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Abstract. We propose a new multivariate probabilistic encryption scheme with decryption errors
MQQ-ENC that belongs to the family of MQQ-based public key schemes. Similarly to MQQ-SIG,
the trapdoor is constructed using quasigroup string transformations with multivariate quadratic quasi-
groups, and a minus modifier with relatively small and fixed number of removed equations. To make
the decryption possible and also efficient, we use a universal hash function to eliminate possibly wrong
plaintext candidates. We show that, in this way, the probability of erroneous decryption becomes neg-
ligible.
MQQ-ENC is defined over the fields F2k for any k ≥ 1, and can easily be extended to any Fpk , for prime
p. One important difference from MQQ-SIG is that in MQQ-ENC we use left MQQs (LMQQs) instead
of bilinear MQQs. Our choice can be justified by our extensive experimental analysis that showed the
superiority of the LMQQs over the bilinear MQQs for the design of MQQ-ENC.
We apply the standard cryptanalytic techniques on MQQ-ENC, and from the results, we pose a plausible
conjecture that the instances of the MQQ-ENC trapdoor are hard instances with respect to the MQ
problem. Under this assumption, we adapt the Kobara-Imai conversion of the McEliece scheme for
MQQ-ENC and prove that it provides IND−CCA security despite the negligible probability of decryption
errors.
We also recommend concrete parameters for MQQ-ENC for encryption of blocks of 128 bits for a
security level of O(2128).

Keywords – Multivariate Quadratic Public Key Cryptosystems, Multivariate Quadratic Quasi-
group MQQ, Left Multivariate Quadratic Quasigroup LMQQ, Probabilistic encryption with decryp-
tion errors, One way encryption, IND−CCA security.

1 Introduction

Multivariate public key cryptography has been a vibrant research area for more than 20 years.
Apart from the pure scientific interest in new algorithms, it has attracted a special attention as one
of the alternatives to the public key algorithms based on the integer factorization and discrete log
problem such as RSA or ECC. Multivariate schemes have a system of multivariate quadratic (MQ)
polynomials over a finite field as a public key, and their security relies on the hardness of solving a
system of MQ equations over the field. In general this is an instance of a well known NP-complete
problem - the MQ problem [29]. There are three aspects that make MQ schemes attractive research
field:

1. Multivariate schemes may offer a post-quantum security, since, so far, no quantum algorithm is
known for solving systems of MQ equations;

2. Recent breakthroughs [56, 30, 14, 37, 25] in the development of index calculus techniques for the
DLP for elliptic curves can lead to development of new index calculus techniques that further-
more can make practical the attacks on ECC with the current set of standardized parameters;

3. MQ schemes have performance advantages over the classical algorithms, especially on multicore
architectures, because of their highly parallelizable nature.

Traditionally, the MQ public key cryptosystems are divided in four groups, arising from the
four basic schemes MI [36], HFE [47], STS [63] and UOV [38]. They all share the general form of a



MQ scheme, however differ in the construction of the secret internal transformation. The first two
are also known as mixed field schemes because they use a ground field and an extension field to
construct the trapdoor. The last two are single field systems, and the trapdoor is constructed only
in one field with some specific structure. A nice (but now a bit old) survey on these four types can
be found in [64].

The successful cryptanalysis of most of the variants of the basic types initiated an emergence
of schemes that for one reason or another do not fall in any of the described types. Such is the
MQQ cryptosystem [31] and its successor the MQQ-SIG signature scheme [32]. They are single
field schemes, and in the construction use elements from quasigroup theory. The internal mapping
is a so called quasigroup string transformation [31] of quasigroups represented in multivariate form
or MQQs (Multivariate Quadratic Quasigroups). The first scheme MQQ, which is an encryption
scheme showed excellent performance characteristics, however, it was soon cryptanalyzed both by
using Gröbner basis approach [50] and MutantXL [45]. A deeper explanation of the weaknesses was
later given in [24].

To immunize against these successful attacks, in the recent design of MQQ-SIG [32] the authors
apply the minus modifier to the original MQQ scheme. Since half of the polynomials are removed,
the new design is suitable only for a signature scheme. MQQ-SIG has excellent performance in
signing, but still has a big public key, because it is defined over F2. With the results from [55],
where a construction of MQQs over bigger fields was provided, it is possible to extend the design
of MQQ-SIG to F2k , k > 1, and therefore, substantially reduce the size of the public key.

1.1 Our results

We propose a new encryption scheme MQQ-ENC in the family of MQQ-based public key schemes.
It has many similarities with the MQQ-SIG scheme. It uses quasigroup string transformations for
the internal secret mapping P ′ and uses specially constructed affine mappings S and T from two
circulant matrices, as in MQQ-SIG. On the other hand we have introduced several new ideas.

First of all, MQQ-ENC is a probabilistic encryption scheme with decryption errors. The trap-
door is constructed using a minus modifier with fixed number of removed equations. To make
the decryption possible we use a universal hash function to eliminate possibly wrong plaintext
candidates. This however can introduce errors, but we show that the probability of an erroneous
decryption is negligible. Second, MQQ-ENC is defined over the field F2k for any k ≥ 1, and can
be easily extended to any Fpk , for p prime. Third, and most notable, important changes have been
made regarding the choice of the building blocks of the internal transformation - the MQQs. Instead
of bilinear MQQs as used in MQQ-SIG, we use left MQQs (LMQQs). The main difference between
the two structures is that in LMQQs only the left translation is a bijection, and in MQQs both
the left and the right translations are bijections. We made an extensive experimental analysis that
confirms the superiority of the LMQQs over the bilinear MQQs for the design of MQQ-ENC.

We applied the currently used cryptanalytic techniques to the MQQ-ENC scheme, and as a
result of the analysis, we can pose a plausible conjecture that the instances of the MQQ-ENC
trapdoor are hard instances with respect to the MQ problem. Under this assumption, we adapt
the Kobara-Imai conversion of the McEliece PKE scheme [40] for MQQ-ENC and prove that it
provides IND−CCA security despite decryption errors.

1.2 Organization of the paper

In Section 2 we provide the basic definitions for public key encryption with decryption errors
and MQ cryptosystems. In Section 3 we explain the notion of left quasigroups and left multivariate
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quadratic quasigroups over F2k , and provide the needed algorithms for their construction, for finding
the parastrophe of the secret LMQQ (needed for decryption) as well as the algorithms for creating
the affine mappings S and T . Section 4 gives the description of the encryption scheme MQQ-ENC. In
Section 5 we analyze the security of the trapdoor function of MQQ-ENC, and give the recommended
parameters that offer security of O(2128). We describe the conversion for MQQ-ENC that provides
IND−CCA security in Section 6. The operating characteristics of a preliminary implementation of
the scheme are given in Section 7. We conclude the paper in Section 8.

2 Preliminaries

2.1 Probabilistic encryption with correctness errors

We give a definition of probabilistic public-key encryption (PKE) with decryption errors based on
[21].

Definition 1. A public key encryption scheme Π = (G, E ,D) is a triplet of algorithms for key gen-
eration, encryption and decryption associated with two finite sets Mspace(n),Coins(n) ⊆ {0, 1}∗, n ∈
N a security parameter, where:

– G called the key-generation algorithm is a probabilistic algorithm that on input 1n (and internal
random coins), outputs the public key and secret key pair (pk, sk).

– E called the encryption algorithm is a probabilistic algorithm that on input a public key pk, a
message m ∈ Mspace(n) and a random r ∈ Coins(n) outputs c = Epk(m, r) as the ciphertext.

– D called the decryption algorithm is a deterministic algorithm that takes as input a secret key
sk and a ciphertext c, and outputs either a message m′ (which may fail to equal the original
message m) or ⊥ to indicate invalid.

The standard definition of probabilistic public-key encryption, due to Goldwasser and Micali [33]
requires perfect correctness, i.e. given a valid ciphertext, the decryption algorithm always outputs
the original plaintext. Dwork et al. [21], relax the notion of public-key encryption, to allow errors
in the decryption process. They give the following definition for α-correct public-key encryption
scheme.

Definition 2. For any function α : N → [0, 1], a PKE scheme Π = (G, E ,D) is all-keys α-correct
if for every pair (pk, sk) generated by G on input 1n

Pr [m← Mspace(n); r ← Coins(n)|Dsk(Epk(m, r)) �= m] ≤ 1− α(n).

The standard security notions of one-way encryption (OWE) and indistinguishability of encryp-
tion (IND−CPA, IND−CCA) due to space limitations are not included. We refer the reader to [4, 54]
or for ex. [13, 28] for these definitions.

2.2 Multivariate Quadratic (MQ) cryptosystems

Let Fpk be a finite field of order pk, where p is prime. We will consider the n-tuples (u1, u2, . . . , un) ∈
F
n
pk
, where n ∈ N, as column vectors and use the notation u = (u1, u2, . . . , un) when appropriate.

Also, we will denote by x the column vector (x1, . . . , xn) over Fpk [x1, . . . , xn].
Let P (x) = (p1(x), p2(x), ...., pm(x)) ∈ F

m
q [x1, x2, . . . , xn] be a system of m polynomials of

degree d, d ≥ 2. Let v ∈ F
m
pk
. The problem of Simultaneous Multivariate Equations over the field

Fpk consists of finding a solution u ∈ F
n
pk

to the system of equations v = (p1(x), p2(x), ...., pm(x))
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over Fpk . It has been shown that for every d ≥ 2 this problem is NP complete [29]. The case of
d = 2 has been most exploited and it is called the MQ-problem (MQ - Multivariate Quadratic).

A typical MQ public key scheme relies on the knowledge of a trapdoor for a particular system of
polynomials P ∈ F

m
pk

[x1, . . . , xn]. Usually, the system of polynomials P is created as a composition

of three polynomial transformations: two affine mappings S and T and one quadratic P ′ as P (x) =
T ◦P ′ ◦S(x). The mappings S and T are usually randomly chosen, and serve as a sort of mask that
hides the structure of P ′. They are part of the private key s. The private key may also contain other
secret parameters that allow creation, but also easy inversion of the transformation P ′. Without
loss of generality, we can assume that the private key is s = (S,P ′, T ).

3 The building blocks of MQQ-ENC

3.1 Left Quasigroups

Definition 3. The groupoid (Q, q) is called a left (right) quasigroup if the mapping Lq,a(x) =
q(a, x) (Rq,a(x) = q(x, a)), is a permutation for every a ∈ Q. If (Q, q) is both left and right
quasigroup, than it is simply called a quasigroup. A finite (left/right) quasigroup of n elements is
said to be a (left/right) quasigroup of order n.

Definition 4. Given a (left) quasigroup (Q, q) a new (left) quasigroup operation q\, called a left
parastrophe operation, can be defined on the set Q by q\(x, y) = z ⇔ q(x, z) = y. The two operations
satisfy the identities q(x, q\(x, y)) = y and q\(x, q(x, y)) = y.

Definition 5. Two (left) quasigroups (Q, q1) and (Q, q2) are said to be isotopic, if there exist
bijections α, β, γ : Q→ Q such that for all a, b ∈ Q, γ(q1(a, b)) = q2(α(a), β(b)). We denote the
isotopy by (α, β, γ).

3.2 Left Multivariate Quadratic Quasigroups (LMQQs)

Let (Q, q) be a left quasigroup of order pkd. We say that (Q, q) is a Left Multivariate Quadratic
Quasigroup (LMQQ) if q can be represented as a function q = (q(1), q(2), . . . , q(d)) : F2d

pk
→ F

d
pk
,

where for every s = 1, . . . , d, q(s) is a quadratic polynomial over Fpk . For simplicity, we take that

Q = F
d
pk
.

Note that this definition is in accordance with [31] where the notion of Multivariate Quadratic
Quasigroups (MQQ) defined using operations over F2 was introduced. A generalization of MQQs
defined over arbitrary finite fields was made in [55]. As a natural extension, appropriate results
hold for LMQQs, so from [55], we have that the following theorem holds.

Theorem 1. The function q0 = (q(1), q(2), . . . , q(d)) : F2d
pk
→ F

d
pk

such that for every s = 1, . . . , d,

the component q
(s)
0 is of the form

q
(s)
0 (x1, . . . , xd, y1, . . . , yd) = p(s)(ys) +

∑
1≤i,j≤d

α
(s)
i,j xixj +

∑
s<i,j≤d

β
(s)
i,j yiyj +

+
∑

1≤i≤d,s<j≤d

γ
(s)
i,j xiyj +

∑
1≤i≤d

δ
(s)
i xi +

∑
s<i≤d

ε
(s)
i yi + η(s), (1)

where p(s)(x) = ax, a �= 0, or p(s)(x) = ax2, a �= 0, p = 2, defines an LMQQ (Fd
pk
, q0) of order pkd.
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For the purpose of MQQ-ENC, we construct an LMQQ using the following algorithm.

Algorithm: CreateLMQQ(d, p, k):

Input d, p, k ∈ N, where p is prime.

1. For all s ∈ {1, . . . , d} generate at random from Fpk the coefficients:

– α
(s)
i,j , δ

(s)
i , for all i, j, 1 ≤ i, j ≤ d, and β

(s)
i,j , ε

(s)
i , for all i, j, s < i, j ≤ d,

– γ
(s)
i,j , for all i, j, 1 ≤ i ≤ d, s < j ≤ d, and the constant term η(s).

2. For all s ∈ {1, . . . , d}
– If p = 2 generate at random a bit r ∈ F2, otherwise set r = 0.
– Choose at random a(s) ∈ Fpk \ {0}. If r = 0 set p(s) = a(s)xs, otherwise set p(s) = a(s)x2

s.

3. For all s ∈ {1, . . . , d} construct q
(s)
0 (x,y) given by (1), and the LMQQ q0 = (q

(1)
0 , q

(2)
0 , . . . , q

(d)
0 ).

4. Generate at random over Fpk , d× d nonsingular matrices D,Dy, and vectors c, cy of dimension d.

Output the quintet (q0,D
−1,D−1

y , c, cy) and the LMQQ of order pkd: q(x,y) = D · q0(x,Dy · y + cy) + c.

Note that the two LMQQs q and q0 are isotopic.

We also need an Algorithm for finding the parastrophe operation q\ of q that will be used in the
decryption process. However, in general, finding the explicit polynomial form of q\ is both time and
memory consuming process, since the parastrophe can be of any degree deg, 2 ≤ deg ≤ d. Instead
of finding the explicit form of q\ and using it to evaluate y = q\(u,v) for given u,v ∈ Fpk , k ≥ 1,
we will use the left quasigroup operation q to determine y, based on the identity q\(u,v) = y ⇔
q(u,y) = v. In other words, we reduce the problem of evaluating q\, to solving the system of d
quadratic equations in d variables y1, y2, . . . , yd over Fpk

q(u,y) = v (2)

Even though this is also a non trivial problem in general, the specific structure of the LMQQs
in use, allows this system to be solved in polynomial time, very efficiently and fast. We have the
following algorithm for solving (2).

Algorithm: Q\(u,v, d, p, k, q0 ,D−1,D−1
y , c, cy)

Input d, p, k ∈ N, where p is prime

1. Compute v1 = D−1 · (v − c).
2. Solve the system q0(u,y1) = v1 for the unknown y1.
3. Compute y = D−1

y · (y1 − cy).

Output y as solution to (2).

3.3 The Affine mappings S and T

A standard part of any MQ system are two affine mappings S and T that are usually generated at
random from the class of all affine mappings on n variables over the underlying field Fpk . However,
the affine mappings S and T for MQQ-ENC are constructed in a special way that reduces the storage
space and furthermore significantly speeds up the decryption process. S and T are constructed using
a combination of two circulant matrices, an idea already implemented in MQQ-SIG but over the
prime field GF (2) [32]. Similar ideas for reducing the private key have also been applied in [51, 57,
61].

For the purpose of MQQ-ENC, we modified the procedure for creating S and T given in [32] in
several ways, in order to be appropriate for a bigger field, but also to fit the security requirements
of MQQ-ENC. The detailed construction over any Fpk is given trough the next algorithm.

Algorithm: CreateST(n, p, k, r1, r2, rem)

Input n, p, k, r1, r2, rem ∈ N, where p is prime.
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1. Generate at random two permutations σ1 and σ2 on the set {1, . . . , n}. Create the permutation matrices Pσ1

and Pσ2 over Fpk .

2. Create the permutation matrices P
ρ
(1)
i

and P
ρ
(2)
j

over Fpk , for all i ∈ {0, . . . , r1}, j ∈ {0, . . . , r2}, where ρ
(1)
i , ρ

(2)
j

are rotations defined for all l ∈ {1, . . . , n} by:

ρ
(1)
i (l) = (l + i

⌊
n

r1

⌋
− 1) (mod n)− 1, ρ

(2)
j (l) = (l + j

⌊
n

r2

⌋
− 1) (mod n)− 1.

3. Generate at random rem× n matrix M0 =
[
m

(0)
i,j

]
rem×n

over the set {0, 1} ⊂ Fpk , such that all the columns are

nonzero.
4. For a fixed ordering of Fpk\{0} create a repetitive array (αi)n of length n of the elements of Fpk\{0}. Create a

matrix M=
[
ασ1(j) ·m(0)

i,j

]
rem×n

. Create a matrix IM by replacing the last rem rows of the identity matrix In by

M.
5. Generate at random from Fpk\{0} two arrays (a

(1)
i )r1+1 (a

(2)
i )r2+1 of lengths r1 + 1 and r2 + 1 respectively.

Compute the matrices

S′
inv =

r1∑
i=0

a
(1)
i ·P

ρ
(1)
i

·Pσ2 +

r2∑
j=0

a
(2)
j ·P

ρ
(2)
j

·Pσ1 , T′
inv =

r1∑
i=0

a
(1)
i ·P

ρ
(1)
i

·Pσ1 ·IM +

r2∑
j=0

a
(2)
j ·P

ρ
(2)
j

·Pσ2 ·IM

6. Let SubT′
inv be the rem×n matrix of the last rem rows of T′

inv. If SubT
′
inv has a zero column or det(T′

inv) = 0
or det(S′

inv) = 0, then go to Step 1, else create the matrices S = ((S′
inv)

�)−1 and T = ((T′
inv)

�)−1, and the
column vector vs = (ασ1(1) · ασ2(1), . . . , ασ1(n) · ασ2(n))

�.
7. Let S(x) = S · x+ vs, and T (x) = T · x.
Output the quintet (σ1, σ2,M0, (a

(1)
i )r1+1, (a

(2)
i )r2+1) and the mappings S, T .

4 Description of MQQ-ENC

Let n ∈ N be divisible by 8. For the purpose of describing MQQ-ENC, we will use the algorithms
given in the previous section. Note that, although they are valid for any characteristic p of the field,
in the rest of the paper we will focus on the case when p = 2. Similar arguments can be given for
any Fpk .

The MQQ-ENC cryptosystem is defined as a triplet of probabilistic algorithms MQQ-ENC=
(GMQQ, EMQQ,DMQQ), associated to a message space Mspace(nk) = {0, 1}nk/2, and random coins
Coins(nk) = {0, 1}nk/4, such that:

Key-Generation algorithm GMQQ

Input: 1nk,

1. Run CreateST(n, 2, k, r1, r2, rem) to obtain (σ1, σ2,M0, (a
(1)
i )r1+1, (a

(2)
i )r2+1) and the affine mappings S and

T .
2. Run CreateLMQQ(8, 2, k) to obtain (q0,D,Dy, c, cy) and q.
3. Represent the vector (x1, x2, . . . , xn) of variables over F2k as a vector (x1,x2, . . . ,xn/8) of variables over F

8
2k ,

where xi = (x8i−7, x8i−6, . . . , x8i).
4. Define a mapping P ′ : Fn

2k → F
n
2k (a quasigroup string transformation) by:

(y1, . . . , yn) = P ′(x1, . . . , xn) ⇔ (y1,y2, . . . ,yn/8) = (q(11 . . . 1,x1), q(x1,x2), . . . , q(xn/8−1,xn/8)) (3)

5. Construct the mapping Pfull : Fn
2k → F

n
2k as Pfull = T ◦ P ′ ◦ S. We use the notation Pfull = (p1, p2, . . . , pn),

where pi(x1, . . . , xn), 1 ≤ i ≤ n.
6. The vector of polynomials P : Fn

2k → F
n−rem

2k
is obtained by removing the last rem coordinates from Pfull, i.e.

P = (p1, p2, . . . , pn−rem).
7. Choose a universal hash function H : {0, 1}3nk/4 → {0, 1}nk/4.

8. Set pk = (P,H), and sk = (σ1, σ2,M0, (a
(1)
i )r1+1, (a

(2)
i )r2+1, q0,D

−1,D−1
y , c, cy).

Output: Public private key pair (pk, sk).

Encryption algorithm EMQQ

Input: Public key pk = (P,H) and plaintext message m = {m1,m2, . . . ,mn/2} ∈ Mspace(nk),
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1. Generate a random string r = {r1, r2, . . . , rn/4} ∈ Coins(nk).
2. Evaluate H(m,r) = H(m1,m2, . . . ,mn/2, r1, r2, . . . , rn/4). Let H(m, r) = (h1, h2, . . . , hn/4).
3. Evaluate P (m,r,H(m,r)) = P (m1, . . . , mn/2, r1, . . . , rn/4, h1, . . . , hn/4).

Output: Ciphertext c = P (m,r,H(m,r)).

Decryption algorithm DMQQ

Input: Private key sk = (σ1, σ2,M0, (a
(1)
i )r1+1, (a

(2)
i )r2+1, q0,D

−1,D−1
y , c, cy) and cipher c = (c1, . . . , cn−rem) ∈

F
n−rem

2k
,

For all (cn−rem+1, cn−rem+2, . . . , cn) ∈ F
rem
2k do

1. Evaluate (m′
1,m

′
2, . . . ,m

′
n) = S−1 ◦ P ′−1 ◦ T−1(c1, c2, . . . , cn), where P ′−1 is evaluated by:

(u1, u2, . . . , un) = P ′−1(v1, v2, . . . , vn) ⇔
(u1,u2, . . . ,un/8) = (q\(u0,v1), q\(u1,v2), q\(u2,v3), . . . , q\(un/8−1,vn/8)). (4)

Here, u0 = (11 . . . 1), and for every i ∈ {0, . . . , n/8 − 1}, ui+1 = q\(ui,vi+1) is evaluated by running the
Algorithm Q\(ui,vi+1, 8, 2, k, q0,D

−1,D−1
y , c, cy).

The vector (u1, . . . , un) over F2k is represented as a vector (u1, . . . ,un/8) over F
8
2k , where ui = (u8i−7, u8i−6, . . . , u8i).

Analogously, the same is done for the vector (v1, v2, . . . , vn).
2. If H(m′

1,m
′
2, . . . ,m

′
3n/4) = (m′

3n/4+1,m
′
3n/4+2, . . . ,m

′
n) then break;

End for;

Output: Plaintext m′ or ⊥ if the above test failed for all (cn−rem+1, . . . , cn) ∈ F
rem
2k .

Remark 1. An algorithm for fast evaluation of T−1 and S−1 will be provided in an extended version
of the paper.

Theorem 2. MQQ-ENC= (GMQQ, EMQQ,DMQQ) is all-keys (1− 1
2nk/4−rem·k+1 )-correct public key

encryption scheme.

The proof is given in Appendix A.

5 Security of the trapdoor function of MQQ-ENC

In this section we analyze the security of the trapdoor function of MQQ-ENC, i.e. of the system of
polynomials P . We consider the classical MQ cryptanalytic techniques. Based on this analysis we
recommend parameters for practical implementation that offer a security level of O(2128).

5.1 Direct algebraic attack

In MQ public key cryptosystems the standard inversion (or message recovery) attack reduces to
solving the system P (x1, x2, . . . , xn) = (c1, c2, . . . , cm) of quadratic equations over Fpk for a given
ciphertext (c1, c2, . . . , cm). Today, the most powerful method for solving algebraic systems is to
compute the Gröbner basis of the system by the Faugère’s algorithms F4 [22] or F5 [23] (or by
variants of XL [12] and MutantXL [16] algorithms).

A good measure of the complexity of computing a Gröbner basis of an ideal I is the degree of
regularity (Dreg), which is the maximal degree of the polynomials appearing during the computation

(see for ex. [1]). In fact the complexity is polynomial in Dreg and is O
((n+Dreg

n

)ω)
where ω is the

linear algebra constant. For randomly generated systems of equations, the behavior of Dreg as a
function of n is quite well understood [1, 2]. For systems that involve a particular algorithm and
structure, this behavior is different and hard to predict. Thus, en exhaustive experimental analysis
can be a good indicator of the nature of Dreg.
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For completeness and justification of the design of MQQ-ENC, it is important to note that
in the signature scheme MQQ-SIG [32], resistance against Gröbner basis attack was achieved by
applying the minus modifier. The experimental results in [32] for Dreg showed that it behaves in
the same way as for a randomly generated system. We note that the modification applied in MQQ-
SIG is suitable only for a signature scheme, since half of the polynomials of the public system are
removed. In the case of an encryption scheme, only a small number of polynomials can be removed,
otherwise the decryption becomes inefficient or even infeasible.

MQQ-ENC has many similarities with MQQ-SIG, mainly in the overall design of the internal
transformation. Also the order of the MQQs used is the same. The main difference, is that, in MQQ-
ENC, we use left MQQs (Only the left translation is bijective), whereas, in MQQ-SIG, MQQs of
bilinear nature were used. In the case of MQQ-SIG, the bilinear MQQs do not pose a threat to the
scheme. Our analysis, however, showed that much more superior for use in MQQ-ENC are the left
MQQs constructed using Algorithm CreateLMQQ. In Appendix B, we give a comparison of the
experimental results of a Gröbner basis cryptanalysis on the system P of MQQ-ENC as described
in the paper (i.e. using left MQQs) and a system the same as MQQ-ENC but using bilinear MQQs.

The experiments of Gröbner basis cryptanalysis on MQQ-ENC were done with Magma 2.17-3’s
implementation [42] of the F4 [22] algorithm on a workstation with 32 cores based on Intel Xeon
2.27GHz, with 1TB of RAM memory. They can be summarized in the following two groups:

Gröbner basis cryptanalysis on MQQ-ENC defined over F2 These experiments are our
referent ones for investigating the immunity of MQQ-ENC against inversion attack. This is mainly
because the case of F2 scales good, and more experiments for different small values of n can be
made. We performed 100 experiments for each of the cases of 24, 32, 40 and 48 variables, but
because of the great time complexity, we were able to have only 10 experiments finished for each of
the cases of 56 and 64 variables. In the experiments we took that the number of removed equations
rem is 8. This value was chosen as a trade off between efficiency of the decryption and security
against direct algebraic attack. The results of the experiments are given in Table 1.

n Dreg,rand Dreg,MQQ−ENC Time(sec) Memory(MB)

24 5 4.27 0.13 22.56

32 6 4.98 55.66 811.00

40 6 5.06 2 058.76 13 755.86

48 7 5.67 21 981.07 89 987.15

56 8 7.50 128 644.55 308 728.40

64 9 8.10 771 861.06 1 372 192.13

Table 1. The average Degree of regularity, Time and Memory complexity observed in solving MQQ-ENC system of
n− 8 variables over F2. Dreg,rand is the expected degree of regularity of a random system of n− 8 variables

We note that, since there are more variables than polynomials, in all our experiments we used
the standard technique to first fix rem = 8 variables to randomly chosen elements of F2, and then
solve the system. Thus the results given in Table 1, actually show the time and memory needed
to solve such a system of n − 8 variables. Also, Dreg,rand is the expected degree of regularity for a
randomly generated system of size n− rem = n− 8.

The results of Table 1 show that although the degree of regularity Dreg,MQQ−ENC of MQQ-
ENC does not reach the value of a random system, the difference is approximately constant for all
investigated n. This indicates that it grows together with the Dreg,rand of a random system, and
that the two are approximately linearly dependent. Thus we may conjecture the following relation:

Dreg,MQQ−ENC ≈ Dreg,rand − C, for a small constant 0 ≤ C ≤ 2. (5)
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The results also show expected exponential growth of the time and space complexity.

Gröbner basis cryptanalysis on MQQ-ENC defined over F2k In this more general case,
making experiments was only possible for k = 2 and only for 24 and 32 variables. The number of
removed equations had to be scaled too, and the value of rem = 4 was chosen, so that the load for
the decryption would be the same as in the case of F2. As expected, this led to less time needed
than for the appropriate values of n over F2, i.e. 48 and 64. Actually, the times over F22 were
approximately two times smaller than those over F2. Although, we have too little information to
predict what will happen over bigger fields, a plausible conjecture is the following:

T imeGröbner(F2, n) ≈ 2k · T imeGröbner(F2k ,
n

k
) (6)

We further performed experiments with less removed variables, i.e. 1, 2 and 3, to be able to
predict the trend for different (bigger) values of rem. The number of experiments performed is 100
for all values given, except for the case of n = 32, for 3 removed equations (29 experiments) and
4 removed equations (6 experiments). The results showed that when more variables are removed
even though the system is of smaller size, the difficulty of solving it raises substantially. More
than 4 removed equations will probably create even a bigger difficulty, however this will reduce the
decryption speed as well. The results are given in Table 2.

n = 24 n = 32 n = 24, S, T random

rem Time (sec) Memory (MB) Time (sec) Memory (MB) Time (sec) Memory (MB)

1 3.45 37.04 172.44 574.08 3.68 28.79

2 57.86 68.61 4 392.05 1 447.01 47.79 74.14

3 1 429.68 381.60 238 265.45 9 061.32 1 361.56 369.84

4 11 952.02 2 616.65 378 470.09 12 083.12 11 412.38 2 286.47

Table 2. The average Time and Memory complexity of solving MQQ-ENC system of n− rem variables over F4.

Another important type of experiments that we performed was to investigate the impact of
the specially constructed affine mappings S and T . For the case of n = 24, r1 = 10, r2 = 13 and
rem ∈ {1, 2, 3, 4} we compared the results for randomly generated affine mappings, and the ones
used in MQQ-ENC. The comparison (given in Table 2) clearly shows that there is no difference
regarding direct algebraic attack between the two cases. This furthermore justifies the use of the
designed mappings.

5.2 Rank attacks on Stepwise Triangular Systems

Rank attacks are types of structural attacks that are very powerful against the family of triangular
MQ schemes. A rank attack has first been successfully applied against the Birational Permutation
scheme [10], defined over a large finite ring [58]. Afterwards, the idea was translated into finite fields
in [34] where is was used to break the TTM scheme [44], as well as the more general TPM scheme,
introduced in the paper. Another generalization was made in [63], where two general attacks were
described for the so called Stepwise Triangular Systems (STS). The private key of a STS system
consists of invertible affine mappings S and T over F

n
pk

and F
m
pk

respectively, and the internal

quadratic mapping P ′ : Fn
pk
→ F

m
pk

has a stepwise triangular structure: For each layer l ∈ {1, . . . , L}
the polynomials of the current layer contain only the variables from the previous and the current
layer. The number of new variables and polynomials in each layer can be different.

The key observation for the rank attacks is that
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m∑
j=1

τijP̂i = SP̂′
iS

� and thus Rank(
m∑
j=1

τijP̂i) = Rank(SP̂′
iS

�), (7)

where P̂i and P̂′
i are the matrices of the homogeneous part of the public Pi and private P ′

i poly-
nomial respectively (for a description of how this matrix is formed, see for ex. [63]), and S and
T−1 = [τij] are the invertible matrices of the mappings S and T−1. Now, the matrix T−1 can

be retrieved (or an equivalent one) by finding linear combinations of the public key matrices P̂i.
However, the following two conditions have to be met.

First of all, the kernels of the matrices P̂′
i must form a chain of kernels ker′L ⊂ · · · ⊂ ker′1,

where ker′l is the common kernel for the matrices from the layer l.

If this is not true, and for example, all or most of the layers have kernels of the same dimension,
it is not clear how new vectors from each subsequent kernel can be found. Note that, this inappli-
cability of the attack for such schemes was mentioned in [63] for the case of the Enhanced TTS
[62]. In [62], the attack was adapted for some very special types of tame-like systems without chain
of kernels, but this adaptation strongly depends on the tame structure of the schemes, and is still
not applicable in the more general case.

Second, in order to use the rank equation (7), the mapping T must be invertible. Otherwise,
(7) doesn’t hold at all. For example, the simplest case is when the public key is formed from a
bijective transformation by removing some of the polynomials. Then, a linear combination of the
remaining polynomials can have a very different and hard to predict rank compared to a linear
combination of the full system. Note that in [10] a successful rank attack was mounted against the
Birational Permutation scheme even when one polynomial from the public key had been removed
(as a countermeasure). However, the attack works only for the special structure of this scheme,
and highly complicates even for that scheme when more than one equation is removed. A similar
approach is not effective when more polynomials are removed, or when the structure of one removed
polynomial is more general. Interestingly, the general TPM [34] and the general STS [63] both
assume that T is always a bijection ([34] considers “-” modifier, but the equations are removed
from the internal P ′ and not from P ). We should note that recently, in [59], the layered structure
and bijective S and T were exploited to mount algebraic key recovery attack on Enhanced STS [60]
Enhanced TTS [62], and Rainbow schemes [17] by finding simpler equivalent keys.

The MQQ-ENC scheme has some similarities with STS schemes, but also has some essential
differences. Indeed, each of the quasigroup evaluations can be considered as a step or a layer. From
(3) we have that y1 = q(11 . . . 1,x1) and yi = q(xi−1,xi), for i ∈ {2, . . . , n/8}. Thus each of the P ′

polynomials depends on at most 16 variables. This structure allows a fast decryption, similarly as in
the case of STS, but unlike STS, there is no chain of kernels (yi does not depend on x1, . . . ,xi−2).

Also, as rem polynomials of the public P are removed, the second condition is also not satisfied.
Even more, the matrix T−1 is of special structure, that insures that there isn’t a single linear
combination of the remaining n− rem polynomials for which (7) holds. Namely, the matrix formed
by the last rem columns of T−1 doesn’t have a zero row.

As a result of these properties of MQQ-ENC, and based on the previous discussion, we can
conclude that a rank attack as known so far, can not be mounted on MQQ-ENC.

5.3 Rank attacks on mixed field systems

Rank attacks were also proven to be powerful in the cryptanalysis of the family of “mixed field”
schemes [39, 6, 7]. In the case of MQQ-ENC, which has a completely different nature, both the
shape of the internal secret transformation P ′ and its degree are not known. Furthermore, when a
minus modifier is applied, the attacks [6, 7] are possible only for MultiHFE and not for HFE, since
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it works only when the number of variables in the extension field is strictly bigger than the removed
equations (in HFE the number of variables in the big field is 1). This makes it very unsuitable for
MQQ-ENC, even if the public and secret keys are represented as univariate polynomials over the
big field.

5.4 Differential attacks

In [26], Fouque et al. introduced a new technique in multivariate cryptanalysis, based on differen-
tials. They used it to successfully break the perturbed version of the MI scheme PMI [15].

The differential of a quadratic mapping G : Fn
pk
→ F

m
pk

over a finite field Fpk at a point a ∈ F
n
pk

is the linear mapping defined by DG,a(x) = G(x+ a)−G(x) −G(a) +G(0).

The idea behind the attack is to study the distribution of the rank of the differential, and
deduce information about the internal structure. This was also used by Dubois et al. first to create
an efficient distinguisher for HFE in [19], and later to extend the idea for attacking the perturbed
version of HFE in [20]. In both attacks, the authors used the fact that the internal polynomial of
HFE in the extension field is of known, small degree. The mentioned technique, was again applied
to break all the versions of the NESSIE proposal SFLASH [48] in [18]. Here, the special structure of
the MI scheme was proven to be revealing enough even when a “minus” modifier has been applied,
a strengthening usually considered to protect against rank attacks.

From the published work so far that uses the technique of differential cryptanalysis in MQ
schemes, it is clear that the method is especially suitable for attacking schemes from the MI family
of MQ systems. Our scheme MQQ-ENC is not in this family. The polynomial of the internal
mapping over the extension field is not known and does not need to be of small degree. This makes
the attack not applicable to MQQ-ENC.

5.5 MQQ-ENC recommended parameters for security level of O(2128)

We find that the appropriate finite fields for defining MQQ-ENC are F2k where k ∈ {1, 2, 4, 8},
mainly because of natural suitability with operations and register sizes on standard CPUs. For
these underlying fields, our recommended values for the parameters n · k and rem are n · k ≥
256 and 8 ≤ rem · k ≤ 16. Also, for r1 and r2 used in the creation of the mappings S and T we
recommend the values r1 = 10 and r2 = 13. We chose these parameters based on the arguments
and experiments for the direct algebraic attack, since, as argumented in the previous subsections,
it is our opinion that the other described attacks in their usual form can not be efficiently mounted
against MQQ-ENC.

We should note that for bigger values of n · k and rem · k the security will be better, but
the efficiency will be reduced. Thus, in essence, the parameters for practical implementation are
n · k = 256 and rem · k = 8. In this case, the message space is Mspace(nk) = {0, 1}nk/2 = {0, 1}128
i.e. MQQ-ENC encrypts messages m of length 128 bits using random coins r of length nk

4 = 64
bits. The output of the universal hash function H(m, r), used for reducing decryption errors, is also
64 bits.

For these parameters, and based on the conjectured relations (5) and (6) given in Section 5.1,
we have the following complexity estimate.

Proposition 1. Under the assumptions (5) and (6), the complexity of finding a Gröbner basis
of MQQ-ENC over F2k where k ∈ {1, 2, 4, 8}, with the recommended parameters n · k = 256 and
rem · k = 8 is O(2235−k).

The proof is given in Appendix A.
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In the decision of the parameters for MQQ-ENC, we took into account the recent work of Bardet
et al. [3] and their algorithm BooleanSolve for solving MQ systems over F2, which is a variant of
the hybrid approach [8]. Thus we have the following:

Proposition 2. Under the assumption (5), the complexity of BooleanSolve for solving MQQ-ENC
over F2 implemented with the recommended parameters is O(2179).

The proof is given in Appendix A.

The estimated complexities for solving an MQ system arising from MQQ-ENC from Proposi-
tions 1 and 2 for the recommended parameters of MQQ-ENC are well over O(2128). Nevertheless,
we claim a security level of O(2128) for the recommended parameters of MQQ-ENC. This may seem
as too conservative or an overdefinition. However, it is always a good practice to have a security
margin for a cryptographic scheme, since the “attacks always get better, they never get worse”.

6 Security of the public key encryption scheme MQQ-ENC

6.1 Security assumption

Recall that the MQ-problem consisted of finding a solution to a system of polynomials randomly
chosen from the set PMQ of all systems of m polynomials in n variables over a finite field Fpk .
However, if a system is drawn randomly from a different set, the MQ-problem does not have to be
hard, as the successful cryptanalysis of many previous proposals has shown.

In the previous sections we made a thorough analysis of the underlying trapdoor function P
of MQQ-ENC. Based on it we can conclude that for the right parameters, the currently known
cryptanalytic techniques can not successfully invert P , nor find the included trapdoor. Thus, we
can pose the following plausible assumption:

MQQ-assumption: Let n be sufficiently large, 1 ≤ k ≤ 8 and 8 ≤ rem · k ≤ 16. Let PMQQ be
the set of all public systems P that can be obtained using the algorithm GMQQ(1nk).

The MQ-problem is hard for a randomly chosen P from PMQQ.

A direct implication of this assumption is that MQQ-ENC is secure in the weak sense of OWE.

Theorem 3. The public key encryption scheme MQQ-ENC is OWE-secure under the MQQ-assumption.
��

6.2 An IND − CCA secure encryption scheme from MQQ-ENC

In the known literature there are many generic proposals for converting a given PKE scheme, that
satisfies weaker notions of security, to another that is secure in the sense of adaptive IND−CCA in
the random oracle model. Some of them require stronger security assumptions such as IND−CPA
security ([27]), but some provide the highest level of security even for PKE schemes that are secure
in the weakest sense of OWE ([5, 28, 40, 49, 52]).

However, most of these conversions are proven to supply the intended level of security only
in the case of perfect decryption. As it turns out, when a PKE scheme is susceptible to errors,
the security proofs of these conversions might fail. This is best illustrated by the attack to the
NTRU scheme [53], where the imperfect decryption of NTRU is exploited to totally break various
enhancements of the scheme, that are otherwise sound in the perfect decryption scenario.

To our knowledge, the problem of securing an error prone scheme has been addressed in two
papers [21] and [13]. In [21] the authors propose a new conversion, especially suitable for such
schemes, and in [13] it is argumented that 3-round OAEP [49] (and a new probabilistic version of
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it) can actually be used in the error prone environment. Both conversions do not aim to convert
the scheme into one that has perfect decryption but rather to make it very hard for the attacker to
find situations where decryption errors occur and to exploit them to break the system. Also both
conversions require the probability of decryption error to be negligible.

In [40] a special conversion for achieving adaptive IND−CCA security of the McEliece cryptosys-
tem [43] was proposed under the assumption that the McEliece system is OWE. This conversion is
especially efficient and suitable for the McEliece system compared to other generic transformations.
Interestingly enough, we find it especially suitable for the MQQ-ENC as well. Even more, it can
immunize against decryption errors, and make it infeasible for the attacker to try to exploit them.
In essence, the arguments that this is true are in the same line as those given in [21].

We first give a short description of the Kobara-Imai conversion [40], adapted for our parameters.

Conversion K-I(MQQ-ENC):

– Let the Key-Generation algorithm GMQQ
K−I be the same as GMQQ.

– Let H1 : {0, 1}nk → {0, 1}nk/4 and G : {0, 1}nk/4 → {0, 1}nk be two pseudo random functions.
– The Encryption algorithm EMQQ

K−I works as follows:

1. For message m ∈ Mspace(nk), and random r ∈ {0, 1}nk/2, let z = H1(r||m).
2. Let y = G(z)⊕ (r||m). Represent y = y1||y2, where y1, y2 ∈ {0, 1}nk/2.

Output c = (c1, c2) = (EMQQ(y1, z), y2) as the ciphertext.
– The Decryption algorithm DMQQ

K−I works as follows:

1. For given ciphertext c = (c1, c2), let (y1, z) = D′MQQ(c1), where D′MQQ is the same as DMQQ except that it
outputs the first 3nk/4 bits instead of the first nk/2 bits, obtained during the procedure. If c1 is not a valid
ciphertext for DMQQ break and output ⊥.

2. Let r||m = G(z)⊕ (y1||c2).
If H1(r||m) = z output m as the plaintext, otherwise output ⊥.

Proposition 3. A standard adversary in an IND−CCA indistinguishability game against K-I(MQQ-
ENC) that has access to the random oracles H1 and G can find a decryption error with probability
at most:

Perror ≤ qH1/2
nk/4−rem·k+1 + qH1qG/2

nk/4

where qH1 and qG are the total number of calls to the oracles H1 and G, respectively.

The proof is given in Appendix A.

The arguments that the Kobara-Imai conversion of MQQ-ENC provides indistinguishability in
the sense of IND−CCA are the same as in the case of the McEliece system [40] for which it was
originally proposed. As they can easily be translated in our case, and since we have proven that
the adversary can not make use of the erroneous decryption we have the following theorem.

Theorem 4. The public key encryption scheme K-I(MQQ-ENC) is IND−CCA secure under the
MQQ-assumption. ��

7 Operating characteristics of MQQ-ENC

The public key pk = (P,H) of MQQ-ENC consists of a system of n−rem polynomials in n variables
over F2k , and a universal hash function H. We will not count the size of encoding the universal
hash function as a part of the public key and it can be any short-output universal hash function
like MMH [35], NH [9], digest() [46], GHASH or PolyQ [41]. Thus, the size of the public key of
MQQ-ENC in bytes is given by the formula:
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MQQ-ENC PublicKeySize(k, n, rem) =

{
1
8
(n− rem)(1 + n(n+1)

2
), if k = 1,

k
8
(n− rem)(1 + n(n+3)

2
), if k > 1

The private key is sk = (σ1, σ2,M0, (a
(1)
i )r1+1, (a

(2)
i )r2+1, q0,D

−1,D−1
y , c, cy). The first five terms

are needed for the creation of the secret S and T and we need 2n + rem·n
8 + k

8 · (r1 + r2 + 2)
bytes to store them for k > 1 and 2n + rem·n

8 for k = 1, since for F2 we don’t need the arrays

(a
(1)
i )r1+1 and (a

(2)
i )r2+1. The last 5 terms are the building blocks of the secret LMQQ, and the

needed memory in bytes is
1

8

(
8∑

s=1

(1+8+

(
8

2

)
+8· (8−s) +8−s+

(
8−s

2

)
) +2 · (82+8)

)
= 93,5 Bytes for

k = 1, and
k

8

(
8∑

s=1

(2+2 · 8+
(
8

2

)
+8 · (8−s) +2(8−s) +

(
8−s

2

)
) +2 · (82+8)

)
= 106k Bytes for k > 1.

Table 3 shows the values of the size of the public and private key in bytes of the MQQ-ENC
system for a message space {0, 1}128 and parameters: k ∈ {1, 2, 4, 8}, rem = 8/k, r1 = 10 and
r2 = 13.

The table also includes the performance of an initial C code performed on a 4 core Intel Nehalem
i7 920X CPU architecture running at 2 GHz. Note that the execution of the code was on one core
only, and because of the highly parallelizable nature of MQQ-ENC, almost linear speedups are
possible if more cores are used. An optimization of the code will be one of our goals in the following
period.

k n rem
Public Key
(Bytes)

Private Key
(Bytes)

Key generation
(cycles)

Encryption
(cycles)

Decryption
(cycles)

1 256 8 1 019 807 862 4 062 832 500 140 364 838 656
MQQ 2 128 4 259 935 539 1 041 751 923 93 576 645 120
ENC 4 64 2 66 495 581 274 145 242 66 840 496 246

8 32 1 17 391 941 74 093 308 51 415 381 728

Table 3. Operating characteristics of MQQ-ENC for encrypt./decrypt. of a message 128 bits long over different
fields.

8 Conclusions

In this paper we proposed a new multivariate encryption scheme MQQ-ENC from the MQQ-
family of public key schemes. The scheme is probabilistic encryption with negligible probability of
decryption errors, that is achieved using a universal hash function. It is defined over the fields F2k for
any k ≥ 1, and can easily be extended to any Fpk , for prime p. MQQ-ENC shares the overall design
of its predecessor MQQ-SIG, however, we introduce Left MQQs as a base for construction of the
internal secret transformation. An extensive experimental analysis showed that LMQQs show much
better characteristics compared to the previously used bilinear MQQs in the design of MQQ-SIG.
We analyzed the applicability of the standard cryptanalytic techniques for MQ schemes. Based on
the analysis, we conjectured that the instances of the MQQ-ENC trapdoor are hard instances with
respect to the MQ problem. Under this assumption, we adapted the Kobara-Imai conversion of the
McEliece PKE scheme for MQQ-ENC and showed that it immunizes against decryption errors and
provides IND−CCA security. The operating characteristics of an unoptimized C-implementation are
comparable to other multivariate schemes.

A part of our future work will be an optimized implementation of the algorithm, as well as
a version where the redundancy now defined by the use of a universal hash function is replaced
by some predetermined secret value. In that way we think that by a proper use of list-decoding
techniques, MQQ-ENC can be turned into an efficient public-key block cipher.
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A Proofs

Proof of Proposition 1

Proof. The complexity of finding a Gröbner basis of a system of n polynomials with n variables

over F2 is O
((n+Dreg

n

)ω)
([1]). The degree of regularity Dreg,rand for a randomly generated system

can be found using the approximation from [1]

Dreg,rand(n) ≈ 0.09n + 1.00n
1
3 − 1.58 (8)

For n = 256−8 = 248 we have Dreg,rand(248) ≈ 27. Applying the relation (5) where we take C = 2,
we get that Dreg,MQQ−ENC(248) ≈ 25. Taking into account the sparsity of the matrices obtained
during the execution of the F4 algorithm, we can take w = 2 [59]. Now, the complexity of finding
a Gröbner basis of the public key of MQQ-ENC over F2 for the given parameters can be found to
be O(2234). From the relation (6) for other values of k ∈ {2, 4, 8} we have that the complexity is
O(2234−(k−1)) = O(2235−k). ��

Proof of Proposition 2

Proof. For a random MQ system over F2 the complexity of the Las Vegas probabilistic variant of
BooleanSolve is O(20.792n). The public key of MQQ-ENC defined over F2 is clearly not a random
MQ system, thus the expression O(20.792n) is not directly applicable for n = 256 − 8. However,
as there is a relation between the degree of regularity of a random MQ system and MQQ-ENC
public key expressed via (5), and from the proof of Proposition 1 we can assume that the public
key of MQQ-ENC acts as a random system with Dreg,rand(n

′) ≈ Dreg,MQQ−ENC(248) ≈ 25. Now
the solution of Dreg,rand(n

′) ≈ 25 is n′ = 227. Replacing n = n′ = 227 in O(20.792n) gives us a
complexity of O(2179) of the Las Vegas probabilistic variant of BooleanSolve for solving MQQ-ENC
with the recommended parameters over F2. ��

Proof of Theorem 2

Proof. The decryption of MQQ-ENC can be seen as a sequence of at most η = 2rem·k independent
experiments, each of which yields success with probability p = 1

2nk/4 . For simplicity, we assume that
all the experiments are executed, and that the first successful experiment gives the output of the
decryption.

Then, the probability π that a decryption error occurs is π =

η∑
i=2

P (Bi|A)P (Ci), where A is

the event that there is at least one successful experiment, Bi is the event that there are exactly i
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successful experiments, and Ci is the event that in the event of Bi, the successful experiment that
leads to correct decryption is not the first in the sequence of successful experiments. Than we have:

π <

η∑
i=2

P (Bi|A) =

η∑
i=2

P (Bi ∩A)

P (A)
=

η∑
i=2

P (Bi)

P (A)
=

1− P (B0)− P (B1)

1− P (B0)
=

1− (1− p)η − η · p · (1− p)η−1

1− (1− p)η

It is not hard to see that for a given η, the function f(p) =
η · p
2
− 1− (1− p)η − η · p · (1− p)η−1

1− (1− p)η

is continuous on the interval (0, 1), monotonically increasing, and that lim
p→0+

f(p) = 0+.

Hence, π <
η · p
2

, and the claim follows.

Proof of Proposition 3

Proof. The idea is to show that no matter what strategy the adversary applies, it is still very
improbable to find a pair (y1, z) that leads to erroneous decryption, i.e., DMQQ(EMQQ(y1, z)) �= y1
(such pairs will be called bad pairs [21]). This will provide insurance that even if the adversary
knows a smart way of using the decryption errors in an attack, it is so hard to find them, that the
attack becomes infeasible.

First of all, let the adversary just pick at random candidate ciphertexts (c1, c2) to query the
decryption oracle DMQQ

K−I . If c1 is not a valid ciphertext for DMQQ, then it will be rejected. The

probability that the adversary finds a valid c1 in this way is bounded by 2nk/4−rem·k. Still, nothing
guarantees that c2 is valid, and that it will not be rejected. (In order to be accepted by DMQQ

K−I it
has to satisfy H1(G(z) ⊕ (y1||c2)) = z.)

Instead of doing this, since the goal of the adversary is to find valid ciphertexts that will decrypt
wrongly, he can use a strategy that always produces valid c. Hence, the security rests on the hardness
of finding a bad pair that further on satisfies H1(G(z) ⊕ (y1||c2)) = z.

Let qH1 and qG be the total number of calls to the oracles H1 and G, respectively.
A natural construction of bad pair satisfying the constrains is the following: Pick r and m at

random. Let z = H1(r||m), and (y1||c2) = G(z)⊕ (r||m). Now, the constrains are satisfied, and this
will of course produce a valid ciphertext. The probability that this cipher is decrypted wrongly, no
matter how r and m are chosen, is at most 1/2nk/4−rem·k+1. Thus, the total probability for all calls
to H1 for this purpose is at most qH1/2

nk/4−rem·k+1.
From another point of view, the adversary can use the calls to G made during the history of

the game in the following way: Let G be called on inputs x1, x2, . . . , xqG . Let r||m be arbitrary.
Check whether H1(r||m) ∈ {x1, x2, . . . , xqG}. This happens with probability qG/2

nk/4. Let’s say this
happens, and for some xj we have that H1(r||m) = xj. We put z = xj and y1||c2 = (r||m)⊕G(z).
Again the constrains are satisfied, and in this case we get a total probability qH1qG/2

nk/4.
Now the claim follows.

B Comparison of experimental results of Gröbner basis attack on MQQ-ENC
using Left MQQs and bilinear MQQs

During our experiments, we created a version of the system, called MQQ-ENCbl, where instead of
LMQQs created by Algorithm CreateLMQQ, we used bilinear MQQs from the design of MQQ-
SIG [32]. All other characteristics are the same as in MQQ-ENC. Table 4 shows a comparison
of the experimental results of a Gróbner basis attack on MQQ-ENC and MQQ-ENCbl. A visual
representation of the degrees of regularity of the two systems compared to the one of a random
system is given in Figure 1.
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n Dreg,rand Dreg,MQQ−ENC Dreg,MQQ−ENCbl

Time(sec)
MQQ-ENC

Time(sec)
MQQ-ENCbl

Memory(MB)
MQQ-ENC

Memory(MB)
MQQ-ENCbl

24 5 4.27 3.58 0.13 0.01 22.56 15.00

32 6 4.98 4.02 55.66 0.38 811.00 31.93

40 6 5.06 4.17 2 058.76 7.70 13 755.86 198.49

48 7 5.67 4.34 21 981.07 45.53 89 987.15 654.26

56 8 7.50 4.42 128 644.55 191.25 308 728.40 2267.71

64 9 8.10 4.49 771 861.06 724.73 1 372 192.13 6170.68

72 10 - 4.70 - 1208.17 - 8877.79

80 11 - 4.78 - 1735.03 - 17014.11

88 12 - 4.85 - 671.39 - 10587.19

96 13 - 4.78 - 1293.82 - 16581.81

Table 4. A comparison of the average Degree of regularity, Time and Memory complexity of solving MQQ-ENC and
MQQ-ENCbl systems of n− 8 variables over F2. Dreg,rand is the expected degree of regularity of a random system of
n− 8 variables
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Fig. 1. A graphical comparison of the average Degree of regularity of the MQQ-ENC and MQQ-ENCbl systems of
n− 8 variables over F2. Dreg,rand is the expected degree of regularity of a random system of n− 8 variables
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