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Abstract. The nonlinear feedback shift registers (NLFSR) are used to construct pseudorandom
generators for stream ciphers. Their theory is not so complete as that of the linear feedback shift
registers (LFSR). In general, it is not known how to construct NLFSRs with maximum period. The
direct method is to search for such registers with suitable properties. We used the implementation
of NLFSRs in Field Programmable Gate Arrays (FPGA) to perform a corresponding search. We
also investigated local statistical properties of the binary sequences ganerated by NLFSRs of order
25 and 27.
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1 Introduction

Feedback shift registers (FSR) sequences have been widely used in many areas of communication theory,
as key stream generators in stream ciphers cryptosystems, peudorandom number generators in many
cryptographic primitive algorithms, and testing vectors in hardware design. Golomb’s book [5] is a pi-
oneering one that discusses this type of sequences. A modern treatment of the subject is contained in
Golomb and Gong [6].

The theory of linear feedback shift registers (LFSR) is understood quite well. In particular, it is known
how to construct the LFSRs with maximum period; they correspond to primitive minimal polynomials
over the binary field F2. The primitive LFSRs have a drawback as their linear complexity is equal to
their order. In recent years, nonlinear feedback shift registers (NLFSR) have received much attention in
designing numerous cryptographic algorithms such as stream ciphers and lightweight block ciphers to
provide security in communication systems. In most cases, NLFSRs have much bigger linear complexity
than LFSRs of the same order. However, not much is known about cyclic structures of NLFSRs; most of
the known results are collected in Golomb’s fundamental book [5].

We used the implementation of NLFSRs in Field Programmable Gate Arrays (FPGA) to perform a
search of NLFSRs of the order up to n = 27, the maximum period equal to 2n − 1 and a possibly simple
algebraic structure of the feedback function. We also investigated local statistical properties of the binary
sequences generated by NLFSRs of order 25 and 27. We hope to continue this research further.

2 Feedback Shift Registers

In this section, we give definitions and basic facts about feedback shift registers (FSR). We use F2 to denote
the binary finite field. F2[x] denotes the ring of polynomials in the indeterminate x and with coefficients
from F2. Let F

n
2 be the n-dimensional vector space over F2 consisting of the n-tuples of elements of F2.

Any function from F
n
2 to F2 is referred to as a Boolean function on n variables. A sequence of elements

s = (s0, s1, . . .) of F2 is called a binary sequence. A sequence s = (si)
∞

i=0 is called periodic if there is a
positive integer p such that si+p = si for all i ≥ 0. The least positive integer with this property is called
a period.

A binary n-stage feedback shift register is a mapping F from F
n
2 into F

n
2 of the form

F : (x0, x1, . . . , xn−1) 7−→ (x1, x2, . . . , xn−1, f(x0, x1, . . . , xn−1),

where f is a Boolean function on n-variables which is called the feedback function. The shift register is
called a linear feedback shift register (LFSR) if F is a linear transformation from the vector space F

n
2
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into itself. Otherwise, the shift register is called a nonlinear feedback shift register (NLFSR). The shift
register is called nonsingular if the mapping F is a bijection. Further, we will consider only nonsingular
and mostly nonlinear feedback shift registers. It can be proved (see e.g. [5]) that the feedback function
of a nonsingular feedback shift register has the form

f(x0, x1, . . . , xn−1) = x0 + F (x1, . . . , xn−1), (1)

where F is a Boolean function on n− 1 variables.
Consider a binary sequence s = (si)

∞

i=0 whose first n terms s0, s1, . . . , sn−1 are given and whose
remaining terms are uniquely determined by the recurrence relation

si+n = f(si, si+1, . . . , si+n−1) for all i ≥ 0. (2)

We call s an output sequence of the feedback shift register given by (1). The binary n-tuple (s0, s1, . . . , sn−1)
is called the initial state vector of the sequence s or the initial state of the feedback shift register. The
recurrence relation (2) can be implemented in hardware as a special electronic switching circuit consisting
of n memory cells which is controlled by an external clock to generate the sequence s (see Figure 1).

Fig. 1. A block diagram of a Feedback Shift Register

The period of an output sequence of a binary n-stage nonsingular FSR is at most 2n. There are some
sequences with maximum period.

Definition 1. The de Bruijn sequence of order n (a0, . . . , a2n−1) of elements from the binary field F2

is a sequence of period 2n in which all different n-tuples appear exactly once.
It was proved by Flye Sainte-Marie [3] in 1894 and independently by de Bruijn [1] in 1946 that the

number of cyclically equivalent sequences satisfying the Definition 1 is equal to

Bn = 22
n−1

−n. (3)

Definition 2. The modified de Bruijn sequence of order n (a0, . . . , a2n−2) is a sequence of period 2n−1
obtained from the de Bruijn sequence of order n by removing one zero from the tuple of n consecutive
zeros.

In 1990 Mayhew and Golomb [10] investigated sequences satisfying the Definition 2 and their linear
complexity. These sequences were called by Gammel et al. [4] the primitive sequences. In the case of
linear feedback shift registers these sequences are generated by primitive polynomials and their theory
is understood quite well [8]. The primitive sequences are very important in cryptographic applications
since:

1. They exist. There are Bn primitive sequences altogether (the linear and nonlinear ones). The number
of primitive LFSRs is equal to

ϕ(2n − 1)

n
,

where ϕ denotes the Euler phi function, hence there are much more NLFSRs than LFSRs.
2. The primitive sequences have good statistical properties. They satisfy Golomb’s main postulates. The

linear complexity of a NLFSR (the order of a LFSR generating the same sequence) is much bigger
than 2n−1 and many of them have the most possible linear complexity equal to 2n − 2. Let us recall
that the linear complexity of a primitive LFSR of order n is just equal to n.

3. There are primitive NLFSRs for which the Algebraic Normal Form of the Boolean function F in
formula (1) is quite simple; it has low algebraic degree and a possibly small number of terms. Since

there are 22
n−1

different Boolean functions on n− 1 variables, hence the probability that a randomly
chosen function of the form (1) is a primitive NLFSR is equal to

22
n−1

−n

22n−1
=

1

2n

and as n grows it becomes smaller.
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The task is to find primitive NLFSRs with a possibly simple algebraic form and this is much more
difficult. A method how to construct such primitive NLFSRs is not known and we have to search for
them. Gammel et al. [4] found simple primitive NLFSRs up to the order 33 and they used them in the
design of the stream cipher Achterbahn, but neither the method of searching nor the average time needed
to find such good NLFSRs have been revealed.

It is also an open problem to prove lower bounds of the linear complexity of NLFSRs. Mayhew and
Golomb [10] investigated all modified de Bruijn sequences of order 5 and 6; there are 211 = 2048 and
226 of them, respectively. It appears that there is a very small number of such sequences with low linear
complexity. In the case of n = 5, there are no NLFRSs with linear complexity equal to 10 and there are
only 10 sequences with linear complexity equal to 15. One can form a conjecture that for the order n of
NLFSR being a prime number the lower bound of the corresponding linear complexity is equal to 3n. It
is implied by a more general conjecture formed in Kyureghyan’s paper [7] and the results of [10]. The
upper bound of the linear complexity of NLFSRs is 2n − 2 and this bound is tight. We calculated the
linear complexity of the NLFSRs no 1 ÷ 4 given in section 5 and it is equal to 225 − 2 for all of them.
There is a recent interest in searching for and constructing primitive NLFSRs suitable for cryptographic
applications, see [2], [9], [13].

3 The FPGA implementation

We implemented an algorithm for searching nonlinear feedback shift registers of order n having maximum
period 2n−1 using hardware devices from our previous projects. They were equipped with Altera EP3C80
Field Programmable Field Arrays. We used Altera Quartus II v.9.0. design software to simulate and
compile the current project.

RNG CS CB

M&X

VM SR

EI

Fig. 2. A single module of the searching machine

The random NLFSR searching module (RNSM) consists of a random number generator (RNG), a
coefficients selector (CS), a coefficients buffer (CB), multiplexers and XOR block (M&X), a shift register
(SR), and a verification machine (VM). Random numbers are taken from the RNG. Coefficients are
downloaded byte by byte into the CS, where their values and repetitions are controlled. Then the bytes
go to the CB, whose task is to store combinations of coefficients during the test. The multiplexers define
the feedback function of NLFSR according to the data buffered in the CB. Their outputs are connected
to the XOR gate. Next, the output of the XOR function feeds the SR. The SR is set with a seed value
at the beginning of a searching process by the VM and it starts to shift. After the first repetition of the
seed the test is finished. A positive result is sent to the Ethernet Interface (EI), which is the same for all
implemented modules. A negative result starts a new process of random generation and testing.

The attempts to find NLFSR were made by drawing 32 taps. Four of them feed a four-input AND
gate. There are also two three-input AND gates and four two-input AND gates. We also implemented a
version with 40 taps but there are not any results up to now.
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AND 4 AND 3 AND 2

XOR

x 2 x 4

... ... ...
t32 t31 t30 t29 t28 t27 t26 t25 t24 t14 t1

... ... ...

F x x( , ..., )1 n-1

Fig. 3. The structure used to generate NLFSR

A single RNSM provides a superior search compared to the application of the same functionality
embedded in a fairly efficient PC. For example, to obtain NLFSRs of order 15 with period 215 − 1, we
had to wait on average 3 seconds using the RNSM, whereas working on a PC it took 5 minutes. During
our search for NLFSRs of order 25 nad 27 with maximum periods 128 RNSMs were implemented in four
physical devices. The 32 modules implemented in a single device worked and stored results independently.
The four devices were connected to a hub and a personal computer (PC) with the Wireshark sniffer. The
FPGA was clocked with 65.536 MHz, although the maximum possible clocking is 128 MHz. The average
time to find one NLFSR of order 25 was 4 hours and the average time to find one NLFSR of order 27
was 21 hours, respectively.

4 Randomness properties

The purpose of this section is to check experimentally the randomness properties of subsequences of the
sequences generated by NLFSRs of section 5. The modified deBruijn sequences of order n have period
2n−1 and all different n-tuples appear only once, except the allzero tuple. The whole sequence generated
by NLFSR should have good statistical properties; since there is a nonlinear feedback, we also decided
to check the statistical properties locally, for subsequences generated by NLFSR starting from randomly
chosen initial state vectors. Let s = s0, s1, . . . , sm−1 be a binary sequence of length m. We test the
randomness using seven basic statistical tests from [11], [14]. These are:

1. Frequency test – the purpose of this test is to determine whether the number of 0’s and the number
of 1’s in the investigated sequence s are approximate the same, as it would be expected for a random
sequence.

2. Serial test - the purpose of this test is to determine whether the number of occurrences of 00, 01,
10, 11 as subsequences of s are approximate the same, where the subsequences are allowed to overlap.

3. Two bit test - it verifies whether the number of occurences of subsequences 00, 01, 10, 11 are
approximate the same, where the subsequences are not overlapping.

4. 8-bit poker test - it verifies whether bytes of each possible value appear approximate the same
number of times.

5. 16-bit poker test - it verifies whether 16-bit words of each possible value appear approximate the
same number of times.

6. Runs test - the purpose of this test is to determine whether the number of runs of either zeros
or ones of various lengths (here from 1 to 22 bits) in the sequence s are as expected for a random
sequence.

7. Autocorrelation test - the purpose of this test is to check for correlations between the sequence s

and shifted versions of it (here by 1,2, ... , up to 8 bits).

The tests 1 ÷ 6 use as a reference distribution the chi-square distribution with suitable number of
degree of freedom and the seventh test uses the standard normal distribution. The observed frequencies
of events are compared with their expected frequencies. We do not use hypothesis testing in a classical
manner, where the hypothesis H0 is verified using the calculated statistics. All events are possible, so
we split the calculated statistics into 8 classes from A to H according to the range of significance level.
The class A identifies a group of the best statistics and the class H identifies the worst case in terms of
randomness, but all cases are possible with suitable probabilities as it is shown in Table 1.
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Table 1. Percentages of appearances of classes
Classes A+B+C A B C D E F G H

% 95 80 10 5 2.5 1.5 0.5 0.4 0.1

We tested subsequences produced by NLFSRs of section 5 starting from randomly selected initial
states. First, we generated the full period sequences and then each sequence was divided into subsequences
of 220 bits each:

– 4 · 25 binary subsequences for NLFSRs of order 25 (no 1÷ 4)
– 3 · 27 binary subsequences for NLFSRs of order 27 (no 5÷ 7 )

The obtained results of experiments are given in Table 2. It shows that the percentages of appearances
of classes of statistics for 1 Mbit subsequences are similar to the expected appearances of classes for
random sequences. These results indicate that the examined NLFSRs have good statistical properties.

Table 2. Percentages of appearances of classes of subsequences
NLFSR A+B+C A B C D E F G H

1 94.64 81.70 8.04 4.91 1.79 2.23 0.89 0.45 0.00
2 94.20 81.25 8.04 4.91 3.13 1.34 0.45 0.89 0.00
3 95.98 86.61 5.80 3.57 1.34 2.68 0.00 0.00 0.00
4 96.43 82.14 8.93 3.36 2.23 1.34 0.00 0.00 0.00
5 94.64 78.79 10.16 5.69 2.68 1.23 1.00 0.33 0.11
6 95.98 80.25 11.94 3.79 2.23 0.67 0.78 0.33 0.00
7 95.20 82.59 8.71 3.91 3.01 1.00 0.22 0.22 0.33

5 Examples of NLFSRs

The NLFSRs of order 25:

1 : x0 + x8 + x9 + x10 + x11 + x19 + x20 + x21 + x23 + x6x21 + x10x14 + x12x20 + x19x20 + x4x18x21+

x11x18x22 + x1x5x7x23

2 : x0 + x6 + x7 + x8 + x11 + x14 + x15 + x18 + x19 + x5x10 + x7x21 + x11x16 + x12x17 + x1x10x18+

x15x17x22 + x8x10x15x18

3 : x0 + x6 + x12 + x13 + x16 + x20 + x21 + x22 + x3x18 + x13x19 + x13x20 + x5x12x20 + x8x18x22+

x12x15x21

4 : x0 + x6 + x11 + x14 + x16 + x17 + x18 + x19 + x23 + x4x19 + x4x21 + x5x22 + x9x19 + x1x17x23+

x5x7x18 + x5x12x19

The NLFSRs of order 27:

5 : x0+x4+x8+x9+x11+x12+x15+x16+x23+x12x22+x13x23+x13x25+x22x23+x7x8x24+x12x14x26+

x6x11x19x22

6 : x0+x1+x8+x10+x11+x12+x17+x19+x21+x22+x23+x6x25+x9x15+x18x23+x23x26+x2x20x21+

x13x21x23 + x5x18x19x23

7 : x0+x1+x2+x5+x10+x13+x15+x24+x26+x7x22+x11x18+x13x19+x16x25+x24x25+x15x25x26+

x8x10x25x26
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