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Abstract

A visual cryptography scheme (VCS) is a secret sharing method, for which the secret

can be decoded by human eyes without needing any cryptography knowledge nor any com-

putation. Variance is first introduced by Hou et al. in 2005 and then thoroughly verified

by Liu et al. in 2012 to evaluate the visual quality of size invariant VCS. In this paper, we

introduce the idea of using variance as an error-detection measurement, by which we find

the security defect of Hou et al.’s multi-pixel encoding method. On the other hand, we find

that variance not only effects the visual quality of size invariant VCS, but also effects the

visual quality of VCS. At last, average contrast associated with variance is used as a new

criterion to evaluate the visual quality of VCS.
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1 Introduction

Naor and Shamir first introduced the concept of k out of n threshold visual cryptography

scheme ((k, n)-VCS) [9], which splits a secret image into n shares in such a way that the

stacking of any k shares can reveal the secret image but any less than k shares should provide

no information (in the information-theoretic sense) of the secret image, except the size of it.

Ateniese et al. extended the model of Naor and Shamir to general access structure in [1].

Suppose the participant set is denoted as P = {1, 2, 3, . . . , n}, a general access structure is a

specification of qualified participant sets ΓQual ∈ 2P and forbidden participant sets ΓForb ∈ 2P .

Any participant set X∈ ΓQual can reveal the secret by stacking their shares, but any participant

set Y∈ ΓForb cannot obtain any information of the secret image. In (k, n) threshold access

structure, ΓQual = {B ⊆ P : |B| ≥ k} and ΓForb = {B ⊆ P : |B| ≤ k − 1}.
Ito et al. and Yang separately introduced size invariant visual cryptography scheme (SIVCS)

in [10] and [13] respectively, which has no pixel expansion. In SIVCS, both white and black pixels
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can be recovered as black, which results in deteriorated visual quality compared to VCS. To

improve SIVCS’s visual quality, Hou et al. proposed the multi-pixel encoding method (MPEM)

in [5]. Compared to VCS (see [9] and [1]), the main advantage of SIVCS and MPEM is that

they are both of no pixel expansion, while the best pixel expansion of VCS is exponential large

(e.g. the best pixel expansion of (n, n)-VCS is 2n−1).

Variance is first introduced by Hou et al. in [5] to evaluate the visual quality of the recovered

image of SIVCS. Liu et al. thoroughly verify, analytically and experimentally, the effectiveness

of the criterion in [7]. In this paper, we first introduce the idea of using variance as an error-

detection measurement, by which we find the security defect of Hou et al.’s MPEM that for

secret image with simple contours, its content can be perceived from any single share. On the

other hand, we find that variance not only effects the visual quality of SIVCS, but also effects

the visual quality of VCS. At last, average contrast associated with variance is used as a new

criterion to evaluate the visual quality of VCS.

This paper is organized as follows. In Section 2, we give some preliminaries of VCS. In

Section 3, we use variance as an error-detection measurement. In Section 4, we use average

contrast and variance to evaluate the visual quality of VCS. The paper is concluded in Section 5.

2 Preliminaries

In this section, we first give the definition of VCS. Then we give a brief description of the

MPEM proposed by Hou et al. in [5].

Before moving any further, we first set up our notations. Let X be a subset of {1, 2, · · · , n}
and let |X| be the cardinality of X. For any n × m Boolean matrix M , let M [X] denote the

matrix M constrained to rows of X, then M [X] is a |X|×m matrix. We denote by H(M [X]) the

Hamming weight of the OR result of rows of M [X]. Let C0 and C1 be two collections of n×m

Boolean matrices, we define C0[X] = {M [X] : M ∈ C0}, and define C1[X] = {M [X] : M ∈ C1}.
In a visual cryptography scheme (VCS) with n participants, we share one pixel at a time,

which is either white or black. If the pixel to be shared is white (resp. black), we randomly

draw a share matrix from C0 (resp. C1) and distribute the j-th (1 ≤ j ≤ n) row to share j,

where 0 denotes a white pixel and 1 denotes a black pixel. A VCS for an access structure Γ is

defined as follows:

Definition 1 (VCS [1]) The two collections of n×m Boolean matrices (C0, C1) constitute a

({ΓQual,ΓForb},m, n)-VCS if the following conditions are satisfied:

1. (Contrast) For any participant set X ∈ ΓQual, we denote lX = max
M∈C0[X]

H(M), and denote

hX = min
M∈C1[X]

H(M). It holds that 0 ≤ lX < hX ≤ m.

2. (Security) For any participant set Y ∈ ΓForb, C0[Y ] and C1[Y ] contain the same matrices

with the same frequencies.

The important parameters of a VCS are:



1. (Contrast) α = min
X∈ΓQual

αX , where αX =
hX − lX

m
. The relative difference in Hamming

weight between two recovered blocks of a black pixel and a white pixel in the original

image. This represents the loss in contrast. We would like α to be as large as possible.

2. (Pixel expansion) m, the number of pixels in a share that is encoded from a pixel in the

original image. This represents the loss in resolution and the expansion in share size. We

would like m to be as small as possible.

3. (Randomness) |C0| and |C1|, the size of collections C0 and C1. log2 |C0| and log2 |C1|
represent the number of random bits needed to share a white and black pixel respectively

and do not affect the visual quality of the recovered image.

4. (Average Contrast) ᾱ = min
X∈ΓQual

ᾱX , where l̄X =
∑

M∈C0[X]

H(M)

|C0[X]|
and h̄X =

∑
M∈C1[X]

H(M)

|C1[X]|

and ᾱX =
h̄X − l̄X

m
. The relative difference in average Hamming weight between two re-

covered blocks of a black pixel and a white pixel in the original image. This represents

the loss in average contrast. We would like ᾱ to be as large as possible.

5. (V ariance) σ̄ = min
X∈ΓQual

σ̄X and σ̄′ = min
X∈ΓQual

σ̄′
X , where σ̄X =

∑
M∈C0[X]

(H(M)− l̄X)2

|C0[X]|

and σ̄′
X =

∑
M∈C1[X]

(H(M)− h̄X)2

|C1[X]|
. The variation of Hamming weights of the recovered

block of a white pixel (resp. a black pixel) in the original image. We would like σ̄ and σ̄′

to be as small as possible.

We would like to point out that the first three parameters are the commonly accepted

evaluation criteria of VCS, while ”Average Contrast” is a parameter generalized from SIVCS

and we use it to overcome the weaknesses of the parameter ”Contrast”, as will be discussed in

Section 4.

If the two collections of n×m Boolean matrices (C0, C1) can be obtained by permuting the

columns of the corresponding n×m Boolean matrix (S0 for C0, and S1 for C1) in all possible

ways, we will call the two n ×m Boolean matrices the basis matrices, which is widely used in

VCS, see [1–3, 6, 9, 11]. In this case, the size of the collections (C0, C1) is the same (both equal

to m!). A ({ΓQual,ΓForb},m, n)-VCS based on basis matrices is defined as follows:

Definition 2 (VCS based on basis matrices [1]) The two n×m Boolean matrices (S0, S1)

constitute a ({ΓQual,ΓForb},m, n)-VCS if the following conditions are satisfied:

1. (Contrast) For any participant set X ∈ ΓQual, we denote lX = H(S0[X]), and denote

hX = H(S1[X]). It holds that 0 ≤ lX < hX ≤ m.

2. (Security) For any participant set Y ∈ ΓForb, S0[Y ] and S1[Y ] are equal up to a column

permutation.



S0 and S1 are also referred to as the white and black basis matrices respectively. In a

SIVCS [10, 13], to share a black (resp. white) pixel, we randomly choose a column from the

black (resp. white) basis matrix, and then distribute the i-th row of the column to participant

i. In a ({ΓQual,ΓForb}, n)-SIVCS, considering qualified participant set X ∈ ΓQual, a black pixel

is recovered as black with probability hX
m , which is higher than the probability lX

m that a white

pixel is recovered as black. Hence we can perceive the secret from the overall view. However,

SIVCS does not satisfy that there is a gap between the Hamming weights of the recovered blocks

of a black pixel and that of a white pixel as VCS does, because in SIVCS both black and white

pixels can be recovered as black. The average contrast of qualified participant set X is defined

as ᾱX =
hX − lX

m
and the average contrast of the scheme is defined as ᾱ = min

X∈ΓQual

ᾱX .

In the following, the MPEM proposed by Hou et al. in [5] is described as Construction 1

for convenience, which encrypts multiple pixels (nonadjacent for most cases) simultaneously.

Construction 1 Let M0 (resp. M1) be the n× r white (resp. black) basis matrix. Each time,

we take r successive white (resp. black) pixels as an white (resp. black) encoding sequence.

1. Take r successive white (resp. black) pixels, which have not been encrypted yet, from the

secret image sequentially. Record the positions of the r pixels as (p1, p2, . . . , pr).

2. Permute the columns of M0 (resp. M1) randomly.

3. Fill in the pixels in the positions p1, p2, . . . , pr of the i-th share with the r colors of the

i-th row of the permuted matrix, respectively.

4. Repeat step (1) to step (3) until every white (resp. black) pixel is encrypted.

3 Using variance as an error-detection measurement

In this section, we will take Hou et al.’s (2,2)-MPEM as an example to establish the frame-

work of using variance as an error-detection measurement of the stacked result of forbidden

participant sets. This section is divided into two parts: 1, theoretical analysis; 2, experimental

results and their statistical analysis.

3.1 Theoretical analysis of the shares encoded by the (2,2)-MPEM

The following two basis matrices for white and black pixels are the same as those in Section

2.1 of [5].

M0 =

[
10

10

]
, M1 =

[
10

01

]
.

In Hou et al.’s paper, the variance is defined separately on white and black regions. Readers

can refer to the definition of encoding sequence in Section 2 and the definition of standard

deviation in Section 5 of [5]. However, the above definitions are improper, because they do not



agree with the experimental results, as will be shown later in this section. In this paper, we

define variance on an encoding block of adjacent pixels. Because the pixel expansion of the

underling (2,2)-VCS that we build from is two, we divide the secret image into encoding blocks

of size two. If we denote a white pixel as 0 and denote a black pixel as 1, all possible encoding

blocks are: “00”, “01”, “10”, “11”.

In the (2,2)-MPEM, since the secret image is encoded sequence by sequence, from the

viewpoint of encoding blocks, the currently encoding process is affected by the previous encoding

situations. To make it clear, we give an example as follows:

Example 1 Suppose the secret image I is


0010

1011

0101

0101

, where 0 denotes a white pixel and 1 de-

notes a black pixel. The (2,2)-MPEM (see Construction 1) is used to encode image I. The

positions of pixels are numbered from 1 to 16, line by line, from left to right. The pixel from

row 1 and column 1 is white, and its position is numbered 1=0+1. The pixel from row 2 and

column 3 is black, and its position is numbered 7=4+3.

From the viewpoint of encoding sequences, the positions of the first white encoding sequence

are 1 and 2, which are filled by the permuted basis matrix M0. The positions of the first black

encoding sequence are 3 and 5, which are filled by the permuted basis matrix M1. The positions

of the second white encoding sequence are 4 and 6, which are filled by the permuted basis matrix

M0. The positions of the second black encoding sequence are 7 and 8, which are filled by the

permuted basis matrix M1.

From the viewpoint of encoding blocks, the first encoding block “00” is encoded by the per-

muted basis matrix M0. The second encoding block “10” is encoded by randomly drawing a

column from M1 and then randomly drawing a column from M0. Now we begin to encode the

third block “10”, as there are odd 0s and odd 1s having been encoded previously, the shares are

successively filled with the remaining column from M1 and the remaining column from M0 with

respect to the encoding of the second block.

For the (2,2)-MPEM, from the viewpoint of encoding blocks, since we encode a block of

two successive pixels at a time and there are always totally even number of pixels having been

encoded, the previous encoding situations that even 0s and odd 1s (or odd 0s and even 1s) have

been encoded, are impossible. And we only have the following two previous encoding situations:

Situation 1: There are even 0s and even 1s having been encoded. If the currently-processing

block is “00” or “11”, the corresponding blocks of the share images will definitely have one 1

and one 0. Else if the currently-considered block is “01” or “10”, the corresponding blocks of

the share images will have two 0s with probability 1
4 , one 1 and one 0 with probability 1

2 , and

two 1s with probability 1
4 .

Situation 2: There are odd 0s and odd 1s having been encoded. Whatever the currently-

processing block is (possibly “01”, “10”, “00” and “11”), the corresponding blocks of the share



images will have two 0s with probability 1
4 , one 1 and one 0 with probability 1

2 , and two 1s with

probability 1
4 .

Remark: We only give the concrete analysis results for all possible cases. The encoding

process of the (2,2)-MPEM from the viewpoint of encoding blocks can be seen from Example

1. The previous encoding situations are also referred to as the encoding backgrounds.

To explain the variation of the gray-level of an encoding block on the stacked images or

on a single share, we define the average and variance of the gray-level of an encoding block as

follows.

µ =

m∑
i=0

pi × i, σ =

m∑
i=0

pi × (i− µ)2 (1)

Remark: The encoding block is of size m. i = 0, 1, . . . ,m are all possible Hamming weights

(gray-levels) of an encoding block, and pi (i = 0, 1, . . . ,m) are their associated probabilities.

Besides, we would like to point out that the above two definitions can be calculated for the

stacked result of forbidden participant set, as well as for the stacked result of qualified participant

set, both for an encoding block.

In the following, we will take the (2,2)-MPEM for example to illustrate the parameters in

Equation (1). Suppose the currently-processing block is “01” and its encoding background is

Situation 2. We consider its corresponding block on a single share, then p0 = 1
4 , b0 = 0;

p1 = 1
2 , b1 = 1; p2 = 1

4 , b2 = 2. It is convenient to know that µ = 1, and σ = 1
2 = 0.5,

which corresponds to the entry of row “01” and column “Situation 2” from Table 1. Due to the

symmetry property of shares of the (2,2)-MPEM, the variances of the corresponding blocks on

different shares are the same. All possible cases can be found in Table 1.

Encoding blocks \Encoding
backgrounds

Situation 1 Situation 2

00 0 0.5

01 0.5 0.5

10 0.5 0.5

11 0 0.5

Table 1: All possible variances of the Hamming weights of an encoding block on a single share.

Generally speaking, encoding blocks “01” and “10” correspond to contour areas of the secret

image, and encoding blocks “00” and “11” correspond to white and black areas of the secret

image respectively. From Table 1, it is easy to see that for a single share, the variance of contour

areas is larger than that of the white and black areas in overall, which will leak the contour

information of the secret image.



3.2 Experimental and statistical analysis of the shares encoded by the (2,2)-

MPEM

In this section, we will first give some experimental results for the (2,2)-MPEM. Then we

will give some statistical analysis of its share images and explain its security defect.

We use the (2,2)-MPEM to encode image “Pythagoras” and image “Airplane”. The experi-

mental results can be found in Figures 1 and 3. Images in Figure 2 are the experimental results

for the (2,2)-SIVCS proposed by Ito et al. in [10] and Yang in [13].

Figure 1: Experimental results for (2,2)-MPEM: (a) the original secret image with image size

340×340, (b) share 1 with image size 340×340, (c) share 2 with image size 340×340, (d) stacked

image with image size 340×340

Figure 2: Experimental results for (2,2)-SIVCS: (a) the original secret image with image size

340×340, (b) share 1 with image size 340×340, (c) share 2 with image size 340×340, (d) stacked

image with image size 340×340

By comparing images (d) in Figures 1 and 2, we can see that the recovered image of the

(2,2)-MPEM has better visual quality than that of the (2,2)-SIVCS. However, from images (b)

and (c) in Figure 1, we can perceive the content of image (a). Hence we claim that although the

MPEM proposed in [5] improves the visual quality of SIVCS, it has security defect on shares.

However, for image with complex contours (see image (a) in Figure 3), the shares generated

by the (2,2)-MPEM look like noise images (see images (b) and (c) in Figure 3) and provide no

information about the secret.

In the following discussion, we will successively give some statistical analysis of the shares



Figure 3: Experimental results for (2,2)-MPEM: (a) the original secret image with image size

512×512, (b) share 1 with image size 512×512, (c) share 2 with image size 512×512, (d) stacked

image with image size 512×512

encoded from image “Pythagoras” and those from image “Airplane”, and try to explain why

shares of image “Pythagoras” leak the secret while shares of image “Airplane” do not.

Some statistical information of image (a) in Figure 1 can be found in Table 2.

The number of

“00” blocks

The number of

“01” blocks

The number of

“10” blocks

The number of

“11” blocks

The total num-

ber of blocks

53195 614 1003 2988 57800

Table 2: The numbers of all possible encoding blocks for image (a) in Figure 1

It should be noted that the above statistical information is related to the encoding process.

And we encode the original secret image line by line, from left to right, two successive pixels as

an encoding block.

Some statistical information of the encoding process of image (a) in Figure 1 can be found

in Table 3.

Encoding blocks \Encoding
backgrounds

Situation 1 Situation 2

00 28138 25057

01 272 342

10 537 466

11 1539 1449

Table 3: The numbers of all possible encoding blocks which are encoded with all possible

encoding backgrounds for image (a) in Figure 1

From Tables 1 and 3, we have the following results:

If the encoding block is “00”, then in overall, the expected variance of the corresponding

block on a single share is 28138
53195 × 0 + 25057

53195 × 1
2 = 0.23552.

If the encoding block is “01”, then in overall, the expected variance of the corresponding

block on a single share is 272
614 × 1

2 + 342
614 × 1

2 = 0.5.



If the encoding block is “10”, then in overall, the expected variance of the corresponding

block on a single share is 537
1003 × 1

2 + 466
1003 × 1

2 = 0.5.

If the encoding block is “11”, then in overall, the expected variance of the corresponding

block on a single share is 1539
2988 × 0 + 1449

2988 × 1
2 = 0.24247.

As we have mentioned, encoding blocks “01” and “10” correspond to contour areas of the

secret image, and encoding blocks “00” and “11” correspond to white and black areas of the

secret image respectively. Combined with the above calculation, it is convenient to see that

from a single share, the expected variance of the contour areas is significantly larger than that

of the white and black areas. Besides the contour of image “Pythagoras” is simple, see image

(c) in Figure 4. From images (b) and (c) in Figure 1, we can see that the contour areas are

more uneven than the black and white areas, which leads us to perceive the content of the secret

image. The theoretical analysis agrees well with the experimental result. However, Table 1 in

Section 5 of [5] shows that the standard deviations σb and σw defined in Section 5 of [5] are

both 0, which does not agree with the experimental result. Hence we claim that the definition

of standard deviation in [5] is improper.

In the following, we will try to explain why the shares of image “Airplane” look like noise

images.

Some statistical information of image (a) in Figure 3 can be found in Table 4.

The number of

“00” blocks

The number of

“01” blocks

The number of

“10” blocks

The number of

“11” blocks

The total num-

ber of blocks

44242 34518 35318 16994 131072

Table 4: The numbers of all possible encoding blocks for image (a) in Figure 3

Some statistical information of the encoding process of image (a) in Figure 3 can be found

in Table 5.

Encoding blocks \Encoding
backgrounds

Situation 1 Situation 2

00 22228 22014

01 17196 17322

10 17722 17596

11 8393 8601

Table 5: The numbers of all possible encoding blocks which are encoded with all possible

encoding backgrounds for image (a) in Figure 3

From Tables 1 and 5, we have the following results:

If the encoding block is “00”, then in overall, the expected variance of the corresponding

block on a single share is 22228
44242 × 0 + 22014

44242 × 1
2 = 0.24879.

If the encoding block is “01”, then in overall, the expected variance of the corresponding

block on a single share is 17196
34518 × 1

2 + 17322
34518 × 1

2 = 0.5.



If the encoding block is “10”, then in overall, the expected variance of the corresponding

block on a single share is 17722
35318 × 1

2 + 17596
35318 × 1

2 = 0.5.

If the encoding block is “11”, then in overall, the expected variance of the corresponding

block on a single share is 8393
16994 × 0 + 8601

16994 × 1
2 = 0.25036.

From the above calculation, it is convenient to see that for a single share, the expected

variance of the contour areas is significantly larger than that of the white and black areas.

However, the contour of image “Airplane” is very complex, where the edge areas and the white

and black areas often mix together, see image (d) in Figure 4, leading the shares to look like

noise images, see images (b) and (c) in Figure 3. Our experimental result for image “Airplane”

agrees well with that of Hou et al. in [5]. That was the very reason that Hou et al. did not

notice the security defect on shares.

We use the MATLAB command, “edge(f,‘sobel’,0.15)”, to extract the contour of image

“Pythagoras” and image “Airplane”. The experimental result can be found in Figure 4. Image

“Airplane” is a halftone image, thus its contour image is very complex.

Figure 4: Edge extraction: (a) image “Pythagoras” with image size 340×340, (b) image “Air-

plane” with image size 512×512, (c) contour image of “Pythagoras” with image size 340×340,

(d) contour image of “Airplane” with image size 512×512

4 Using average contrast and variance to evaluate the visual

quality of VCS

Contrast is first introduced in the pioneer work of Naor and Shamir to evaluate the visual

quality of VCS. However, researchers do not reach a consensus on the definition of contrast.

There are four definitions of contrast: αNS = h−l
m introduced in [9], αV V = h−l

m(h+l) introduced

in [12], αES = h−l
m+l introduced in [4] and αLWL = (h−l)m

h(m−h)+l(m−l)+m2 introduced in [8]. Unfortu-

nately, they are all inappropriate to reflect the overall contrast and the gray-level variation of

the recovered image, because of the following reasons:

Reason 1: Because h is the smallest value of all possible Hamming weights of the recovered

block of a black pixel and l is the largest value of all possible Hamming weights of the recovered



block of a white pixel, there might be the case that h and l occur with very small probabilities

and thus cannot reflect the overall gray-level of the recovered block of black and white pixels

respectively, see Schemes 3 and 4.

Reason 2: All the above definitions of contrast do not consider the variance of all possible

Hamming weights of the recovered block of black and white pixels. However, as we will show

later, variance not only effects the visual quality of SIVCS, see [5] and [7], but also effects the

visual quality of VCS, see Schemes 1 and 2.

Schemes 1− 4 are all (2,2)-VCSs with pixel expansion 4. M0 =

[
01

01

]
and M1 =

[
01

10

]
.

Scheme 1: If the pixel to be shared is white (resp. black), we randomly permute the

columns of M0 (resp. M1), and distribute two sub-pixels for each share. Then, we pick up a

column from M0 (resp. M1), and distribute one sub-pixel for each share. For the second time,

we pick up a column from M0 (resp. M1), and distribute one sub-pixel for each share.

Scheme 2: If the pixel to be shared is white (resp. black), we randomly permute the

columns of M0 (resp. M1), and distribute two sub-pixels for each share. Repeat the above

process for two times.

Scheme 3: If the pixel to be shared is white, we randomly permute the columns of M0 and

distribute two sub-pixels for each share. Then we choose M1 with probability 1
100 and choose

M0 with probability 99
100 and randomly permute the columns of the chosen basis matrix Mi and

distribute two sub-pixels for each share. If the pixel to be shared is black, we randomly permute

the columns of M1 and distribute two sub-pixels for each share. Then for the second time, we

randomly permute the columns of M1 and distribute two sub-pixels for each share.

Scheme 4: If the pixel to be shared is white, we randomly permute the columns of M0 and

distribute two sub-pixels for each share. Then we choose M1 with probability 99
100 and choose

M0 with probability 1
100 and randomly permute the columns of the chosen basis matrix Mi and

distribute two sub-pixels for each share. If the pixel to be shared is black, we randomly permute

the columns of M1 and distribute two sub-pixels for each share. Then for the second time, we

randomly permute the columns of M1 and distribute two sub-pixels for each share.

We use the variance defined in Equation (1) to measure the gray-level variation of the

recovered image. σ0 denotes the variance for sharing a white pixel and σ1 denotes the variance

for sharing a black pixel. The variances of Schemes 1−4 can be found in Table 6. The contrasts

and average contrast ᾱ of Schemes 1− 4 can be found in Table 7.

Schemes σ0 σ1

1 1
2 0

2 0 0

3 99
10000 0

4 99
10000 0

Table 6: The variances of Schemes 1− 4.



Schemes αNS αV V αES αLWL ᾱ

1 1
3

1
20

1
5

4
19

1
2

2 1
2

1
10

2
5

4
5

1
2

3 1
3

1
20

1
5

4
19

199
400

4 1
3

1
20

1
5

4
19

101
400

Table 7: The contrasts and average contrast of Schemes 1− 4.

The three secret images are (a− c) in Figure 5. The visual quality of Schemes 1− 4 can be

found Figures 6−9 respectively.

As Schemes 1 and 2 are of the same average contrast, according to Table 6 and Figures 6−7,

it is easy to see that smaller variance will result in better visual quality. From the perspective

of contrast αNS or αV V or αES or αLWL, and according to Table 7, we can see that Schemes 1,

3 and 4 should have almost the same visual quality, which does not agree with the experimental

results, see Figures 6, 8 and 9. Even if we combine contrast αNS or αV V or αES or αLWL with

variance, according to Tables 6 and 7, we can see that Schemes 3 and 4 should have almost the

same visual quality, which also does not agree with the experimental results, see Figures 8 and

9. However, average contrast ᾱ reflects the differences between Scheme 3 and Scheme 4, which

agrees well with the experimental results, see Figures 8 and 9. Although from the perspective

of contrast αNS or αV V or αES or αLWL, Scheme 2 is significantly better than Scheme 3,

their visual qualities are very close, see Figures 7 and 8, which on the other hand agrees well

with average contrast ᾱ. Hence we claim that only the combination of average contrast ᾱ and

variance can correctly reflect the experimental results.

Figure 5: The original four secret images: (a) air plane, (b) face, (c) ruler. All are of image size

512×512

5 Conclusions

In this paper, we have introduced the idea of using variance as an error-detection measure-

ment, by which we find the security defect of Hou et al.’s MPEM. On the other hand, we have

found that variance not only effects the visual quality of SIVCS, but also effects the visual

quality of VCS. At last, average contrast associated with variance is used as a new criterion to



Figure 6: The experimental results for Scheme 1. All are of image size 1024×1024

Figure 7: The experimental results for Scheme 2. All are of image size 1024×1024

Figure 8: The experimental results for Scheme 3. All are of image size 1024×1024



Figure 9: The experimental results for Scheme 4. All are of image size 1024×1024

evaluate the visual quality of VCS.
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