
Non-uniform cracks in the concrete:
the power of free precomputation

Daniel J. Bernstein1,2 and Tanja Lange2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the
Netherlands

tanja@hyperelliptic.org

Abstract. AES-128, the NIST P-256 elliptic curve, DSA-3072, RSA-
3072, and various higher-level protocols are frequently conjectured to
provide a security level of 2128. Extensive cryptanalysis of these primi-
tives appears to have stabilized sufficiently to support such conjectures.

In the literature on provable concrete security it is standard to define 2b

security as the nonexistence of high-probability attack algorithms taking
time ≤2b. However, this paper provides overwhelming evidence for the
existence of high-probability attack algorithms against AES-128, NIST
P-256, DSA-3072, and RSA-3072 taking time considerably below 2128,
contradicting the standard security conjectures.

These attack algorithms are not realistic; do not indicate any actual
security problem; do not indicate any risk to cryptographic users; and
do not indicate any failure in previous cryptanalysis. Any actual use of
these attack algorithms would be much more expensive than the conven-
tional 2128 attack algorithms. However, this expense is not visible to the
standard definitions of security. Consequently the standard definitions of
security fail to accurately model actual security.

The underlying problem is that the standard set of algorithms, namely
the set of algorithms taking time ≤2b, fails to accurately model the set
of algorithms that an attacker can carry out. This paper analyzes this
failure in detail, and analyzes several ideas for fixing the security defini-
tions.

Keywords: provable security, concrete security, algorithm cost metrics,
non-uniform algorithms, non-constructive algorithms

This work was supported by the National Science Foundation under grant 1018836,
by the Netherlands Organisation for Scientific Research (NWO) under grant
639.073.005, and by the European Commission under Contract ICT-2007-216676
ECRYPT II. Permanent ID of this document: 7e044f2408c599254414615c72b3adbf.
Date: 2013.09.14.

2 Daniel J. Bernstein and Tanja Lange

1 Introduction

The Basic Principles of Modern Cryptography . . .

Principle 1—Formulation of Exact Definitions

One of the key intellectual contributions of modern cryptography has
been the realization that formal definitions of security are essential pre-
requisites for the design, usage, or study of any cryptographic primitive
or protocol. —Katz and Lindell [53]

In this paper we will show that CBC MAC construction is secure if the
underlying block cipher is secure. To make this statement meaningful
we need first to discuss what we mean by security in each case.

—Bellare, Kilian, and Rogaway [12, Section 1.2]

Why do we believe that AES-CBC-MAC is secure? More precisely: Why do we
believe that an attacker limited to 2100 bit operations, and 250 message blocks,
cannot break AES-CBC-MAC with probability more than 2−20?

The standard answer to this question has three parts. The first part is a
concrete definition of what it means for a cipher or a MAC to be secure. We quote
from the classic paper [12, Section 1.3] by Bellare, Kilian, and Rogaway: the
PRP-“insecurity” of a cipher such as AES (denoted “Advprp

AES(q′, t′)”) is defined
as the “maximum, over all adversaries restricted to q′ input-output examples
and execution time t′, of the ‘advantage’ that the adversary has in the game of
distinguishing [the cipher for a secret key] from a random permutation.” The

PRF-insecurity of m-block AES-CBC-MAC (denoted “Advprf
CBCm-AES(q, t)”) is

defined similarly, using a uniform random function rather than a uniform random
permutation.

The second part of the answer is a concrete security theorem bounding the
insecurity of AES-CBC-MAC in terms of the insecurity of AES, or more generally
the insecurity of F -CBC-MAC in terms of the insecurity of F for any `-bit
block cipher F . Specifically, here is the main theorem of [12]: “for any integers
q, t,m ≥ 1,

Advprf
CBCm-F (q, t) ≤ Advprp

F (q′, t′) +
q2m2

2l−1

where q′ = mq and t′ = t + O(mql).” One can object that the O constant is
unspecified, making this theorem meaningless as stated for any specific q, t,m
values; but it is easy to imagine a truly concrete theorem replacing O(mql) with
the time for mql specified operations.

The third part of the answer is a concrete conjecture regarding the security
of AES. NIST’s call for AES submissions [66, Section 4] identified “the extent
to which the algorithm output is indistinguishable from [the output of] a [uni-
form] random permutation” as one of the “most important” factors in evaluat-
ing candidates; cryptanalysts have extensively studied AES without finding any
worrisome PRP-attacks; it seems reasonable to conjecture that no dramatically
better attacks exist. Of course, this part of the story depends on the details of

Non-uniform cracks in the concrete: the power of free precomputation 3

AES; analogous conjectures regarding, e.g., DES would have to be much weaker.
For example, Bellare and Rogaway in [16, Section 3.6] wrote the following:

“For example we might conjecture something like:

Advprp-cpa
DES (At,q) ≤ c1 ·

t/TDES

255
+ c2 ·

q

240

. . . In other words, we are conjecturing that the best attacks are either
exhaustive key search or linear cryptanalysis. We might be bolder with
regard to AES and conjecture something like

Advprp-cpa
AES (Bt,q) ≤ c1 ·

t/TAES

2128
+ c2 ·

q

2128
.”

One can again object that the c1 and c2 are unspecified here, making these con-
jectures non-concrete and unfalsifiable as stated. A proper concrete conjecture
would specify, e.g., c1 = c2 = 3. One can also quibble that the TDES and TAES

factors do not properly account for inner-loop speedups in exhaustive key search
(see, e.g., [27]), that q/240 is a rather crude model of the success probability of
linear cryptanalysis, etc., but aside from such minor algorithm-analysis details
the conjectures seem quite reasonable.

This AES security conjecture (with small specified c1 and c2) says, in partic-
ular, that the attacker cannot PRP-break AES with probability more than 2−21

after 250 cipher outputs and 2100 bit operations. The CBC-MAC security theo-
rem (with small specified O) then says that the same attacker cannot PRF-break
AES-CBC-MAC with probability more than 2−20.

Of course, this answer does not prove that AES-CBC-MAC is secure; it re-
lies on a conjecture regarding AES security. Why not simply conjecture that
AES-CBC-MAC is secure? The answer is scalability. It is reasonable to ask
cryptanalysts to intensively study AES, eventually providing confidence in the
security of AES, while it is much less reasonable to ask cryptanalysts to inten-
sively study AES-CBC-MAC, AES-OMAC, AES-CCM, AES-GCM, AES-OCB,
and hundreds of other AES-based protocols. Partitioning the AES-CBC-MAC
security conjecture into an AES security conjecture and a CBC-MAC security
proof drastically simplifies the cryptanalyst’s job.

The same three-part pattern has, as illustrated by Appendix L, become com-
pletely standard throughout the literature on concrete “provable security”. First
part: The insecurity of X — where X is a primitive such as AES or RSA, or a
higher-level protocol such as AES-CBC-MAC or RSA-PSS — is defined as the
maximum, over all algorithms A (“attacks”) that cost at most C, of the probabil-
ity (or advantage in probability) that A succeeds in breaking X. This insecurity
is explicitly a function of the cost limit C; typically C is separated into (1) a
time limit t and (2) a limit q on the number of oracle queries. Note that this
function depends implicitly on how the “cost” of an algorithm is defined.

Often “the (q, t)-insecurity of X is at most ε” is abbreviated “X is (q, t, ε)-
secure”. Many papers prefer the more concise notation and do not even mention
the insecurity function. We emphasize, however, that this is merely a superficial

4 Daniel J. Bernstein and Tanja Lange

change in notation, and that both of the quotes in this paragraph refer to exactly
the same situation: namely, the nonexistence of algorithms that cost at most (q, t)
and that break X with probability more than ε.

Second part: Concrete “provable security” theorems state that the insecurity
(or security) of a complicated object is bounded in terms of the insecurity (or
security) of a simpler object. Often these theorems require restrictions on the
types of attacks allowed against the complicated object: for example, Bellare and
Rogaway in [14] showed that RSA-OAEP has similar security to RSA against
generic-hash attacks (attacks in the “random-oracle model”).

Third part: The insecurity of a well-studied primitive such as AES or RSA-
1024 is conjectured to match the success probability of the best attack known.
For example, Bellare and Rogaway, evaluating the concrete security of RSA-FDH

and RSA-PSS, hypothesized that “it takes time Ce1.923(logN)1/3(log logN)2/3 to
invert RSA”; Bellare, evaluating the concrete security of NMAC-h and HMAC-
h, hypothesized that “the best attack against h as a PRF is exhaustive key
search”. See [15, Section 1.4] and [7, Section 3.2]. These conjectures seem to
precisely capture the idea that cryptanalysts will not make significant further
progress in attacking these primitives.

1.1. Primary contribution of this paper. Our primary goal in this paper
is to convincingly undermine all of the standard security conjectures reviewed
above. Specifically, Sections 2, 3, 4, and 5 show — assuming standard, amply
tested heuristics — that there exist high-probability attacks against AES, the
NIST P-256 elliptic curve, DSA-3072, and RSA-3072 taking considerably less
than 2128 time. In other words, the insecurity of AES, NIST P-256, DSA-3072,
and RSA-3072, according to the standard concrete-security definitions, reaches
essentially 100% for a time bound considerably below 2128. The conjectures by
Bellare and Rogaway in [15, Section 1.4], [16, Section 3.6], [7, Section 3.2],
etc. are false for every reasonable assignment of the unspecified constants.

The same ideas show that there exist high-probability attacks against AES-
CBC-MAC, RSA-3072-PSS, RSA-3072-OAEP, and thousands of other “provably
secure” protocols, in each case taking considerably less than 2128 time. It is not
clear that similar attacks exist against every such protocol in the literature, since
in some cases the security reductions are unidirectional, but undermining these
conjectures also means undermining all of the security arguments that have those
conjectures as hypotheses.

We do not claim that this reflects any actual security problem with AES, NIST
P-256, DSA-3072, and RSA-3072, or with higher-level protocols built from these
primitives. On the contrary! Our constructions of these attacks are very slow; we
conjecture that any fast construction of these attacks has negligible probability
of success. Users have nothing to worry about.

However, the standard metrics count only the cost of running the attack, not
the cost of finding the attack in the first place. This means that there is a very
large gap between the actual insecurity of these primitives and their insecurity
according to the standard metrics.

Non-uniform cracks in the concrete: the power of free precomputation 5

This gap is not consistent across primitives. We identify different gaps for
different primitives (for example, the asymptotic exponents for high-probability
attacks drop by a factor of 1.5 for ECC and a factor of only 1.16 for RSA), and
we expect that analyzing more primitives and protocols in the same way will
show even more diversity. In principle a single attack is enough to illustrate that
the standard definitions of security do not accurately model actual security, but
the quantitative variations from one attack to another are helpful in analyzing
the merits of ideas for fixing the definitions. It is of course also possible that the
gaps for the primitives we discuss will have to be reevaluated in light of even
better attacks.

1.2. Secondary contribution of this paper. Our secondary goal in this
paper is to propose a rescue strategy: a new way to define security — a definition
that restores, to the maximum extent possible, the attractive three-part security
arguments described above.

All of the gaps considered in this paper come from errors in quantifying feasi-
bility. Each of the high-probability attacks presented in this paper (1) has a cost
t according to the standard definitions, but (2) is obviously infeasible, even for
an attacker able to carry out a “reasonable” algorithm that costs t according to
the same definitions. The formalization challenge is to say exactly what “reason-
able” means. Our core objective here is to give a new definition that accurately
captures what is actually feasible for attackers.

This accuracy has two sides. First, the formally defined set of algorithms must
be large enough. Security according to the definition does not imply actual se-
curity if the definition ignores algorithms that are actually feasible. Second, the
formally defined set of algorithms must be small enough. One cannot conjecture
security on the basis of cryptanalysis if infeasible attacks ignored by cryptana-
lysts are misdeclared to be feasible by the security definition.

We actually analyze four different ideas for modifying the notion of feasibility
inside existing definitions:

– Appendix B.2: switching the definitions from the RAM metric used in [12]
to the NAND metric, an “alternative” mentioned in [12];

– Appendix B.3: switching instead to the AT metric, a standard hardware-
design metric formally defined by Brent and Kung in [29] in 1981;

– Appendix B.4: adding constructivity to the definitions, by a simple trick that
we have not seen before (with a surprising spinoff, namely progress towards
formalizing collision resistance); and

– Appendix B.5: adding uniformity (families) to the definitions.

Readers unfamiliar with the RAM, NAND, and AT metrics should see Ap-
pendix A for a summary and pointers to the literature.

The general idea of modifying security definitions, to improve the accuracy
with which those definitions model actual security, is not new. A notable example
is the change from the algorithm cost metric used in [11], the original Crypto ’94
version of [12], to a more complicated algorithm cost metric used in subsequent
definitions of security; readers unfamiliar with the details should see Appendix A

6 Daniel J. Bernstein and Tanja Lange

for a review. The attacks in this paper show that this modification was not
enough, so we push the same general idea further, analyzing the merits of the
four modifications listed above. It is conceivable that this general idea is not the
best approach, so we also analyze the merits of two incompatible approaches:
(Appendix B.1) preserving the existing definitions of security; (Appendix B.7)
trying to build an alternate form of “provable security” without definitions of
security.

Ultimately we recommend the second and third modifications (AT and con-
structivity) as producing much more accurate models of actual feasibility. We
also recommend refactoring theorems (see Appendix B.6) to simplify further
changes, whether those changes are for even better accuracy or for other reasons.
We recommend against the first and fourth modifications (NAND and unifor-
mity). Full details of our analysis appear in Appendix B; the NAND and AT
analyses for individual algorithms appear in Sections 2, 3, 4, and 5. Appendix Q
is a frequently-asked-questions list, serving a role for this paper comparable to
the role that a traditional index serves for a book.

Our recommended modifications have several positive consequences. Incorrect
conjectures in the literature regarding the concrete security of primitives such
as AES can be replaced by quite plausible conjectures using the new definitions.
Our impression is that most of the proof ideas in the literature are compatible
with the new definitions, modulo quantitative changes, so most concrete-security
theorems in the literature can be replaced by meaningful concrete-security theo-
rems using the new definitions. The conjectures and theorems together will then
produce reasonable conclusions regarding the concrete security of protocols such
as AES-CBC-MAC.

We do not claim that all proofs can be rescued, and it is even possible that
some theorems will have to be abandoned entirely. Some troublesome examples
have been pointed out by Koblitz and Menezes in [55] and [56]. Our experience
indicates, however, that such examples are unusual. For example, there is nothing
troublesome about the CBC-MAC proof or the FDH proof; these proofs simply
need to be placed in a proper framework of meaningful definitions, conjectures,
and theorem statements.

1.3. Priority dates; credits; new analyses. On 20 March 2012 we publicly
announced the trouble with the standard AES conjectures; on 17 April 2012
we publicly announced the trouble with the standard NIST P-256, DSA-3072,
and RSA-3072 conjectures. The low-probability case of the AES trouble was
observed independently by Koblitz and Menezes and announced earlier in March
2012; further credits to Koblitz and Menezes appear below. We are not aware of
previous publications disputing the standard concrete-security conjectures.

Our attacks on AES, NIST P-256, DSA-3072, and RSA-3072 use many stan-
dard cryptanalytic techniques cited in Sections 2, 3, 4, and 5. We introduce
new cost analyses in all four sections, and new algorithm improvements in Sec-
tions 3, 4, and 5; our improvements are critical for beating 2128 in Section 5. In
Sections 2, 3, and 4 the standard techniques were already adequate to (heuris-
tically) disprove the standard 2128 concrete-security conjectures, but as far as

Non-uniform cracks in the concrete: the power of free precomputation 7

we know we were the first to point out these contradictions. We do not think
the contradictions were obvious; in many cases the standard techniques were
published decades before the conjectures!

This paper was triggered by a 23 February 2012 paper [55], in which Koblitz
and Menezes objected to the non-constructive nature of Bellare’s security proof
[7] for NMAC. Bellare’s security theorem states a quantitative relationship be-
tween the standard-definition-insecurity of NMAC-h and the standard-definition-
insecurity of h: the existence of a fast attack on NMAC-h implies the existence of
a fast attack on h. The objection is that the proof does not reveal a fast method
to compute the second attack from the first: the proof left open the possibility
that the fastest algorithm that can be found to attack NMAC-h is much faster
than the fastest algorithm that can be found to attack h.

An early-March update of [55] added weight to this objection by pointing out
the (heuristic) existence of a never-to-be-found fast algorithm to attack any 128-
bit function h. The success probability of the algorithm was only about 2−64,
but this was still enough to disprove Bellare’s security conjectures. Koblitz and
Menezes commented on “how difficult it is to appreciate all the security implica-
tions of assuming that a function has prf-security even against unconstructible
adversaries”.

Compared to [55], we analyze a much wider range of attacks, including higher-
probability PRF attacks and attacks against various public-key systems, showing
that the difficulties here go far beyond PRF security. We also show quantitative
variations of the difficulties between one algorithm cost metric and another, and
we raise the possibility of eliminating the difficulties by carefully selecting a cost
metric.

Readers who find these topics interesting may also be interested in the fol-
lowup paper [56] by Koblitz and Menezes, especially the detailed discussion in
[56, Section 2] of “two examples where the non-uniform model led researchers
astray”. See also Appendices Q.13, Q.14, and Q.15 of our paper for further
comments on the concept of non-uniformity.

2 Breaking AES

This section analyzes the cost of various attacks against AES. All of the attacks
readily generalize to other block ciphers; none of the attacks exploit any partic-
ular weakness of AES. We focus on AES because of its relevance in practice and
to have concrete numbers to illustrate the attacks.

All of the (single-target) attacks here are “PRP” attacks: i.e., attacks that
distinguish the cipher outputs for a uniform random key (on attacker-selected
inputs) from outputs of a uniform random permutation. Some of the attacks go
further, recovering the cipher key, but this is not a requirement for a distinguish-
ing attack.

2.1. Breaking AES with MD5. We begin with an attack that does not use any
precomputations. This attack is feasible, and in fact quite efficient; its success

8 Daniel J. Bernstein and Tanja Lange

probability is low, but not nearly as low as one might initially expect. This is a
warmup for the higher-success-probability attack of Section 2.2.

Let P be a uniform random permutation of the set {0, 1}128; we label elements
of this set in little-endian form as integers 0, 1, 2, . . . without further comment.
The pair (P (0), P (1)) is nearly a uniform random 256-bit string: it avoids 2128

strings of the form (x, x) but is uniformly distributed among the remaining
2256 − 2128 strings.

If k is a uniform random 128-bit string then the pair (AESk(0),AESk(1))
is a highly nonuniform random 256-bit string, obviously incapable of covering
more than 2128 possibilities. One can reasonably guess that an easy way to
distinguish this string from (P (0), P (1)) is to feed it through MD5 and output
the first bit of the result. The success probability p of this attack — the absolute
difference between the attack’s average output for input (AESk(0),AESk(1))
and the attack’s average output for input (P (0), P (1)) — is far below 1, but it
is almost certainly above 2−80, and therefore many orders of magnitude above
2−128. See Appendix V for relevant computer experiments.

To understand why p is so large, imagine replacing the first bit of MD5 with
a uniform random function from {0, 1}256 to {0, 1}, and assume for simplicity
that the 2128 keys k produce 2128 distinct strings (AESk(0),AESk(1)). Each key
k then has a 50% chance of choosing 0 and a 50% chance of choosing 1, and
these choices are independent, so the probability that 2127 + δ keys k choose 1

is exactly
(

2128

2127+δ

)
/22

128

; the probability that at least 2127 + δ keys k choose 1 is

exactly
∑
i≥δ
(

2128

2127+i

)
/22

128

; the probability that at most 2127 − δ keys k choose

1 is the same. The other 2256 − 2129 possibilities for (P (0), P (1)) are practically
guaranteed to have far smaller bias. Consequently p is at least≈δ/2128 with prob-

ability approximately 2
∑
i≥δ
(

2128

2127+i

)
/22

128 ≈ 1−erf(δ/
√

2127) ≈ exp(−δ2/2127),

where erf is the standard error function. For example, p is at least ≈2−65 with
probability above 30%, and is at least ≈2−80 with probability above 99.997%.

Of course, MD5 is not actually a uniform random function, but it would be
astonishing for MD5 to interact with AES in such a way as to spoil this attack.
More likely is that there are some collisions in k 7→ (AESk(0),AESk(1)); but
such collisions are rare unless AES is deeply flawed, and in any event will tend
to push δ away from 0, helping the attack.

2.2. Precomputing larger success probabilities. The same analysis applies
to a modified attack Ds that appends a short string s to the AES outputs
(AESk(0),AESk(1)) before hashing them: with probability ≈ exp(−δ2/2127) the
attack Ds has success probability at least ≈δ/2128. If s is long enough to push the
hash inputs beyond one block of MD5 input then the iterated structure of MD5
seems likely to spoil the attack, so we define Ds using “capacity-1024 Keccak”
rather than MD5.

Consider, for example, δ = 267: with probability ≈ 1 − erf(23.5) ≈ 2−189 the
attack Ds has success probability at least ≈2−61. There are 2192 choices of 192-
bit strings s, so presumably at least one of them will have Ds having success
probability at least ≈2−61. Of course, actually finding such an s would require

Non-uniform cracks in the concrete: the power of free precomputation 9

inconceivable amounts of computation by the best methods known (searching
2189 choices of s, and computing 2128 hashes for each choice); but this is not
relevant to the definition of insecurity, which considers only the time taken by
Ds.

More generally, for any n ∈ {0, 1, 2, . . . , 64} and any s, with probability ≈
1 − erf(2n+0.5) ≈ exp(−22n+1), the attack Ds has success probability at least

≈2n−64. There are 23·2
2n

choices of (3·22n)-bit strings s, and 23·2
2n

is considerably
larger than exp(22n+1), so presumably at least one of these values of s will have
Ds having success probability at least ≈2n−64.

Similar comments apply to essentially any short-key cipher. There almost
certainly exists a (3 · 22n)-bit string s such that the following simple attack
achieves success probability ≈2n−K/2, where K is the number of bits in the
cipher key: query 2K bits of cipher output, append s, and hash the result to 1
bit. Later we will write p for the success probability; note that the string length
is close to 2Kp2.

As n increases, the cost of hashing 3 · 22n + 2K bits grows almost linearly
with 22n in the RAM metric and the NAND metric. It grows more quickly in
the AT metric: storing the 3 · 22n bits of s uses area at least 3 · 22n, and even
a heavily parallelizable hash function will take time proportional to 2n simply
to communicate across this area, for a total cost proportional to 23n. In each
metric there are also lower-order terms reflecting the cost of hashing per bit; we
suppress these lower-order terms since our concern is with much larger gaps.

2.3. Iteration (Hellman etc.). Large success probabilities are more efficiently
achieved by a different type of attack that iterates, e.g., the function f7 :
{0, 1}128 → {0, 1}128 defined by f7(k) = AESk(0)⊕ 7.

Choose an attack parameter n. Starting from f7(k), compute the sequence of
iterates f7(k), f27 (k), f37 (k), . . . , f2

n

7 (k). Look up each of these iterates in a table
containing the precomputed quantities f2

n

7 (0), f2
n

7 (1), . . . , f2
n

7 (2n − 1). If f j7 (k)

matches f2
n

7 (i), recompute f2
n−j

7 (i) as a guess for k, and verify this guess by
checking AESk(1).

This computation finds the target key k if k matches any of the following
keys: 0, f7(0), . . . , f2

n−1
7 (0); 1, f7(1), . . . , f2

n−1
7 (1); etc. If n is not too large (see

the next paragraph) then there are close to 22n different keys here. The compu-
tation involves ≤2n initial iterations; 2n table lookups; and, in case of a match,
≤2n iterations to recompute f2

n−j
7 (i). The precomputation performs many more

iterations, but this precomputation is only the cost of finding the algorithm, not
the cost of running the algorithm.

This heuristic analysis begins to break down as 3n approaches the key size
K. The central problem is that a chain f7(i), f27 (i), . . . could collide with one of
the other 2n−1 chains; this occurs with probability ≈23n/2K , since there are 2n

keys in this chain and almost 22n keys in the other chains. The colliding chains
will then merge, reducing the coverage of keys and at the same time requiring
extra iterations to check more than one value of i. This phenomenon loses a
small constant factor in the algorithm performance for n ≈ K/3 and much more
for larger n.

10 Daniel J. Bernstein and Tanja Lange

Assume from now on that n is chosen to be close to K/3. The algorithm then
has success chance ≈2−K/3. The algorithm cost is on the scale of 2K/3 in both
the RAM metric and the NAND metric; for the NAND metric one computes the
2n independent table lookups by sorting and merging.

This attack might not sound better (in the RAM metric) than the earlier
attack Ds, which achieves success chance ≈2−K/3 for some string s with ≈2K/3

bits. The critical feature of this attack is that it recognizes its successes. If the
attack fails to find k then one can change 7 to another number and try again,
almost doubling the success chance of the algorithm at the expense of doubling
its cost; for comparison, doubling the success chance of Ds requires quadrupling
its cost. Repeating this attack 2K/3 times reaches success chance ≈1 at cost
22K/3.

In the AT metric this attack is much more expensive. The table of precom-
puted quantities f2

n

7 (0), f2
n

7 (1), . . . , f2
n

7 (2n − 1) uses area on the scale of 2n, and
computing f2

n

7 (k) takes time on the scale of 2n, for a total cost on the scale of 22n

for an attack that finds ≈ 22n keys. One can compute f2
n

7 (0), f2
n

7 (1), . . . , f2
n

7 (2n−
1) in parallel within essentially the same bounds on time and area, replacing
each precomputed key with a small circuit that computes the key from scratch;
precomputation does not change the exponent of the attack. One can, more
straightforwardly, compute any reasonable sequence of 22n guesses for k within
essentially the same cost bound. Achieving success probability p costs essentially
2Kp.

2.4. Multiple targets. Iteration becomes more efficient when there are multiple
targets: U cipher outputs AESk1(0),AESk2(0), . . . ,AESkU (0) for U independent
uniform random keys k1, . . . , kU . Assume for simplicity that U is much smaller
than 2K ; the hypothesis U ≤ 2K/4 suffices for all heuristics used below.

Compute the iterates f7(k1), f27 (k1), . . . , f2
n

7 (k1), and similarly for each of
k2, . . . , kU ; this takes 2nU iterations. Look up each iterate in a table of 2nU
precomputed keys. Handle any match as above.

In the RAM metric or the NAND metric this attack has cost on the scale
of 2nU , just like applying the previous attack to the U keys separately. The
benefit of this attack is that it uses a larger table, producing a larger success
probability for each key: the precomputation covers 22nU keys instead of just
22n keys. To avoid excessive chain collisions one must limit 2n to 2K/3U−1/3 so
that 23nU does not grow past 2K ; the attack then finds each key with probability
22nU/2K = 2−K/3U1/3, with a cost of 2n = 2K/3U−1/3 per key, a factor of U2/3

better than handling each key separately. Finding each key with high probability
costs 22K/3U−2/3 per key.

As before, the AT metric assigns a much larger cost than the RAM and NAND
metrics. The computation of f2

n

7 (k1), f2
n

7 (k2), . . . , f2
n

7 (kU) is trivially parallelized,
taking time on the scale of 2n, but the 2nU precomputed keys occupy area 2nU ,
for a total cost on the scale of 22nU , i.e., 22n per key, for success probability
22nU/2K per key. Note that one can carry out the precomputation using essen-
tially the same area and time. There is a large benefit from handling U keys

Non-uniform cracks in the concrete: the power of free precomputation 11

together — finding all U keys costs essentially 2K , i.e., 2K/U per key — but this
benefit exists whether or not precomputation costs are taken into account.

2.5. Comparison. We summarize the insecurity established by the best attacks
presented above. Achieving success probability p against U keys costs

– RAM metric: ≈2Kp2 for p ≤ 2−K/3U−2/3; ≈(22K/3U−2/3)p for larger p.
– NAND metric: same.
– AT metric: ≈23K/2p3 for p ≤ 2−K/4U−1/2; ≈2KU−1p for larger p.

Figure G.1 graphs these approximations for U = 1, along with the cost of ex-
haustive search.

2.6. Previous work. All of the attacks described here have appeared before.
In fact, when the conjectures in [16, Section 3.6] and [7, Section 3.2] were made,
they were already inconsistent with known attacks.

The iteration idea was introduced by Hellman in [45] for the special case
U = 1. Many subsequent papers (see, e.g., [25] and [49]) have explored variants
and refinements of Hellman’s attack, including the easy generalization to larger
U . Hellman’s goal was to attack many keys for a lower RAM cost than attacking
each key separately; Hellman advertised a “cost per solution” of 22K/3 using
a precomputed table of size 22K/3. The generalization to larger U achieves the
same goal at lower cost, but the special case U = 1 remains of interest as a
non-uniform single-key attack.

Koblitz and Menezes in [55] recently considered a family of attacks analo-
gous to Ds. They explained that there should be a short string s where Ds has
success probability at least ≈ 2−K/2, and analyzed some consequences for prov-
able concrete secret-key security. However, they did not analyze higher levels of
insecurity.

Replacing Ds with a more structured family of attacks, namely linear crypt-
analysis, can be proven to achieve insecurity 2−K/2 at low cost. (See, for example,
[39, Section 7], which says that this is “well known in complexity theory”.) De,
Trevisan, and Tulsiani in [36] proved cost ≈2Kp2, for both the RAM metric
and the NAND metric, for any insecurity level p. A lucid discussion of the gap
between these attacks and exhaustive search appears in [36, Section 1], but with-
out any analysis of the resulting trouble for the literature on provable concrete
secret-key security, and without any analysis of possible fixes.

Biham, Goren, and Ishai in [23, Section 1.1] pointed out that Hellman’s attack
causes problems for defining strong one-way functions. The only solution that
they proposed was adding uniformity. Note that this solution abandons the goal
of giving a definition for, e.g., the strength of AES as a one-way function, or the
strength of protocols built on top of AES. We analyze this solution in detail in
Appendix B.5.

Our AT analysis appears to be new. In particular, we are not aware of previous
literature concluding that switching to the AT metric removes essentially all of
the benefit of precomputation for large p, specifically p > 2−K/4U−1/2.

12 Daniel J. Bernstein and Tanja Lange

3 Breaking the NIST P-256 elliptic curve

This section analyzes the cost of an attack against NIST P-256 [67], an elliptic
curve of 256-bit prime order ` over a 256-bit prime field Fp. The attack computes
discrete logarithms on this curve, recovering the secret key from the public key
and thus completely breaking typical protocols that use NIST P-256.

The attack does not exploit any particular weakness of NIST P-256. Switching
from NIST P-256 to another group of the same size (another curve over the same
field, a curve over another field, a hyperelliptic curve, a torus, etc.) does not
stop the attack. We focus on NIST P-256 for both concreteness and practical
relevance, as in the previous section.

3.1. The standard attack without precomputation. Let P be the specified
base point on the NIST P-256 curve. The discrete-logarithm problem on this
curve is to find, given another point Q on this curve, the unique integer k modulo
` such that Q = kP . The standard attack against the discrete-logarithm problem
is the parallelization by van Oorschot and Wiener [72] of Pollard’s rho method
[73], described in the following paragraphs.

This attack uses a pseudorandom walk on the curve points. To obtain the
(i + 1)-st point Pi+1, apply a hash function h : Fp → I to the x-coordinate of
Pi, select a step Sh(x(Pi)) from a sequence of precomputed steps Sj = rjP (with
random scalars rj for j ∈ I), and compute Pi+1 = Pi + Sh(x(Pi)). The size of
I is chosen large enough to have the walk simulate a uniform random walk; a
common choice, recommended in [87], is |I| = 20. The walk continues until it
hits a distinguished point: a point Pi where the last t bits of x(Pi) are equal to
zero. Here t is an attack parameter.

The starting point of the bth walk is of the form aP + bQ where a is chosen
randomly. Each step increases the multiple of P , so the distinguished point has
the form a′P + bQ for known a′, b. The triple (a′P + bQ, a′, b) is stored and a
new walk is started from a different starting point. If two walks hit the same
distinguished point then a′P + bQ = c′P +dQ which gives (a′− c′)P = (d− b)Q;
by construction d 6≡ b mod `, revealing k ≡ (a′ − c′)/(d− b) mod `.

After
√
` ≈ 2128 additions (in approximately 2128−t walks, using storage

2128−t), there is a high chance that the same point has been obtained in two
different walks. This collision is recognized from a repeated distinguished point
within approximately 2t additional steps.

3.2. Precomputed distinguished points. To use precomputations in this
attack, build a database of triples of the form (a′P, a′, 0), i.e., starting each walk
at a multiple of P . The attack algorithm takes this database and starts a new
walk at aP + bQ for random a and b. If this walk ends in a distinguished point
present in the database, the DLP is solved. If the walk continues for more than
2t+1 steps (perhaps because it is in a cycle) or reaches a distinguished point not
present in the database, the attack starts again from a new pair (a, b).

The parameter t is critical for RAM cost here, whereas it did not significantly
affect RAM cost in Section 3.1. Choose t as d(log2 `)/3e. One can see from the
following analysis that significantly smaller values of t are much less effective,

Non-uniform cracks in the concrete: the power of free precomputation 13

and that significantly larger values of t are much more expensive without being
much more effective.

Construct the database to have exactly 2t distinct triples, each obtained from
a walk of length at least 2t, representing a total of at least 22t (and almost
certainly O(22t)) points. Achieving this requires searching for starting points
in the precomputation (and optionally also varying the steps Sj and the hash
function) as follows. A point that enters a cycle without reaching a distinguished
point is discarded. A point that reaches a distinguished point in fewer than
2t steps is discarded; each point survives this with probability approximately
(1 − 1/2t)2

t ≈ 1/e. A point that produces a distinguished point already in the
database is discarded; to see that a point survives this with essentially constant
probability (independent of `), observe that each new step has chance 2−t of
reaching a distinguished point, and chance O(22t/`) = O(2−t) of reaching one of
the previous O(22t) points represented by the database. Computer experiments
that we reported in [22], as a followup to this paper, show that all theO constants
here are reasonably close to 1.

Now consider a walk starting from aP + bQ. This walk has chance approxi-
mately 1/e of continuing for at least 2t steps. If this occurs then those 2t steps

have chance approximately 1−(1−22t/`)2
t ≈ 1−exp(−23t/`) ≥ 1−1/e of reach-

ing one of the 22t points in the precomputed walks that were within 2t of the
distinguished points in the database. If this occurs then the walk is guaranteed
to reach a distinguished point in the database within a total of 2t+1 steps. The
algorithm thus succeeds (in this way) with probability at least (1−1/e)/e ≈ 0.23.
This is actually an underestimate, since the algorithm can also succeed with an
early distinguished point or a late collision.

To summarize, the attack uses a database of approximately 3
√
` distinguished

points; one run of the attack uses approximately 2 3
√
` curve additions and suc-

ceeds with considerable probability. The overall attack cost in the RAM metric
is a small constant times 3

√
`. The security of NIST P-256 in this metric has thus

dropped to approximately 286. Note that the precomputation here is on the scale
of 2170, much larger than the precomputation in Section 2.3 but much smaller
than the precomputation in Section 2.2.

In the NAND metric it is simplest to run each walk for exactly 2t+1 steps,
keeping track of the first distinguished point found by that walk and then com-
paring that distinguished point to the 2t points in the database. The overall
attack cost is still on the scale of 3

√
`.

In the AT metric the attack cost is proportional to 3
√
`
2
, larger than the

standard
√
`. In this metric one does better by running many walks in parallel:

if Z points are precomputed, one should run approximately Z walks in parallel
with inputs depending on Q. The precomputation then covers 2tZ points, and
the computations involving Q cover approximately 2tZ points, leading to a high
probability of success when 2tZ reaches

√
`. The AT cost is also 2tZ. This attack

has the same cost as the standard Pollard rho method, except for small constants;
there is no benefit in the precomputations.

14 Daniel J. Bernstein and Tanja Lange

3.3. Comparison. We summarize the insecurity established by the best attacks
presented above. Achieving success probability p costs

– RAM metric: ≈(p`)1/3.
– NAND metric: same.
– AT metric: ≈(p`)1/2.

Figure G.2 graphs these approximations.

3.4. Related work. Kuhn and Struik in [58] and Hitchcock, Montague, Carter,
and Dawson in [46] considered the problem of solving multiple DLPs at once.
They obtain a speedup of

√
U per DLP for solving U DLPs at once. Their

algorithm reuses the distinguished points found in the attack on Q1 to attack Q2,
reuses the distinguished points found for Q1 and Q2 to attack Q3, etc. However,
their results do not seem to imply our 3

√
` result: they do not change the average

walk length and distinguished-point probabilities, and they explicitly limit U to
c 4
√
` with c < 1. See also the recent paper [61] by Lee, Cheon, and Hong, which

considered solving DLPs with massive precomputation for trapdoor DL-groups.
None of these papers noticed any implications for provable security, and none of
them went beyond the RAM metric.

Our followup paper [22] experimentally verified the algorithm stated above,
improved it to 1.77 · 3

√
` additions using 3

√
` distinguished points, extended it

to DLPs in intervals (using slightly more additions), and showed constructive
applications in various protocols.

4 Breaking DSA-3072

This section briefly analyzes the cost of an attack against the DSA-3072 signa-
ture system. The attack computes discrete logarithms in the DSA-3072 group,
completely breaking the signature system.

DSA uses the unique order-q subgroup of the multiplicative group F∗p, where
p and q are primes with q (and not q2) dividing p− 1. DSA-3072 uses a 3072-bit
prime p and is claimed to achieve 2128 security. The standard parameter choices
for DSA-3072 specify a 256-bit prime q, allowing the 286 attack explained in
Section 3, but this section assumes that the user has stopped this attack by
increasing q to 384 bits (at a performance penalty).

4.1. The attack. Take y = 2110, and precompute logg x
(p−1)/q for every prime

number x ≤ y, where g is the specified subgroup generator. There are almost
exactly y/ log y ≈ 2103.75 such primes, and each logg x

(p−1)/q fits into 48 bytes,
for a total of 2109.33 bytes.

To compute logg h, first try to write h as a quotient h1/h2 in F∗p with h2 ∈{
1, 2, 3, . . . , 21535

}
, h1 ∈

{
−21535, . . . , 0, 1, . . . , 21535

}
, and gcd{h1, h2} = 1; and

then try to factor h1, h2 into primes ≤ y. If this succeeds then logg h
(p−1)/q is

a known combination of known quantities logg x
(p−1)/q, revealing logg h. If this

fails, try again with hg, hg2, etc.

Non-uniform cracks in the concrete: the power of free precomputation 15

One can write h as h1/h2 with high probability, approximately (6/π2)23071/p,
since there are approximately (6/π2)23071 pairs (h1, h2) and two distinct such
pairs have distinct quotients. Finding the decomposition of h as h1/h2 is a very
fast extended-Euclid computation.

The probability that h1 is y-smooth (i.e., has no prime divisors larger than
y) is very close to u−u ≈ 2−53.06 where u = 1535/110. The same is true for h2;
overall the attack requires between 2107.85 and 2108.85 iterations, depending on
23071/p. Batch trial division, analyzed in detail in Section 5, finds the y-smooth
values among many choices of h1 at very low cost in both the RAM metric and
the NAND metric. This attack is much slower in the AT metric.

4.2. Previous work. Standard attacks against DSA-3072 do not rely on pre-
computation and cost more than 2128 in the RAM metric. These attacks have
two stages: the first stage computes discrete logarithms of all primes ≤ y, and
the second stage computes logg h. Normally y is chosen to minimize the cost of
the first stage, whereas we replace the first stage by precomputation and choose
y to minimize the cost of the second stage.

The simple algorithm reviewed here is not the state-of-the-art algorithm for
the second stage; see, e.g., the “special-q descent” algorithms in [51] and [32].
The gap between known algorithms and existing algorithms is thus even larger
than indicated in this section. We expect that reoptimizing these algorithms
to minimize the cost of the second stage will produce even better results. We
emphasize, however, that none of the algorithms perform well in the AT metric.

5 Breaking RSA-3072

This section analyzes the cost of an attack against RSA-3072. The attack com-
pletely breaks RSA-3072, factoring any given 3072-bit public key into its prime
factors, so it also breaks protocols such as RSA-3072-FDH and RSA-3072-OAEP.

This section begins by stating a generalization of the attack to any RSA key
size, and analyzing the asymptotic cost exponents of the generalized attack. It
then analyzes the cost more precisely for 3072-bit keys.

5.1. NFS with precomputation. This attack is a variant of NFS, the standard
attack against RSA. For simplicity this description omits several NFS optimiza-
tions. See [30] for an introduction to NFS.

The attack is determined by four parameters: a “polynomial degree” d; a
“radix” m; a “height bound” H; and a “smoothness bound” y. Each of these pa-
rameters is a positive integer. The attack also includes a precomputed “factory”

F =

{
(a, b) ∈ Z× Z :

−H ≤ a ≤ H; 0 < b ≤ H;
gcd{a, b} = 1; and a− bm is y-smooth

}
.

The standard estimate (see [30]) is that F has (12/π2)H2/uu elements where
u = (logHm)/ log y. This estimate combines three approximations: first, there
are about 12H2/π2 pairs (a, b) ∈ Z×Z such that −H ≤ a ≤ H, 0 < b ≤ H, and
gcd{a, b} = 1; second, a− bm has approximately the same smoothness chance as

16 Daniel J. Bernstein and Tanja Lange

a uniform random integer in [1, Hm]; third, the latter chance is approximately
1/uu.

The integers N factored by the attack will be between md and md+1. For
example, with parameters m = 2256, d = 7, H = 255, and y = 250, the attack
factors integers between 21792 and 22048. Parameter selection is analyzed later
in more detail. The following three paragraphs explain how the attack handles
N .

Write N in radix m: i.e., find n0, n1, . . . , nd ∈ {0, 1, . . . ,m− 1} such that
N = ndm

d + nd−1m
d−1 + · · ·+ n0. Compute the “set of relations”

R =
{

(a, b) ∈ F : nda
d + nd−1a

d−1b+ · · ·+ n0b
d is y-smooth

}
using Bernstein’s batch trial-division algorithm [19]. The standard estimate is
that R has (12/π2)H2/(uuvv) elements where v = (log((d+ 1)Hdm))/ log y.

We pause the attack description to emphasize two important ways that this
attack differs from conventional NFS: first, conventional NFS chooses m as a
function of N , while this attack does not; second, conventional NFS computes R
by sieving all pairs (a, b) with −H ≤ a ≤ H and 0 < b ≤ H to detect smoothness
of a − bm and nda

d + · · · + n0b
d simultaneously, while this attack computes R

by batch trial division of nda
d + · · ·+n0b

d for the limited set of pairs (a, b) ∈ F .
The rest of the attack proceeds in the same way as conventional NFS. There

is a standard construction of a sparse vector modulo 2 for each (a, b) ∈ R,
and there is a standard way to convert several linear dependencies between the
vectors into several congruences of squares modulo N , producing the complete
prime factorization of N ; see [30] for details. The number of components of each
vector is approximately 2y/ log y, and standard sparse-matrix techniques find
linear dependencies using about 4y/ log y simple operations on dense vectors of
length 2y/ log y. If the number of elements of R is larger than the number of
components of each vector then linear dependencies are guaranteed to exist.

5.2. Asymptotic exponents. Write L = exp((logN)1/3(log logN)2/3). For the
RAM metric it is best to choose

d ∈ (1.1047 . . .+ o(1))(logN)1/3(log logN)−1/3,

logm ∈ (0.9051 . . .+ o(1))(logN)2/3(log logN)1/3,

log y ∈ (0.8193 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.8193 . . .+ o(1)) logL,

logH ∈ (1.0034 . . .+ o(1))(logN)1/3(log logN)2/3 = (1.0034 . . .+ o(1)) logL.

so that

u ∈ (1.1047 . . .+ o(1))(logN)1/3(log logN)−1/3,

u log u ∈ (0.3682 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.3682 . . .+ o(1)) logL,

d logH ∈ (1.1085 . . .+ o(1))(logN)2/3(log logN)1/3,

v ∈ (2.4578 . . .+ o(1))(logN)1/3(log logN)−1/3,

v log v ∈ (0.8193 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.8193 . . .+ o(1)) logL.

Non-uniform cracks in the concrete: the power of free precomputation 17

Out of the L2.0068...+o(1) pairs (a, b) with −H ≤ a ≤ H and 0 < b ≤ H, there
are L1.6385...+o(1) pairs in the factory F , and L0.8193...+o(1) relations in R, just
enough to produce linear dependencies if the o(1) terms are chosen appropriately.
Linear algebra uses y2+o(1) = L1.6385...+o(1) bit operations.

The total RAM cost of this factorization algorithm is thus L1.6385...+o(1). For
comparison, factorization is normally claimed to cost L1.9018...+o(1) (in the RAM
metric) with state-of-the-art variants of NFS. Similar comments apply to the
NAND metric.

This algorithm runs into trouble in the AT metric. The algorithm needs space
to store all the elements of F , and can compute R in time Lo(1) using a chip of
that size (applying ECM to each input in parallel rather than using batch trial
division), but even the most heavily parallelized sparse-matrix techniques need
much more than Lo(1) time, raising the AT cost of the algorithm far above the
size of F . A quantitative analysis shows that one obtains a better cost exponent
by skipping the precomputation of F and instead computing the elements of F
one by one on a smaller circuit, for AT cost L1.9760...+o(1).

5.3. RAM cost for RSA-3072. This attack breaks RSA-3072 with RAM
cost considerably below the 2128 security level usually claimed for RSA-3072.
Of course, justifying this estimate requires replacing the above o(1) terms with
more precise cost analyses.

For concreteness, assume that the RAM supports 128-bit pointers, unit-cost
256-bit vector operations, and unit-cost 256-bit floating-point multiplications.
As justification for these assumptions, observe that real computers ten years ago
supported 32-bit pointers, unit-cost 64-bit vector operations, and unit-cost 64-
bit floating-point multiplications; that the RAM model requires operations to
scale logarithmically with the machine size; and that previous NFS cost analyses
implicitly make similar assumptions.

Take m = 2384, d = 7, H = 262 +261 +257, and y = 266 +265. There are about
12H2/π2 ≈ 2125.51 pairs (a, b) with −H ≤ a ≤ H, 0 < b ≤ H, and gcd{a, b} = 1,
and the integers a − bm have smoothness chance approximately u−u ≈ 2−18.42

where u = (logHm)/ log y ≈ 6.707, so there are about 2107.09 pairs in the factory
F . Each pair in F is small, easily encoded as just 16 bytes.

The quantities nda
d + nd−1a

d−1b+ · · ·+ n0b
d are bounded by (d+ 1)mHd ≈

2825.3. If they were uniformly distributed up to this bound then they would
have smoothness chance approximately v−v ≈ 2−45.01 where v = (log((d +
1)mHd))/ log y ≈ 12.395, so there would be approximately (12H2/π2)u−uv−v ≈
262.08 relations, safely above 2y/ log y ≈ 262.06. The quantities nda

d+nd−1a
d−1b+

· · ·+n0bd are actually biased towards smaller values and thus have larger smooth-
ness chance, but this refinement is unnecessary here.

Batch trial division checks smoothness of 258 of these quantities simultane-
ously; here 258 is chosen so that the product of those quantities is larger (about
267.69 bits) than the product of all the primes ≤ y (about 267.11 bits). The main
steps in batch trial division are computing a product tree of these quantities and
then computing a scaled remainder tree. Bernstein’s cost analysis in [20, Section
3] shows that the overall cost of these two steps, for T inputs having a B-bit

18 Daniel J. Bernstein and Tanja Lange

product, is approximately (5/6) log2 T times the cost of a single multiplication
of two (B/2)-bit integers. For us T = 258 and B ≈ 267.69, and the cost of batch
trial division is approximately 25.59 times the cost of multiplying two (B/2)-bit
integers; the total cost of smoothness detection for all (a, b) ∈ F is approximately
254.68 times the cost of multiplying two (B/2)-bit integers.

It is easiest to follow a standard floating-point multiplication strategy, dividing
each (B/2)-bit input into B/(2w) words for some word size w ∈ Ω(log2B) and
then performing three real floating-point FFTs of length B/w. Each FFT uses
approximately (17/9)(B/w) log2(B/w) arithmetic operations (additions, sub-
tractions, and multiplications) on words of slightly more than 2w bits, for a
total of (17/3)(B/w) log2(B/w) arithmetic operations. A classic observation of
Schönhage [82] is that the RAM metric allows constant-time multiplication of
Θ(log2B)-bit integers in this context even if the machine model is not assumed
to be equipped with a multiplier, since one can afford to build large multipli-
cation tables; but it is simpler to take advantage of the hypothesized 256-bit
multiplier, which comfortably allows w = 69 and B/w < 261 + 260, for a total
multiplication cost of 270.03. Computing R then costs approximately 2124.71.

Linear algebra involves 263.06 simple operations on vectors of length 262.06.
Each operation produces each output bit by xoring together a small number of
input bits, on average fewer than 32 bits. A standard block-Wiedemann compu-
tation merges 256 xors of bits into a single 256-bit xor with negligible overhead,
for a total linear-algebra cost of 2122.12. All other steps in the algorithm have
negligible cost, so the final factorization cost is 2124.93.

5.4. Previous work. There are two frequently quoted cost exponents for NFS
without precomputation. Buhler, Lenstra, and Pomerance in [30] obtained RAM
cost L1.9229...+o(1). Coppersmith in [33] introduced a “multiple number fields”
tweak and obtained RAM cost L1.9018...+o(1).

Coppersmith also introduced NFS with precomputation in [33], using ECM
for smoothness detection. Coppersmith called his algorithm a “factorization fac-
tory”, emphasizing the distinction between precomputation time (building the
factory) and computation time (running the factory). Coppersmith computed
the same RAM exponent 1.6385 . . . shown above for the cost of one factorization
using the factory.

We save a subexponential factor in the RAM cost of Coppersmith’s algorithm
by switching from ECM to batch trial division. This is not visible in the asymp-
totic exponent 1.6385 . . . but is important for RSA-3072. Our concrete analysis
of RSA-3072 security is new, and as far as we know is the first concrete analysis
of Coppersmith’s algorithm.

Bernstein in [18] obtained AT exponent 1.9760 . . . for NFS without precom-
putation, and emphasized the gap between this exponent and the RAM exponent
1.9018 Our AT analysis of NFS with precomputation, and in particular our
conclusion that this precomputation increases the AT cost of NFS, appears to
be new.

Non-uniform cracks in the concrete: the power of free precomputation 19

References

[1] — (no editor), Proceedings of the 18th annual ACM symposium on theory of
computing, Association for Computing Machinery, 1986. ISBN 0-89791-193-8. See
[81].

[2] — (no editor), 37th annual symposium on foundations of computer science, FOCS
’96, Burlington, Vermont, USA, October 14–16, 1996, Institute of Electrical and
Electronics Engineers, 1996. ISBN 0-8186-7594-2. See [8].

[3] — (no editor), 38th annual symposium on coundations of computer science, FOCS
’97, Miami Beach, Florida, USA, October 19–22, 1997, Institute of Electrical and
Electronics Engineers, 1997. See [10].

[4] Scott Aaronson, Lecture 20: cosmology and complexity (2006). URL: http://www.
scottaaronson.com/democritus/lec20.html. Cited in §Q.10.

[5] Eric Allender, Michal Koucký, Detlef Ronneburger, Sambuddha Roy, The perva-
sive reach of resource-bounded Kolmogorov complexity in computational complex-
ity theory, Journal of Computer and System Sciences 77 (2011), 14–40. Cited in
§B.4.

[6] Jacob D. Bekenstein, Universal upper bound on the entropy-to-energy ratio for
bounded systems, Physical Review D 23 (1981), 287–298. Cited in §Q.10.

[7] Mihir Bellare, New proofs for NMAC and HMAC: security without collision-
resistance, in Crypto 2006 [40] (2006), 602–619. URL: http://cseweb.ucsd.edu/
~mihir/papers/hmac-new.html. Cited in §1, §1.1, §1.3, §2.6, §B.1, §Q.19.

[8] Mihir Bellare, Ran Canetti, Hugo Krawczyk, Pseudorandom functions revisited:
the cascade construction and its concrete security, in [2] (1996), 514–523; see also
newer version [9]. Cited in §B.7.

[9] Mihir Bellare, Ran Canetti, Hugo Krawczyk, Pseudorandom functions revisited:
the cascade construction and its concrete security (2005); see also older version
[8]. URL: http://www-cse.ucsd.edu/~mihir/papers/cascade.html.

[10] Mihir Bellare, Anand Desai, Eron Jokipii, Phillip Rogaway, A concrete security
treatment of symmetric encryption, in [3] (1997), 394–403. URL: http://cseweb.
ucsd.edu/~mihir/papers/sym-enc.html. Cited in §Q.20.

[11] Mihir Bellare, Joe Kilian, Phillip Rogaway, The security of cipher block chaining,
in Crypto 1994 [38] (1994), 341–358; see also newer version [12]. Cited in §1.2,
§A.1.

[12] Mihir Bellare, Joe Kilian, Phillip Rogaway, The security of the cipher block chain-
ing message authentication code, Journal of Computer and System Sciences 61
(2000), 362–399; see also older version [11]. ISSN 0022–0000. URL: http://

www-cse.ucsd.edu/~mihir/papers/cbc.html. Cited in §1, §1, §1, §1.2, §1.2, §1.2,
§A.1, §A.1, §A.1, §A.1, §A.2, §B.2, §B.5, §B.6, §B.6.

[13] Mihir Bellare, Thomas Ristenpart, Stefano Tessaro, Multi-instance security and
its application to password-based cryptography, in Crypto 2012 [79] (2012), 312–
329. Cited in §L.1, §L.1.

[14] Mihir Bellare, Phillip Rogaway, Optimal asymmetric encryption — how to encrypt
with RSA, in Eurocrypt 1994 [37] (1995), 92–111. URL: http://cseweb.ucsd.
edu/~mihir/papers/oaep.html. Cited in §1.

[15] Mihir Bellare, Phillip Rogaway, The exact security of digital signatures: how
to sign with RSA and Rabin, in Eurocrypt 1996 [64] (1996), 399–416. URL:
http://www-cse.ucsd.edu/~mihir/papers/exactsigs.html. Cited in §1, §1.1,
§B.1, §Q.19.

http://www.scottaaronson.com/democritus/lec20.html
http://www.scottaaronson.com/democritus/lec20.html
http://cseweb.ucsd.edu/~mihir/papers/hmac-new.html
http://cseweb.ucsd.edu/~mihir/papers/hmac-new.html
http://www-cse.ucsd.edu/~mihir/papers/cascade.html
http://cseweb.ucsd.edu/~mihir/papers/sym-enc.html
http://cseweb.ucsd.edu/~mihir/papers/sym-enc.html
http://www-cse.ucsd.edu/~mihir/papers/cbc.html
http://www-cse.ucsd.edu/~mihir/papers/cbc.html
http://cseweb.ucsd.edu/~mihir/papers/oaep.html
http://cseweb.ucsd.edu/~mihir/papers/oaep.html
http://www-cse.ucsd.edu/~mihir/papers/exactsigs.html

20 Daniel J. Bernstein and Tanja Lange

[16] Mihir Bellare, Phillip Rogaway, Introduction to modern cryptography, 2005. URL:
http://cseweb.ucsd.edu/~mihir/cse207/classnotes.html. Cited in §1, §1.1,
§2.6, §B.1, §B.7, §Q.19.

[17] Daniel J. Bernstein, How to stretch random functions: the security of protected
counter sums, Journal of Cryptology 12 (1999), 185–192. URL: http://cr.yp.
to/papers.html#stretch. Cited in §B.6.

[18] Daniel J. Bernstein, Circuits for integer factorization: a proposal (2001). URL:
http://cr.yp.to/papers.html#nfscircuit. Cited in §5.4, §A.3, §Q.8, §Q.27.

[19] Daniel J. Bernstein, How to find smooth parts of integers (2004). URL: http://
cr.yp.to/papers.html#smoothparts. Cited in §5.1.

[20] Daniel J. Bernstein, Scaled remainder trees (2004). URL: http://cr.yp.to/

papers.html#scaledmod. Cited in §5.3.
[21] Daniel J. Bernstein, Proving tight security for Rabin–Williams signatures, in Eu-

rocrypt 2008 [85] (2008), 70–87. URL: http://cr.yp.to/papers.html#rwtight.
Cited in §B.6.

[22] Daniel J. Bernstein, Tanja Lange, Computing small discrete logarithms faster, in
Indocrypt 2012 [41] (2012), 317–338. URL: http://eprint.iacr.org/2012/458.
Cited in §3.2, §3.4.

[23] Eli Biham, Yaron J. Goren, Yuval Ishai, Basing weak public-key cryptography on
strong one-way functions, in TCC 2008 [31] (2008), 55–72. URL: http://www.
iacr.org/archive/tcc2008/49480050/49480050.pdf. Cited in §2.6.

[24] Gianfranco Bilardi, Franco P. Preparata, Horizons of parallel computation, Jour-
nal of Parallel and Distributed Computing 27 (1995), 172–182. Cited in §A.3,
§Q.6.

[25] Alex Biryukov, Adi Shamir, Cryptanalytic time/memory/data tradeoffs for stream
ciphers, in Asiacrypt 2000 [70] (2000), 1–13. Cited in §2.6.

[26] Peter van Emde Boas, Machine models and simulation, in [62] (1990), 1–66. Cited
in §A.1.

[27] Andrey Bogdanov, Dmitry Khovratovich, Christian Rechberger, Biclique crypt-
analysis of the full AES, in Asiacrypt 2011 [60] (2011), 344–371. URL: http://
eprint.iacr.org/2011/449. Cited in §1.

[28] Raphel Bousso, Positive vacuum energy and the N-bound, Journal of High Energy
Physics 11 (2000), 038. URL: http://arxiv.org/abs/hep-th/0010252. Cited in
§Q.10.

[29] Richard P. Brent, H. T. Kung, The area-time complexity of binary multiplication,
Journal of the ACM 28 (1981), 521–534. URL: http://wwwmaths.anu.edu.au/
~brent/pub/pub055.html. Cited in §1.2, §A.3, §A.3, §Q.8, §Q.27, §Q.28.

[30] Joe P. Buhler, Hendrik W. Lenstra, Jr., Carl Pomerance, Factoring integers with
the number field sieve, in [63] (1993), 50–94. Cited in §5.1, §5.1, §5.1, §5.4.

[31] Ran Canetti (editor), Theory of cryptography, fifth theory of cryptography confer-
ence, TCC 2008, New York, USA, March 19–21, 2008, Lecture Notes in Computer
Science, 4948, Springer, 2008. ISBN 978-3-540-78523-1. See [23].

[32] An Commeine, Igor Semaev, An algorithm to solve the discrete logarithm problem
with the number field sieve, in PKC 2006 [91] (2006), 174–190. Cited in §4.2.

[33] Don Coppersmith, Modifications to the number field sieve, Journal of Cryptology
6 (1993), 169–180. Cited in §5.4, §5.4.

[34] Don Coppersmith, Finding a small root of a univariate modular equation, in Eu-
rocrypt 1996 [64] (1996), 155–165. MR 97h:94008. Cited in §Q.30.

[35] Anindya De, Luca Trevisan, Madhur Tulsiani, Non-uniform attacks against one-
way functions and PRGs, Electronic Colloquium on Computational Complexity
113 (2009); see also newer version [36].

http://cseweb.ucsd.edu/~mihir/cse207/classnotes.html
http://cr.yp.to/papers.html#stretch
http://cr.yp.to/papers.html#stretch
http://cr.yp.to/papers.html#nfscircuit
http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#scaledmod
http://cr.yp.to/papers.html#scaledmod
http://cr.yp.to/papers.html#rwtight
http://eprint.iacr.org/2012/458
http://www.iacr.org/archive/tcc2008/49480050/49480050.pdf
http://www.iacr.org/archive/tcc2008/49480050/49480050.pdf
http://eprint.iacr.org/2011/449
http://eprint.iacr.org/2011/449
http://arxiv.org/abs/hep-th/0010252
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html

Non-uniform cracks in the concrete: the power of free precomputation 21

[36] Anindya De, Luca Trevisan, Madhur Tulsiani, Time space tradeoffs for attacks
against one-way functions and PRGs, in Crypto 2010 [75] (2010), 649–665; see
also older version [35]. Cited in §2.6, §2.6.

[37] Alfredo De Santis (editor), Advances in cryptology — EUROCRYPT ’94, work-
shop on the theory and application of cryptographic techniques, Perugia, Italy,
May 9–12, 1994, proceedings, Lecture Notes in Computer Science, 950, Springer,
1995. ISBN 3-540-60176-7. MR 98h:94001. See [14].

[38] Yvo Desmedt (editor), Advances in cryptology — CRYPTO ’94, 14th annual in-
ternational cryptology conference, Santa Barbara, California, USA, August 21–25,
1994, proceedings, Lecture Notes in Computer Science, 839, Springer, 1994. ISBN
3-540-58333-5. See [11].

[39] Yevgeniy Dodis, John Steinberger, Message authentication codes from unpre-
dictable block ciphers, in Crypto 2009 [44] (2009), 267–285. URL: http://cs.

nyu.edu/~dodis/ps/tight-mac.pdf. Cited in §2.6.
[40] Cynthia Dwork (editor), Advances in cryptology — CRYPTO 2006, 26th annual

international cryptology conference, Santa Barbara, California, USA, August 20–
24, 2006, proceedings, Lecture Notes in Computer Science, 4117, Springer, 2006.
ISBN 3-540-37432-9. See [7].

[41] Steven Galbraith, Mridul Nandi (editors), Progress in cryptology — Indocrypt
2012 — 13th international conference on cryptology in India, Kolkata, India,
December 9–12, 2012, proceedings, Lecture Notes in Computer Science, 7668,
Springer, 2012. See [22].

[42] Martin Gardner, Mathematical games: the fantastic combinations of John
Conway’s new solitaire game “life”, Scientific American 223 (1970), 120–
123. URL: http://web.archive.org/web/20090603015231/http://ddi.

cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/

ConwayScientificAmerican.htm. Cited in §B.4.
[43] Oded Goldreich, P, NP, and NP-completeness: the basics of computational

complexity, 2009. URL: http://www.wisdom.weizmann.ac.il/~oded/CC/bc-3.

ps. Cited in §Q.15.
[44] Shai Halevi (editor), Advances in cryptology — CRYPTO 2009, 29th annual in-

ternational cryptology conference, Santa Barbara, CA, USA, August 16–20, 2009,
proceedings, Lecture Notes in Computer Science, 5677, Springer, 2009. See [39].

[45] Martin E. Hellman, A cryptanalytic time-memory tradeoff, IEEE Transactions on
Information Theory 26 (1980), 401–406. Cited in §2.6.

[46] Yvonne Hitchcock, Paul Montague, Gary Carter, Ed Dawson, The efficiency of
solving multiple discrete logarithm problems and the implications for the security
of fixed elliptic curves, International Journal of Information Security 3 (2004),
86–98. Cited in §3.4.

[47] Viet Tung Hoang, Ben Morris, Phillip Rogaway, An enciphering scheme based on
a card shuffle, in Crypto 2012 [79] (2012), 1–13. Cited in §L.1, §L.1.

[48] Dennis Hofheinz, Tibor Jager, Tightly secure signatures and public-key encryp-
tion, in Crypto 2012 [79] (2012), 590–607. Cited in §L.1, §L.1.

[49] Jin Hong, Palash Sarkar, New applications of time memory data tradeoffs, in
Asiacrypt 2005 [78] (2005), 353–372. Cited in §2.6.

[50] Tibor Jager, Florian Kohlar, Sven Schäge, Jörg Schwenk, On the security of TLS-
DHE in the standard model, in Crypto 2012 [79] (2012), 273–293. Cited in §L.1,
§L.1, §L.1.

[51] Antoine Joux, Reynald Lercier, Improvements to the general number field sieve
for discrete logarithms in prime fields. A comparison with the Gaussian integer
method, Mathematics of Computation 72 (2003), 953–967. Cited in §4.2.

http://cs.nyu.edu/~dodis/ps/tight-mac.pdf
http://cs.nyu.edu/~dodis/ps/tight-mac.pdf
http://web.archive.org/web/20090603015231/http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://web.archive.org/web/20090603015231/http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://web.archive.org/web/20090603015231/http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://www.wisdom.weizmann.ac.il/~oded/CC/bc-3.ps
http://www.wisdom.weizmann.ac.il/~oded/CC/bc-3.ps

22 Daniel J. Bernstein and Tanja Lange

[52] Jonathan Katz, Non-uniform complexity (2011). URL: http://www.cs.umd.edu/
~jkatz/complexity/f11/lecture11.pdf. Cited in §Q.15.

[53] Jonathan Katz, Yehuda Lindell, Introduction to modern cryptography: princi-
ples and protocols, Chapman & Hall/CRC, 2007. ISBN 978-1-58488-551-1. URL:
http://www.cs.umd.edu/~jkatz/imc.html. Cited in §1.

[54] Joe Kilian (editor), Advances in cryptology: CRYPTO 2001, 21st annual inter-
national cryptology conference, Santa Barbara, California, USA, August 19–23,
2001, proceedings, Lecture Notes in Computer Science, 2139, Springer, 2001. ISBN
3-540-42456-3. MR 2003d:94002. See [84].

[55] Neal Koblitz, Alfred Menezes, Another look at HMAC (2012). URL: http://

eprint.iacr.org/2012/074. Cited in §1.2, §1.3, §1.3, §1.3, §2.6, §Q.23.
[56] Neal Koblitz, Alfred Menezes, Another look at non-uniformity (2012). URL:

http://eprint.iacr.org/2012/359. Cited in §1.2, §1.3, §1.3.
[57] Pascal Koiran, Decision versus evaluation in algebraic complexity (2007). URL:

http://perso.ens-lyon.fr/pascal.koiran/Publis/mcu07.pdf. Cited in §Q.15.
[58] Fabian Kuhn, Rene Struik, Random walks revisited: extensions of Pollard’s rho al-

gorithm for computing multiple discrete logarithms, in SAC 2001 [89] (2001), 212–
229. URL: http://www.distcomp.ethz.ch/publications.html. Cited in §3.4.

[59] Will Landecker, Thomas Shrimpton, R. Seth Terashima, Tweakable blockciphers
with beyond birthday-bound security, in Crypto 2012 [79] (2012), 14–30. Cited in
§L.1, §L.1.

[60] Dong Hoon Lee, Xiaoyun Wang (editors), Advances in cryptology — ASIACRYPT
2011, 17th international conference on the theory and application of cryptology
and information security, Seoul, South Korea, December 4–8, 2011, proceedings,
Lecture Notes in Computer Science, 7073, Springer, 2011. ISBN 978-3-642-25384-
3. See [27].

[61] Hyung Tae Lee, Jung Hee Cheon, Jin Hong, Accelerating ID-based encryption
based on trapdoor DL using pre-computation, 11 Jan 2012 (2012). URL: http://
eprint.iacr.org/2011/187. Cited in §3.4.

[62] Jan van Leeuwen (editor), Handbook of theoretical computer science, volume A:
algorithms and complexity, MIT Press, 1990. ISBN 0-262-22038-5. See [26].

[63] Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the
number field sieve, Lecture Notes in Mathematics, 1554, Springer, 1993. ISBN
3-540-57013-6. MR 96m:11116. See [30].

[64] Ueli M. Maurer (editor), Advances in cryptology — EUROCRYPT ’96: proceed-
ings of the fifteenth international conference on the theory and application of
cryptographic techniques held in Saragossa, May 12–16, 1996, Lecture Notes in
Computer Science, 1070, Springer, 1996. ISBN 3-540-61186-X. MR 97g:94002. See
[15], [34].

[65] Alfred Menezes, Edlyn Teske, Annegret Weng, Weak fields for ECC, in CT-RSA
2004 [71] (2004), 366–386. URL: http://eprint.iacr.org/2003/128. Cited in
§B.1, §B.1.

[66] National Institute for Standards and Technology, Announcing request for can-
didate algorithm nominations for the Advanced Encryption Standard (AES)
(1997). URL: http://www.gpo.gov/fdsys/pkg/FR-1997-09-12/pdf/97-24214.

pdf. Cited in §1.
[67] National Institute for Standards and Technology, Digital signature standard, Fed-

eral Information Processing Standards Publication 186-2 (2000). URL: http://
csrc.nist.gov. Cited in §3.

http://www.cs.umd.edu/~jkatz/complexity/f11/lecture11.pdf
http://www.cs.umd.edu/~jkatz/complexity/f11/lecture11.pdf
http://www.cs.umd.edu/~jkatz/imc.html
http://eprint.iacr.org/2012/074
http://eprint.iacr.org/2012/074
http://eprint.iacr.org/2012/359
http://perso.ens-lyon.fr/pascal.koiran/Publis/mcu07.pdf
http://www.distcomp.ethz.ch/publications.html
http://eprint.iacr.org/2011/187
http://eprint.iacr.org/2011/187
http://eprint.iacr.org/2003/128
http://www.gpo.gov/fdsys/pkg/FR-1997-09-12/pdf/97-24214.pdf
http://www.gpo.gov/fdsys/pkg/FR-1997-09-12/pdf/97-24214.pdf
http://csrc.nist.gov
http://csrc.nist.gov

Non-uniform cracks in the concrete: the power of free precomputation 23

[68] Phong Q. Nguyen (editor), Progress in cryptology — VIETCRYPT 2006, first
international conference on cryptology in Vietnam, Hanoi, Vietnam, September
25–28, 2006, revised selected papers, Lecture Notes in Computer Science, 4341,
Springer, 2006. ISBN 3-540-68799-8. See [76].

[69] Chris Nyberg, Mehul Shah, Sort benchmark home page, updated 23 May 2012,
accessed 11 February 2013 (2012). URL: http://sortbenchmark.org. Cited in
§Q.6.

[70] Tatsuaki Okamoto (editor), Advances in cryptology: ASIACRYPT 2000, 6th in-
ternational conference on the theory and application of cryptology and information
security, Kyoto, Japan, December 3–7, 2000, proceedings, Lecture Notes in Com-
puter Science, 1976, Springer, 2000. ISBN 3-540-41404-5. MR 2002d:94046. See
[25].

[71] Tatsuaki Okamoto (editor), Topics in cryptology — CT-RSA 2004, the cryptog-
raphers’ track at the RSA Conference 2004, San Francisco, CA, USA, February
23–27, 2004, proceedings, Lecture Notes in Computer Science, 2964, Springer,
2004. ISBN 3-540-20996-4. See [65].

[72] Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptana-
lytic applications, Journal of Cryptology 12 (1999), 1–28. ISSN 0933–2790. URL:
http://members.rogers.com/paulv/papers/pubs.html. Cited in §3.1.

[73] John M. Pollard, Monte Carlo methods for index computation mod
p, Mathematics of Computation 32 (1978), 918–924. ISSN 0025–5718.
MR 58:10684. URL: http://www.ams.org/journals/mcom/1978-32-143/

S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf. Cited in §3.1.
[74] Franco P. Preparata, Optimal three-dimensional VLSI layouts, Mathematical Sys-

tems Theory 16 (1983), 1–8. Cited in §A, §Q.8.
[75] Tal Rabin (editor), Advances in cryptology — CRYPTO 2010, 30th annual cryp-

tology conference, Santa Barbara, CA, USA, August 15–19, 2010, proceedings,
Lecture Notes in Computer Science, 6223, Springer, 2010. See [36].

[76] Phillip Rogaway, Formalizing human ignorance, in VIETCRYPT 2006 [68]
(2006), 211–228. URL: http://www.cs.ucdavis.edu/~rogaway/papers/. Cited
in §B.5, §B.7, §B.7, §B.7, §B.7, §B.7, §B.7, §B.7, §B.7, §B.7, §B.7, §B.7, §B.7,
§B.7, §B.7, §B.7, §B.7, §B.7, §Q.19, §Q.21.

[77] Arnold L. Rosenberg, Three-dimensional VLSI: a case study, Journal of the ACM
30 (1983), 397–416. Cited in §A, §Q.8.

[78] Bimal Roy (editor), Advances in cryptology — ASIACRYPT 2005, 11th inter-
national conference on the theory and application of cryptology and information
security, Chennai, India, December 4–8, 2005, proceedings, Lecture Notes in Com-
puter Science, 3788, Springer, 2005. See [49].

[79] Reihaneh Safavi-Naini, Ran Canetti (editors), Advances in cryptology —
CRYPTO 2012 — 32nd annual cryptology conference, Santa Barbara, CA, USA,
August 19–23, 2012, proceedings, Lecture Notes in Computer Science, 7417,
Springer, 2012. ISBN 978-3-642-32008-8. See [13], [47], [48], [50], [59].

[80] Manfred Schimmler, Sorting on a three dimensional cube grid, report 8604,
Christian-Albrechts-Universität Kiel, 1986. Cited in §Q.28.

[81] Claus P. Schnorr, Adi Shamir, An optimal sorting algorithm for mesh-connected
computers, in [1] (1986), 255–261. Cited in §Q.28.

[82] Arnold Schönhage, Storage modification machines, SIAM Journal on Computing
9 (1980), 490–508. Cited in §5.3.

[83] Peter W. Shor, Introduction to quantum algorithms (2001). URL: http://arxiv.
org/abs/quant-ph/0005003. Cited in §Q.15.

http://sortbenchmark.org
http://members.rogers.com/paulv/papers/pubs.html
http://www.ams.org/journals/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
http://www.ams.org/journals/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/
http://arxiv.org/abs/quant-ph/0005003
http://arxiv.org/abs/quant-ph/0005003

24 Daniel J. Bernstein and Tanja Lange

[84] Victor Shoup, OAEP reconsidered, in Crypto 2001 [54] (2001), 239–259. Cited in
§Q.30.

[85] Nigel P. Smart (editor), Advances in cryptology — EUROCRYPT 2008, 27th an-
nual international conference on the theory and applications of cryptographic tech-
niques, Istanbul, Turkey, April 13–17, 2008, proceedings, Lecture Notes in Com-
puter Science, 4965, Springer, 2008. ISBN 978-3-540-78966-6. See [21].

[86] Douglas R. Stinson, Some observations on the theory of cryptographic hash func-
tions (2001). URL: http://eprint.iacr.org/2001/020. Cited in §B.7, §B.7,
§B.7, §B.7, §B.7, §Q.21.

[87] Edlyn Teske, On random walks for Pollard’s rho method, Mathematics of
Computation 70 (2001), 809–825. URL: http://www.ams.org/journals/mcom/
2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf. Cited in
§3.1.

[88] C. D. Thompson, H. T. Kung, Sorting on a mesh-connected parallel computer,
Communications of the ACM 20 (1977), 263–271. ISSN 0001–0782. Cited in
§Q.28.

[89] Serge Vaudenay, Amr M. Youssef (editors), Selected areas in cryptography: 8th
annual international workshop, SAC 2001, Toronto, Ontario, Canada, August
16–17, 2001, revised papers, Lecture Notes in Computer Science, 2259, Springer,
2001. ISBN 3–540–43066–0. MR 2004k:94066. See [58].

[90] Michael J. Wiener, The full cost of cryptanalytic attacks, Journal of Cryptology
17 (2004), 105–124. ISSN 0933–2790. URL: http://sites.google.com/site/

michaeljameswiener/. Cited in §Q.8.
[91] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), 9th interna-

tional conference on theory and practice in public-key cryptography, New York,
NY, USA, April 24–26, 2006, proceedings, Lecture Notes in Computer Science,
3958, Springer, 2006. ISBN 978–3–540–33851–2. See [32].

A Appendix: Review of cost metrics for algorithms

Recall from Section 1 that concrete security definitions depend implicitly on how
the “cost” of an algorithm is defined. This appendix reviews three cost metrics
from the literature: the RAM metric; the NAND metric; and the AT metric.
This is not meant to be a comprehensive survey of cost metrics in the literature;
it does not include, for example, the volume-time metrics studied by Rosenberg
in [77] and by Preparata in [74].

A.1. The RAM metric. Bellare, Kilian, and Rogaway in [12, Section 2.2] fix
“some particular Random Access Machine (RAM)” as a model of computation.
They define the running time of an algorithm A as “A’s actual execution time
plus the length of A’s description”.

There are well-known difficulties in giving a reasonable definition of “execution
time” for RAM programs. However, standard workarounds (see, e.g., [26]) limit
these difficulties to a much smaller scale than the gaps considered in this paper,
so we do not review the details. We make an exception in Section 5, where the
gap is relatively small.

Bellare, Kilian, and Rogaway say that adding the length of the algorithm
“eliminates pathologies caused if one can embed arbitrarily large lookup tables

http://eprint.iacr.org/2001/020
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf
http://sites.google.com/site/michaeljameswiener/
http://sites.google.com/site/michaeljameswiener/

Non-uniform cracks in the concrete: the power of free precomputation 25

in A’s description”. The obvious example is an algorithm that includes a giant
sorted table of pairs (AESk(0), k) for all 2128 AES keys k, and simply looks up
AESk(0) in the table to find k; the RAM metric forces this algorithm to pay for
the length of the table, not merely the time taken for the table lookup.

It is interesting to note that [11], the original Crypto ’94 version of [12],
simply used execution time as a metric. Apparently it was not immediately
obvious that the metric would allow exactly these “pathologies”, posing huge
problems for security definitions, theorems, and conjectures using that metric.
The fix used in [12], and in many other papers, was to change the metric.

The more advanced attacks presented in Sections 2, 3, 4, and 5 can be viewed
as similar “pathologies” that, contrary to the claim in [12], are not eliminated
by merely adding the length of the algorithm. This view raises the question of
whether further changes to the cost metric could stop those attacks.

A.2. The NAND metric. Bellare, Kilian, and Rogaway also consider an “al-
ternative” definition of an algorithm as a circuit “over some fixed basis of gates,
like 2-input NAND gates”. The cost of an algorithm then “simply means the
circuit size”.

Counting NAND gates is refreshingly precise and easy to define. Readers
might wonder why this NAND metric is an “alternative” rather than the stan-
dard definition of algorithm cost. The only answer given in [12] is that the NAND
metric is “rather less intuitive” than the RAM metric.

We emphasize that the NAND metric often assigns far larger costs to algo-
rithms than the RAM metric does. In some cases an algorithm taking time T
in the RAM metric costs more than T 2 NAND gates. The most important dif-
ference is in the cost of random access to a large table, a very fast operation
in the RAM metric but a very slow operation in the NAND metric. A batch of
n independent random accesses to the same table of size n has similar cost in
both metrics (since it can be simulated by sorting), but many algorithms require
serial random accesses.

This difference can cause trouble: there are many theorems regarding “time”
that are true for the RAM metric but unproven, and presumably false, for the
NAND metric. This trouble is described in more detail in Appendix B.2. How-
ever, for the same reason, one can hope that any “pathologies” in the RAM
metric are fixed by the NAND metric. This hope is analyzed in Sections 2, 3, 4,
and 5.

A.3. The AT metric. In hardware design it is common to model computa-
tion in a completely different way. Computation is performed by a chip, i.e., a
rectangular mesh of transistors connected by wires, with at most a few layers of
wires at each point in the mesh. Transistors and wires all operate in parallel. It
is not difficult to give a formal definition of this model of computation; see, e.g.,
[29]. This definition has the virtue of being obviously quite close to the physi-
cal reality of how computations are actually performed. See [24] for a detailed
evaluation of many models of computation from this perspective.

Our third cost metric for algorithms is the price-performance ratio of a chip:
i.e., the product AT of the area A of the chip and the time T taken by the chip.

26 Daniel J. Bernstein and Tanja Lange

Hardware designers often consider more general functions of (A, T), but the clas-
sic product AT remains the default choice of cost metric in thousands of papers
because it preserves the following two forms of linearity: performing n time-T
computations in serial on one area-A chip costs n times as much as perform-
ing 1 computation; performing n time-T computations in parallel on n area-A
chips (formally, one area-nA chip) also costs n times as much as performing 1
computation.

Notice that the energy used by a computation is proportional to AT if the
entire chip is active. This energy use (and corresponding heat dissipation) does
not pose a scalability problem as the chip area increases: building a correspond-
ing area of solar cells and batteries and heat sinks increases the chip cost by at
most a small constant factor. The energy use can be considerably smaller than
AT if the chip is mostly inactive — if most of the transistors are, in the words
of [18], “simply sitting around, twiddling their thumbs” — but any such chip is
obviously highly suboptimal: for essentially the same investment in chip area
one can build a much more active chip that stores the same data and that at
the same time performs many other useful computations. This trend towards
increasing parallelism can easily be observed in mass-market CPUs and GPUs:
for example, a 2.27-billion-transistor Intel Xeon E5-4650 has 64 parallel 32-bit
adders (8 independent cores, 2 independent vector units in each core, 4 synchro-
nized 32-bit adders in each vector unit), and a 3.5-billion-transistor NVIDIA
GeForce GTX 680 has 1536 parallel 32-bit adders.

Brent and Kung showed in [29] that n-bit multiplication costs n1.5+o(1) in
the AT metric; for comparison, n-bit multiplication costs only n1+o(1) in the
RAM metric and in the NAND metric. Similar comments apply to sorting and
to various other high-communication computations. We consider the AT metric
in Sections 2, 3, 4, and 5 for the same reason that we consider the NAND metric:
it is a source of trouble but also a possible solution to “pathologies”.

B Appendix: Trying to salvage the insecurity metric

As a followup to the algorithm analyses in Sections 2, 3, 4, and 5, this appendix
analyzes the merits of several possible responses to the gap between standard-
definition insecurity and actual insecurity. None of the responses are completely
satisfactory, but some of them are arguably better than others.

B.1. Keeping the definitions and abandoning the conjectures. One pos-
sible response is to defend the metric, arguing that the attacks described in
Sections 2, 3, 4, and 5 actually should be viewed as assigning security levels
below 2128 to AES, NIST P-256, DSA-3072, and RSA-3072. In other words,
this response is that standard-definition insecurity is actual insecurity, and that
taking the cost of precomputation into account would be understating actual
insecurity.

This response has the virtue of minimizing the number of changes required
to the literature. The other responses considered below require revisiting every
proof to see whether the theorem can still be proven in a new metric and to

Non-uniform cracks in the concrete: the power of free precomputation 27

see exactly what quantitative changes are required; this response preserves the
metric. Of course, the security conjectures made in [15, Section 1.4], [16, Section
3.6], [7, Section 3.2], etc. would still have to be withdrawn.

There are, however, several obvious problems with this response. First, real-
world attackers have no choice but to pay for precomputation time, contrary to
the standard definition. Why should cryptographers be more concerned about
a time-260 attack that takes time 2300 to find than about a time-270 attack
requiring no effort to find? Users aiming for the best possible security, subject
to performance constraints, should prefer a system where the best attack is
of the first type over a system where the best attack is of the second type;
underestimating attack cost by ignoring precomputation cost will lead those
users to select the wrong system, hurting their own security.

As a concrete example, consider the result of Menezes, Teske, and Weng in [65]
that many composite fields are “weak fields for ECC”. For example, every curve
over F2210 has “a security level of at most 91 bits” rather than the expected “104
bits”. Every ECC researcher will agree that it is much safer to use the field F2211 .
However, the standard definition of insecurity paints a quite different picture.
The standard definition says that F2210 has security level only 270; it ignores the
fact that finding this 270 attack costs 2140; it says that the explicit 291 attack of
[65] is useless, since 291 > 270; and it says that F2211 offers only a tiny security
benefit.

Furthermore, almost every cryptanalytic paper includes the cost of precom-
putation, contrary to the standard definition. The standard security conjectures
would be perfectly reasonable if the cost of precomputation were included but
are false according to the standard definition. In short, there is a perfect align-
ment between what the conjectures say, what the cryptanalysts are looking at,
and what real-world attacks can actually do; what is out of whack with this
picture is the standard definition.

The core argument for confidence in security conjectures about (e.g.) RSA-
3072 is that RSA-3072 has survived extensive cryptanalysis. The standard def-
inition makes this argument untenable. There has not been extensive study of
attacks against RSA-3072 that exploit free precomputation. Our new RSA-3072
attack in Section 5.3 is considerably faster than Coppersmith’s original attack,
and we would not be surprised to see substantial further speedups; any conjec-
ture in this model would be built upon quicksand.

B.1.1. The amortization-eliminates-precomputation fallacy. One might
argue that precomputation should be ignored because it can be amortized across
many targets. However, this argument confuses two different concepts. Non-
uniform attacks and multiple-target attacks (and non-uniform multiple-target
attacks) are often quantitatively and qualitatively different: non-uniform attacks
often benefit from vastly larger precomputation (as illustrated by the doubly
exponential cost exp(22n+1) to find the attack Ds in Section 2.2), while multiple-
target attacks often benefit from batching (as illustrated by Section 2.4).

As a concrete example, consider a time-2170 precomputation of a time-285

attack (such as the ECC attack in Section 3), which is then applied to 240

28 Daniel J. Bernstein and Tanja Lange

targets. The total attack cost is 2125 (i.e., 285 per target), but this is completely
unnoticeable compared to the precomputation cost of 2170 (i.e., 2130 per target).
Highlighting the 2125 rather than the 2170 makes no sense. The picture does
not change for 260 or even 280 targets. Note that it is easy to imagine real-
world attack power growing to 285 curve operations (for comparison, standard
technology would carry out 287 bit operations per year using the 65-megawatt
power supply of NSA’s reported new Utah data center), while it is far more
difficult to imagine how the number of real-world targets could grow to 280.

B.1.2. The more-conservative-is-better fallacy. One might also argue that
ignoring precomputation is “more conservative” than taking precomputation
into account, and in general that underestimating the cost of an attack is per-
fectly safe, since it simply leads users to choose larger parameters.

In fact, “conservative” underestimates can cause users to lose security. There
are three important effects ignored in the “more conservative is better” argu-
ment: first, users are subject to cost constraints, and cannot simply choose larger
parameters; second, users can choose different systems, and in fact take advan-
tage of this flexibility with the goal of maximizing security subject to the cost
constraints; third, underestimates in general vary from one system to another,
and in particular the gaps considered in this paper vary from one system to
another.

The following example illustrates all of these effects. Consider a DSA user who
can just barely afford p ≈ 23072 and q ≈ 2256. Both p and q are important for
speed: DSA cost is approximately linear in log q and worse than linear in log p.
These parameters are commonly recommended as providing about 2128 security,
but this recommendation takes precomputation into account, in violation of the
standard definition. The standard definition says that the q attack described in
Section 3 reduces security to about 285. A user deceived by this underestimate
will increase q to gain security against this attack, but is then forced by cost
limitations to reduce p, and at some point the p attack described in Section 4
becomes more worrisome. A detailed analysis suggests that p ≈ 22705 and q ≈
2330 is optimal, balancing the standard-definition cost of these attacks at about
2110. However, taking precomputation into account shows that the user has now
lost several bits of security.

Improvements in either Section 3 or Section 4 would change all the details
of this example. For example, moderate improvements in Section 4 might bring
23072 and 2256 back into balance, eliminating the security loss, but further im-
provements in Section 4 would then mislead the user into decreasing q below
2256, again losing security.

B.2. Modification 1: switching to the NAND metric. Another possible
response is to change the algorithm cost model from the RAM metric to the
NAND metric.

This response would cause trouble for the literature on provable concrete
security. (All of the responses below would also cause various levels of trouble.)
Proofs would have to be reviewed for RAM-dependent cost analyses, and many
theorems would have to change, because many reductions would become much

Non-uniform cracks in the concrete: the power of free precomputation 29

more expensive. For example, eliminating repeated queries to an oracle is a very
common step in security proofs; it is practically free in the RAM metric (add
each query into a fast associative array) but much slower in the NAND metric. In
other words, even though the NAND metric was mentioned as an “alternative”
in [12], the literature did not develop in a way consistent with this alternative.

The motivation for this response, as mentioned in Appendix A, is the hope
that this response would fix the “pathologies” in the RAM metric: i.e., that
the gap between actual security and the standard definition of insecurity is an
artifact of the low-cost random access provided by the RAM metric. However,
the analyses in Sections 2, 3, 4, and 5 do not provide any support for this idea. All
necessary random accesses appear in large batches, allowing reasonably efficient
NAND computations.

B.3. Modification 2: switching to the AT metric. Another possible re-
sponse, analogous to the previous response but different in one critical detail, is
to change algorithm cost model from the RAM metric to the AT metric.

Our cost analyses provide reason to hope that this response does fix essen-
tially all of the pathologies in the RAM metric. There is an exception in one
corner case — precomputation appears to help PRP attacks for probabilities be-
low 2−K/4U−1/2, where K is the key length and U is the number of targets — but
one can argue that such low-probability attacks are of no concern for crypto-
graphic users.

This response causes trouble for the literature on provable concrete security,
similar to the previous response but even more pervasive: even more theorems
would have to change. Like the NAND metric, the AT metric makes serial ran-
dom access much more expensive than the RAM metric; unlike the NAND met-
ric, the AT metric makes a large batch of table accesses much more expensive
than the RAM metric.

B.4. Modification 3: adding constructivity. In provable security (and in
complexity theory more broadly) it is standard to formalize “one can find a
cost-C algorithm A that breaks X” as “there exists a cost-C algorithm A that
breaks X”. This formalization ignores the question of how difficult it is to find
A. Another possible response is to switch to another formalization that explicitly
quantifies this difficulty.

The obvious way to quantify the hardness of finding A is as the minimum cost
required by all algorithms B that print A. The obvious objection is that there is
always a cost-approximately-C algorithm to print A: namely, an algorithm that
simply includes, and prints, a copy of A. However, one can easily exclude this
trivial algorithm by allowing only small algorithms B.

Consider, for example, a large chip containing billions of standard AES key-
search units. This chip breaks AES with AT cost roughly 2128. The chip has
a regular structure and area far below 2128, so it is printed at moderate cost
by an even smaller chip B. Similar comments apply to the standard chips to
attack NIST P-256, DSA-3072, and RSA-3072 at cost roughly 2128: all of them
are printed at moderate cost by small chips B.

30 Daniel J. Bernstein and Tanja Lange

Consider, as another example, the hard-to-find attack A of Section 2.3, which
finds an AES key with high probability using 243 tables, each of size 243, for a
total RAM cost on the scale of 286. The description of A in Section 2.3 is a small
algorithm B that prints A, but B has RAM cost on the scale of 2128. One can
trade some space for time by embedding part of A into B, but as far as we know
every algorithm B significantly smaller than A has negligible chance of printing
A with RAM cost significantly below 2128.

Consider, as a third example, the hard-to-find chip A of Section 2.2, with
AT cost about 23n: area about 22n and time about 2n. As far as we know,
every significantly smaller chip B has negligible chance of printing A in any
tolerable amount of time. This example suggests that it is possible to eliminate
some corner pathologies that were not eliminated by merely switching to the AT
metric.

Note that it is important to limit the cost of B in some reasonable cost metric,
not merely the size of B. All of the precomputations considered in this paper can
be carried out by rather small RAM algorithms; in other words, the outputs have
low Kolmogorov complexity. For the same reason, the NAND metric is useless
for measuring the cost of B.

In general, it seems reasonable to redefine the insecurity ofX as the maximum,
over all size-limited cost-limited algorithms B that print cost-limited algorithms
A, of the probability that A succeeds in breaking X. This definition is explic-
itly parametrized by three numerical limits, and implicitly parametrized by the
metrics used to specify those limits. We emphasize that probability here con-
siders not just the randomness in X and in A, but also the randomness in B;
otherwise the best choice of B is a tiny algorithm that prints out random bits.
If B is required to be a deterministic algorithm then imposing a size limit and
cost limit on B is, aside from polynomial factors, equivalent to imposing limits
on A under some of the notions of time-bounded/resource-bounded Kolmogorov
complexity surveyed in [5]; but polynomial factors are important, and excluding
probabilistic algorithms does not seem safe for cryptography.

This response stops all of the precomputations considered in this paper. For
example, it allows the feasible low-probability attack considered in Section 2.1
but does not allow the precomputed attacks considered in Section 2.2.

This response, like the previous two responses, causes trouble for the literature
on provable concrete security. Each theorem must be restated to track not only
the cost of A but also the size and cost of B.

B.4.1. Evaluating the realism of constructivity. Any limitation on the set
of attacks considered by security definitions raises the question of whether real
attackers are in fact bound by that limitation. Observing that today’s state-of-
the-art attacks obey the limitation does not resolve the question; perhaps a new
attack tomorrow will violate the limitation, and will break a system that was
declared to be secure by the limited definition.

One way to argue for the constructivity of real attack algorithms is to observe
that real attacks are found by humans; except for minor implementation details,
humans are simply chips, and rather small chips by cryptanalytic standards. Of

Non-uniform cracks in the concrete: the power of free precomputation 31

course, one can imagine humans building larger chips that in turn find algorithms
that the humans would not have found directly, and to model this one can
consider longer chains such as algorithms that print larger algorithms that in
turn print larger algorithms; but it seems reasonable to insist that the chain start
with a small algorithm (small enough for humans to find) and to put a cost limit
on each algorithm. One can also compress these chains after the second step,
replacing a large algorithm that prints A by a large algorithm that simulates A,
so there is only a small cost difference between (e.g.) the length-2-chain theory
and the length-3-chain theory.

A counterargument is that many humans working together in fact form quite a
large chip and have already developed impressively large algorithms, such as the
multiple-gigabyte software collection shipped with today’s operating systems.
Even if all of today’s state-of-the-art attack machines are printed by programs
considerably smaller than a megabyte, humans are certainly not limited to build-
ing such programs.

A different, more fundamental, argument for constructivity is as follows. Con-
sider a chip that simulates a randomly initialized world according to, e.g., Con-
way’s Game of Life [42], or a better approximation of the laws of physics. One
can reasonably conjecture that, if the simulated world is large enough, it will
contain simulations of some simple life forms that randomly evolve into more
complex life forms, eventually reaching the intelligence of the human race, even
though this chip is quite simple and is easily printed by a very small algorithm.
One can also modify the chip to communicate to the simulated life forms their job
of attacking a particular cryptosystem (or carrying out some other algorithmic
task), and to record their best results; this communication does not require much
extra complication in the algorithm that prints the chip, beyond a description
of the cryptosystem being attacked.

There are several ways that such simulators can fail: perhaps the simulated
rules are not actually complex enough to impose evolutionary pressures that
create intelligence, or perhaps the simulated world is too small to support the
intelligence required to find the real attacker’s best attack, or this evolution is
too slow, or the final simulation of the attack is too slow. However, one can
plausibly conjecture reasonably small bounds on each of these obstacles, and
continued research into artificial intelligence can be expected to add evidence for
such conjectures. We also comment that quantum computation allows analogous
simulators and conjectures.

To summarize, the fact that today’s state-of-the-art attack machines can be
printed at reasonable cost by small algorithms is not merely an accidental feature
of those attacks; it follows from the general evolutionary conjecture that an
adequate simulation of the world can be printed by a small algorithm.

B.4.2. Formalizing collision resistance. We comment on a surprising con-
sequence of this notion of constructivity: there is an apparently reasonable def-
inition of collision resistance for constructive deterministic hash functions with
large output sizes. Specifically, we define the collision insecurity of a hash func-

32 Daniel J. Bernstein and Tanja Lange

tion H as the maximum, over all size-limited cost-limited algorithms B that
print cost-limited algorithms A, of the probability that A prints a collision in H.

The conventional wisdom is that collision resistance is unformalizable for any
specific hash function H small enough to be computed. Specifically, if H has n-
bit output, then there certainly exists a collision between two (n+ 1)-bit inputs,
and therefore there exists an algorithm A that simply prints those two inputs.

However, this algorithm A contains more than 2n bits. One can easily reduce
2n to n, but if n is at least (say) 1024 plus the size limit on B then there is no
obvious way for B to print A or any other fast collision-finding algorithm.

We do not claim that this definition is meaningful for hash output sizes as
small as (e.g.) 512 bits; formalizing the collision resistance of SHA-512 remains
an open problem. However, the definition does appear to be meaningful for hash
output sizes larger than the sizes of the simulator-printing algorithms discussed
above, say 1 megabyte.

One can try to separate this formalization from an intuitive notion of colli-
sion resistance as follows. Assume that a hash algorithm H is collision-resistant
according to this definition; generate a “back door” consisting of two distinct
gigabyte-long random strings r1, r2 and an n-bit random string s; define a new
function H ′ that maps both r1 and r2 to s and that is otherwise identical to
H. A collision in H ′, namely (r1, r2), is known to the manufacturer of H ′ and
to anyone who looks at the most obvious program for H ′; but clearly no small
program B will print a program A that has a noticeable chance of finding this
collision.

However, this function H ′ is itself not constructive: there is no size-limited
cost-limited algorithm that prints a cost-limited algorithm that computes H ′.
One can try to model collision resistance for such functions by allowing A to
take a hash-computing program as an extra input, or one can simply restrict
attention to constructive hash functions, where such issues do not seem to arise.

B.5. Modification 4: adding uniformity. The next response we consider
is to eliminate non-uniform security definitions: to prevent precomputation by
requiring a single attack algorithm to work against many different cryptographic
systems.

The classic form of uniformity considered in the computational-complexity
literature is size-uniformity. One considers, for example, an attack against the
entire RSA family (a single algorithm that takes as input an RSA key of any
length), not just RSA-3072. One defines RSA to be (t, ε)-secure if every attack
taking time at most t has success probability at most ε; here both ε and t are
functions of the length of the RSA modulus.

Observe that this approach abandons the goal of defining, e.g., the insecurity
of RSA-3072. Substituting 3072 into ε and t does not work: it allows exactly the
same precomputations as in Section 5.

An alternative, already used in common definitions of collision resistance, is
to consider uniformity across wider families of functions. There is no longer a
definition of the security of AES; instead there is a definition of the security of a
family of 2128 variants of AES. This security depends on the choice of family. One

Non-uniform cracks in the concrete: the power of free precomputation 33

might try to define a family of functions “similar” to AES, hoping that the uni-
form security of this family reflects the actual security of AES; but cryptanalysts
have little motivation to study the family, so building confidence is difficult. For
RSA-3072 the situation is even worse: any reasonable family of 3072-bit functions
arguably sharing the security of RSA-3072 seems to be vulnerable to the same
precomputations as RSA-3072. For elliptic-curve cryptography the situation is
somewhat better, since one can reasonably ask questions about the security of
(e.g.) a random curve meeting the IEEE P1363 criteria over a randomly chosen
256-bit prime field; however, this is of no help in understanding the security of
the NIST P-256 curve.

It is clear that insisting on enough uniformity, taking enough steps away
from specific cryptographic primitives towards sufficiently diverse families of
cryptographic primitives, would eliminate the gap analyzed in this paper. The
gap relies on non-uniformity, and we have chosen to highlight non-uniformity in
the title of this paper.

The fundamental problem with this response is that it disconnects provable
security from cryptographic reality. For almost twenty years the literature on
provable concrete security has promised to formally define and study the se-
curity of specific cryptographic systems of interest to cryptographic users and
cryptanalysts, such as AES and AES-CBC-MAC and RSA-3072. Adding unifor-
mity would abandon this promise. Without these definitions it is unclear how to
make meaningful statements comparing the security of two different ciphers, or
two different curves, or any two cryptographic protocols that are specific enough
to actually be used in practice.

This fundamental problem is already well known for the special case of col-
lision resistance. For example, Rogaway in [76, Section 2] comments that uni-
formity conditions render collision-resistance definitions inapplicable to specific
hash functions such as SHA-256 and in particular “distance the definition from
the elegantly simple goal of the cryptanalyst: publish a collision for the (one)
function specified by NIST.”

A second problem with this response is that it forces syntactic changes to most
theorems. For example, instead of proving a theorem comparing the security of
a block cipher F to the security of CBCm-F as in [12], one would have to prove
a theorem comparing the security of a family of block ciphers to the security of
the corresponding CBC family.

B.6. Recommendations. We believe that accurately modeling reality is more
important than minimizing the number of changes required to the literature.
We recommend switching to the AT metric (modification 2), capturing real lim-
itations on communication cost that are ignored by the RAM metric and the
NAND metric. We also recommend adding constructivity (modification 3), cap-
turing the fact that attackers are limited in precomputation cost. We recommend
against adding uniformity (modification 4); users are in fact using AES and NIST
P-256 and RSA-3072, not large families of variants of AES and NIST P-256 and
RSA-3072.

34 Daniel J. Bernstein and Tanja Lange

We recommend stating provable-security theorems in a way that minimizes
the hassle of switching to a new cost metric. For example, consider again the
main theorem of [12], comparing the security of a block cipher F to the security
of CBCm-F . To prove this theorem one compares UseCBC(A) to A in cost and
in success probability, where A is any attack against CBCm-F and UseCBC is a
particular reduction producing an attack UseCBC(A) against F . The comparison
of success probability is independent of the cost metric, and we recommend
stating it as a separate theorem that can be reused for different cost metrics.
The following theorem from [21] illustrates how simple such statements can be:

“Theorem 3.1. PrFactor(RandSquare(A)) ≥ (1/2) PrInvBlind(A).”

The reduction RandSquare is defined before the theorem, and PrFactor and
PrInvBlind are two types of success probabilities. This theorem is independent
of cost metric, and is easy to reuse in various higher-level theorems that compare
the insecurity of the objects attacked by A and RandSquare(A) in various cost
metrics: the proof of a higher-level theorem analyzes the relative costs of A and
RandSquare(A) and appeals to this theorem for the relative success probabilities.
Similarly, the main security theorem of [12] factors easily into (1) a lower-level
theorem stating

Theorem. AdvPRFCBCm(F)(A) ≤ AdvPRPF (UseCBC(A))+q2m2/2l−1

and (2) a cost comparison of UseCBC(A) with A. Changing the cost metric (for
example, to switch to the AT metric and add constructivity as we recommend,
or to make further changes) then requires merely redoing the cost comparison
and the main security theorem; the lower-level theorem is unaffected and can
simply be reused.

An essential feature of this modularization is that reductions such as UseCBC
are defined outside theorems, so that one theorem can analyze the UseCBC
success probability while another theorem analyzes the UseCBC cost. This type
of modularization of provable-security theorems can be traced back to at least
1999 (see [17, Theorem 4.1]), if not earlier, although at that point it was not
claimed to have any particular benefits.

We emphasize that this modularization does not mean abandoning concrete
security definitions parametrized by attack cost, and does not mean abandoning
cost analyses of reductions. On the contrary: it is obviously desirable to have
meaningful “X is secure” statements as conclusions of theorems, and this is im-
possible without cost analyses and cost-based security definitions. Our proposed
modularization factors each concrete-security theorem into two parts: a proba-
bility theorem and a higher-level cost-vs.-probability theorem. The work inside
the probability theorem is independent of cost metric; cost analysis is isolated
inside the higher-level theorem.

Our analyses suggest that constructivity and the AT metric provide two levels
of defense against the unrealistic attacks considered in this paper. However, we
would not be surprised if further cost-model changes turn out to be desirable for
other reasons, and we think that a modular style for provable-security theorems
will reduce the effort required to make such changes in the future.

Non-uniform cracks in the concrete: the power of free precomputation 35

B.7. Eliminating the foundations. In the interest of completeness we also
analyze the merits of an unusual response to the difficulties of defining security.
This response, in a nutshell, is to stop defining security.

The idea of abandoning definitions of security is obviously a quite radical
departure from the quotes given at the beginning of this paper (e.g., “formal
definitions of security are essential”) and from standard practice in the litera-
ture (see the sample in Appendix L). We agree with the mainstream view that
definitions of security are important; this is exactly why we have investigated (1)
the failures of the current definitions to accurately model actual security and (2)
techniques to build more accurate models. We find it obvious that both of these
directions of investigation are of wide interest. However, there is a small corner
of the literature that can be seen as questioning whether security definitions are
actually necessary, and we think that this question deserves analysis.

It might seem nonsensical to talk about “provable security” if there is no
definition of the security being proven. However, if one proves that any attack
against X can be converted into an attack against Y , then it might seem intu-
itively clear that X has been proven to be as secure as Y , even without definitions
of what it means for X and Y to be secure. This approach turns out to be fraught
with difficulties (see below), but it is at least conceivable that one can build a
meaningful notion of security proofs without a definition of security.

Before analyzing the difficulties we review the history. The conventional wis-
dom has always been that there is no way to (accurately!) formalize collision
resistance for a specific hash function such as SHA-256. The usual responses
are to add uniformity (as in Appendix B.5) or to switch away from protocols
that rely on collision resistance. A 2001 paper by Stinson [86] proposed to in-
stead “study reductions among the different problems”, and claimed that one
can “study reductions without worrying about having to define [security], even if
the hash function under consideration is fixed”. Stinson’s paper did not actually
justify this claim (see below), but a 2006 paper “Formalizing human ignorance”
by Rogaway [76] explored Stinson’s proposal much more carefully and reported
a “solution to the foundations-of-hashing dilemma”.

Our impression is that most subsequent papers have continued to follow the
usual responses, adding uniformity or switching away from collision resistance,
rather than following the recommendations in [76]. This might be a reflection
of the difficulties analyzed below. However, this might also be explained by the
fact that [76] is only seven years old and has not yet had time to be explained in
textbooks. A popularity measurement is not the same as an assessment of costs
and benefits.

Neither [86] nor [76] suggested that abandoning definitions of security was a
desirable course of action. Both papers were exploring what could be done given
a lack of definitions of security, in particular for the narrow case of collision
resistance. On the other hand, at the time there was also no indication of any
problems outside this narrow case, and no motivation to find solutions to those
problems. The standard security definitions were widely believed to be accurate

36 Daniel J. Bernstein and Tanja Lange

models of actual security—whereas now, after this paper, those definitions are
widely understood to be inaccurate and not so easy to fix.

Rogaway, in response to an early version of this paper, pointed out to us
the idea of abandoning definitions of security. If the approach of [76] allows
proving collision-resistance theorems without a definition of collision resistance
then presumably it also allows proving other security theorems without other
security definitions. We are aware of two claims of benefits of abandoning a
definition: the first is the claim that this allows simpler security theorems; the
second is the claim that one no longer has to be concerned with getting the
definition right. See below for our analysis of these two claims.

Of course, there are many roles for security definitions in the literature other
than allowing formulation of “X is as secure as Y ” proofs. Without definitions
it is no longer clear how to assign mathematical meaning to, e.g., the conjec-
ture that NIST P-256 is more secure than RSA-1024 (a statement made very
frequently as an argument for ECC), or to the Bellare–Rogaway security con-
jectures about AES in [16, Section 3.6]. However, one can argue that the most
important role for security definitions is to allow formulation of proofs.

We now inspect the details of how provable-security theorems might be for-
mulated without security definitions. For concreteness we consider the following
example, a special case of [76, Section 6]. Define H as SHA-256, and define Ek
as Rijndael encryption of a 256-bit block using a secret key k. The goal is to
guarantee that Ek(H(m)) is a secure authenticator of m, assuming that H is
collision-resistant and that Ek is a secure block cipher. The problem is that we
cannot state a theorem with these hypotheses and this conclusion: we do not
have a definition of the collision-resistance of H, and beyond that we do not
want to use a definition of the security of Ek or a definition of the security of
Ek ◦H.

Here are several attempts to formulate theorems that, without ever actually
using definitions of security, guarantee MAC security of Ek ◦H assuming PRF
security of Ek and collision security of H.

Attempt 1: “If there is an attack against Ek ◦H then there is an attack against
Ek or an attack against H.”

This theorem statement obviously provides zero assurance of the security
of Ek ◦ H: it is still true even if Ek ◦ H is replaced by something completely
insecure, such as E0 ◦H. In particular, the conclusion “there is an attack against
Ek” is trivially true. For example, guessing k is an attack against Ek; it is a low-
probability attack, but the theorem statement did not require high probabilities.
As another example, searching through all possibilities for k is an attack against
Ek; it is a very slow attack, but the theorem statement did not put any limits
on attack cost.

This first attempt might seem frivolous. We include it to emphasize that aban-
doning security definitions does not eliminate the need to define and analyze the
success probability of attacks and the cost of attacks. Abandoning security defi-
nitions also does not evade the need for a careful definition of cost: for example,

Non-uniform cracks in the concrete: the power of free precomputation 37

omitting program length from the RAM metric would cause just as much trouble
for these theorems as it causes for security definitions.

Attempt 2: “If there is a (q, t, ε) attack against Ek ◦H then there is a (q, t, ε)
attack against Ek or a (t, ε) attack against H.”

This is another useless theorem statement, again providing zero assurance
of the security of Ek ◦ H. The most obvious problem is that there is a (t, ε)
attack against H (for any reasonable (t, ε)), namely a short algorithm that simply
knows, and prints, a collision in H.

Note that similar (although quantitatively less severe) comments apply to Ek.
This type of theorem statement fails to rule out precomputations in general, not
just precomputations of collisions.

This second attempt might seem almost as frivolous as the first attempt.
However, as pointed out by Rogaway in [76], Stinson’s theorems in [86] are stated
in exactly this way. For example, [86, Theorem 3.1] states that “If there exists an
(ε, q) algorithm” for second preimages inH then “there exists an (ε, q) algorithm”
for collisions in H. Stinson describes this theorem as a “result” capturing the
intuition that second preimages are at least as difficult as collisions; but in fact
the same statement can be trivially proven even if second preimages are replaced
by something much easier to compute.

Attempt 3: “There exist algorithms B and C such that if A is a (q, t, ε) attack
against Ek ◦H then B(A) is a (q, t, ε) attack against Ek or C(A) is a (t, ε) attack
against H.” Here B(A) means B using A as an oracle, and C(A) means C using
A as an oracle.

Unfortunately, this is yet another useless theorem statement. To prove the
theorem, even with Ek ◦H replaced by something insecure, simply define C as
a fast algorithm that ignores A and prints a collision in H. Such an algorithm
certainly exists.

Attempt 4: “There exist algorithms B and C, explicitly given in the proof of
this theorem, such that if A is a (q, t, ε) attack against Ek ◦ H then B(A) is a
(q, t, ε) attack against Ek or C(A) is a (t, ε) attack against H.”

This theorem statement follows all of the rules stated by Rogaway in [76]. In
fact, it has only superficial differences from the theorem statement in [76, Section
6]. Rogaway’s theorem is stronger, asserting that a single B and C work for all
choices of H and Ek given oracle access to H and Ek; but we emphasize that this
is not the same as requiring uniformity, and that substituting particular choices
of H and Ek produces a theorem about those choices. (We have also slightly
oversimplified the t and ε portions of the theorem statement: we are ignoring the
fact that Rogaway’s B(A) and C(A) are slightly slower than A. However, this
looseness is orthogonal to the issues analyzed here.)

Unfortunately, there is a severe lack of clarity in this theorem statement, and
in the theorem statements in [76]. The critical question is what it means for an
algorithm to be “explicitly given”. Nowhere in [76] can one find a definition of
this phrase, and there is certainly no standard definition in the mathematical
literature.

38 Daniel J. Bernstein and Tanja Lange

There are two obvious constraints on how “explicitly given” must be defined in
order to be useful here. First, the definition must be broad enough to allow typical
security proofs; otherwise one cannot credibly propose rewriting the provable-
security literature in this style. Second, the definition must be narrow enough
to rule out trivial proofs that can be carried out for insecure protocols and that
therefore provide zero assurance of security. Unfortunately, it is not at all clear
that both of these constraints can be satisfied simultaneously.

As an illustration of the first constraint, consider the classic “cascade” (i.e.,
session-key) security theorem proven by Bellare, Canetti, and Krawczyk in [8].
The proof generates a series of q different intermediate attack algorithms, where
q is the number of queries allowed to the original attack. If “explicitly given in the
proof” is defined as “substring of the proof” then the Bellare–Canetti–Krawczyk
proof is ruled out: the proof is a fixed-length string, independent of q, and q is
arbitrarily large, so it is obviously not true that each of these q intermediate
algorithms appears as a substring of the proof. All known proofs of this basic
theorem work in essentially the same way. Anyone reading the proof would agree
that the algorithms are reasonably explicit, not cheating in any way that feels
troublesome, but [76] certainly does not give a definition of “explicitly given in
the proof” that captures this intuition.

As an illustration of the second constraint, consider again the Attempt 4
theorem stated above, and again assume that “explicitly given in the proof”
is defined as “substring of the proof”. Here is an alternate proof of the same
theorem:

– Case (0, 1): If SHA-256 collides on inputs 0 and 1 (encoded as 257-bit strings),
define C as the algorithm “print 0; print 1”.

– Case (0, 2): If SHA-256 collides on inputs 0 and 2, define C as the algorithm
“print 0; print 2”.

– . . .
– Case (2256 − 1, 2256): If SHA-256 collides on inputs 2256 − 1 and 2256, define
C as the algorithm “print 2256 − 1; print 2256”.

– By the pigeonhole principle SHA-256 collides for some inputs i and j with
0 ≤ i < j ≤ 2256, so case (i, j) occurs. In each case C is a (t, ε) attack against
SHA-256. Also define B as the algorithm that always prints 0.

This proof works for all reasonable (t, ε). It does not need the hypothesis on A:
it also works if Ek ◦H is replaced by a completely insecure construction. This
proof is extremely long, but the word “theorem” does not mean “theorem with
a short proof”; it does not even mean “theorem with an efficiently verifiable
proof”. (Of course, the structure of this particular proof does allow efficient
verification; this is an illustration of what is called a “reflection principle” in
mathematical logic.) To summarize, the most obvious definition of “explicitly
given in the proof” turns out to be a vacuous condition, reducing Attempt 4 to
Attempt 3.

Note that this proof is highly non-uniform: the definition of C depends on
the details of SHA-256. Adding enough uniformity rules out this proof, and also
allows an easy definition of collision resistance. The problem with uniformity (as

Non-uniform cracks in the concrete: the power of free precomputation 39

in Appendix B.5) is that its definition of collision resistance is only for families
of hash functions, whereas what users care about is the collision resistance of
a few specific functions such as SHA-256. The goal of [86] and [76] is to state
theorems that apply to these specific functions.

This proof, despite its triviality, is a quite serious attack against the model
stated in [76]: it shows that one can prove “security” theorems that follow all
of the rules in [76] but that apply to trivially breakable cryptographic systems.
Again, we are assuming that “explicitly given in the proof” means “substring of
the proof”, but there is nothing in [76] giving a different definition.

Attempt 5: “There exist algorithms B and C, explicitly given in a first-order
proof of this theorem in ZFC set theory having length at most 250, such that if
A is a (q, t, ε) attack against Ek ◦H then B(A) is a (q, t, ε) attack against Ek or
C(A) is a (t, ε) attack against H.”

The idea of the length limit is to prohibit the trivial proof stated above. One
can imagine that the length limit does not pose a problem for “good” proofs,
and one can even imagine that progress in computer verification of proofs will
allow this length limit to be formally verified.

However, this theorem has another proof that is short and that does not need
the hypothesis on A; consequently this is yet another theorem statement that
provides zero security assurance. This short proof appears somewhere in the
following long list of short possible proofs:

– Possible proof (0, 1): Define C as the algorithm “print 0; print 1”. Then C
is a (t, ε) attack against SHA-256. Define B as the algorithm that always
prints 0.

– Possible proof (0, 2): Define C as the algorithm “print 0; print 2”. Then C
is a (t, ε) attack against SHA-256. Define B as the algorithm that always
prints 0.

– . . .
– Possible proof (2256−1, 2256): Define C as the algorithm “print 2256−1; print

2256”. Then C is a (t, ε) attack against SHA-256. Define B as the algorithm
that always prints 0.

By the pigeonhole principle again, SHA-256 does in fact collide for some (i, j),
and it is then easy to verify that possible proof (i, j) is a correct proof of this
theorem. Statistical sampling indicates that almost all of the possible proofs
listed here are incorrect, but this is irrelevant to the validity of the theorem.
Note that this proof strategy also shows that requiring C to be given at a fixed
position in the proof, say the beginning, is still insufficient to guarantee security.

Attempt 6: “Define B as the following algorithm: . . . Define C as the following
algorithm: . . . If A is a (q, t, ε) attack against Ek◦H then B(A) is a (q, t, ε) attack
against Ek or C(A) is a (t, ε) attack against H.”

The critical change here is that the algorithm is defined as an explicit constant
in the theorem itself, not just in some proof of the theorem. A reader faced with
a theorem of this shape is no longer faced with a mere existence statement: by
communicating the theorem statement one is also communicating the reduction

40 Daniel J. Bernstein and Tanja Lange

algorithms B and C. This prohibits precomputation: more precisely, the precom-
putation that printed the reduction algorithms is included in the computation
that printed the statement of the theorem, and the reader seeing the theorem
sees that this computation was in fact carried out.

Of course, anyone who knows a short collision in H can prove a theorem
having this shape, and similar comments apply to Ek; but the user of the theorem
is starting from the belief that nobody knows such attacks, and is deducing a
similar belief about Ek◦H. This theorem statement, unlike the previous theorem
statements, does seem to say something meaningful about Ek ◦H.

There are, however, several obvious difficulties with trying to rewrite the
entire literature on provable security within the theorem structure illustrated by
Attempt 6. First, with this structure there are no longer any security theorems
with simple statements: every security theorem is forced to include the reduction
algorithms, no matter how complicated those reductions might be. (Otherwise
the theorem user is faced with Attempt 4, which as demonstrated above provides
zero security assurance.) For comparison, with our recommended modularization
(Appendix B.6), a conversion from a (t, ε) attack against X to a (t, ε) attack
against Y is first stated explicitly as part of a low-level theorem, but is then
encapsulated inside a much simpler high-level theorem statement, namely that
X is as secure as Y .

Second, the Attempt 6 structure makes composition unnecessarily tedious.
It has become increasingly common, as provable security has tackled more and
more sophisticated protocols, for a theorem “If Y is secure thenX is secure” to be
proven by composing one theorem “If Y is secure then Z is secure” with another
theorem “If Z is secure then X is secure”. Someone who later finds a simpler way
to prove one of the components, such as a simpler reduction demonstrating the
same quantitative security relationship between Z and X, can simply publish
the new proof of exactly the same Z ⇒ X theorem, without any need to worry
about how the theorem has been used in higher-level theorems. This does not
work with the Attempt 6 structure; the structure requires much heavier data
flow. The Y ⇒ X theorem statement needs to include an explicit definition of
a reduction that composes the reductions defined in the Y ⇒ Z and Z ⇒ X
theorems; those reductions need to be either copied from the relevant papers, or
referred to through global names that clearly specify those particular reductions.
Publishing a simpler reduction from Z to X no longer means giving a simpler
proof of a single theorem: it means changing the statement not just of that
theorem but also of every higher-level theorem obtained from that theorem by
composition.

Third, and most importantly, the Attempt 6 structure is clearly not broad
enough to handle the diversity of techniques used in typical security proofs, such
as the classic Bellare–Canetti–Krawczyk “cascade” security proof mentioned ear-
lier. Any proof that builds more than a constant number of reduction algorithms
is syntactically prohibited. Any proof that makes a data-dependent choice be-
tween several reduction algorithms is syntactically prohibited.

Non-uniform cracks in the concrete: the power of free precomputation 41

One might try to loosen the syntactic structure of Attempt 6 so as to allow
the “cascade” security proof and many other important security proofs without
allowing the trivial precomputation proofs described above. However, we are not
aware of any ideas for how to do this (in [76] or elsewhere), or even any reason
to believe that it is possible. The essential feature of the “cascade” security
proof is constructivity, and the only approach we have found to defining this
(see Appendix B.4) is quantitative: specifically, we quantify the computation
required to output the q intermediate reductions considered in the proof. This
is an easy algorithm analysis, and one could generalize it to an analysis of all
algorithms meeting a specific set of syntactic constraints, but then the next
security proof will require yet another set of ad-hoc constraints.

Summary and evaluation. With these examples in mind we return to the
two claims mentioned above: first, that abandoning definitions of security allows
simpler security theorems; second, that abandoning definitions means that one
no longer has to be concerned with getting the definitions right.

Our analysis provides no support for either of these claims. This entire ap-
proach still needs probability analyses, still needs cost analyses, and still has
trouble with precomputation; these are exactly the fundamental issues that arise
in formulating security definitions that accurately model actual security. The
theorem statements become much more complicated, adding an ill-defined re-
quirement for explicit algorithms in proofs and obscuring fundamental precom-
putation problems without actually solving those problems. A sufficiently rigid
syntactic structure for theorems does appear to prevent pathologies but also
makes theorems much more complicated to state and use; most importantly,
this structure is much too rigid to handle typical security proofs.

For comparison, all available evidence is that our recommended security defi-
nitions accurately model actual security. Giving security definitions allows sim-
ple, well-defined conjectures directly addressing what the user wants to know:
namely, X reaches a particular security level. It allows simple, well-defined state-
ments of what an attack accomplishes: namely, X does not reach a particular
security level. It allows simple, well-defined theorem statements: the hypothesis
is that Y reaches a particular security level, and the conclusion is that X reaches
a particular security level. The work required to prove a theorem is the funda-
mental work required for any meaningful security theorem: quantitative analysis
of probability, cost, and precomputation.

G Appendix: Graphs

42 Daniel J. Bernstein and Tanja Lange

1

2K/4 +

2K/2 +

23K/4 +

2K

Cost

2−K

+

2−3K/4

+

2−K/2

+

2−K/4 1

Success probability

Fig.G.1. Cost summary of PRP attacks against one K-bit key. Horizontal axis: Attack
success probability p, from 1/2K to 1, on a logarithmic scale. Vertical axis: Attack cost,
from 1 to 2K , again on a logarithmic scale. Top curve (green): Cost 2Kp, approximating
cost of simple exhaustive search. Bottom curve (red): Cost 2Kp2 for p ≤ 2−K/3 and
22K/3p for larger p, approximating RAM/NAND cost of best attack known. Middle
curve (blue, merging with green): Cost 23K/2p3 for p ≤ 2−K/4 and 2Kp for larger p,
approximating AT cost of best attack known.

1

`1/4 +

`1/2

Cost

`−1 `−3/4

+

`−1/2

+

`−1/4

+

1

Success probability

Fig.G.2. Cost summary of discrete-logarithm attacks for a group of size `. Horizontal
axis: Attack success probability p, from 1/` to 1, on a logarithmic scale. Vertical axis:
Attack cost, from 1 to

√
`, again on a logarithmic scale. Bottom curve (red): Cost

(p`)1/3, approximating RAM/NAND cost of best attack known. Top curve (blue):
Cost (p`)1/2, approximating AT cost of best attack known.

L Appendix: Literature samples

To collect data regarding standard practice in the literature on provable concrete
security, we scanned the proceedings of Crypto 2012, searching for concrete secu-

Non-uniform cracks in the concrete: the power of free precomputation 43

rity definitions and claims of provable concrete security. This appendix reports
the results of this scan.

Most of the “provable security” papers do not prove anything about con-
crete security. Some use information-theoretic security notions that cannot be
broken by any amount of attacker computation; the majority use purely asymp-
totic security notions such as “every probabilistic polynomial-time adversary has
negligible success probability”.

There are, however, five provable-concrete-security papers. Each of these five
papers explicitly claims to “show” or “prove” or “guarantee” bounds that involve
the “security” (or “insecurity” or “Adv”) of some cryptographic systems. Proving
such bounds obviously requires a quantitative definition of the “security” of a
system; the central question here is what definitions the papers are actually
using.

Inspection of these papers — see below for details — suggests that it is com-
pletely standard to use definitions that express exactly the following situation:
there does not exist an algorithm that breaks the system with probability above
ε while satisfying specified limits on “time”, queries, etc. None of the five papers
deviate from this standard. Three of the papers explicitly state new definitions
that follow this standard. The other two papers use a classic special case, namely
PRP “security”, without defining it; after many years of papers repeating the
same definition of PRP “security” — a settled definition that also follows this
standard — the reader is forced to assume that these two papers are also using
that definition.

L.1. Details. The five papers are as follows, in the same order that they appear
on Springer’s web site.

Jager, Kohlar, Schäge, and Schwenk in [50] give a “formal proof that [one
version of TLS-DHE] is a secure authenticated key exchange protocol”, define
“the notion of authenticated and confidential channel establishment”, and prove
that a particular protocol “forms a secure ACCE protocol”. [50, Definition 2]
defines an encryption scheme to be (t, ε)-“secure” if “all adversaries A running in
time at most t” have success probability at most ε; similar definitions continue
throughout the paper. [50, Theorem 1] assumes that various primitives are (t, ε)-
“secure” and concludes that “any adversary” that (t′, ε′)-breaks a particular
protocol with “t ≈ t′” must have ε′ ≤ · · · . This is trivially equivalent to a
conclusion that the protocol is (t′, ε′)-“secure” under the definitions in the paper.

Bellare, Ristenpart, and Tessaro in [13, Section 2] define a “(t, q, qc)-adversary”
as an algorithm that “runs in time t and makes at most q[i] encryption queries
of the form · · · and makes at most qc corruption queries” and then define
Advuku

SE,m(t, q, qc) as the maximum advantage among “all (t, q, qc)-adversaries”.

[13, Theorem 1] bounds “Advuku
SE,m(t, q, qc)” relative to another similarly defined

insecurity function.
Hoang, Morris, and Rogaway in [47, Section 4] briefly discuss the “complexity-

theoretic interpretation” of an information-theoretic result. They do not state a
formal theorem but they say that “the PRP-security of E is the PRF-security
of F minus [something small]”. The paper neither gives nor cites a definition

44 Daniel J. Bernstein and Tanja Lange

of “the PRP-security of E”, so (as above) the reader is forced to assume that
the paper reuses the definition given in many previous papers, referring to a
low success probability of all algorithms subject to specified limits on time and
queries. Similar comments apply to [47, Section 5], which asserts that one is
“guaranteed” that attacks have a success probability of “less than 10−10” plus
the “insecurity” of AES.

Landecker, Shrimpton, and Terashima in [59, page 16] say that “the bulk
of the paper is dedicated to showing that” the proposed “CLRW2 TBC” is “a
strong tweakable-PRP” under various hypotheses, one hypothesis being that the
underlying cipher E “is a secure strong-PRP”. The paper neither gives nor cites
a definition of “secure strong-PRP”, so (as above) the reader is again forced
to assume the standard definition. This assumption is consistent with the for-
mulation of the “main technical result” of the paper, [59, Theorem 1], which
hypothesizes that A is “an adversary asking a total of q queries to its oracles,
these of total length µ, and running in time t’, and concludes that “there ex-
ists an adversary B using the same resources” whose success probability has a
particular lower bound in terms of the success probability of A. The existence
of an algorithm with specified success probability, time, etc. is exactly what is
logically required to prove insecurity under the standard definition.

Hofheinz and Jager in [48, Theorem 5] state, under various hypotheses, that
a particular system is “(ε, t, µ, q)-IND-CCA secure”. This means, by [48, Defini-
tion 5], that “there exists no adversary” that (ε, t)-breaks the (µ, q)-IND-CCA
security of the system, i.e., there exists no adversary “that runs in time t and
wins with probability 1/2 + ε” using µ public keys and q queries.

Q Appendix: Frequently asked questions

This appendix answers several questions that we have been asked regarding this
paper.

Q.1. In the real world, an attack is applied to many targets. Doesn’t
this make the precomputation effectively free? No, not in general. The
fallacy here is addressed in Appendix B.1.1.

Q.2. Aren’t we simply making the user safer if we underestimate at-
tack cost by ignoring precomputation? No. The fallacy here is addressed
in Appendix B.1.2.

Q.3. Why are you analyzing the cost of precomputation in these at-
tacks? Didn’t you just say that this cost is irrelevant to the security
definitions? The security definitions are not accurate models of actual security.
Seeing the cost of precomputation (e.g., 2128 for the AES attack and 2170 for the
NIST P-256 attack) is critical for understanding this gap. We recommend fixing
the security definitions to take this cost into account; see Appendices B.4 and
B.6.

Non-uniform cracks in the concrete: the power of free precomputation 45

Q.4. I don’t understand how MD5 could possibly break AES. Are you
sure? Yes. The analysis is easy, using standard heuristics, and is backed by the
computer experiments reported in Appendix V.

Q.5. If one special precomputation is enough to completely break AES,
isn’t that serious enough that the metric should capture it? Of course.
Success probability is important, and the number of targets is important. But the
difficulty of carrying out the precomputation is also important, and is ignored
in the standard security definitions. We propose taking all of these features into
account. See Appendix B.6.

Q.6. Sorting costs n log2 n. How can you take a metric seriously if it
says that sorting costs n1.5? The best reported results for the energy con-
sumption of sorting [69] are 43700 items sorted per joule for 1010 100-byte items,
and 9700 items sorted per joule for 1012 100-byte items. The ratio 43700/9700
is 4.5, and the chip evolution mentioned in Appendix A.3 can be expected to
improve the small sort by a larger factor than the large sort, pushing the ratio
up towards 10. For comparison, the ratio (log2 1012)/(log2 1010) is only 1.2, ob-
viously understating the heavy communication costs of sorting. See [24] for a
more detailed analysis of physical constraints upon algorithm performance.

Q.7. I spend time A setting up my area-A hardware, plus time T
waiting for the results. Isn’t A+T my actual cost? If you have n processing
cores, each carrying out a series of n separate computations, then you have
carried out n2 computations and used energy proportional to n2, but A + T
is only linear in n. The RAM metric avoids this pathology by imposing an
unrealistic prohibition upon parallel computations, but it falls prey to other
pathologies.

Q.8. Isn’t your AT metric simply a reinvention of Wiener’s full-cost
metric? It’s not our AT metric. The AT metric has decades of history in al-
gorithm analysis, and more than a decade of history in cryptanalytic algorithm
analysis; see, e.g., [29] and [18]. Wiener’s 2004 full-cost metric [90] appears to
be equivalent to the V T metric analyzed in the 1983 papers [77] and [74]. See
Q.9 for further analysis of V T .

Q.9. The world is three-dimensional! Isn’t V T a more realistic metric
than AT? The world is three-dimensional, but power consumption and heat
dissipation are two-dimensional. A modern billion-transistor CPU is much more
like a 32768×32768 square than a 1024×1024×1024 cube; “three-dimensional”
manufacturing technology is limited to a small number of layers (e.g., a flat
4×16384×16384 box). Similarly, a “three-dimensional” computer cluster actually
provides orders of magnitude faster communication within two-dimensional chips
than it does between chips.

At a larger scale, each square meter of the Earth’s atmosphere receives at
most 1361 watts from the Sun, so one cannot hope to sustain an A-square-
meter computer that consumes more than 1361A watts, no matter what the
computer technology is. A three-dimensional V T -optimized computer does not

46 Daniel J. Bernstein and Tanja Lange

have enough surface area to receive and dissipate the energy it uses, and if one
tries to “spread it out” to give room for more energy then one ends up with
V T cost matching AT cost. One might argue that it is possible to temporarily
violate the 1361A maximum by shifting energy through time, as illustrated by
oil drilling, or similarly by shifting energy around the Earth’s surface, but this
argument ignores the energy cost of the shifting mechanisms.

Furthermore, three-dimensional circuit designs pose severe temperature prob-
lems even if enough energy magically becomes available at the surface of the
computer. Increasing the size of a V T -optimized design, while still providing the
energy needed for each bit operation, requires a corresponding increase in the
amount of power that passes from the surface through each point of the design.
This is incompatible with the temperature limits that are needed for adequate
error correction in any physical system for computation. This is true even for
limited three-dimensional systems that use only one layer for transistors and the
rest for wires: wires require energy proportional to their length.

We have checked that the AT analyses of high-probability attacks in this paper
would produce the same results if AT were replaced by V T , so the criterion of
avoiding these “pathologies” is equally served by AT and by V T , but AT is
much more accurate in modeling physical reality.

Q.10. Doesn’t the physical reality actually say that each computation
is O(1)? Quite possibly, yes. We recommend Aaronson’s exposition in [4] of
a physics argument concluding that the “maximum number of bits that could
ever be used in a computation in the physical world” is about 10122, inversely
proportional to the cosmological constant. The two major steps in the argument
are as follows. First, trying to pack information too densely would violate the
Bekenstein–Hawking bound (see, e.g., [6]), which states that the entropy inside
a spherical region of space is at most 1/4 of the surface area (not volume) of
the region measured in Planck units. Second, as observed by Bousso in [28],
information located too far away is forced by the nonzero cosmological constant
to accelerate away so quickly as to become unobservable.

This bound on the number of bits used by a computation implies that every
terminating physical computation has overwhelming probability of terminating
within a particular constant number of bit operations. Standard asymptotic
complexity classes such as P, BPP, BQP, etc. have no logical connection to
such short computations. Aaronson’s only suggestions for allowing a physical
realization of the standard complexity classes are to switch to an imaginary
alternate universe in which the cosmological constant is zero, or a sequence of
imaginary alternate universes with cosmological constant converging to zero.

Fortunately, these asymptotic issues also have no logical connection to con-
crete security questions such as the security of AES-128, NIST P-256, DSA-3072,
and RSA-3072. This paper focuses almost exclusively on concrete security ques-
tions, with asymptotics appearing only occasionally as inspiration. For example,
Section 5.2 briefly analyzes the asymptotics of one algorithm, but this is merely
a warmup for the concrete analysis of the same algorithm in Section 5.3.

Non-uniform cracks in the concrete: the power of free precomputation 47

Q.11. What. . . is the air-speed velocity of an unladen swallow? What
do you mean? An African or European swallow?

Q.12. Have you considered effectivity? Yes. Effectivity is another name
for constructivity, which is analyzed in Appendix B.4. We recommend a specific
strategy (which appears to be new) for incorporating a quantitative form of
constructivity into security definitions.

Q.13. When you say that the algorithms are non-uniform, aren’t you
really trying to say that the algorithms are non-constructive? Almost
all of the algorithms we present are non-uniform: for example, the RSA attack
requires different precomputations for sufficiently different modulus sizes, and
the ECC attack requires different precomputations for different curves. Almost
all of the algorithms we present are also non-constructive, i.e., very hard to
find; see Appendix B.4 for a quantitative formalization of this intuition. Non-
uniformity and non-constructivity are not the same concept.

Q.14. Isn’t “non-uniformity” a purely asymptotic concept? No. Con-
sider, for example, a theorem proving that for each 512-bit string s there is a
fast algorithm A that, given a 512-bit string t as input, prints collisions in the
512-bit-to-128-bit function x 7→ MD5(s, t, x). Consider a stronger theorem prov-
ing that there is a fast algorithm A that, given 512-bit strings s and t as input,
prints collisions in the 512-bit-to-128-bit function x 7→ MD5(s, t, x). The differ-
ence between these theorems is precisely in the amount of uniformity imposed
on A. There are no asymptotics here.

Q.15. My favorite textbook defines “non-uniform” algorithms specifi-
cally as families of polynomial-size circuits, one circuit for each input
size, and defines “uniform” algorithms specifically as polynomial-time
algorithms. Aren’t these definitions completely standard? Yes, these are
two quite standard uses of the word “uniform”, and often the only uses described
in introductory textbooks, the same way that many introductory mathematics
textbooks define “small” as comparing real numbers in the usual ordering. How-
ever, the complexity literature actually uses the name “uniform” for a much
wider range of definitions, the same way that the mathematics literature uses
“small” for a much wider range of definitions.

Example 1: Consider Goldreich’s discussion in [43] of the “amount of non-
uniformity” in a circuit family. This is a quantitative metric (the length of an
advice string), easily capturing the introductory notions of “uniform” (advice
limited to 0) and “non-uniform” (no limit on the advice) but also allowing anal-
ysis of intermediate amounts of uniformity.

Example 2: Consider Katz’s discussion in [52] of “logspace-uniform” families
of circuits. Compared to the introductory polytime-uniform concept, logspace-
uniform restricts non-uniformity in another dimension, different from the length
of an advice string.

Example 3: Consider Shor’s discussion in [83, Section 2] of the “additional
uniformity condition” used to define the complexity class BQP: a condition on

48 Daniel J. Bernstein and Tanja Lange

families of real numbers used as constants in algorithms, yet another dimension
of uniformity.

Example 4: Consider Koiran’s comment in [57, Section 6] that the “only
difference between VPSPACE0 and uniform VPSPACE0 is the nonuniformity
of the coefficient function; VPSPACE is even more nonuniform since arbitrary
constants are allowed”.

Q.16. ? 42.

Q.17. Isn’t the hashing attack in Section 2 outperformed by the linear-
cryptanalysis approach of De, Trevisan, and Tulsiani? No. The speeds are
identical at the level of detail of our analysis. The linear-cryptanalysis approach
is cited in Section 2 for the benefit of provability, but the hashing approach is
amply tested and has the benefit of simplicity.

Q.18. Why do you allow NIST P-256 precomputations that depend
on a particular base point? Don’t users choose separate base points
on the P-256 curve? The NIST P-256 standard, like other curve standards,
specifies a particular base point P ; each user computes a separate public key
Q as a multiple of the same P . There is negligible security benefit in having a
separate (P,Q) pair for each user: the attacker simply chooses his own base point
B and computes logP Q as (logB Q)/(logB P), allowing any amount of B-specific
precomputation for at most a factor of 2 in attack cost.

Q.19. Isn’t it already well known that there’s a gap between attack
algorithms that exist and attack algorithms that can be constructed?
For one important problem, the problem of finding hash-function collisions, it
is indeed very well known that “the best algorithm that exists” is not a reason-
able model of “the best algorithm that can be found”. For example, there is a
fast algorithm that outputs collisions in SHA-512, but actually finding such an
algorithm seems hopeless. (See Appendix B.4.2 for further analysis of this gap.)

However, hash-function collisions seem to be viewed as an exceptional case.
The same model is widely viewed as reasonable for AES security, RSA security,
etc., as illustrated by the conjectures from [15, Section 1.4], [16, Section 3.6],
[7, Section 3.2], etc. Rogaway begins [76] by describing “The Foundations-of-
Hashing Dilemma” with no indication that the dilemma extends beyond hashing.

Q.20. These AES-128 and NIST P-256 and DSA-3072 and RSA-3072
issues are just quantitative, right? Yes, they’re “just” quantitative, but
getting the quantitative details right has always been a major theme of the
concrete-security literature. This paper is aiming at large gaps that affect wide
portions of the literature; for comparison, the gaps in many well-known “tight-
ness” papers are quantitatively smaller and apply to much narrower portions of
the literature.

(Note also that the attacks analyzed in this paper place lower bounds on
standard-definition insecurity, whereas even a loose theorem places conditional
upper bounds on standard-definition insecurity. One can confidently compensate
for a lack of tightness by increasing parameters, whereas there is no basis for

Non-uniform cracks in the concrete: the power of free precomputation 49

confidence in, e.g., a conjecture of 285 standard-definition “security” for AES. It
is thus possible that the quantitative problems here are even more severe.)

Bellare, Desai, Jokipii, and Rogaway wrote in [10] that when reductions are
loose “one must use a larger security parameter to be safe, reducing efficiency.
Thus, in the end, one pays for inefficient reductions in either assurance or run-
ning time.” Our attacks against AES-128, NIST P-256, et al. show that there
is an even larger loss of “either assurance or running time” from a failure in
the standard security definitions: specifically, an inaccurate model of the set of
algorithms available to the attacker.

Q.21. Doesn’t Rogaway’s “human ignorance” model already solve
these definitional problems? No; it doesn’t even try.

Stinson in [86] proposed explicit hash-function reductions as a workaround
for the difficulties of defining collision resistance. Rogaway’s “Formalizing human
ignorance” paper [76] refined this proposal, giving examples of apparently useful
theorems involving collision resistance. See Appendix B.6 and Appendix B.7 for
a detailed review and analysis of these proposals.

The “human ignorance” line of work does not attempt to find security def-
initions that accurately model actual security. For example, this line of work
does not attempt to find a realistic formalization of the statement “SHA-512
is collision-resistant”; it instead attempts to state theorems that say something
meaningful about collision resistance despite the lack of definitions of collision
resistance. What is being formalized is not actually the human ignorance of col-
lisions in SHA-512, but the implication between human ignorance of collisions
in SHA-512 and human ignorance of various other attacks. Similarly, this line
of work does nothing to solve the problem of finding a realistic formalization
of statements such as “NIST P-256 is secure” — a problem that was incorrectly
believed to be solved many years ago and that is shown in this paper to be much
more subtle.

Our work is aimed at finding security definitions that do accurately model
actual security. Sections 2, 3, 4, and 5 analyze inaccuracies in the current def-
initions; Appendix B analyzes the merits of four proposed modifications to the
definitions, and recommends two of the modifications. One of our modifications
even makes progress towards defining collision resistance; see Appendix B.4.

Q.22. Are you saying that the AT metric fixes everything? No. Ap-
pendix B.3 evaluates switching to the AT metric; our analyses suggest that this
switch fixes essentially all pathologies except in one corner case. Appendix B.4
evaluates adding constructivity; our analyses suggest that this fixes some corner
pathologies. Appendix B.6 recommends both of these changes, and also recom-
mends modularizing theorems to accommodate further changes.

Q.23. Are you seriously suggesting redoing all the security definitions
and proofs in the literature to use constructivity and the AT metric?
Yes. A few theorems are already factored in the way we recommend in Ap-
pendix B.6, but the vast majority of definitions and theorems require new work.
Some proofs, such as the “coin-fixing” proofs criticized in [55], will not survive

50 Daniel J. Bernstein and Tanja Lange

the transition to constructivity. Our impression is that most proofs in the litera-
ture are constructive, but tightness will often change dramatically (see, e.g., the
comments on repeated queries in Appendix B.2), imposing surprisingly small
limits on the number of queries that can be tolerated before a proof becomes
vacuous and raising the question of whether there are tighter proof strategies.

Q.24. Why should we rewrite theorems? Why not just make an inven-
tory of the occasional theorems using non-constructive reductions? A
partial list of non-constructive reductions provides zero assurance to a reader
who wants to know whether another reduction is constructive. Making a com-
plete list of non-constructive reductions requires doing the work of checking every
proof in the literature. A positive list of the proofs that have been checked is
far less error-prone than a negative list of the bad proofs. Theorem statements
are the standard mechanism to say what exactly has been checked, so that users
know what security guarantees they are actually being provided.

Q.25. Can’t we just assume that AT theorems will look the same as
current theorems? No. See Q.23.

Q.26. Can’t we just assume that constructive theorems will look the
same as current theorems? No, not always. See Q.23.

Q.27. How do you expect authors to learn how to do AT algorithm
analyses? The AT metric is used in thousands of papers. We recommend the
classic paper [29] for definitions and for illustrative algorithm-analysis examples,
and the newer paper [18] for several examples of AT analysis of cryptanalytic
algorithms. Much lengthier expositions can be found in hardware-design text-
books.

Q.28. Isn’t AT essentially the same as the product of space and time
for the normal RAM model of computation, or the product of program
size and time? No; it isn’t even close.

Consider, for example, sorting n numbers, each having no(1) bits. The AT
cost is n1.5+o(1): specifically, a square chip of area n1+o(1) finishes sorting in time
n0.5+o(1) using [88] or [81] or [80]. The same exponents also apply to n-bit mul-
tiplication and many other fundamental communication-intensive subroutines;
see [29].

The sum of RAM time and space is much smaller, n1+o(1), because RAM time
ignores communication cost. The product of RAM time and program size is also
n1+o(1). Note that this n1+o(1) is physically unrealistic; see Q.6. The product of
RAM time and space is much larger, n2+o(1): this metric pays for space while
failing to allow any compensating parallelism. All of these RAM-based metrics
are very far from the AT cost.

Analogous gaps appear for the same reasons in Section 5 of this paper, again
so large as to be easily visible in asymptotic exponents.

Q.29. AT increases by a factor of 25 if A increases from 210 to 220

while T decreases from 250 to 245, but isn’t this decrease in T much
more important than the minor increase in A? No, it isn’t.

Non-uniform cracks in the concrete: the power of free precomputation 51

Of course, A and T can be evaluated differently, producing different optima on
this two-point area-time tradeoff curve, and obviously an arbitrary curve cannot
be mathematically captured by a single number. As mentioned in Appendix A,
hardware designers often consider more general functions of (A, T).

However, AT is the primary metric in thousands of hardware-design papers,
including essentially every serious paper on cryptanalytic hardware. The core
reason is parallelism. Even if the (210, 250) chip cannot be parallelized into
(220, 240), it can certainly be parallelized into (220, 250) solving 210 problems
at once, and more generally (220M, 250N) solving 210MN problems. For com-
parison, the (220, 245) chip implies (220M, 250N) solving just 25MN problems,
which isn’t as good. This is perfectly captured by AT , and more generally by
the standard concept of price-performance ratio.

Of course, if one of the algorithms can be adapted to achieve better than
(220, 250) solving 210 problems, there is an obvious benefit to the algorithm user.
This benefit is also visible in AT .

Q.30. Does anyone actually care about the performance of reduction
algorithms? Yes. For example, Shoup’s RSA-3-OAEP security proof [84, Sec-
tion 7.2] needs Coppersmith’s LLL-based root-finding algorithm [34], and relies
critically on the subtle fact that LLL runs in polynomial time. Concrete security
bounds require more detailed LLL analyses.

Q.31. Isn’t it inappropriate to switch definitions and start writing
papers using the new definitions? There are ample precedents for this. For
example, Newtonian physics was replaced when it was discovered to be a poor
model of reality. We briefly review a much closer example from mathematics.

In the 19th century, Kronecker questioned the significance of proofs of exis-
tence that are not effective, i.e., proofs that do not explain how to find the object
that allegedly exists.

The classic example is the Bolzano–Weierstrass theorem, which states that an
infinite sequence of real numbers x0, x1, . . . ∈ [0, 1] has an infinite subsequence
that converges. The critical observation in the usual proof is that there must
be infinitely many i with xi ∈ [0, 0.5], or infinitely many i with xi ∈ [0.5, 1].
Define I1 as [0, 0.5] if there are infinitely many i with xi ∈ [0, 0.5], otherwise as
[0.5, 1]; define I2 similarly as the left or right half of I1; etc.; and, finally, take
the infinite subsequence indexed by the first i with xi ∈ I1, the first subsequent
i with xi ∈ I2, etc. Kronecker objected that this proof gives no way to find the
desired subsequence: even if each xi is completely explicit, there is no procedure
to decide whether there are infinitely many i with xi ∈ [0, 0.5].

Early 20th-century formalizations of mathematics did not provide any way to
express Kronecker’s objection. The only formalization of “one can find x such
that p(x)” was “it is not true that, for all x, not p(x)”; for many years it was
not obvious that any other formalization was possible. However, the introduc-
tion of “constructive mathematics” showed that one can formalize mathematics
in a way that gives different meanings to these two notions, disallowing the
Bolzano–Weierstrass proof (and theorem) while preserving more explicit math-

52 Daniel J. Bernstein and Tanja Lange

ematical proofs. This is part of the background for our quantitative approach to
constructivity.

Q.32. Have there really been people asking all these questions? Yes,
except that the “swallow” and “42” questions were not originally directed to us.

V Appendix: Verification that MD5 breaks AES

For each 8-bit string k and each 128-bit string p define Ek(p) = AESk,0(p), where
“k, 0” means k zero-padded to 128 bits. This cipher E is a scaled-down version
of AES. The attacker’s goal is to distinguish E from a perfect cipher p 7→ F (p),
where F is a uniform random permutation of the set of 128-bit strings.

Consider the following very fast attack, a scaled-down version of the simple
attack described in Section 2.1: take 16 bits of cipher output, zero-pad to 128
bits, feed the result through MD5, and take the first bit of the result (specifically,
the bottom bit of the first byte of the result). Note that for this attack there is
no difference between a uniform random permutation F and a uniform random
function F .

This attack outputs 1 for exactly 32949 out of all 65536 16-bit strings: i.e., the
average attack output against a uniform random permutation is 32949/65536 ≈
0.502762. If this attack is applied to the first 16 bits of Ek(0) then it outputs
1 for exactly 114 out of the 256 keys k; i.e., the average attack output against
E is 114/256 ≈ 0.445312. The success probability of the attack against E is,
by definition, the absolute value of the difference of these two averages, namely
3765/65536 ≈ 0.057449.

Table V.1 displays the results of similar experiments for K-bit ciphers for
a range of values of K ≤ 64. In each case 2K bits of cipher output are zero-
padded to 128 bits and fed through MD5. The table is consistent with the theory
that the success probability of the attack drops as roughly 1/

√
2K , and very far

from consistent with the naive theory that all very fast attacks have success
probability dropping as 1/2K .

The analysis in Section 2.1 states that (if K-bit keys do not produce sur-
prisingly frequent collisions in 2K bits of cipher output) replacing MD5 with a
uniform random function would have probability approximately 1− erf(x

√
2) of

producing an attack whose success probability is at least x/
√

2K ; e.g., proba-
bility approximately 0.31731 of producing an attack whose success probability
is at least 0.5/

√
2K , and probability approximately 0.98404 of producing an at-

tack whose success probability is at least 0.01/
√

2K . With this replacement, the
second average described above (the average attack output against E) is the
average of 2K independent uniform random bits and thus has a bell-curve dis-
tribution of width roughly 1/

√
2K , while the first average (the average attack

output against a uniform random permutation) is the average of 22K indepen-
dent uniform random bits and thus has a much narrower bell-curve distribution
of width roughly 1/2K , so the difference will almost always be on the scale of

1/
√

2K .

Non-uniform cracks in the concrete: the power of free precomputation 53

K uniform cipher success scaled

1 1 0.250000 0 0.000000 0.250000 0.353553
2 7 0.437500 4 1.000000 0.562500 1.125000
3 27 0.421875 4 0.500000 0.078125 0.220971
4 117 0.457031 6 0.375000 0.082031 0.328125
5 491 0.479492 21 0.656250 0.176758 0.999893
6 2038 0.497559 37 0.578125 0.080566 0.644531
7 8195 0.500183 64 0.500000 0.000183 0.002072
8 32949 0.502762 114 0.445312 0.057449 0.919189
9 131279 0.500790 245 0.478516 0.022274 0.504003

10 524921 0.500604 498 0.486328 0.014276 0.456818
11 2098847 0.500404 1029 0.502441 0.002037 0.092197
12 8389411 0.500048 2020 0.493164 0.006884 0.440563
13 33555992 0.500023 4063 0.495972 0.004052 0.366706
14 134215688 0.499992 8070 0.492554 0.007439 0.952152
15 536855969 0.499986 16399 0.500458 0.000472 0.085383
16 2147481189 0.499999 32644 0.498108 0.001892 0.484228
17 ? 0.500000? 65347 0.498558 0.001442? 0.522044?
18 ? 0.500000? 131291 0.500835 0.000835? 0.427734?
19 ? 0.500000? 261618 0.498997 0.001003? 0.726442?
20 ? 0.500000? 523667 0.499408 0.000592? 0.606445?
21 ? 0.500000? 1048417 0.499924 0.000076? 0.109795?
22 ? 0.500000? 2097213 0.500015 0.000015? 0.029785?
23 ? 0.500000? 4193272 0.499877 0.000123? 0.356316?
24 ? 0.500000? 8386407 0.499869 0.000131? 0.537354?
25 ? 0.500000? 16776146 0.499968 0.000032? 0.184718?
26 ? 0.500000? 33552224 0.499967 0.000033? 0.269531?
27 ? 0.500000? 67108562 0.499998 0.000002? 0.026068?
28 ? 0.500000? 134239208 0.500080 0.000080? 1.311035?
29 ? 0.500000? 268434302 0.499998 0.000002? 0.049805?
30 ? 0.500000? 536878982 0.500008 0.000008? 0.246277?
31 ? 0.500000? 1073756269 0.500007 0.000007? 0.311711?
32 ? 0.500000? 2147489600 0.500001 0.000001? 0.090820?

Table V.1. Success probability of MD5 as an attack against zero-padded K-bit AES
keys. “Uniform” is the number of 2K-bit strings s such that bits1 MD5(s, 0) = 1, where
s, 0 means s zero-padded to 128 bits and bits1 means the first bit. The subsequent
column is “uniform” divided by 22K . “Cipher” is the number of K-bit strings k such
that bits1 MD5(bits2K AESk,0(0), 0) = 1, where bits2K means the first 2K bits. The
subsequent column is “cipher” divided by 2K . “Success” is the success probability of
the attack: the absolute difference between “uniform” divided by 22K and “cipher”
divided by 2K . “Scaled” is “success” times

√
2K . “?” means that “uniform” was not

computed but was estimated to be 22K/2.

This analysis is consistent with the experimental results. The analysis also
covers, e.g., truncating Ek(0), Ek(1) to 2K bits and zero-padding to 256 bits for
64 ≤ K ≤ 128. In this case there is a slight difference between a uniform random
function and a uniform random permutation, but only on the scale of 1/2K .

