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Abstract—In this paper, we consider the spectra of
Boolean functions with respect to the action of uni-
tary transforms obtained by taking tensor products of
the Hadamard kernel, denoted by H, and the nega—
Hadamard kernel, denoted by N. The set of all such
transforms is denoted by {H, N}". A Boolean function
is said to be bent, if its spectrum with respect to at
least one unitary transform in {H, N}" is flat. We prove
that the maximum possible algebraic degree of a bents
function on n variables is [ ], and hence solve an open
problem posed by Riera and Parker [cf. IEEE-IT: 52:9
(2006), 4142-4159]. We obtain a relationship between
bent and bent, functions which is a generalization of
the relationship between bent and negabent Boolean
functions proved by Parker and Pott [cf. LNCS: 4893
(2007), 9-23].
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I. INTRODUCTION

Let us denote the set of integers, real numbers and
complex numbers by Z, R and C, respectively and
let the ring of integers modulo r be denoted by Z.,.
The vector space Zy is the space of all n-tuples x =
(Tpn,...,21) of elements from Zo with the standard
operations. By ‘+’ we denote the addition over Z, R
and C, whereas ‘@’ denotes the addition over Z7 for all
n > 1. Addition modulo ¢ is denoted by ‘+’ and it is
understood from the context. If x = (z,,,...,z1) and
Yy = (Yn,...,y1) are in Z%, we define the scalar (or
inner) product by X'y = 2,4y, D - -Dxoy2PBx1y1. The
cardinality of a set S is denoted by |S|. If z = a+b: €

C, then |z| = va? + b? denotes the absolute value of
z, and Z = a — b1 denotes the complex conjugate of
z, where 2> = —1, and a,b € R.

We call any function from Z% to Zs a Boolean
function on n variables and denote the set of all
Boolean functions by B,,. In general any function from
73 to Zq (@ > 2 a positive integer) is said to be a
generalized Boolean function on n variables [5], the set
of all such functions being denoted by GBY. Clearly
gB;i = B,. For any f € B,, the algebraic normal
form (ANF) is
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where (1a € Zo, for all a € Z5. For any a € Z3,

wt(a) = > ,a; is the Hamming weight. The
algebraic degree of f, deg(f) := max{wt(a) : a €
Ly, pa 7 0}.
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Now, let ¢ > 2 be an integer, and let ( = e
be the complex g-primitive root of unity. The Walsh—
Hadamard transform of f € GBI at any point u € Z%
is the complex valued function

He(u) =272 ) ¢F™(-1
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The inverse of the Walsh—-Hadamard transform is given

by
£ Hylu

uezy
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A function f € GBY is a generalized bent function if
and only if [Hs(u)| = 1forallu € Z3.If g =2 and n
is even, then a generalized bent function is called a bent
function. A function f € B, where n is odd, is said
to be semi-bent if and only if |H;(u)| € {0,v/2}, for
all u € Z5. The maximum possible algebraic degree
of a bent function on n variables (when n even) is 5
and for a semi-bent function on n variables (when n
odd) is 2L (cf. [1], [2]).

The nega—Hadamard transform of f € B, at any

vector u € Z% is the complex valued function
Np(u) =273 > (=1)/CI@uxuwiba 4
x€Zy
A function f € B, is said to be negabent if and only

if [Ny(u)] =1 for all u € Z3. If f € B, then the
inverse of the nega—Hadamard transform N is

(~1)F) =275 7 N NG (a)(—1)Y Y, (5)
ueZy
for all y € Z5. We recall the following result.
Proposition 1: [6, Lemma 1] For any u € Z3 we
have

Z (71)u~xzwt(x) _ 2%wn17wt(u)’ (6)

x€ZY

where w = (1+41)/+/2 is a primitive 8th root of unity.
The Hadamard kernel, the nega—Hadamard kernel
and the identity transform on Z%, denoted by H, N

and I, respectively, are
1 1 7
Jv=35(0 )

H:1<1 1
10
=(o V)
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The set of 2™ different unitary transforms that are
obtained by performing tensor products H and N, n
times in any possible sequence is denoted by { H, N }".
If Ry and Ry partition {1,...,n}, then the unitary
transform, U of dimension 2™ x 2", corresponding to
this partition is

v=[] # [] N 7)

JERH JERN

and

where
Ki=I®I®..l9K®I®...®I

with K in the jth position, K € {H,N} and “®”
indicating the tensor product of matrices. Let ix €
{0,1,...,2™ — 1} denote a row or column number of
the unitary matrix U. We write

b = T2 Vb Ty 12" 2 a2+ 1

where x = (xp,...,21) € Z3. For any Boolean
function f € B, let (—1)f denote a 2" x 1 column
vector whose 4,, row entry is (—1)f(W)_ for all u € Zj.
The spectrum of f with respect to U € {H, N}" is
the vector U(—1)f. If Ry = {1,...,n}, then the
entry in the iyth row of U(—1)f is H;(u) and, if
Ry = {1,...,n}, then the entry in the i,th row of
U(—1)f is Ny(u), for all u € Z%. In the former case,
U(—1)f is said to be the Walsh-Hadamard spectrum
of f, while in the latter case it is the nega—Hadamard
spectrum of f. The spectrum of a function f with
respect to a unitary transform U is said to be flat if
and only if the absolute value of each entry of U(—1)f
is 1.

Definition 2: A function f € B, is said to be benty
if there exists at least one U € {H, N}" such that
U(—-1)F is flat.

The bent and the negabent functions belong to the
class of benty functions as extreme cases. For results
on negabent and bent—negabent functions we refer to
(31, 161, [71, [9].

In this paper, we consider the spectra of Boolean
functions with respect to the action of unitary trans-
forms in {H,N}"™. We prove that the maximum
possible algebraic degree of a bent, function on n
variables is [%], and hence solve an open problem
posed by Riera and Parker [4]. Further, we obtain a
relationship between bent and bent, functions which is
a generalization of the relationship between bent and
negabent Boolean functions proved by Parker and Pott
[3, Theorem 12].

II. BENT PROPERTIES WITH RESPECT TO {H, N}"

Let s,.(x) be the homogeneous symmetric Boolean
function of algebraic degree » whose ANF is

@ Lijqy oo T, (8)

1<i1 <...<ir<n

sr(x) =

The intersection of two vectors ¢ = (cy, ...
(Tny ..., 21) € ZY is defined as

,Cl),X =

cxx = (CpZp,...,C121).

We define the function s,.(c * x) as

@ (Cilmil) N (CiTxir)- (9)

1<ir<...<ip<n

sr(c*x) =

Suppose, the function g € ngL defined as g(x) =
wt(x) mod 4, for all x € Z%. In the following propo-
sition and its corollary we obtain a connection between
g and s, which plays a crucial role in developing
connections between different bent criteria. It is to
be noted that the result of Proposition 3 is mentioned



earlier by Su, Pott and Tang in the proof of [9, Lemma
1]. We provide an alternative proof.

Proposition 3: 1f g € GB} is defined by g(x) =
wt(x) mod 4 for all x € Z%, then

g(x) =1-x+2s2(x) = wt(x) mod4, (10)
for all x € Z5.
Proof: By Proposition 1, we have
2—% Z (_1)u~xlwt(x) — wnl—wt(u). (ll)

erg

Therefore, g(x) = wt(x) mod 4 is a generalized bent
on Z,4, which we refer to as Z4-bent. According to [8,
Corollary 15] and [5], there exist a,b € B,, such that b
and a+b are bent functions and g(x) = a(x)+2b(x) =
wt(x) mod 4, for all x € Z%. From this we have

2b(x) = wt(x) — a(x) (mod 4),
ie.,
2 [ (wt(x) — a(x)),
i.e.,
a(x)=1-x
where 1 = (1,1,...,1) € Z%, forallx € Z3.
Therefore,

g(x) = 1-x+2b(x) = wt(x) mod 4, for all x € Z7,

i.e.,
-1 t
b(x) = L X F i)
2
Since b € B, is a symmetric bent function and
b(0) = 0 we have b(x) = sa(x) or s2(x)Ps1(x). Since
b(0...01) =0, we have b(x) = s3(x). Therefore

mod 2, for all x € Z3.

g(x) = 1-x+2s2(x) = wit(x)

|
The following corollary generalizes (10) which is use-
ful in finding a general expression of entries of any
matrix U € {H, N}".
Corollary 4: Let x,c € Zy. Then

c-x+2s3(cxx) =wt(c*x) mod 4, (12)

for all x € Z5.
Proof: In Proposition 3 it is proved that
1-x+ 2s9(x) = wt(x) mod 4, for all x € Z7,
i.e.,

(1,...,1) (2n, ..
= wt(Tp,...,T1)

5 21) +289(2n, ..., 21)
mod 4, for all x € Z3.

mod 4, for all x € Z3.

Replacing x; by c;z; we get

(1,...,1) - (cnn, -
= wt(cpTn,...,C121)

., C1T1)
mod 4, for all x € Z3,

S e121) + 282(Cntn, - -

i.e.,

'7clx1)
mod 4, for all x € Z3.

(CcnZn @ ... ®c121) + 282(Crp, - -

= wt(epp, ..., c171)

Therefore,

c-x+2s2(cxx) = wt(c*xx) mod 4, for all x € Z7.

|
Riera and Parker [4, Lemma 7] have obtained a general
expression for the entries of any matrix U € {H, N}".
We obtain an alternative description below which we
use to connect the spectrum U(—1)f of any f € B,
to the Walsh-Hadamard spectra of some associated
functions.

Theorem 5: 1f U = [[;cr, Hjlljer, V) is a
unitary matrix constructed as in (7), corresponding to
the partition Ry, Ry of {1,...,n} where n > 2, then
for any u,x € Z3 the entry in the i,th row and ixth
column of 23U is

(_]_)u-xeasz(o:>s<x)lc»x7
where ¢ = (¢p,...,c1) € Z§ is such that ¢; = 0 if
i€Rygand ¢; =1if i € Ry.

Proof: We prove this by induction. Let n = 2. If
c = (0,0) then clearly U = H ® H, and if c = (1,1)
then U = N ® N. We explicitly compute U when
c¢=(0,1) and ¢ = (1,0) and find that U is equal to

1 7 1 ?
1 — 1 —
HeN =3 1 1 =1 — |’
1 — -1 ?
and
1 1 ? ?
1 1 -1 1 —1
NeH = 21 1 1 —2 — |
1 -1 — 7

respectively. By Corollary 4

(71)u-x®52(c*x)zc~x _ (71)u-xzwt(c*x)'

Suppose the result is true for n. Let u,x,c € Z%,
and v’ = (upy1,u), %X = (Tpy1,%),¢ = (¢hy1,€) €
75 Let U € {H,N}" be the unitary transform
induced by the partition corresponding to ¢ € Z5. The
transform corresponding to the partition induced by



¢’ = (0,c) € Z3"" is H ® U. By taking the tensor
product of H and U we obtain

ntl A Ar
22 (HRU) =
(HeU) (Azl A22>
where
Aqg ux wtc*x))
2n x2n

(0 )-(0,%) ,wt((0,¢)%(0, x)))
onxon’

u x wt c*x))
2 x 21

(0 w)-(1,%) ,wt((0,0)%(1, x)))

onxon’

- (e
(o
T
(i
(0
(o

A21 _ u x wt(c*x))
2mn x 21
_ (1 u)-(0,%) ,wt((0,¢)*(0, x)))
2m x2m
and
A — ( —1)(=1)wx wt(c*x))
22 (=) (=1)"* o
_ ((_1)(1,u)-(17x)Zwt((O,c)*(Lx))) .
2’7L><27’L
Therefore,
LH u’-x’ wt(c'*x'))
P T (HU) = (( 1)u'xy et

The transform corresponding to the partition induced
by ¢’ = (1,¢) € Z5*! is N @ U. By taking the tensor
product of H and U we obtain

n+1 B11 BlQ
N®U
= )= ( By B )
where
By, ( u x wt(c*x))2nx2n
( 0.x) t(u,c)*(o,x)))
anxon’
( t((l,c)*(l,x)))
onxan’
Bo ( u x u)t(c*x))271><27l
( )-(0.5) ywi((1 ,c)*(o,x)))
2n x 2

and

) (—1)ux wt(c*x))
(CRIC i N
_ ((_1)(1,u)~(1,x)7/wt((1,c)*(1,x)))

onxon

Therefore,

#(N ® U) _ ((71)u'-x'lwt(c'*x')

)2n+1 ><2n+1 !

This proves the result. [ ]

Using Theorem 5 we can state that given any U €
{H, N}" there exists ¢ € Z% such that for any f € B,
the iyth row of the column vector U(—1)f is

u};(u) _ 2—% Z (_1)f(x)6952(c*x)Zc~x(_1)u~x

xEZg

— 9% _1)f(x)6982(0*x)(_

( 1)u~x
x€cct
2

+ 7/2_2 Z (_1)f(x)@sz(c*x) (_1)u'x.

xgZct

(13)

Therefore, U§(u) is related to the Walsh-Hadamard
transform of restrictions f(x) @ sa(c * x) to the
subspace ¢ and its coset. From another perspective
this transform provides a measure of the distance of the
function f to the functions of the form ss(c*xx)Pu-x.
Thus, if [U§(u)| has high value for a choice of
u,c € Z5 then f has low Hamming distance from
the function of the form s3(c * x) @ u - x. This means
that the function may be approximated efficiently by
the function sz(c * x) @ u - x. This may have some
cryptographic significance for the spectra of f with
respect to the transform U € {H, N}".

Riera and Parker [4, p. 4125 ] posed the following
open problem:

What is the maximum algebraic degree of a bent,
Boolean function of n variables?

Su, Pott and Tang [9] have recently proved that the
maximum algebraic degree of a bent-negabent func-
tion is % (note that n is even, since bent functions
exist only on even variables). Further, they have pro-
vided a method to construct bent—negabent functions
of algebraic degree ranging from 2 to 3. In the next
theorem we solve the problem proposed by Riera and
Parker and thus generalize the result related to the

upper bound of algebraic degree proved in [9].
Theorem 6: The maximum algebraic degree of a
bent, Boolean function on n variables is [ % ].

Proof: Using Theorem 5 we can state that given
any U € {H, N}" there exists ¢ € Z% such that for
any f € B, the iyth row entry of the column vector



— Z (_1)f(x)@sz(c*x)lox(_l)ux

XEZLY

— Z (_1)f(x)6932(c*x)(_1)u~x

xect

+1 Z (_1)f(x)@82(0*x)(_1)u~x-

xgZct

(14)

Let us suppose that f is benty with respect to the
chosen transform U. Therefore, we have [U/§(u)| = 1,
for all u € Z3. By (14)

2

on — Z (_1)f(x)6952(c*x)(_1)u~x

xect
, (9
+ Z (71)f(x)6952(c*x)(71)u-x

xgZct

By Jacobi’s two-square theorem we know that 2™ has a
unique representation (disregarding the sign and order)
as a sum of two squares, namely 2" = (2%)2 + 0, if
n is even, and 2" = (2"2 )2 + (2"2 )%, if n is odd.
Let go(x) = s2(c * x), for all x € Z7.

Mg (w)| =27 Y (—1)f I (q)u|

xX€ELY
= |2_% Z (_]_)f(x)@sz(c*x)(_l)u-x
x€Ect
1972 Z (_1)f(x)€982(6*><)(_1)u~x|
xgct

=1

3

(16)

for all u € Z%5. Therefore, f @ g. is a bent function
and its algebraic degree is bounded above by 3. The
algebraic degree of g is upper-bounded by 2, so the
upper bound of the algebraic degree of a benty Boolean
function f is %, when n is even.

In case n is odd by a similar argument we get
|H o0, (0)| € {0,v/2}, thatis f @ g, is semi-bent, and
therefore the algebraic degree of f is bounded above
by “T'H [ ]

III. CONNECTING BENT AND BENT,4 FUNCTIONS

Let f € B, and V is a subspace of Z3. For any
a € Z%5 the restriction of f to the coset a + V is
defined as flayv(x) = f(a+x), forall x € V. It
is to be noted that the restriction of a function f to a
coset a4V is unique up to a translation. The following
lemma is well known (cf. [1]), nevertheless we provide
a complete proof for clarity.

Lemma 7: Let n = 2k, f € B,, a bent function, V'
be an (n — 1)-dimensional subspace of Z%, a € ZF\V
such that Z% = V' U(a® V). Then the restrictions of f
to V and a® V, denoted f|y and f|agv respectively,
are semi-bent functions and |, (W)Hy,,, (u) = 0
for all u € F3.

Proof: Since the dimension of V is n — 1, the
dimension of the orthogonal subspace V- is 1. Let
V1t =1{0,b}. Sinceag V,a-b=1.Forall ucZj
we have the following

25 H s (u) = Z(_l)f(x)@ux

xeV
4 (_1)u<a Z(_l)f(x+a)@u~x (17)
xeV
e {-2%, 2%}
Q%Hf(u@b) — Z(_l)f(x)éBux
xeV
_ (_1)u~a Z (_1)f(x+a)@u~x
xcV
c€{-22,22}.
(18)
By adding (17) and (18) we  obtain
erv(_l)f(X)®u.x c {_2%’07 2%}’ and
by subtracting (18) from (17) we obtain
ey ()f@E0EUX L 9% 025} This

proves that both f|y and f|agy are semi-bent
functions. Further, since the sums in (17) and (18)
are both in {—2%,2%}, for all u € Z%, we have
Hyp, (W)Hy|,, (1) =0, for all u € Z3. [

This leads us to a generalization of [3, Theorem 12]
due to Parker and Pott. Recall that for any c € Z5 we
have defined g.(x) = sa2(c * x), for all x € Z5.

Theorem 8: Let f € B, where n is even. Then the
following two statements are true.

1) If f is bent, then f & g. is bent, and
U, (0)| =1, for all u € Zy

2) If f is benty, i.e., there exists ¢ € Z§ such that
U§(u)| = 1, for all u € Z, then f @ gc is bent.



Proof: Suppose f is a bent function. If ¢ = 0
there is nothing to prove. If ¢ # 0, then

Q%L{;@gc(u) - Z (_1)f(x)essz(c*x)lwt(w><)(_1)U‘x

xEZY

— Z (_1)f(X)6532(C*X)6982(C*X)@u'xZox
xEZY

— Z (_1)f(x)69wxlc'x
xELY

_ Z (_1)f(x)€Bu'x
x€ct
IS S e O

xgZct

19)

Since f is a bent function and c' is a subspace of
codimension 1, by Lemma 7 the restrictions of f on
ct and its remaining coset are semi-bent and their
Walsh-Hadamard spectra are disjoint. Therefore, the
right hand side of the above equation belongs to the
set {423, 4£2%4} for all u € Z%. This proves the first
statement.

In the second part, we assume f to be a benty
function such that there exists ¢ € Zij for which
UG (u)| = 1, for all u € Z3. We have

L{?(u) — 2—% Z (_1)f(x)lwt(c*x)(_1)u'x

XEZLY

—_9-% Z Zwt(c*x)+2f(x)(_1)U‘x.

XELY

(20)

Thus, the function h(x) = wt(c*x)+2f(x) mod 4,
for all x € Z7%, is a Z4-bent function which implies
the existence of Boolean functions a,b € B,, such that
b, a + b are bents [8, Corollary 15], with

h(x) = a(x) + 2b(x)
=wt(c*x)+2f(x) mod 4,
for all x € Z%. Therefore, 2 | (a(x) —wt(c*x)), which

implies a(x) = ¢ - x, for all x € Z}. By Corollary 4
and (20) we have

b(x) = f(x) ® s2(c *x),

for all x € Z3. Since b € B,, is a bent function, f ® gc
is a bent function. Thus, we have proved that if f is
bent, function, with respect to the unitary transform
corresponding to ¢ € Z3, then f@g. is a bent function.

|

2L

IV. CONCLUSION

In this paper we have developed an approach to
study the action of the transforms in {H,N}" on

Boolean functions on n variables. By using our ap-
proach we have proved that the maximum possible
algebraic degree of a bent, function on n variables

is [4] and hence solve an open problem proposed

by Riera and Parker [4]. We have also obtained a
connection between bent and bent, functions, which
is a generalization of the connection between bent
and negabent function proved by Parker and Pott
[3]. It is observed that if the absolute value of an
entry in the spectrum of a function with respect to
a transform U € {H, N}" is large, then the function
has low Hamming distance from a particular quadratic
function determined by U. Thus, we have established
a connection between the generalized bent criteria
and approximation of a Boolean function of arbitrary
algebraic degree by quadratic Boolean functions.

REFERENCES

[1] C. Carlet, “Boolean functions for cryptography and error
correcting codes,” in Boolean Models and Methods in Math-
ematics, Computer Science, and Engineering, Y. Crama and
P. L. Hammer, Eds. Cambridge, U.K.: Cambridge Univ. Press,
2010, pp. 257-397.

[2] T. W. Cusick, P. Stanica, Cryptographic Boolean functions and
applications. New York: Academic, 2009.

[3] M. G. Parker, A. Pott, “On Boolean functions which are bent
and negabent,” in Proc. Int. Conf. Sequences, Subsequences,
Consequences, 2007, vol. LNCS—4893, pp. 9-23.

[4] C. Riera, M. G. Parker, “Generalized bent criteria for Boolean
functions,” IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 4142—
4159, Sep. 2006

[5] P. Solé, N. Tokareva, “Connections between Quaternary and
Binary Bent Functions,” Prikl. Diskr. Mat., vol 1, pp. 16-18,
2009, (http://eprint.iacr.org/2009/544.pdf).

[6] K. U. Schmidt, M. G. Parker, A. Pott, “Negabent functions in
the Maiorana—McFarland class,” in Proc. Int. Conf. Sequences
Appl., 2008, vol. LNCS-5203, pp. 390-402.

[7]1 P. Stanicd, S. Gangopadhyay, A. Chaturvedi, A. K. Gangopad-
hyay, S. Maitra, “Investigations on bent and negabent functions
via the nega—Hadamard transform,” IEEE Trans. Inf. Theory,
vol. 58, no. 6, pp. 4064-4072, June 2012.

[8] P. Stanica, T. Martinsen, S. Gangopadhyay, B. K. Singh,
“Bent and generalized bent Boolean functions,” Des. Codes
Cryptogr., DOI 10.1007/s10623-012-9622-5.

[91 W. Su, A. Pott, X. Tang, “Characterization of negabent func-
tions and construction of bent—negabent functions with maxi-
mum algebraic degree,” arXiv: 1205.6568v1 [cs.IT], 30 May
2012.



