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1 Computer Science Unit

Indian Statistical Institute, Chennai Centre
Chennai - 600113, INDIA

sugo@isichennai.res.in
2University of Primorska, FAMNIT

Koper, SLOVENIA
enes.pasalic6@gmail.com

3Department of Applied Mathematics
Naval Postgraduate School

Monterey, CA 93943–5216, USA
pstanica@nps.edu

Abstract—In this paper, we consider the spectra of
Boolean functions with respect to the action of uni-
tary transforms obtained by taking tensor products of
the Hadamard kernel, denoted by H , and the nega–
Hadamard kernel, denoted by N . The set of all such
transforms is denoted by {H,N}n. A Boolean function
is said to be bent4 if its spectrum with respect to at
least one unitary transform in {H,N}n is flat. We prove
that the maximum possible algebraic degree of a bent4
function on n variables is dn

2
e, and hence solve an open

problem posed by Riera and Parker [cf. IEEE-IT: 52:9
(2006), 4142–4159]. We obtain a relationship between
bent and bent4 functions which is a generalization of
the relationship between bent and negabent Boolean
functions proved by Parker and Pott [cf. LNCS: 4893
(2007), 9–23].
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I. INTRODUCTION

Let us denote the set of integers, real numbers and
complex numbers by Z, R and C, respectively and
let the ring of integers modulo r be denoted by Zr.
The vector space Zn2 is the space of all n-tuples x =
(xn, . . . , x1) of elements from Z2 with the standard
operations. By ‘+’ we denote the addition over Z, R
and C, whereas ‘⊕’ denotes the addition over Zn2 for all
n ≥ 1. Addition modulo q is denoted by ‘+’ and it is
understood from the context. If x = (xn, . . . , x1) and
y = (yn, . . . , y1) are in Zn2 , we define the scalar (or
inner) product by x·y = xnyn⊕· · ·⊕x2y2⊕x1y1. The
cardinality of a set S is denoted by |S|. If z = a+b ı ∈

C, then |z| =
√
a2 + b2 denotes the absolute value of

z, and z = a − b ı denotes the complex conjugate of
z, where ı2 = −1, and a, b ∈ R.

We call any function from Zn2 to Z2 a Boolean
function on n variables and denote the set of all
Boolean functions by Bn. In general any function from
Zn2 to Zq (q ≥ 2 a positive integer) is said to be a
generalized Boolean function on n variables [5], the set
of all such functions being denoted by GBqn. Clearly
GB2

n = Bn. For any f ∈ Bn, the algebraic normal
form (ANF) is

f(xn, . . . , x1) =
⊕

a=(an,...,a1)∈Zn
2

µa(

n∏
i=1

xaii ) (1)

where µa ∈ Z2, for all a ∈ Zn2 . For any a ∈ Zn2 ,
wt(a) :=

∑n
i=1 ai is the Hamming weight. The

algebraic degree of f , deg(f) := max{wt(a) : a ∈
Zn2 , µa 6= 0}.

Now, let q ≥ 2 be an integer, and let ζ = e2πı/q

be the complex q-primitive root of unity. The Walsh–
Hadamard transform of f ∈ GBqn at any point u ∈ Zn2
is the complex valued function

Hf (u) = 2−
n
2

∑
x∈Zn

2

ζf(x)(−1)u·x. (2)

The inverse of the Walsh–Hadamard transform is given
by

ζf(y) = 2−
n
2

∑
u∈Zn

2

Hf (u)(−1)u·y. (3)
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A function f ∈ GBqn is a generalized bent function if
and only if |Hf (u)| = 1 for all u ∈ Zn2 . If q = 2 and n
is even, then a generalized bent function is called a bent
function. A function f ∈ Bn, where n is odd, is said
to be semi–bent if and only if |Hf (u)| ∈ {0,

√
2}, for

all u ∈ Zn2 . The maximum possible algebraic degree
of a bent function on n variables (when n even) is n

2
and for a semi–bent function on n variables (when n
odd) is n+1

2 (cf. [1], [2]).
The nega–Hadamard transform of f ∈ Bn at any

vector u ∈ Zn2 is the complex valued function

Nf (u) = 2−
n
2

∑
x∈Zn

2

(−1)f(x)⊕u·x ıwt(x). (4)

A function f ∈ Bn is said to be negabent if and only
if |Nf (u)| = 1 for all u ∈ Zn2 . If f ∈ Bn, then the
inverse of the nega–Hadamard transform Nf is

(−1)f(y) = 2−
n
2 ı−wt(y)

∑
u∈Zn

2

Nf (u)(−1)y·u, (5)

for all y ∈ Zn2 . We recall the following result.
Proposition 1: [6, Lemma 1] For any u ∈ Zn2 we

have ∑
x∈Zn

2

(−1)u·xıwt(x) = 2
n
2 ωnı−wt(u), (6)

where ω = (1+ ı)/
√
2 is a primitive 8th root of unity.

The Hadamard kernel, the nega–Hadamard kernel
and the identity transform on Z2

2, denoted by H , N
and I , respectively, are

H =
1√
2

(
1 1
1 −1

)
, N =

1√
2

(
1 ı
1 −ı

)
and

I =

(
1 0
0 1

)
.

The set of 2n different unitary transforms that are
obtained by performing tensor products H and N , n
times in any possible sequence is denoted by {H,N}n.
If RH and RN partition {1, . . . , n}, then the unitary
transform, U of dimension 2n × 2n, corresponding to
this partition is

U =
∏
j∈RH

Hj

∏
j∈RN

Nj (7)

where

Kj = I ⊗ I ⊗ . . .⊗ I ⊗K ⊗ I ⊗ . . .⊗ I

with K in the jth position, K ∈ {H,N} and “⊗”
indicating the tensor product of matrices. Let ix ∈
{0, 1, . . . , 2n − 1} denote a row or column number of
the unitary matrix U . We write

ix = xn2
n−1 + xn−12

n−2 + · · ·+ x22 + x1

where x = (xn, . . . , x1) ∈ Zn2 . For any Boolean
function f ∈ Bn, let (−1)f denote a 2n × 1 column
vector whose iu row entry is (−1)f(u), for all u ∈ Zn2 .
The spectrum of f with respect to U ∈ {H,N}n is
the vector U(−1)f . If RH = {1, . . . , n}, then the
entry in the iuth row of U(−1)f is Hf (u) and, if
RN = {1, . . . , n}, then the entry in the iuth row of
U(−1)f is Nf (u), for all u ∈ Zn2 . In the former case,
U(−1)f is said to be the Walsh–Hadamard spectrum
of f , while in the latter case it is the nega–Hadamard
spectrum of f . The spectrum of a function f with
respect to a unitary transform U is said to be flat if
and only if the absolute value of each entry of U(−1)f
is 1.

Definition 2: A function f ∈ Bn is said to be bent4
if there exists at least one U ∈ {H,N}n such that
U(−1)f is flat.

The bent and the negabent functions belong to the
class of bent4 functions as extreme cases. For results
on negabent and bent–negabent functions we refer to
[3], [6], [7], [9].

In this paper, we consider the spectra of Boolean
functions with respect to the action of unitary trans-
forms in {H,N}n. We prove that the maximum
possible algebraic degree of a bent4 function on n
variables is dn2 e, and hence solve an open problem
posed by Riera and Parker [4]. Further, we obtain a
relationship between bent and bent4 functions which is
a generalization of the relationship between bent and
negabent Boolean functions proved by Parker and Pott
[3, Theorem 12].

II. BENT PROPERTIES WITH RESPECT TO {H,N}n

Let sr(x) be the homogeneous symmetric Boolean
function of algebraic degree r whose ANF is

sr(x) =
⊕

1≤i1<...<ir≤n

xi1 . . . xir . (8)

The intersection of two vectors c = (cn, . . . , c1),x =
(xn, . . . , x1) ∈ Zn2 is defined as

c ∗ x = (cnxn, . . . , c1x1).

We define the function sr(c ∗ x) as

sr(c ∗ x) =
⊕

1≤i1<...<ir≤n

(ci1xi1) . . . (cirxir ). (9)

Suppose, the function g ∈ GB4n defined as g(x) =
wt(x) mod 4, for all x ∈ Zn2 . In the following propo-
sition and its corollary we obtain a connection between
g and s2 which plays a crucial role in developing
connections between different bent criteria. It is to
be noted that the result of Proposition 3 is mentioned
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earlier by Su, Pott and Tang in the proof of [9, Lemma
1]. We provide an alternative proof.

Proposition 3: If g ∈ GB4n is defined by g(x) =
wt(x) mod 4 for all x ∈ Zn2 , then

g(x) = 1 · x+ 2s2(x) = wt(x) mod 4, (10)

for all x ∈ Zn2 .
Proof: By Proposition 1, we have

2−
n
2

∑
x∈Zn

2

(−1)u·xıwt(x) = ωnı−wt(u). (11)

Therefore, g(x) = wt(x) mod 4 is a generalized bent
on Z4, which we refer to as Z4-bent. According to [8,
Corollary 15] and [5], there exist a, b ∈ Bn such that b
and a+b are bent functions and g(x) = a(x)+2b(x) =
wt(x) mod 4, for all x ∈ Zn2 . From this we have

2b(x) ≡ wt(x)− a(x) (mod 4),

i.e.,
2 | (wt(x)− a(x)),

i.e.,
a(x) = 1 · x

where 1 = (1, 1, . . . , 1) ∈ Zn2 , for all x ∈ Zn2 .
Therefore,

g(x) = 1·x+2b(x) = wt(x) mod 4, for all x ∈ Zn2 ,

i.e.,

b(x) =
−1 · x+ wt(x)

2
mod 2, for all x ∈ Zn2 .

Since b ∈ Bn is a symmetric bent function and
b(0) = 0 we have b(x) = s2(x) or s2(x)⊕s1(x). Since
b(0 . . . 01) = 0, we have b(x) = s2(x). Therefore

g(x) = 1·x+2s2(x) = wt(x) mod 4, for all x ∈ Zn2 .

The following corollary generalizes (10) which is use-
ful in finding a general expression of entries of any
matrix U ∈ {H,N}n.

Corollary 4: Let x, c ∈ Zn2 . Then

c · x+ 2s2(c ∗ x) = wt(c ∗ x) mod 4, (12)

for all x ∈ Zn2 .
Proof: In Proposition 3 it is proved that

1 · x+ 2s2(x) = wt(x) mod 4, for all x ∈ Zn2 ,

i.e.,

(1, . . . , 1) · (xn, . . . , x1) + 2s2(xn, . . . , x1)

= wt(xn, . . . , x1) mod 4, for all x ∈ Zn2 .

Replacing xi by cixi we get

(1, . . . , 1) · (cnxn, . . . , c1x1) + 2s2(cnxn, . . . , c1x1)

= wt(cnxn, . . . , c1x1) mod 4, for all x ∈ Zn2 ,

i.e.,

(cnxn ⊕ . . .⊕ c1x1) + 2s2(cnxn, . . . , c1x1)

= wt(cnxn, . . . , c1x1) mod 4, for all x ∈ Zn2 .

Therefore,

c·x+2s2(c∗x) = wt(c∗x) mod 4, for all x ∈ Zn2 .

Riera and Parker [4, Lemma 7] have obtained a general
expression for the entries of any matrix U ∈ {H,N}n.
We obtain an alternative description below which we
use to connect the spectrum U(−1)f of any f ∈ Bn
to the Walsh–Hadamard spectra of some associated
functions.

Theorem 5: If U =
∏
j∈RH

Hj

∏
j∈RN

Nj , is a
unitary matrix constructed as in (7), corresponding to
the partition RH , RN of {1, . . . , n} where n ≥ 2, then
for any u,x ∈ Zn2 the entry in the iuth row and ixth
column of 2

n
2 U is

(−1)u·x⊕s2(c∗x)ıc·x,

where c = (cn, . . . , c1) ∈ Zn2 is such that ci = 0 if
i ∈ RH and ci = 1 if i ∈ RN .

Proof: We prove this by induction. Let n = 2. If
c = (0, 0) then clearly U = H ⊗H , and if c = (1, 1)
then U = N ⊗ N . We explicitly compute U when
c = (0, 1) and c = (1, 0) and find that U is equal to

H ⊗N =
1

2


1 ı 1 ı
1 −ı 1 −ı
1 ı −1 −ı
1 −ı −1 ı

 ,

and

N ⊗H =
1

2


1 1 ı ı
1 −1 ı −ı
1 1 −ı −ı
1 −1 −ı ı

 ,

respectively. By Corollary 4

(−1)u·x⊕s2(c∗x)ıc·x = (−1)u·xıwt(c∗x).

Suppose the result is true for n. Let u,x, c ∈ Zn2 ,
and u′ = (un+1,u),x

′ = (xn+1,x), c
′ = (cn+1, c) ∈

Zn+1
2 . Let U ∈ {H,N}n be the unitary transform

induced by the partition corresponding to c ∈ Zn2 . The
transform corresponding to the partition induced by
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c′ = (0, c) ∈ Zn+1
2 is H ⊗ U . By taking the tensor

product of H and U we obtain

2
n+1
2 (H ⊗ U) =

(
A11 A12

A21 A22

)
where

A11 =
(
(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(0,u)·(0,x)ıwt((0,c)∗(0,x))

)
2n×2n

,

A12 =
(
(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(0,u)·(1,x)ıwt((0,c)∗(1,x))

)
2n×2n

,

A21 =
(
(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(1,u)·(0,x)ıwt((0,c)∗(0,x))

)
2n×2n

and

A22 =
(
(−1)(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(1,u)·(1,x)ıwt((0,c)∗(1,x))

)
2n×2n

.

Therefore,

2
n+1
2 (H ⊗ U) =

(
(−1)u

′·x′ ıwt(c
′∗x′)

)
2n+1×2n+1

.

The transform corresponding to the partition induced
by c′ = (1, c) ∈ Zn+1

2 is N ⊗U . By taking the tensor
product of H and U we obtain

2
n+1
2 (N ⊗ U) =

(
B11 B12

B21 B22

)
where

B11 =
(
(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(0,u)·(0,x)ıwt((1,c)∗(0,x))

)
2n×2n

,

B12 =
(
ı(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(0,u)·(1,x)ıwt((1,c)∗(1,x))

)
2n×2n

,

B21 =
(
(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(1,u)·(0,x)ıwt((1,c)∗(0,x))

)
2n×2n

and

B22 =
(
(−ı)(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(1,u)·(1,x)ıwt((1,c)∗(1,x))

)
2n×2n

.

Therefore,

2
n+1
2 (N ⊗ U) =

(
(−1)u

′·x′ ıwt(c
′∗x′)

)
2n+1×2n+1

.

This proves the result.

Using Theorem 5 we can state that given any U ∈
{H,N}n there exists c ∈ Zn2 such that for any f ∈ Bn
the iuth row of the column vector U(−1)f is

Uc
f (u) = 2−

n
2

∑
x∈Zn

2

(−1)f(x)⊕s2(c∗x)ıc·x(−1)u·x

= 2−
n
2

∑
x∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x

+ ı2−
n
2

∑
x6∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x.

(13)

Therefore, Uc
f (u) is related to the Walsh–Hadamard

transform of restrictions f(x) ⊕ s2(c ∗ x) to the
subspace c⊥ and its coset. From another perspective
this transform provides a measure of the distance of the
function f to the functions of the form s2(c∗x)⊕u·x.
Thus, if |Uc

f (u)| has high value for a choice of
u, c ∈ Zn2 then f has low Hamming distance from
the function of the form s2(c ∗ x)⊕u · x. This means
that the function may be approximated efficiently by
the function s2(c ∗ x) ⊕ u · x. This may have some
cryptographic significance for the spectra of f with
respect to the transform U ∈ {H,N}n.

Riera and Parker [4, p. 4125 ] posed the following
open problem:

What is the maximum algebraic degree of a bent4
Boolean function of n variables?

Su, Pott and Tang [9] have recently proved that the
maximum algebraic degree of a bent–negabent func-
tion is n

2 (note that n is even, since bent functions
exist only on even variables). Further, they have pro-
vided a method to construct bent–negabent functions
of algebraic degree ranging from 2 to n

2 . In the next
theorem we solve the problem proposed by Riera and
Parker and thus generalize the result related to the
upper bound of algebraic degree proved in [9].

Theorem 6: The maximum algebraic degree of a
bent4 Boolean function on n variables is dn2 e.

Proof: Using Theorem 5 we can state that given
any U ∈ {H,N}n there exists c ∈ Zn2 such that for
any f ∈ Bn the iuth row entry of the column vector
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U(−1)f is

2
n
2 Uc

f (u) =
∑
x∈Zn

2

(−1)f(x)⊕s2(c∗x)ıc·x(−1)u·x

=
∑
x∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x

+ ı
∑
x 6∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x.

(14)

Let us suppose that f is bent4 with respect to the
chosen transform U . Therefore, we have |Uc

f (u)| = 1,
for all u ∈ Zn2 . By (14)

2n =

∑
x∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x
2

+

∑
x6∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x
2

.

(15)

By Jacobi’s two-square theorem we know that 2n has a
unique representation (disregarding the sign and order)
as a sum of two squares, namely 2n = (2

n
2 )2 + 0, if

n is even, and 2n = (2
n−1
2 )2 + (2

n−1
2 )2, if n is odd.

Let gc(x) = s2(c ∗ x), for all x ∈ Zn2 .

|Hf⊕gc(u)| = |2−
n
2

∑
x∈Zn

2

(−1)f(x)⊕s2(c∗x)(−1)u·x|

= |2−n
2

∑
x∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x

+ 2−
n
2

∑
x 6∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x|

= 1,
(16)

for all u ∈ Zn2 . Therefore, f ⊕ gc is a bent function
and its algebraic degree is bounded above by n

2 . The
algebraic degree of gc is upper-bounded by 2, so the
upper bound of the algebraic degree of a bent4 Boolean
function f is n

2 , when n is even.
In case n is odd by a similar argument we get

|Hf⊕gc(u)| ∈ {0,
√
2}, that is f⊕gc is semi–bent, and

therefore the algebraic degree of f is bounded above
by n+1

2 .

III. CONNECTING BENT AND BENT4 FUNCTIONS

Let f ∈ Bn and V is a subspace of Zn2 . For any
a ∈ Zn2 the restriction of f to the coset a + V is
defined as f |a+V (x) = f(a + x), for all x ∈ V . It
is to be noted that the restriction of a function f to a
coset a+V is unique up to a translation. The following
lemma is well known (cf. [1]), nevertheless we provide
a complete proof for clarity.

Lemma 7: Let n = 2k, f ∈ Bn a bent function, V
be an (n−1)-dimensional subspace of Zn2 , a ∈ Zn2 \V
such that Zn2 = V ∪(a⊕V ). Then the restrictions of f
to V and a⊕ V , denoted f |V and f |a⊕V respectively,
are semi–bent functions and Hf |V (u)Hf |a⊕V

(u) = 0
for all u ∈ Fn2 .

Proof: Since the dimension of V is n − 1, the
dimension of the orthogonal subspace V ⊥ is 1. Let
V ⊥ = {0,b}. Since a 6∈ V , a ·b = 1. For all u ∈ Zn2
we have the following

2
n
2Hf (u) =

∑
x∈V

(−1)f(x)⊕u·x

+ (−1)u·a
∑
x∈V

(−1)f(x+a)⊕u·x

∈ {−2n
2 , 2

n
2 }

(17)

2
n
2Hf (u⊕ b) =

∑
x∈V

(−1)f(x)⊕u·x

− (−1)u·a
∑
x∈V

(−1)f(x+a)⊕u·x

∈ {−2n
2 , 2

n
2 }.

(18)

By adding (17) and (18) we obtain∑
x∈V (−1)f(x)⊕u·x ∈ {−2n

2 , 0, 2
n
2 }, and

by subtracting (18) from (17) we obtain∑
x∈V (−1)f(a⊕x)⊕u·x ∈ {−2n

2 , 0, 2
n
2 }. This

proves that both f |V and f |a⊕V are semi–bent
functions. Further, since the sums in (17) and (18)
are both in {−2n

2 , 2
n
2 }, for all u ∈ Zn2 , we have

Hf |V (u)Hf |a⊕V
(u) = 0, for all u ∈ Zn2 .

This leads us to a generalization of [3, Theorem 12]
due to Parker and Pott. Recall that for any c ∈ Zn2 we
have defined gc(x) = s2(c ∗ x), for all x ∈ Zn2 .

Theorem 8: Let f ∈ Bn where n is even. Then the
following two statements are true.

1) If f is bent, then f ⊕ gc is bent4 and
|Uc
f⊕gc(u)| = 1, for all u ∈ Zn2

2) If f is bent4, i.e., there exists c ∈ Zn2 such that
|Uc
f (u)| = 1, for all u ∈ Zn2 , then f ⊕gc is bent.
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Proof: Suppose f is a bent function. If c = 0
there is nothing to prove. If c 6= 0, then

2
n
2 Uc

f⊕gc(u) =
∑
x∈Zn

2

(−1)f(x)⊕s2(c∗x)ıwt(c∗x)(−1)u·x

=
∑
x∈Zn

2

(−1)f(x)⊕s2(c∗x)⊕s2(c∗x)⊕u·xıc·x

=
∑
x∈Zn

2

(−1)f(x)⊕u·xıc·x

=
∑
x∈c⊥

(−1)f(x)⊕u·x

+ ı
∑
x6∈c⊥

(−1)f(x)⊕u·x.

(19)

Since f is a bent function and c⊥ is a subspace of
codimension 1, by Lemma 7 the restrictions of f on
c⊥ and its remaining coset are semi–bent and their
Walsh-Hadamard spectra are disjoint. Therefore, the
right hand side of the above equation belongs to the
set {±2n

2 ,±2n
2 ı} for all u ∈ Zn2 . This proves the first

statement.
In the second part, we assume f to be a bent4

function such that there exists c ∈ Zn2 for which
|Uc
f (u)| = 1, for all u ∈ Zn2 . We have

Uc
f (u) = 2−

n
2

∑
x∈Zn

2

(−1)f(x)ıwt(c∗x)(−1)u·x

= 2−
n
2

∑
x∈Zn

2

ıwt(c∗x)+2f(x)(−1)u·x.
(20)

Thus, the function h(x) = wt(c ∗x)+ 2f(x) mod 4,
for all x ∈ Zn2 , is a Z4-bent function which implies
the existence of Boolean functions a, b ∈ Bn such that
b, a+ b are bents [8, Corollary 15], with

h(x) = a(x) + 2b(x)

= wt(c ∗ x) + 2f(x) mod 4,
(21)

for all x ∈ Zn2 . Therefore, 2 | (a(x)−wt(c∗x)), which
implies a(x) = c · x, for all x ∈ Zn2 . By Corollary 4
and (20) we have

b(x) = f(x)⊕ s2(c ∗ x),

for all x ∈ Zn2 . Since b ∈ Bn is a bent function, f⊕gc
is a bent function. Thus, we have proved that if f is
bent4 function, with respect to the unitary transform
corresponding to c ∈ Zn2 , then f⊕gc is a bent function.

IV. CONCLUSION

In this paper we have developed an approach to
study the action of the transforms in {H,N}n on

Boolean functions on n variables. By using our ap-
proach we have proved that the maximum possible
algebraic degree of a bent4 function on n variables
is dn2 e and hence solve an open problem proposed
by Riera and Parker [4]. We have also obtained a
connection between bent and bent4 functions, which
is a generalization of the connection between bent
and negabent function proved by Parker and Pott
[3]. It is observed that if the absolute value of an
entry in the spectrum of a function with respect to
a transform U ∈ {H,N}n is large, then the function
has low Hamming distance from a particular quadratic
function determined by U . Thus, we have established
a connection between the generalized bent criteria
and approximation of a Boolean function of arbitrary
algebraic degree by quadratic Boolean functions.
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