve isomorphism defence
for standard curves.1

3 Background material

An elliptic curve E(K)(in Weierstrass form) over a field K is a set of solutions of an equation
of the form E(K) : y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6, where ai ∈ K. If char(K) 6= 2, 3
the equation can be transformed to E(K) : y2 = x3 + a1x + b1, a1, b1 ∈ K. If char(K) = 2
equation can be transformed to E(K) : y2 + xy = x3 + a2x

2 + b2, a2, b2 ∈ K. The set of
points on E(K) form an additive abelian group with P∞ (the point at infinity) as the identity
element (for more details see [4,5,16]).

Projective Coordinates

In order to avoid costly inversions, elliptic curves point doubling (ECDBL) and point addition
(ECADD) is done using projective coordinates. For more details see appendices A and B.

Scalar Multiplication

The operation of adding a point P to itself d times is called scalar multiplication by d and
denoted by [d]P . The simplest and oldest efficient method for scalar multiplication is called
binary method.
Algorithm 1. (Binary Method)

– Input P , d =
∑l−1
j=0 dj2j , where dj ∈ {0, 1}.

– Q← P .
1. for i from l − 2 to 0 do

(a) Q← ECDBL(Q).
i. if di = 1 then Q← ECADD(Q,P ).

(b) Output Q.
Let A and D denote the cost of point doubling (ECDBL) and point addition (ECADD) in

finite fields. The algorithm 1 requires in total [(l− 1)]D + [(W − 1)]A field operations, where
W is the weight (number of 1’s) in the binary representation of d.
1 In this paper computations are carried out using Magma computer algebra system.



Elliptic Curve Isomorphism over F2m

Let E1 : y2
1 + x1y1 = x3

1 + A1x
2
1 + B1 and E2 : y2

2 + x2y2 = x3
2 + A2x

2
2 + B2 be two elliptic

curves over F2m with Bi 6= 0 for i = 1, 2. Then E1 and E2 are isomorphic over F2m if and
only if there exists s ∈ F2m such that A2 = A1 + s + s2 and B2 = B1. The j-invariants are
given by ji = B−1

i , for i = 1, 2. Furthermore, isomorphisms ϕ and ϕ−1 are given by [13]

ϕ : E1 −→ E2, ϕ (x, y) 7−→ (x, y + sx);

ϕ−1 : E2 −→ E1, ϕ−1 (x′, y′) 7−→ (x′, y′ + sx′).

Isogeny

Let K be the algebraic closure of a finite field K. The field of rational functions in two variables
over K is

K(x, y) =
{
f(x, y)
g(x, y)

∣∣∣f(x, y), g(x, y) ∈ K[x, y] and g(x, y) 6= 0
}
.

Let E1(K) and E2(K) be two elliptic curves. An isogeny I is a homomorphism that is
given by rational functions

I(x, y) : E1(K) −→ E2(K)

where I(x, y) = (R1(x, y), R2(x, y)) and Ri(x, y) ∈ K(x, y) for i= 1, 2. Two elliptic curves
are called isogenous if there exists an isogeny between them. The degree of I(x, y) denoted
deg(I) is the number of elements in ker(I) = {(x, y) ∈ E1(K)|I(x, y) = P∞}. The ker(I)
is a finite set. An isogeny is fully determined by its kernel. Over a finite field if two elliptic
curves are isogenous, then they have equal number of points.To every non-constant isogeny
I : E1 −→ E2 of degree l, there exist a unique dual isogeny Î : E2 −→ E1 of degree l such
that for all points P1 ∈ E1 and P2 ∈ E2.

Î(I(P1)) = P1 and I(Î(P2)) = P2

For details see [4,1].

4 Elliptic Curve Cryptosystems

This scheme is analogous to El-Gamal encryption [7].

– Common Parameters
• An elliptic curve E over Fp or F2m .
• The order of #E must be divisible by a large prime q.
• P ∈ E.

– Private Key
• d ∈ [1, q − 1] chosen randomly.

– Public Key
• Q = [d]P .



– Encryption Of message m
• Pick a random n ∈ [1, q − 1].
• Compute the points (x1, y1) = [n]P and (x2, y2) = [n]Q.
• Compute c = x2 +m.
• Output ciphertext (x1, y1, c).

– Decryption
• Receive ciphertext (x1, y1, c).
• Compute (x, y) = [d](x1, y1) and m = c− x.

5 Previous Work

5.1 Power Analysis Attack

In a power analysis attack the side channel is the device’s power consumption. A power analysis
attack works by exploiting the fact that a tamper-resistant device such as a smart card consumes
different amount of power if it is processing 0 or 1 [10]. There are two types of power analysis
attacks: one is called Simple Power Analysis (SPA) and the other is Differential Power
Attack (DPA).

5.2 Simple Power Analysis

A simple power analysis attack consists of observing the power consumption of one single
execution of a cryptographic algorithm. We assume that the scalar multiplication is computed
by Algorithm 1. Let E be an elliptic curve and P be a point on it. Suppose an attacker knows
P, then by monitoring the power consumption during the computation of Q = [d]P , he/she
can recover the private key d, since we perform step 3 only if di = 1, the power consumption
will be more when di = 1 thus revealing the bits of the private key d. Algorithm 1 can easily
be modified so that step 3 is performed no matter what the secret bit is.

Algorithm 2. (Always-Add-Double Binary Method)

– Input P, d =
∑l−1
j=0 dj2j , where di ∈ {0, 1}.

– Q[0]← P.

1. for i from l − 2 to 0 do
(a) Q[0]← ECDBL(Q[0]).
(b) Q[1]← ECADD(Q[0], P ).
(c) Q[0]← Q[dj ].

2. Output Q[0].

The computational cost of this countermeasure is (l − 1)A + (l − 1)D. The algorithm 2
is secure against the SPA attack defined above. We assume that algorithm 2 is performed in
constant time (i.e. The time for each i-th loop is the same). Otherwise the implementation can
be subject to timing attacks [11].



5.3 Differential Power Analysis Attack (DPA) and Countermeasures

A DPA is a more powerful attack [6]. It consists of performing statistical analysis of several
execution of the same algorithm with possibly many different inputs. Even if the method is
secure against SPA it might not be secure against the DPA. The DPA attacker gathers many
power consumptions [d]Pi, i = 1, 2, ... and detects the spike arises from the correlation function
based on the specific bit of [d]Pi. The algorithm 2 is insecure against DPA attack, because
the sequence of points generated by it is deterministic and the attacker can find the correlation
for a specific bit. In [6] Coron proposed three countermeasures against the DPA attack[6]:
1) Randomization of the private key d. 2) Adding a random point R to the base point P. 3)
Using randomized projective coordinates. In addition, Joye and Tymen [9] also proposed two
countermeasures against Coron’s DPA. 4) In the first countermeasure, they chose a random
isomorphic elliptic curve and computed the scalar multiplication over that curve. 5) In the
other countermeasure they computed the scalar multiplication in an isomorphic field which
is also chosen randomly. In [14], Okeya and Sakurai showed that Coron’s first and second
countermeasures are not secure against the DPA attack, as they do not properly randomize
the private key d or base point P.2 The last three countermeasures (randomized projective
coordinates, random elliptic curve isomorphism and random field isomorphism) seem to be
effective against DPA attack. Among this the Coron’s third countermeasure is the most efficient
one [1]. Due to space limitation we will only describe Coron’s third countermeasure. For all
other see [6,14].

Third countermeasure: Randomization in Projective Coordinates

Let P = (x, y), be the base point. The computation of Q = [d]P is done as follows.

1. Map affine coordinates (x, y) to projective coordinates X ← x, Y ← y, Z ← 1.
2. Choose a random α ∈ K∗. If K is a binary field, then set P ′ = (αx, α2y, α) and if K is a

prime field, then set P ′ = (α2x, α3y, α).
3. Compute Q′ = [d]P ′ = (X,Y, Z) using algorithm 2.
4. Compute Q in affine coordinates by setting x←− X/Z , y ←− X/Z2 for binary fields or
x←− X/Z2 , y ←− X/Z3 for prime fields.

5. Output Q = (x, y).

Let M and R denote the computational cost of multiplication and random number genera-
tion in finite fields. The computational cost of this countermeasure is (l− 1)]A + [(l− 1)]D +
3M + R. This countermeasure makes the DPA attack infeasible since the representation of
point P in projective coordinates remains unknown to the attacker. However, Goubin observed
that points (0, y) and (x, 0)(called special points) cannot be properly randomized by any of
these anti-DPA methods(randomized projective coordinates, random elliptic curve isomorphism
and random field isomorphism) [8]. Hence if these special points lie on the elliptic curve then
they can be used to launch a DPA attack (called refined power analysis attack) on the elliptic
curve scalar multiplication [8]. In standards, (#E = h · q), where q is a large prime and h

2 These attacks could be thwarted by modifying these countermeasures. However, this will increase the
cost of countermeasure 1 from [(l−1)+19]A+[(l−1)+19]D+R to [2(l−1)]A+[2(l−1)]D+R
and countermeasure 2 from [(l+ 1)]A + [(l+ 1)]D + R to [(l+ 2n− 1)]A + [(l+ 2n− 1)]D + R,
where n suggested to be 20 [14].



is a small integer called cofactor. Nigel Smart pointed out that special points of small order
can easily be dealt by first computing Q ← [h]P and if Q 6= P∞, then compute [d]P using
algorithm 2. Hence, this way no point of small order will ever enter the scalar multiplication
algorithm with private key d. Note that over binary fields (0, y) has order 2 and over prime
fields (x, 0) has order 2. For points of large order Smart proposed a defence using isogenies
[15].

6 Zero-Value Point Attack

In [3], Toru Akishita and Tsuyoshi Takagi proposed an attack called Zero Value Point Attack,
which is a generalization of Goubin’s refined power analysis attack [8]. They show that even if
elliptic curves (over prime fields) have no special points (x, 0) and (0, y), they can still have
points called zero value points (ZVP), for which auxiliary registers takes zero value and these
points cannot be randomized by the third countermeasure (randomized projective coordinates).
If the ZVP points lie on the elliptic curves, then they can be used to launch a DPA attack on
elliptic curve scalar multiplication. However, unlike Goubin’s attack, the ZVP attack depends
strongly on the implementation of a scalar multiplication algorithm [3]. We assumed that
scalar multiplication is computed by Algorithm 2 and ECDBL and ECADD are implemented
as described in appendices A and B. Note that we will only discuss defence against ZVP points
from ECDBL since finding ZVP point from ECADD is believed to be a hard problem for both
binary and prime fields [1,3].

6.1 Outline of the Attack

The task of ZVP attack is to learn the private key d by adaptively choosing the base point Q.
The attacker breaks the private key from the most significant bit. The second most significant
bit dl−2 can be broken by checking whether one of formulae ECDBL(2Q), ECADD(2Q,Q),
ECDBL(3Q) and ECADD(3Q,Q) is computed. If we can generate the zero-value regis-
ter for these addition formulae, we can recover the dl−2 bit of the key. If ECDBL(2Q) or
ECADD(2Q,Q) has zero-value register, then dl−2 = 0 and if ECDBL(3Q) or ECADD(3Q,Q)
is zero then dl−2 = 1. Now assume that (dl−1, ... , dl−i+1) bits of d are known to attacker.
He can recover the dl−i bit by checking whether one of ECDBL(2kQ), ECADD(2kQ,Q),
ECDBL((3k + 1)Q) and ECADD-F((3k + 1)Q,Q), where d =

∑l−1
j=i+1 dj2j−i−1. We know

that dl−i = 0 if ECDBL(2kQ), ECADD-F(2kQ,Q) has a zero-value register and dl−i = 1 if
ECDBL((3k+ 1)Q) or ECADD((3k+ 1)Q,Q), has a zero-value register. Therefore if we find
a point P that takes the zero-value register at ECDBL, we can use the base point Q = (c−1

mod #E)P for some integer c for this attack. On the other hand, in order to use the zero-
value register at ECADD(2Q,Q), the base point Q that causes the zero-value register at
ECADD(cQ,Q) must be found. Thus the attacker has to find a point Q which cause the
zero-value register at ECDBL(cQ) or ECADD(cQ,Q) for some integer c.

6.2 Zero-Value Point Value Attack over Binary Fields F2m

Theorem 1. Let E : y2 + xy = x3 +Ax2 +B be an elliptic curve over F2m such that B 6= 0.
The elliptic curve E has a zero value point P = (x, y) from ECDBL if and only if one of the
following conditions are satisfied: (1)x2 +y = 0, (2)Ax2 +y2 = 0, (3) y2 +B = 0, (4) y(P ) =



0 or y([2]P ) = 0, (5)x(P ) = 0 or x([2]P ) = 0.3 Moreover, the zero-value points are not
randomized by Coron’s third countermeasure (randomized projective coordinates).

Proof. Let P1 = (X1, Y1, Z1) 6= P∞ be the corresponding point in projective coordinates.
Let P2 = ECDBL(P1). The ECDBL (see appendix) has a zero value register if and only if
one of the following values are zero: X1, Y1, Y1, X2, Y2, Z2, AZ2 + Y 2

1 , Y
2

1 + BZ4
1 , AZ2 +

BZ4
1 , AZ2 + Y 2

1 + BZ4
1 . AZ2 + Y 2

1 + BZ4
1 = 0 ⇐⇒ AX2

1Z
2
1 + Y 2

1 + BZ4
1 = 0, which is in

affine coordinate is Ax2Z4
1 + y2Z4

1 +BZ4
1 = 0.

Name of Curve x2 + y = 0 Ax2 + y2 = 0 y2 +B = 0 (x, 0) Curve Order
sect113r1 no no yes(large) no 2× Prime
sect113r2 no yes(large) no yes(large) 2× Prime
sect131r1 yes(large) no yes(large) yes(large) 2× Prime
sect131r2 no no no yes(large) 2× Prime
sect163k1 no no no no 4× Prime
sect163r1 yes(large) no yes(large) no 2× Prime
sect163r2 no yes(large) no yes(large) 2× Prime
sect193r1 yes(large) no no yes(large) 2× Prime
sect193r2 yes(large) yes(large) no no 2× Prime
sect233k1 yes(small) yes(small) yes(small) yes(small) 4× Prime
sect233r1 no no no no 2× Prime
sect239k1 yes(small) yes(small) yes(small) yes(small) 4× Prime
sect283k1 yes(small) yes(small) yes(small) yes(small) 4× Prime
sect283r1 no yes(large) no yes(large) 2× Prime
sect409k1 yes(small) yes(small) yes(small) yes(small) 4× Prime
sect409r1 no no no no 2× Prime
sect571k1 yes(small) yes(small) yes(small) yes(small) 4× Prime
sect571r1 no yes(large) no yes(large) 2× Prime
B-163 no yes(large) no yes(large) 2× Prime
K-163 no no no no 2× Prime
B-233 no no no no 2× Prime
K-233 yes(small) yes(small) yes(small) yes(small) 4× Prime
B-283 no yes(large) no yes(large) 2× Prime
K-283 yes(small) yes(small) yes(small) yes(small) 4× Prime
B-409 no no no no 2× Prime
K-409 yes(small) yes(small) yes(small) yes(small) 4× Prime
B-571 no yes(large) no yes(large) 2× Prime
K-571 yes(small) yes(small) yes(small) yes(small) 4× Prime

Table 1. SECG and NIST curves over F2m and ZVP points from ECDBL-F2m

This implies Ax2 + y2 + B = 0 = Ax2 + y2 + (y2 + xy + x3 + Ax2) = 0 = 2Ax2 +
2y2 + xy + x3 ≡ xy + x3 mod 2. Hence, (x2 + y) = 0 or x = 0. Which is condition
3 For a point P = (x, y) we denote its x-coordinate by x(P ) and y-coordinate by y(P )



(1) and X1 = 0 =⇒ x(P ) = 0 and X2 = 0 =⇒ x(2P ) = 0 which is condition (4) and
Y1 = 0 =⇒ x(P ) = 0 and Y2 = 0 =⇒ x(2P ) = 0 which is condition (5). AZ2 + Y 2

1 =
0 ⇐⇒ AX2

1Z
2
1 + Y 2

1 =⇒ Ax2 + y2 = 0 in affine coordinate which is condition (2). Similarly
Y 2

1 +BZ4
1 =⇒ y2 +B = 0 gives is condition (3).

Preventing ZVP point attack or existence of ZVP points on standard curves (SECG,
NIST) over F2m was not discussed in [2,3]. We have found that 15 out of 18 SECG curves
and 7 out of 10 NIST have ZVP points (x, y) from ECDBL which satisfy at least one of
the conditions of theorem 1 (see Table 1). Note that each row of table 1 tell us whether or
not the elliptic curve from standards has any ZVP point on it. In parenthesis ( ) we list if the
ZVP point is of large or small order. As discuss at the end of section 5 that ZVP points of
small order can easily be protected. Therefore, we do not consider ZVP points of form (0, y)
(they will always have order 2) in table above. We notice that Koblitz curves4 (in SECG names
ending with k1 e.g. sectk1, and in NIST starting with K e.g. K-571) have ZVP points of small
order only.

6.3 Finding ZVP Points from ECDBL over Binary Fields F2m

In this section we will discuss how to find ZVP from ECDBL over F2m . Let E : y2 + xy =
x3 +Ax2 +B be an elliptic curve over F2m . Condition(1) x2 + y = 0, let P ∈ E be such that
x2 = y =⇒ x4 +Ax2 +B = 0. The solution of this polynomial can easily be found efficiently
[5]. Condition(2) Ax2 + y2 = 0, let P ∈ E such that y2 = Ax2 =⇒ x3 +

√
Ax2 + B = 0.

As mentioned above solving this polynomial is easy. Note that the equation y2 = A is trivially
solved in F2m , y = A2m−1 =⇒ y2 = A. Condition(3) y2 + B = 0. Therefore point (0,

√
B)

will always lie on the curve. But point (0,√y) has order 2. However, if point (x,√y) for any
x ∈ F∗2m lies on the curve, then this point can have a large order. Such a point lies on the
curve if and only if x2 +Ax+

√
B = 0 has a solution in F2m . Condition(4) y(P ) = 0 requires

to solve polynomial x3 + Ax2 + B = 0 which can be easily solved in polynomial time [5].
Condition y([2]P ) = 0 requires to solve ψ3(x2 +x+ y)− (x2 +xy) = 0, where ψ3 is a division
polynomial [4,16]. Note that if x3 + Ax2 +B has no roots, then there can be no point (x, y)
on the curve such that y([2]P ) = 0.

6.4 Defence Against ZVP Attack Through Isomorphism For Binary Curves with
A 6= 1

In this section we present a countermeasure against ZVP attack using elliptic curve isomor-
phism. In order to thwart the ZVP attack we have to choose a curve which has no ZVP point
of large orders and is isomorphic to the original curve. Our focus will be on non-Koblitz binary
curves for which A 6= 1 and have atleast one ZVP point of large order.5 For each curve we pick
a random s in F∗2m and using isomorphismϕ we compute the corresponding curve E′. If E′ has
no ZVP we will return s, otherwise we will pick another random s. It took us on average less
than 30 tries to find a suitable curve. Below in the table 2 we list s for each SECG curve with
A 6= 1. Furthermore, we will represent s in hexadecimal for convenience. The conversion from
hexadecimal to a field element is done by converting it to binary number and each coefficient
of the binary string represents coefficients of s. The isomorphism computation requires only 2
4 Koblitz curves refer to binary curves over F2m which have A,B ∈ {0, 1}.
5 Please note that for NIST standard all non-Koblitz curves which have ZVP points of large orders
satisfy A = 1. These curves are B-163, B-283, B-571 and are discuss in next section.



field multiplications and it is much easier to store the equation of isomorphism and its inverse
on memory-constraint devices (as opposed to equations of isogeny and its dual). The input
points can then be mapped to the isomorphic curve for scalar multiplication and then mapped
back to the original curve.

6.5 Isogeny Defence Against ZVP Attack for Binary Curves with A = 1

We recall from section 3 that over binary fields for elliptic curves with A = 0 or A = 1, ECDBL
require 4 field multiplication instead of 5. It is clear from the definition of isomorphism that an
elliptic curve E := y2 + xy = x3 + Ax2 + B over F2m with A = 1 and B 6= 0, 1 cannot be
mapped to a different isomorphic curve E′ : y2 +xy = x3 +A′x2 +B with A′ = 1. Moreover, if
there exists an isomorphic curve with A′ = 0, then the polynomial s2+s+1 must have a solution
in F2m . But s2 +s+1 has no solution in F2m , for m = 163, 283, 571. For these curves we need
to determine the minimal isogeny degree lmin to a curve with A′ = 0 or 1 and has no ZVP
point. This would save us l field multiplications. Note this is assuming that one would replace
the standard curves with the corresponding isogenous curves. But if this is not a possibility,
then cryptographic devices need to store along with the original curve from the standard, the
isogeneous curve and the equation of the isogeny and its dual. The input points can then be
mapped to the isogeneous curve for scalar multiplication and then mapped back to the original
curve. Hence, we have to account for the cost of this countermeasure. The computational cost
of mapping a point using isogeny of degree l is 3l field multiplications [1,15]. Hence, in total
the additional cost of isogeny defence is 6l field multiplications. In table 3 we list the minimal
isogeny degree lmin, number of field multiplications saved by curves with A′ = 1, number of field
multiplications required by isogeny defence and the net computational cost. We observe that
for curves sect283r1 (B-283) and sect571r1 (B-571) we saved 145 and 529 field multiplications,
while curves sect163r2 (B-163) cost us additional 95 field multiplications. Assuming that we
cannot replace standard elliptic curves with isogeneous elliptic curves, isomorphism defence is
more efficient than isogeny defence for sect163r2 (B-163).

Name Of Curve s

sect113r1 18FAA414E74440750490C01BB277D
sect113r2 1D15B022CC73D9E966F8A0ABFA26F
sect131r1 5EF4C6145AA39FFACD6C3296E49AB1246
sect131r2 71C674FDCAE7A4BDE497F58E833EDF9F2
sect163r1 5277F5AB7FFFF42D506904A46AE18086F317DFD86
sect193r1 163E42DF9E7D5373A9C1610E3758E626CC784110B676111AD
sect193r2 1D1A0FD2202E04C7E7EF572304AE231CCBDE817720884068F

Table 2. Isomorphism defence for SECG curves over F2m with A 6= 1, B 6= 0, 1



Name of Curve lmin Field Multiplications Saved Cost of Isogeny Net Cost
sect163r2 & B-163 43 ≈ 163, since d ≈ 2163 258 95
sect283r1 & B-283 23 ≈ 283, since d ≈ 2283 138 -145
sect571r1 & B-571 7 ≈ 571, since d ≈ 2571 42 -529
Table 3. Isogeny defence against ZVP points over F2m with A = 1, B 6= 0, 1

7 Computational Cost Comparison of Isogeny Defence with Modified
Coron’s 2nd and 3rd Countermeasure

We recall that Coron’s 1st countermeasure (randomization of the private key d) and 2nd
countermeasure (adding a random point to the base point ) can be modified such that they are
secure against the attacks proposed in [14]. This will have an additional cost of [(l − 20)]A +
[(l − 20)]D and [2(n − 1)]A + [2(n − 1)]D respectively, where the parameter n is suggested
to be 20 [14]. The cost of ECDBL and ECADD (denoted as A and D) over F2m is 4 and 14
field multiplications (section 6.2). Hence for lmin < 4l − 6 the isogeny defence is faster than
Coron’s 1st countermeasure and for lmin < 6n − 6 = 114, the isogeny defence is faster than
Coron’s 2nd countermeasure. In table 4 we compare the computational cost (number of field
multiplications) of the isogeny defence to these countermeasures. We note that Coron’s 1st
countermeasure is too expensive, that is because l (size of d) will likely to be close to the size
of the respective field size. We can see that computational cost for isogeny defense against all
ZVP attack, is more efficient than Coron’s modified countermeasures.

Curve Isogeny defence Randomization of private key Adding a random point
sect163r2 & B-163 222 2484 (l = 158) 684
sect283r1 & B-283 138 4644 (l = 278) 684
sect571r1 & B-571 42 9846 (l = 567) 684

Table 4. Additional computational cost of isogeny defence vs Coron’s Countermeasures over
F2m

7.1 Zero-Value Point Attack over Fp

Akishita and Takagi examined the isogeny defence against ZVP attack over Fp [2]. They
pointed out that most SECG curves have ZVP points from ECDBL. Moreover, they proved
that the class of curves that satisfy

(
−3
p

)
= −1 and whose order is odd cannot be mapped by

isogeny to curves with A = −3 and are secure against the ZVP attack.6 They further point
out that three SECG curves are in this class (secp112r1, secp192r1, secp384r1). However,
they only examined ZVP points 3x2 + A = 0 and (0, y) and did not consider the point
5x4 + 2Ax2 − 4Bx + A2 = 0.7 They also did not discuss isogeny defence against NIST
6 Curves with A = −3 are computationally more efficient [2].
7 These are the only ZVP points of large order from ECDBL over Fp. See table 5.



standards and some SECG curves (we have place a (?) before these curves, see table 5. Also
in the bracket contain the isogeny degree obtain without considering all 3 ZVP points). We
found that 5 SECG curves and 2 NIST curves contain ZVP points P = (x, y) for which
5x4 + 2Ax2 − 4Bx + A2 = 0. We also found that if we use an isogeny defence against all
three ZVP points, then in some curves the isogeny degree increases dramatically. For example,
for curve secp224r1, lm (minimal isogeny degree to a curve which has no ZVP point) and
lp (minimal isogeny degree to a curve which has no ZVP and A = −3) increases from 1 to
3 and and 1 to 163. Note for curves which have odd order, A = −3 and

(
A
p

)
= −1 we

list dp 6 ∃(does not exist). For each curve from the standards, we search the minimal isogeny
degree lmin to a curve which has no point P = (x, y) such that x = 0 or 3x2 + A = 0 or
5x4 + 2Ax2 − 4bx + A2 = 0. If the original curve has no such point, we specify its degree 1.
We also search the preferred minimal isogeny degree lp to a curve E′ for which A = −3. Again
we will only discuss defence against ZVP points from ECADD since finding ZVP point from
ECADD is believed to be a hard problem [2]. In tables 6 we have compared the computational
cost of an isogeny defence with the modified Coron’s countermeasures against the ZVP attack.
We can see that for all curves in the computational cost for isogeny defence against the ZVP
attack is less than Coron’s modified countermeasures.

Name of Curve A = −3 (0, y) 3x2 +A = 0 5x4 + 2Ax2 − 4Bx+A2 = 0 Order lm lp
secp112r1 yes no yes yes prime 7(7) 6 ∃
? secp112r2 yes yes no no 4 · prime 13(11) 23(11)
secp128r1 yes yes no no prime 7(7) 181(7)
? secp128r2 no yes no no 4 · prime 37(37) −
secp160k1 no no no no prime 1(1) −
secp160r1 yes yes no no prime 13(13) 13(13)
secp160r2 yes yes no yes prime 19(19) 227(41)
secp192k1 no no no no prime 1(1) −
secp192r1 yes yes yes yes prime 23(23) 6 ∃
secp224k1 no no no no prime 1(1) −
secp224r1 yes no no yes prime 3(1) 163(1)
secp256k1 no no no no prime 1(1) −
secp256r1 yes yes no yes prime 3(3) 23(23)
secp384r1 yes yes yes no prime 31(31) 6 ∃
secp521r1 yes yes yes no prime 5(5) 5(5)
? P-192 yes yes yes yes prime 23(23) 6 ∃
? P-224 yes no no yes prime 3(3) 163(107)
? P-256 yes yes no yes prime 3(3) 23(23
? P-384 yes yes yes no prime 31(31) 6 ∃
? P-521 yes no yes yes prime 29(29) 6 ∃

Table 5. list of all SECG and NIST over Fp



8 Conclusion

In this paper we studied and analyzed the application of isogenies and elliptic curve isomorphisms
for defence against various Zero-Value Attack. Our focus was on elliptic curve cryptosystems.
We saw that these attacks can easily be thwarted by the help of elliptic curve isomorphisms
(for curves over F2n) and isogenies. These side channel attacks also point to the fact that
traditional assumptions in cryptography need to be re-evaluated. Traditionally the designer of a
cryptosystem assumes that an adversary knows everything about the cryptosystem being used,
except the key, and has pairs of plaintext/ciphertext. However in practice more information is
often available to the adversary. For example we saw that cryptographic devices leak information
about private key through side channels (power consumption etc). Therefore, it is important
that the cryptosystem should be designed with the assumption that unintended information is
leaked by these devices. Although it’s worth noting that researchers have developed hardware
that leak significantly less information, so far no feasible alternatives to transistors are available.
However, alternate computation technologies such as pure optical computing 8 may exist in the
future. [10].
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A Implementation of Elliptic Curve Point Doubling (ECDBL) and
Point Addition (ECADD) over Fm2

If we use algorithm 1 for scalar multiplication then for over F2m the most efficient method
of point doubling and point addition was proposed in [12]. In their, paper affine coordinates
(x, y) were mapped to projective coordinate (X,Y, Z) by setting x = X/Z and y = Y/Z2.
The equation of elliptic curves over these projective coordinates is given by E : Y 2 +XY Z =
X3Z +A(XZ)2 +BZ4. Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) be two points on E.
Inverse and Point of infinity: −P1 = (X1, X1Z1 + Y1, Z1) and P∞ = [(α, 0, 0)] for any α ∈
F2m and α 6= 0.
ECDBL : [2]P1 = (X,Y, Z), Z = Z2

1 ·X2
1 , X = X4

1 +BZ4
1 , Y = BZ4

1 ·Z+X · (AZ+Y 2
1 +

BZ4
1 ).

ECADD : P1 + P2 = (X3, Y3, Z3), X3 = C2 +H +G, Y3 = HI + Z3J, Z3 = F 2.

Where, A0 = Y2Z
2
1 , A1 = Y1Z

2
2 , B0 = X2Z1, B1 = X1Z2, C = A0 +A1, D = B0 +B1,

E = Z1Z2, F = DE, G = D2(F +AE2), H = CF , I = D2B0E +X3, J = D2A0 +X3.

ECDBL required 5 field multiplications in general and 4 multiplications if A = 0 or A = 1.
ECADD required 14 field multiplications in general and 9 multiplications if A = 0 or A = 1
and Z = 1.

– Implementation of Elliptic Curve Point Doubling ECDBL for Binary Fields
– Input (P1 6= P∞, A, c = B2m−1)
– Output (2P1)

1. T1 ←− X1 , T2 ←− Y1 , T3 ←− Z1
2. T4 ←− c
3. T3 ←− T3 × T3 : (= Z2

1 )
4. T4 ←− T3 × T4 : (= cZ2

1 )
5. T4 ←− T4 × T4 : (= BZ4

1 )
6. T1 ←− T1 × T1 : (= X2

1 )
7. T3 ←− T1 × T3 : (= X2

1Z
2
1 = Z2)

8. T1 ←− T1 × T1 : (= X4
1 )

9. T1 ←− T1 + T4 : (= X4
1 +BZ4

1 = X2)
10. T2 ←− T2 × T2 : (= Y 2

1 )
11. If A 6= 0

T5 ←− A :
T5 ←− T3 × T5 :
T2 ←− T5 + T2 : (= AZ2 + Y 2

1 )



12. T2 ←− T2 + T4 : (= AZ2 + Y 2
1 +BZ4

1 ) or (= Y 2
1 +BZ4

1 )
13. T2 ←− T1 × T2 : (= X2(AZ2 + Y 2

1 +BZ4
1 )) or (= X2(Y 2

1 +BZ4
1 ))

14. T4 ←− T3 × T4 : (= BZ2Z
4
1 )

15. T2 ←− T2 + T4 : (= BZ2Z
4
1 +X2(Y 2

1 + BZ4
1 ) = Y2) or (= BZ2Z

4
1 +X2(AZ2 +

Y 2
1 +BZ4

1 ) = Y2)
16. X2 ←− T1
17. Y2 ←− T2
18. Z2 ←− T3

– Implementation of Elliptic Curve Point Addition ECADD for Binary Fields
– Input (P1 6= P∞, P2 6= P∞, A, B)
– Output (P1 + P2)

1. T1 ←− X1, T2 ←− Y1, T3 ←− Z1
2. T4 ←− X2, T5 ←− Y2, T6 ←− Z2
3. T7 ←− T4 × T3 : (= X2Z1 = B0)
4. T1 ←− T6 × T1 : (= X1Z2 = B1)
5. T8 ←− T3 × T6 : (= Z1Z2 = E)
6. T3 ←− T5 × T7 : (= Y2Z

2
1 = A0)

7. T6 ←− T6 × T6 : (= Z2
2 )

8. T6 ←− T2 × T6 : (= Y1Z
2
2 = A1)

9. T2 ←− T3 + T6 :: (= A0 +A1 = Y2Z
2
1 + Y1Z

2
2 = C)

10. T4 ←− T1 + T7 : (= B0 +B1 = X2Z1 +X1Z2 = D)
11. T5 ←− T4 × T8 : (= D(Z1Z2) = F )
12. T6 ←− T5 × T5 : (= F 2 = Z3)
13. T4 ←− T4 × T4 : (= D2)
14. T9 ←− T8 × T8 : (= E2)
15. T9 ←− A× T9 : (= AE2)
16. T9 ←− T5 + T9 : (= F +AE2)
17. T9 ←− T4 × T9 : (= (D2)(F +AE2) = G)
18. T1 ←− T2 × T2 : (= (Y2Z1)2 + (Y1Z2)2 = C2)
19. T2 ←− T2 × T5 : (= CF = H)
20. T1 ←− T1 + T2 : (= C2 +H)
21. T1 ←− T1 + T9 : (C2 +H +G = X3)
22. T5 ←− T4 × T7 : (= D2B0)
23. T5 ←− T5 × T8 : (= B0D

2E)
24. T5 ←− T5 +X2 : (= B0D

2E +X3 = I)
25. T8 ←− T4 + T3 : (= A0D

2)
26. T8 ←− T8 + T2 : (= A0D

2 +X3 = J)
27. T8 ←− T6 × T8 : (= Z3J)
28. T2 ←− T2 × T5 : (= HI)
29. T2 ←− T2 + T8 : (= HI + Z3J = Y3)

B Implementation of Elliptic Curve Point Doubling (ECDBL) and
Point Addition (ECADD) Fp

For prime fields we use Jacobian projective coordinates. In this system, affine coordinates (x, y)
were mapped to projective coordinate (X,Y, Z) by setting x = X/Z2 and y = Y/Z3. The



equation of elliptic curves over Jacobian coordinates is given by E : Y 2 = X3 +AXZ4 +BZ6.

Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) be two points on E.

Inverse and Point of infinity: −P1 = (X1,−Y1, Z1) and P∞ = [(0, α, 0)] for any non-zero
α ∈ P2

Fp .

ECDBL:X3 = T, Y3 = −8Y 4
1 +M(S − T ), Z3 = 2Y1Z1.

ECADD:X3 = −H3 − 2U1H
2 +R2, Y3 = −S1H

3 +R(U1H
2 −X3), Z3 = Z1Z2H

Where, U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1, R = S2 −

S1, S = 4X1Y
2

1 , M = 3X2
1 +AZ1, T = −2S +M2

ECDBL require 10 multiplications. ECADD require 16 multiplications in general and 8 if A =
−3.

– Implementation of Elliptic Curve Point Double ECDBL for Primary Fields
– Input (P1 6= P∞, A).
– Output (2P1).

1. T4 ←− X1 , T5 ←− Y1 , T6 ←− Z1
2. T1 ←− T4 × T4 : (= X2

1 )
3. T2 ←− T5 × T5 : (= Y 2

1 )
4. T2 ←− T2 + T2 : (= 2Y 2

1 )
5. T4 ←− T4 × T2 : (= 2X1Y

2
1 )

6. T4 ←− T4 + T4 : (= 4X1Y
2

1 = S)
7. T2 ←− T2 × T2 : (= 4Y 4

1 )
8. T2 ←− T2 + T2 : (= 8Y 4

1 )
9. T3 ←− T6 × T6 : (= Z2

1 )
10. T3 ←− T3 × T3 : (= Z4

1 )
11. T6 ←− T5 × T6 : (= Y1Z1)
12. T6 ←− T6 + T6 : (= 2Y1Z1)
13. T5 ←− T1 + T1 : (= 2X2

1 )
14. T1 ←− T1 + T5 : (= 3X2

1 )
15. T3 ←− A× T3 : (= AZ4

1 )
16. T1 ←− T1 + T3 : (= 3X2

1 +AZ4
1 = M)

17. T3 ←− T1 × T1 : (= M2)
18. T3 ←− T3 − T4 : (= M2 − S)
19. T3 ←− T3 − T4 : (X3 = M2 − 2S = T )
20. T4 ←− T4 − T3 : (= S − T )
21. T1 ←− T1 × T4 : (= M(S − T ))
22. T4 ←− T1 − T2 : (= 8Y 4

1 −M(S − T ))
23. X3 ←− T3 , Y3 ←− T4 , Z3 ←− T6

– Implementation of Elliptic Curve Point Addition ECADD for Primary Fields
– Input (P1 6= P∞, P2 6= P∞).
– Output (P3).

1. T2 ←− X1 , T3 ←− Y1 , T4 ←− Z1
2. T5 ←− X2 , T6 ←− Y2 , T7 ←− Z2
3. T1 ←− T7 × T7 : (= Z2

2 )
4. T2 ←− T2 × T1 : (= X1Z

2
2 = U1)

5. T3 ←− T3 × T7 : (= Y1Z2)



6. T3 ←− T3 × T1 : (= Y1Z
3
2 = S1)

7. T1 ←− T4 × T4 : (= Z2
1 )

8. T5 ←− T5 × T1 : (= X2Z
2
1 = U2)

9. T6 ←− T6 × T4 : (= Y2Z1)
10. T6 ←− T6 × T1 : (= Y2Z

3
1 = S2)

11. T5 ←− T5 − T2 : (= U2 − U1 = H)
12. T7 ←− T4 × T7 : (= Z1Z2)
13. T7 ←− T5 × T7 : (= Z1Z2H = Z3)
14. T6 ←− T6 − T3 : (= S2 − S1 = R)
15. T1 ←− T5 × T5 : (= H2)
16. T4 ←− T6 × T6 : (= R2)
17. T2 ←− T2 × T1 : (= U1H

2)
18. T5 ←− T5 × T1 : (= H3)
19. T4 ←− T4 − T5 : (= R2 −H3)
20. T1 ←− T2 + T2 : (= 2U1H

2)
21. T4 ←− T4 − T1 : (= −H3 − 2U1H

2 +R2 = X3)
22. T2 ←− T2 − T4 : (= U1H

2 −X3)
23. T6 ←− T6 × T2 : (= R(U1H

2 −X3))
24. T1 ←− T3 × T5 : (= S1H

3)
25. T1 ←− T6 − T1 : (= S1H

3 +R(U1H
2 −X3))

26. X3 ←− T4, Y3 ←− T1, Z3 ←− T7

C Zero-Value Points over Fp

Theorem 2. Let E : y2 = x3+Ax+B be an elliptic curve over prime field Fp. The elliptic curve
E has a zero value point P = (x, y) of ECADD if and only if one of the following conditions
are satisfied: (1) 3x2 +A = 0, (2) 5x4 + 2Ax2− 4Bx+A2 = 0, (3) [3]P = P∞, (4)x(P ) = 0
or x([2]P ) = 0 or , (5) y(P ) = 0 or y([2]P ) = 0. Moreover, the zero-value points are not
randomized by the three countermeasures (randomized projective coordinates, random elliptic
curve isomorphism, random field isomorphism).

Proof. [3]

C.1 Finding Zero-Value Point from ECDBL

We recall from see section 5.3 that points of small order can be dealt with by careful imple-
mentation of scalar multiplication algorithm. Hence, we do not have to worry about condi-
tion (3), and condition (5). In char> 3 (x, 0) has order 2 and (x, y), such that x([2](x, y) = 0
has order 4. For condition (1) we have to solve the polynomial 3x2 +A = 0 and for condi-
tion (2) we have to solve the polynomial 5x4 + 2Ax2 − 4Bx + A2 = 0 and for condition.
For condition (4) we have to solve the polynomial y2 − B = 0. The solutions for these
polynomials over finite fields can be easily computed in polynomial time, for details see [5].



D Tables

Curve #multi for lm #multi for lp #multi randomization #multi blinding
secp112r1 42 6 ∃ 442 (l = 37) 988
?secp112r2 78 138 2088 (l = 107) 912
secp128r1 42 1086 2472 (l = 123) 912
?secp128r2 222 N/A 2678 (l = 123) 988
secp160r1 78 78 3240 (l = 155) 912
secp160r2 114 1362 3240 (l = 155) 912
secp192r1 138 6 ∃ 4342 (l = 187) 988
secp224r1 18 978 4776 (l = 199) 912
secp256r1 18 138 5544 (l = 251) 912
secp384r1 186 6 ∃ 9334 (l = 379) 988
secp521r1 30 30 11904 (l = 516) 912
P-192 138 6 ∃ 4342 (l = 187) 988
P-224 18 978 4776 (l = 199) 912
P-256 18 138 5544 (l = 251) 912
P-384 186 6 ∃ 9334 (l = 379) 988
P-521 174 6 ∃ 12896 (l = 516) 988

Table 6. Comparison of additional computational cost for SECG and NIST curves over Fp


