
Resistance to Pirates 2.0:
A Method from Leakage Resilient Cryptography

Duong Hieu Phan1,2 and Viet Cuong Trinh1

1LAGA, University of Paris 8
2ENS / CNRS / INRIA

Abstract. In the classical model of traitor tracing, one assumes that a traitor contributes its entire secret
key to build a pirate decoder. However, new practical scenarios of pirate has been considered, namely
Pirate Evolution Attacks at Crypto 2007 and Pirates 2.0 at Eurocrypt 2009, in which pirate decoders
could be built from sub-keys of users. The key notion in Pirates 2.0 is the anonymity level of traitors:
they can rest assured to remain anonymous when each of them only contributes a very small fraction of
its secret information. This scenario encourages dishonest users to participate in collusion and the size of
collusion could become very large, possibly beyond the considered threshold in the classical model. There
are numerous attempts to deal with Pirates 2.0 each of which only considers a particular form of Pirates
2.0. In this paper, we propose a method for fighting Pirates 2.0 in any form.
Our method is based on the researches in key-leakage resilience. It thus gives an interesting and rather
surprised connection between the rich domain of key-leakage resilient cryptography and Pirates 2.0. We first
formalize the notion of key-leakage resilient revoke system and then identify sufficient conditions so that
a key-leakage resilient revoke scheme can resist Pirates 2.0 in any form. We finally propose a construction
of a secure key-leakage resilient identity-based revoke system that fulfills the required conditions. The
main ingredient in the construction relies on the identity-based encryption with wildcards (WIBE) and our
construction of key-leakage resilient WIBE could be useful in its own right.
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1 Introduction

In a system of secure distribution of digital content, a center broadcasts encrypted content to legitimate
recipients. Broadcast encryption systems, independently introduced by Berkovits [5] and Fiat-Naor
[16], enable a center to encrypt a message for any subset of legitimate users while preventing any
set of revoked users from recovering the broadcasted information. Moreover, even if all revoked users
collude, they are unable to obtain any information about the content sent by the center. Traitor tracing
schemes, introduced in [10], enable the center to trace users who collude to produce pirate decoders.
Trace and Revoke systems [24,23] provide the functionalities of both broadcast encryption and traitor
tracing.

In the classical model of tracing traitors, one assumes that a traitor contributes its entire secret
key to build a pirate decoder. However, new practical scenarios of pirate has been considered, namely
Pirate Evolution Attacks [19] and Pirates 2.0 [6], in which pirate decoders could be built from sub-keys
of users. The notion of anonymity has been put forth in Pirates 2.0 and it is shown that if each user only
contributes a very small fraction of its secret information, he can rest assured to remain anonymous.
This scenario encourages dishonest users to participate in collusion and the size of collusion could
becomes very large, beyond the considered threshold in the classical model.

There are some methods aiming to fight against pirates 2.0 attacks [11,27,30] but none of these
works considers a general form of leakage of secret keys. In fact, it is assumed in these methods that
the dishonest users leak the entire information of some sub-keys which could be used in the encryption
procedure. It was also mentioned in these papers that a method for dealing with Pirates 2.0 in any
form of leakage rather than contributing the whole information about some sub-keys is a open and
challenging problem. We solve this problem by considering any strategy of contributing information.
The key point in our analysis is to quantify the leaked information (via the conditional entropy) of
the secret keys of the users before and after each round of contribution.

In order to fight against the public contribution of traitors, we study a method that forces traitors
to contribute a large amount of their secret information (and hence the traitors can no longer remain
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anonymous) by proving that if the traitors only contribute small parts of their keys, the built pirate
decoder cannot be useful. This leads us to the consideration of key-leakage resilient in revoke schemes.

Leakage resilient cryptography has been a very rich domain of research in the recent years, a non-
exhaustive list of works can be found in [17,22,12,9,14,26,15,28,25,18,4,8,20]. Under this framework,
the adversary is allowed to specify an efficiently computable leakage function and learn the output
of the function applied to the secret key and possibly other internal state information at specified
moments in the security game. Our idea is to reduce a Pirates 2.0 to an adversary that breaks the
security of a key-leakage resilient revoke scheme in which the contributive function in Pirates 2.0 is
used as the computable leakage function and the high anonymity level in Pirates 2.0 is linked to the
level of leaked information.

1.1 Contribution

Theoretical result. We formalize the key-leakage resilient security model for a revoke system, which
enhances its classical security model. We then prove that any key-leakage resilient revoke system
satisfying the following conditions will resist Pirates 2.0 in any form:

– any user’s secret key is a high independent source, i.e., it has a high entropy even under the
condition that all the keys of the others users are known.

– resilience to a sufficient high level of leakage at secret keys of users.

Intuitively, the first condition assures that the secret keys of users are sufficiently independent each
from the others and the second condition implies that the users should contribute a high information
about its key to produce an useful decoder. Combining the two conditions, the users have to contribute
high information of their own independent sources and thus lose their anonymity.

Construction. In order to apply the above result, we present a secure key-leakage resilient identity-
based revoke scheme that fulfills the required conditions to resist Pirates 2.0. Because our construction
is based on the identity-based encryption with wildcards (WIBE) [2,1] in the similar way to [27], it
turns out that the main obstacle is to construct a key-leakage resilient WIBE which could be useful in
its own right. This is not a trivial work and is achieved in successive steps:

– The security model of a key-leakage resilient WIBE generalizes the full security of a WIBE by
allowing the adversary to make additional leak queries. Our first step is then to construct an
efficient fully secure WIBE. Fortunately, with the recent dual system encryption technique in [29],
it’s relativelly simple to construct a variant of the Boneh-Boyen-Goh’s WIBE (BBG −WIBE) [2]
scheme that is fully secure with a very efficient reduction that avoids a loss of an exponential
factor in hierarchical depth as in the classical method of reducing the full security of WIBE to the
full security of the underlying HIBE in [2].

– Inspired by the security proof technique of the key-leakage resilient HIBE in [20], our second and
main step is to transform this variant of fully secure BBG−WIBE to a secure key-leakage resilient
WIBE. Some carefulness should be taken into account in the security proof because WIBE is a
generalization of HIBE and the adversary has more freedom in attacking WIBE than in attacking
HIBE. Our construction of the first key-leakage resilient WIBE could have its own impact.

1.2 Related works

Identity-based traitor tracing scheme was proposed by Abdalla et al [3] in which one can distribute
content to various groups of users by taking as input the identity of the targeted group. Identity-based
trace and revoke schemes (IDTR) in [27] extended this model to allow the center to be capable of
revoking any subgroup of users.

Identity-based encryption with wildcards (or WIBE for short) was proposed by Abdalla et al [2]
and can be seen as a generalization of HIBE. This primitive is related to broadcast encryption in the
sense that the encryption is targeted to a group of users rather than to only one user. However, the
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targeted set of users in WIBE follows a pre-determined structure while a broadcast encryption should
be able to target arbitrary group of users. Naturally, WIBE could then be used as a sub-structure to
construct trace and revoke systems. This approach has been used in different ways, namely under the
code-based framework [3,30], and under the tree-based framework [27]. Our construction is under the
tree-based framework as in [27] but with a key-leakage resilient WIBE.

2 Sufficient Condition for Fighting Pirates 2.0

In this section, we identify the sufficient condition for a key-leakage resilient revoke system to resist
Pirates 2.0 attack. We first introduce the formalization of a key-leakage resilient revoke system, the
review the Pirates 2.0 in the information theory and finally establish a sufficient condition on the
independent entropy of the secret keys in a key-leakage resilient revoke system to exclude the threat
of Pirates 2.0 in any form.

2.1 Key-Leakage Resilient Revoke System

We recall the definition of a revoke scheme. Formally, a revoke scheme consists of four polynomial-time
algorithms (Setup, KeyDer, Enc, Dec):

Setup(1k, Nu): Takes as inputs the security parameter 1k and the number of users Nu. This algorithm
generates a master public key mpk and a master secret key msk.

KeyDer(msk, i): Takes as inputs an indices i of user and the master secret key msk, the key extraction
algorithm generates a user secret key ski.

Enc(mpk,R,M): The encryption algorithm which on inputs of the master public key mpk, a revoca-
tion list R of revoked users in the system, and a message M outputs a ciphertext C.

Dec(ski, C): The decryption algorithm which on input of a user secret key ski and a ciphertext C
outputs a plaintext message M , or ⊥ to indicate a decryption error.

For correctness we require that Dec(ski,Enc(mpk,R,M)) = M with probability one for all

i ∈ N \ R, M ∈ {0, 1}∗, (mpk,msk)
$← Setup(1k, Nu) and ski

$← KeyDer(msk, i).

We now present the security model for a (`SK)-key-leakage resilient revoke scheme (each user leaks
maximum `SK bits on his secret key SK).

Setup: The challenger takes a parameter k, a maximum number of users Nu and runs setup(1k, Nu)
algorithm. The master public key mpk is passed to the adversary. Also, it sets the set of revoked
users R = ∅, T = ∅, note that R ⊆ I, and T ⊆ {I × SK×N} (users indices - secret key of users
- leaked bits). Thus initially, no leakage on each secret key.

Phase 1: The adversary can be interleaved in any possible way to request three types of query:

1. Create(i): The challenger initially scans T to find the indices i. If this indices exists in T , it
responds with ⊥.
Otherwise, the challenger makes a call to KeyDer(msk, i) → ski and adds the tuple (i, ski,
0) to the set T .

2. Leak(i, f) In this query, the adversary requests leakage from a key that has indices i with
a polynomial-time computable function f of constant output size. The challenger scans T to
find the specified indices. It is of the form (i, ski, L). It checks if L+ | f(ski)| ≤ `SK . If this
is true, it responds with f(ski) and updates the L in the tuple with L+| f(ski)|. If the checks
fails, it returns ⊥ to the adversary.

3. Reveal(i): Now the adversary requests the entire key with indices i. The challenger scans T
to find the requested entry. Let’s say the tuple is (i, ski, L). The challenger responds with ski
and adds the indices i to the set R.

Challenge: The adversary submits two equal length messages M0,M1. The challenger picks a random
bit b ∈ {0, 1} and set C = Encrypt(msk,R,Mb). The ciphertext C is passed to the adversary.
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Phase 2: This is identical to phase 1 except that the adversary is not allowed to ask Reveal(i) query
in which i /∈ R.

Guess: The adversary outputs a guess b′ and wins the game if b′ = b.

Definition 1. A revoke scheme is (`SK)-key-leakage resilient secure if all probabilistic polynomial-
time adversaries (called PPT adversaries for short) have at most a negligible advantage in winning
the above security game.

2.2 Pirates 2.0

In the model of pirates 2.0 attacks [6], traitors collaborating in a public way and use the same strategy
to display part of their secret keys in a public place at their discretion; pirate decoders are then built
from this public information. The distinguishing property of pirates 2.0 attacks is that traitors only
contribute partial information about their secret key material which suffices to produce (possibly
imperfect) pirate decoders while allowing them to remain anonymous. Both pirates and traitors can
keep track of all of the information that was contributed to the public.

The basic idea behind Pirates 2.0 attacks is that traitors are free to contribute some piece of
secret data as long as several users of the system could have contributed exactly the same information
following the same (public) strategy: this way, they are able to remain somewhat anonymous. The
leakage information is formalized via extraction function which is any efficiently computable function f
on the space of the secret keys and a traitor u is said to be masked by a user u′ for an extraction
function f if f(sku) = f(sku′). The anonymity level is meant to measure exactly how anonymous they
remain. This is defined in [6] as follows.

Definition 2 (Anonymity Level). The level of anonymity of a traitor u after a contribution
∪1≤i≤tfi(sku) is defined as the number α of users masking u′ for each of the t extraction functions fi
simultaneously:

α = #{u′ | ∀i, fi(sku) = fi(sku′)} .

Useful pirate decoder An pirate decoder is useful if it can decrypt a very large set of ciphertexts for
almost all the target sets chosen by the broadcastor. We only need a minimum condition of usefulness
on the pirate decoder: the pirate has to be able to output a target set S so that the pirate decoder
can decrypt ciphertexts for this target set S with a non-negligible probability (the probability is taken
on the randomness used for generating a ciphertext for S). In fact, if it is hard to expose such a set
S then the pirate decoder can only decrypt with a negligible probability the ciphertexts outputted by
the broadcaster and cannot be useful. Our objective is to construct a scheme that is immune even to
these pirates of minimum usefulness.

Definition 3 (Pirates 2.0). A traitor tracing scheme is said to be vulnerable against a Pirates 2.0
attack if:

– there is a construction of a pirate decoder from information published by traitors in such a way
that the traitor rest assured to have an anonymity level of α > 1.

– the pirate is able to specify at least one target set S so that the produced pirate decoder can
decrypt ciphertexts for this target set S with a non-negligible probability.

2.3 Pirates 2.0 viewed from the information theory

We aim to re-explain the way Pirates 2.0 works in [6] under the information theory. This is also the
basic starting point so that we can establish a sufficient condition for a scheme to resist Pirates 2.0 in
the next sub-section. In a revoke scheme, when a user joins the system, its key is generated and has
some entropy. However, as keys of users could be correlated, the user can contribute some correlated
information without the risk being identified. The user really lose its anonymity when he contributes
its independent secret information that the other users don’t have. More formally, these are entropy
conditioned on the information about the other users’ keys. Let us first recall some classical definitions
about entropy.
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Definition 4. Let X be a random variable. The min-entropy of X is

H∞(X) = min
x
− log(Pr[X = x]) = − log(max

x
Pr[X = x])

We say that X is a k-source if H∞(X) ≥ k.

The high min-entropy is used rather than the Shannon entropy in cryptography for describing good
distributions for the keys. In fact, the conventional notion in cryptography is the intuitive notion of
“guessability” and a distribution X has min-entropy of k bits if even an unbounded adversary cannot
guess a sample from X with probability greater than 2−k.

However, in context of Pirates 2.0, a high min-entropy is not enough because the keys could
be correlated. We should thus need to define how many information of the key a user has that is
independent to the keys of the others users. This is quantified via the conditional min-entropy.

Definition 5. Let X,E be a joint distribution. Then we define the min-entropy of X conditioned on
E-denoted H∞(X|E) as

H∞(X|E) = − log max
e

[max
x

Pr[(X|E = e)]]

We say that X is a k-independent source of E if H∞(X|E) ≥ k.

For the purpose of randomness extraction, Dodis et. al. [13] observed that because E is not under
adversarial control, it suffices to consider an average min-entropy asH∞(X|E) = log E[maxx Pr[(X|E =
e)]]. In our setting, the users can choose some strategies to contribute their information, the distri-
bution E is not totally independent from the adversarial control, we need therefore to consider the
conditional min-entropy rather than the average min-entropy. Fortunately, we will see later in our
construction that the secret keys of users are sufficiently independent each from the others, the use of
the conditional min-entropy is appropriate. We define the independence between the secret keys in a
revoke system as follows.

Definition 6 (Independent Source). In an revoke system of Nu users, let Xi be the distribution
outputted by the key generation for the user i and let E = (X1, . . . , Xi−1, Xi+1, . . . , XNu , pub) where
pub denotes the distribution of the public parameters in the system. Then we say that the key of user
i is a k-independent source if H∞(Xi|E) ≥ k.

The key of user i is a k-independent source if it has k-bit entropy independently from the keys of the
others users and from all the public information of the systems.

We now review the Pirates 2.0 in the context of Complete Subtree resumed in Figure 2.3. For a
D-level tree, each user’s key is a (D × λ)-source but only a λ-independent source because each user
only has an independent sub-key at the leaf. Therefore, even if an user contributes ((D − 1) × λ)
entropy of its key, the remained information could still be a λ-independent source. Without leaking
any independent entropy, the user could remain anonymous at a level α > 1 (because at least two
different users can have the same contributive information). In the example in Figure 2.3, the user U
is assigned 5 sub-keys corresponding to the nodes from the root to the leaf. The user U can contribute
a key S4 and specifies the target set at S4 that covers 4 users of the sub-tree rooted at S4. An pirate
decoder with only one key at S4 can decrypt the ciphertext for the chosen target set S4 with non-
negligible probability while preserving an anonymity level α = 4 for the contributor and therefore, the
scheme is vulnerable against the Pirates 2.0. 1

1 We note that an useful Pirates 2.0 in practice should do much more than this Pirates 2.0 with minimum usefulness
because it should deal with a large type of target set and different strategies of the broadcastor. However, as our
objective is to construct a scheme that is immune to any Pirates 2.0, we consider here the minimum usefulness of
Pirates 2.0.
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Fig. 1. An example of a complete subtree scheme where the center covers all non-revoked users with
the nodes S1, . . . , S6. A user is a leaf on the binary tree where each node is assigned to a long-lived
randomly chosen key. Each user possesses all the long-lived keys of the nodes on the path from the
user’s leaf to the root.

2.4 Key-Leakage Resilience vs. Pirates 2.0

We are now ready to prove a sufficient condition so that a key-leakage resilient revoke scheme is
immune to Pirates 2.0 attacks. This is the main result of this section. In the next section, we will
construct a key-leakage resilient revoke scheme that fulfills the required sufficient condition.

Theorem 7. Let Π be a (`SK)-key-leakage resilient revoke system of Nu users in which each user’s
key has length of m bit and is a m′-independent source. If α = Nu

2`SK+m′−m ≤ 1, then Π is immune to
any Pirates 2.0 attack.

Proof.

Proposition 8. In a Pirates 2.0 attack, if an user leaks k bits of his secret key to the public domain
then his anonymity level is at most Nu

2k+m′−m
.

Proof. Intuitively, as the key of the user u is a high independent source even when the others users
contribute their whole secret keys, if u leaks too much information on its key then it will also leak
many independent information and loses its anonymity.

Formally, following the definition 2 of anonymity level in pirates 2.0, assume that a user u con-
tributes k bits information Lu of his secret key sku to the public domain, we need to compute the
probability for an user u′ to contribute exactly the same information as the user u, at each periode of
time i.

– At time 0: u contribute nothing to the public domain. Let Ei = (∪w 6=uskw, pubi) where pubi
denotes the public information at the time i which contains the publics parameters of the system
plus contributed information of the users after the time i − 1. Because each user’s key is a m′-
independent source: H∞(sku|E0) ≥ m′.

– At time i: u contributes his secret informations Liu = fi(sku, pubi) to the public domain by leaking
ki bits of his secret keys. If we denote kini the number of independent bits that the user u losses
in time i, i.e., kini = H∞(sku|Ei) −H∞(sku|Ei−1), then the probability that u′ could contribute
exactly the same information Liu is at most 1

2k
in
i

. Note that E0 and thus Ei already contain

∪w 6=uskw, i.e., all the contributed information of the other users are already contained in Ei (for
all i), the kini independent bits are among ki bit that the user u leaks at the time i.

At the end, after the time t, the user u contributes to the public domain by totally leaking k =
k1 + · · ·+ kt bits of its secret information. By the above computation, the probability that an user u′

can contribute exactly the same total information like u is at most
∏t
j=1

1

2
kin
j

, and

t∑
j=1

kinj = H∞(sku|E0)−H∞(sku|Et)
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Because the bit length of the secret key sku is m and the user u leaks k bits, we deduce that
H∞(sku|Et) ≤ m − k and therefore

∑t
j=1 k

in
j ≥ m′ − (m − k) = k + m′ − m which implies that

the probability that an user u′ can contribute exactly the same information like u as required in
Pirates 2.0 is at most 1

2k+m′−m
and the anonymity level of u cannot be assured to be higher than

Nu
2k+m′−m

. ut

Proposition 9. Let Π be a (`SK)-key-leakage resilient revoke scheme. If each user leaks no more than
`SK bits of his secret key to the public domain, then one can not produce a Pirates 2.0 decoder.

Proof. We suppose by contradiction that there is an Pirates 2.0 A against Π in which each user leaks
no more than `SK bits of his secret key to the public domain, then we build an algorithm B that
breaks the security of Π in the context of key leakage resilience.

Algorithm B simulates A and makes use of the outputs of A to break the security of Π. It works
as follows:

– At time 0: users contribute nothing to the public domain.
– At time 1: suppose that an user u decides to contribute L1

u = f1(sku) bits to the public domain
by using a strategy f1 where f1 is a polynomial-time computable function, B requests the leak
query (u, g1 := f1) to his challenger and forwards the result to A.

– At any time i: suppose that an user u decides to contribute Liu = fi(sku, I) bits to the public
domain, where I is the public collected information after the time i− 1. At this stage, B defines a
polynomial-time computable function gi,I(sku) := fi(sku, I), then requests the leak query (u, gi,I)
to his challenger and forwards the result to A.

– When A outputs a pirate decoder and a target S so that the pirate decoder can decrypt ciphertexts
for S with a non-negligible probability, B simply outputs S∗ = S and two different messages
M0,M1 to his challenger. By using this pirate decoder, B can decrypt the challenge ciphertext
with a non-negligible probability and thus break the security of the scheme.

We note that, since each user contributes maximum `SK bits to the public domain, B only need to
ask in total at most `SK bits to his challenger. By definition, Π is then not `SK-key leakage resilient.

ut

The theorem immediately follows from the above two propositions. ut

3 Key-Leakage Resilient Revoke Scheme Immune to Pirates 2.0

This section is devoted to construct a key-leakage resilient revoke scheme that fulfills the condition in
Theorem 7 and thus is immune to Pirates 2.0 attacks. The construction is achieved via the following
steps:

1. we first propose a variant of BBG −WIBE scheme which is proven fully secure by using the dual
system encryption technique.

2. we then construct a key-leakage resilient BBG −WIBE scheme by employing the proof technique
in [20] to the above BBG−WIBE. This is the most important step in the final construction.

3. we finally apply the generic transformation from a WIBE to an identity based trace and revoke
scheme (denoted IDTR) in [27]. This results to a key-leakage resilient identity-based trace and
revoke scheme (denoted KIDTR) that fulfills the condition in Theorem 7 and is immune to Pirates
2.0 attacks.

3.1 BBG − WIBE in Composite Order Groups

In [21], Lewko and Waters apply the dual system encryption technique to prove the full security of
the BBG−HIBE scheme. This technique first splits the security game into q + 5 games where q is the
maximum number of queries that adversary makes. The first game is the real BBG − HIBE security
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game and the final game gives no advantage for the adversary. Second, based on the three complexity
assumptions 1, 2, 3 in Appendix A, step by step they prove that these games are indistinguishable, this
automatically avoids a loss of an exponential factor in hierarchical depth as in the classical method.
This is achieved via the main concept of the nominal semi-functionality in the dual system encryption
technique.

We follow their approach by applying the dual system encryption technique to construct a fully
secure variant of the BBG − WIBE scheme. The problem here is that the transformation from the
BBG − HIBE to the BBG −WIBE needs to introduce additional components (C3,i) in the ciphertext
and these components demolish the nominal property because they are not nominal with respect to
components (Ei) in semi-functional key. In order to retain the nominality, we should manage to impose
the distribution of exponents of G2 part in C3,i and in Ei in a compatible way such that they are
nominal with each other.

We provide the details about our construction of BBG−WIBE scheme in composite order groups
and the proof of its full security in Appendix B.

3.2 KWIBE: Key-Leakage Resilient WIBE

In the construction of key-leakage resilient HIBE in [20], the user’s secret key is constructed from
elements in subgroups G1 and G3. This leads to secret keys that are relatively low independent sources
because they are only in subgroups G1 and G3. In order to enhance the independent sources of each
user’s secret key, in our construction of KWIBE, the secret keys are in the semi-functional form and
each user’s secret key is now a high independent source as a main part of the secret key is in the whole
group G = G1 × G2 × G3. Fortunately, this slightly change doesn’t affect the functionality and the
security of the scheme.

Construction from BBG−WIBE The main point in proving the key-leakage resilience of HIBE in
[20] is to show that the adversary cannot distinguish between two games KeyLeak0 and KeyLeak1 which
are briefly described as follow. In the game KeyLeakb game (for both b = 0 and b = 1), the adversary
can choose to receive a normal key or a semi-functional key from each leak and reveal query for all
keys except one key- called the challenge key. Concerning the challenge key, it is set to be a normal
key in the game KeyLeak0 and a semi-functional key in the game KeyLeak1. We can realize that, in
this technique of proving the security, there is no a significant difference between a HIBE attack and a
WIBE attack. Indeed, the main difference between HIBE and WIBE is that an adversary against WIBE
can ask more leak queries (for keys that match the challenge pattern) than an adversary against HIBE
(who can only ask for keys which are prefix of the challenge identity). However, because the difference
between two games KeyLeak0 and KeyLeak1 is only related to the challenge key which has the same
form in both HIBE and WIBE, the proof in HIBE is well adapted to WIBE.

In order to make BBG−WIBE resilient to key-leakage, in the following construction, we first impose
the distribution of exponents of G2 part in C3,i and in Ei in a compatible way such that they are
nominal with each other, then we choose compatibly some constants (as r1, r2, zk, zc) to keep the
following properties:

– if
−→
Γ is orthogonal to

−→
δ then the challenge key is well-distributed nominally semi-functional.

– if
−→
Γ is not orthogonal to

−→
δ , then the challenge key is truly semi-functional and well-distributed.

The construction is detailed as follows.

Setup(1λ)→ (mpk,msk) The setup algorithm chooses a bilinear group G = G1 × G2 × G3 of order
N = p1p2p3 (each subgroup Gi is of order pi). We will assume that users are associated with
vectors of identities whose components are elements of ZN . If the maximum depth of the WIBE

is D, the setup algorithm chooses a generator g1
$← G1, a generator g2

$← G2, and a generator

g3
$← G3. It picks b, a1, . . . , aD

$← ZD+1
N and sets h = gb1, u1 = ga11 , . . . , uD = gaD1 . It also picks
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n+1 random exponents 〈α, x1, x2, . . . , xn〉
$← Zn+1

N . The secret key is msk = (α, a1, . . . , aD), and
the public parameters are:

mpk = (N, g1, g3, h, u1, . . . , uD, e(g1, g1)
α, gx11 , g

x2
1 , . . . , g

xn
1 )

KeyderSF(msk, (ID1, ID2, . . . , IDj), g2,mpk) The key generation algorithm picks n+1 random ex-

ponents 〈r, t1, t2, . . . , tn〉
$← Zn+1

N , −→ρ $← Zn+2
N and zk, ρn+3, . . . , ρn+2+D−j

$← ZN , and −→γ =

(γ1, . . . , γn+2) in which (γ1, . . . , γn, γn+2)
$← Zn+1

N , γn+1 = γn+2(zk −
∑j

i=1 aiIDi). It outputs

the secret key SK = (
−→
K1, Ej+1, . . . , ED):

=

(〈
gt11 , g

t2
1 , . . . , g

tn
1 , g

α
1

(
h ·
∏j
i=1 u

IDi
i

)−r∏n
i=1 g

−xiti
1 , gr1

〉
∗ g
−→ρ
3 ∗ g

−→γ
2 ,

urj+1g
ρn+3

3 g
γn+2aj+1

2 , . . . , urDg
ρn+2+D−j
3 g

γn+2aD
2

)
Note that, to run the KeyderSF algorithm one doesn’t need to have g2, he only need to have
X2 ∈ G2 or X2X3 in which X2 ∈ G2, X3 ∈ G3.

Delegate ((ID1, ID2, . . . , IDj),SK’,IDj+1) Given a secret key SK’ = (
−→
K ′, E′j+1, . . . , E

′
D) for identity

(ID1, ID2, . . . , IDj), this algorithm outputs a key for (ID1, ID2, . . . , IDj+1). It works as follow:

It picks n+1 random exponents 〈r′, y1, y2, . . . , yn〉
$← Zn+1

N ,−→ρ ′ $← Zn+2
N , and ρ′n+3, . . . , ρ

′
n+1+D−j

$←
ZN . It outputs the secret key SK = (

−→
K1, Ej+2, . . . , ED):

=

(−→
K ′1 ∗

〈
gy11 , g

y2
1 , . . . , g

yn
1 , h−r

′
(E′j+1)

−IDj+1

(∏j+1
i=1 u

IDi
i

)−r′∏n
i=1 g

−xiyi
1 , gr

′
1

〉
∗ g
−→ρ ′
3 ,

E′j+2u
r′
j+2g

ρ′n+3

3 , . . . , E′Du
r′
Dg

ρ′n+1+D−j
3

)

Enc(M, (P1, P2, . . . , Pj)) The encryption algorithm chooses s
$← ZN and outputs the ciphertext:

CT = (C0,
−→
C1, C2)

=

M · e(g1, g1)α·s,〈(gx11 )s, · · · , (gxn1 )s, gs1, (h ·
∏

i∈W (P )

uPii )s

〉
, (C2,i = usi )i∈W (P )


Dec(CT, SK) Any other receiver with identity ID = (ID1, ID2, . . . , IDj) matching the pattern P to

which the ciphertext was created can decrypt the ciphertext CT = (C0,
−→
C1, C2) as follows

First, he recovers the message by computing

−→
C ′1 =

〈
(gx11 )s, · · · , (gxn1 )s, gs1, (h ·

∏
i∈W (P )

uPii )s ·
∏

i∈W (P )

(usi )
IDi

〉

Finally, compute

en+2(
−→
K1,
−→
C ′1) = e(g1, g1)

αs · e(g1, uID1
1 · · ·uIDjj h)−rs · e(g1, uID1

1 · · ·uIDjj h)rs·

·
n∏
i=1

e(g1, g1)
−xitis ·

n∏
i=1

e(g1, g1)
xitis = e(g1, g1)

αs

Notice that the G2 and G3 parts do not contribute because they are orthogonal to the ciphertext
under e.
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Security of Key-Leakage Resilient BBG − WIBE We introduce the definition of the security
model of a `SK-key-leakage resilient WIBE, called Leak−WIBE security game, in Appendix C. In or-
der to facilitate the presentation, let us first discuss about some notions that will be used in the proof
of security:
Normal Key Functionality
Keyder(msk, (ID1, ID2, . . . , IDj),mpk). To create the normal key algorithm picks n+1 random ex-

ponents 〈r, z1, z2, . . . , zn〉
$← Zn+1

N , −→ρ $← Zn+2
N and ρn+3, . . . , ρn+2+D−j

$← ZN . It outputs the secret

key SK = (
−→
K1, Ej+1, . . . , ED):

=

(〈
gz11 , g

z2
1 , . . . , g

zn
1 , gα1

(
h ·
∏j
i=1 u

IDi
i

)−r∏n
i=1 g

−xizi
1 , gr1

〉
∗ g
−→ρ
3 ,

urj+1g
ρn+3

3 , . . . , urDg
ρn+2+D−j
3

)
Semi-Ciphertext Functionality

EncSF(M,
−→
P ) → C̃T . This algorithm first calls the normal encryption algorithm Enc(M,

−→
P ) to get

the ciphertext CT = (C0,
−→
C1, C2). Then it picks randomly zc ∈ ZN , and

−→
δ = (δ1, . . . , δn+2) in which

(δ1, . . . , δn+1)
$← Zn+1

N , δn+2 = δn+1(zc +
∑

i∈W (P ) aiPi), and outputs

C̃T =
(
C0,
−→
C1 ∗ g

−→
δ
2 , (C2,i ∗ gδn+1·ai

2 )i∈W (P )

)
The parameters in p2 of C̃T are

−→
δ′ = (

−→
δ , (δn+1 · ai)i∈W (P )). It is easy to see that a semi-functional

key will correctly decrypt a semi-functional ciphertext (i.e. it is nominal) if and only if −→γ ∗
−→
δ∗ =

0 mod p2, where
−→
δ∗ =

(−→
δ +

〈
0, · · · , 0,

∑
i∈W (P ) δn+1 · ai · IDi

〉)
, and assuming the identity vector

(ID1, ID2, . . . , IDj) matches the pattern
−→
P = (P1, . . . , Pj).

If the identity vector of the secret key, say
−→
ID = (ID1, . . . , IDj), is a prefix of the challenge pattern

of the ciphertext, say
−→
P = (P1, . . . , Pk), then the user can use the delegate algorithm to get a secret

key for identity vector
−−→
ID′ = (ID1, . . . , IDj , IDj+1, . . . , IDk) where IDi = Pi if Pi 6= ∗ and choose

randomly IDi if Pi = ∗, i = (j + 1, . . . , k).
Then the semi-functional parameters will become:

−→
γ′ = −→γ +

〈
0, · · · , 0,−

k∑
i=j+1

γn+2.ai.IDi, 0

〉
.

Thus, we say that this key is nominally semi-functional if
−→
γ′ ∗
−→
δ∗ = 0 mod p2,

where
−→
δ∗ =

(−→
δ +

〈
0, · · · , 0,

∑
i∈W (P ) δn+1 · ai · IDi

〉)
.

Theorem 10 (Security of Key-Leakage Resilient BBG − WIBE). Under assumptions 1, 2, 3
in Appendix A and for `SK = (n − 1 − 2c) log(p2), where c > 0 is any fixed positive constant, our
key-leakage resilient BBG−WIBE scheme is (`SK) - key-leakage secure.

The condition for c is p−c2 is negligible. The length of secret key SK at level i is (n+2+D−i)(log(p1)+
log(p2) + log(p3)) where D is the depth of WIBE. As we can see, the leakage fraction of secret key at
leaf node is the biggest.

Proof. We first define several security games as follows:

– KeyLeakWibe game is the same as the real Leak−WIBE game except that all keys leaked or given
to the adversary are normal key.

– KeyLeakWibe∗ game is the same as KeyLeakWibe game except that in KeyLeakWibe∗ game all
Delegate calls are substituted by Keyder calls.
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– KeyLeakC game is exactly the same as the KeyLeakWibe∗ game except that the challenge ciphertext
is semi-functional ciphertext.

– KeyLeakCK game is exactly the same as the KeyLeakC game except that all keys leaked or given
to the adversary are semi-functional.

– KeyLeakb game is the same as the KeyLeakCK game except that in one key, we call the challenge
key, the adversary can access via Create, Leak, or Reveal queries but cannot know it is normal
key or semi-functional key. The others keys the adversary can choose normal key or semi-functional
key to leak or reveal, if it chooses first leakage, reveal are normal or semi all subsequent Leak
and Reveal queries act on the normal or semi version. We call KeyLeak1 game in the case this
challenge key is semi-functional key, and KeyLeak0 game when this challenge key is normal key.

Based on the three complexity assumptions 1, 2, and 3, we will prove the theorem by first showing
that these games are indistinguishable, then prove that the adversary has no advantage in attacking
the game KeyLeakCK, .

Leak−WIBE ≈ KeyLeakWibe: We let q denote the number of key queries the adversary makes. For
k from 0 to q, we define Gamek is the same Leak−WIBE game except that the first k keys are normal
keys and the rest are semi-functional keys. Game0 is Leak−WIBE game and Gameq is KeyLeakWibe
game.

Gamek−1 ≈Gamek: We will prove based on the assumption 2. From the input values of Assumption
2: D2 = (N , G, GT , e, g1, g3, g

z
1g
ν
2 , gµ2 g

ρ
3) and a challenge term T , the challenger is able to generate

mpk and msk, and to answer all Create, Leak, and Reveal queries in both versions normal or semi.
Moreover, the challenger can use T to generate the k’th key. Depending on the nature of T , the k’th
is either a normal or a semi-functional key or this is either Gamek−1 or Gamek.

KeyLeakWibe ≈ KeyLeakWibe∗: It is easy to verify that the output of the Delegate algorithm is
identically distributed to the output of Keygen.

KeyLeakWibe∗ ≈ KeyLeakC: In KeyLeakC, the challenge ciphertext C is semi-functional, while all
keys are normal. Notice that from the input values of Assumption 1 the challenger is able to generate
mpk and msk, and to answer all Create, Leak, and Reveal queries. Moreover, the challenger can
use T to generate C and, depending on the nature of T , C can be normal as in KeyLeakWibe∗ or
semi-functional as in KeyLeakC.

KeyLeak0 ≈ KeyLeak1: From the input values of Assumption 2: D2 = (N , G, GT , e, g1, g3, g
z
1g
ν
2 ,

gµ2 g
ρ
3) and a challenge term T , the challenger is able to generate mpk and msk, and to answer all

Create, Leak, and Reveal queries in both versions normal or semi. Moreover, the challenger can
use T to generate the challenge key instead of choosing randomly bit b and gives leakage to the
adversary. Depending on the nature of T , the challenger gives leakage either from a normal or from a
semi-functional secret key to the adversary.

Similar to the proof of fully secure WIBE, C2,i in semi-functional ciphertex and Ei in semi-functional
key are nominal with each other. In the case the challenge key is not capable of decrypting the challenge
ciphertext, the challenger depends on the difference of advantages in the game KeyLeak0 and KeyLeak1
to determine the nature of T .

Assume that the challenge key identity vector is ID = (ID1, . . . , IDj), the challenge pattern
is P ∗ = (P1, . . . , Pj). In the case the challenge key is capable of decrypting the challenge ciphertext
(adversary gets access via Leak queries) or if IDi = Pi mod p2 and IDi 6= Pi mod N where i ∈W (P ∗),
the semi-functional parameters are not properly distributed. However, based on two following lemmas
we get that the change in the simulator’s advantage is only negligible.

In the case IDi = Pi mod p2 and IDi 6= Pi mod N , we can find a non-trivial factor of N with
non-negligible probability. This non-trivial factor can then be used to break Assumption 2 as in the
proof of lemma 5 in [21]. If the challenge key is capable of decrypting the challenge ciphertex, the
semi-functional challenge key is nominal with respect to the semi-functional challenge ciphertext.

Lemma 11. If the assumption 2 in Appendix A holds, then for any PPT adversary A, A’s advantage
in the KeyLeakb game, where b = 0 or b = 1, changes only by a negligible amount if we restrict it to
make queries only on the challenge identity vector, and on identity vectors such that no component
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of them is equal to a respective component from the challenge identity vector modulo p2 and not also
equal modulo N.

Proof. The proof is similar to the proof of the lemma 5 in [21].

Lemma 12. We suppose the leakage is at most (`SK = (n − 1 − 2c) log(p2)), where c > 0 is a fixed
positive constant. Then, for any PPT adversary A, its advantage in the KeyLeak1 game changes only
by a negligible amount when the truly semi-functional challenge key is replaced by a nominal semi-
functional challenge key whenever A declares the challenge key associated to an identity vector which
matches the challenge ciphertext pattern.

Proof. As in [20], we suppose that there exists a PPT algorithm A whose advantage changes by a
non-negligible amount ε when the KeyLeak1 game changes as described above. Using A, we will create

a PPT algorithm B which will distinguish between the distributions (
−→
δ , f(τ)) and (

−→
δ , f(τ ′)) from

the corollary 6.3 in [20] with non-negligible advantage (where m = n + 1 and p = p2).

B simulates the game KeyLeak1 with A as follows. It starts by running the Setup algorithm for
itself, and giving A the public parameters. Since B knows msk and generators of all the subgroups,
it can make normal as well as semi-functional keys. Hence, it can respond to all A’s non-challenge
Phase 1 queries.

With non-negligible probability, A must chose a challenge key in Phase 1 with its identity vector
matches the challenge ciphertext’s pattern. (If it only did this with negligible probability, then the
difference in advantages whenever it gave a matched identity would be negligible.) B will not create
this challenge key, but instead will encode the leakage A asks for on this key in Phase 1 as a single
polynomial time computable function f with domain Zn+1

p2 and with an image of size 2`SK . It can do
this by fixing the values of all other keys and fixing all other variables involved in the challenge key.

B then receives a sample (
−→
δ , f(

−→
Γ )), where

−→
Γ is either distributed as τ or as τ ′, in the notation of

the corollary. B will use f(
−→
Γ ) to answer all of A’s leakage queries on the challenge key by implicitly

defining the challenge key as follows.

B chooses r1, r2, zk ∈ Zp2 subject to the constraint Γn+1 + r1 = r2(zk −
∑j

i=1 aiIDi). We let g2

denote a generator of G2. B implicitly sets the G2 components of the key to be g
−→
Γ ′
2 , where

−→
Γ ′ is defined

to be
−→
Γ ′ =

〈
−→
Γ , 0, . . . , 0︸ ︷︷ ︸

D−j+1

〉
+

〈
0, . . . , 0︸ ︷︷ ︸

n

, r1, r2, r2aj+1, . . . , r2aD

〉

Note that
−→
Γ is of length n+1; thus r1 is added to the last component of

−→
Γ . B defines the non-G2

components of the key to fit their appropriate distribution.

At some point, A declares the pattern for the challenge ciphertext. If the challenge key had an
identity vector which did not match the challenge ciphertext’s pattern, then B aborts the simula-

tion and guesses whether
−→
Γ is orthogonal to

−→
δ randomly. However, the simulation continues with

non-negligible probability. Suppose the challenge key’s identity vector is (ID1, ID2, . . . , IDj) and the
challenge ciphertext’s pattern is (P1, P2, . . . , Pk).

B chooses zc ∈ Zp2 subject to the constraint δn+1r1+δn+1(zc+
∑

i≤j,i∈W (P ) aiPi+
∑

i≤j,i∈W (P ) aiIDi)r2 =
0 mod p2. It then constructs the challenge ciphertext by using−→
δ′ =

(〈−→
δ , 0

〉
+ 〈0, . . . , 0, 0, δn+1(zc +

∑
i∈W (P ) aiPi)〉, (δn+1ai)i∈W (P )

)
as the challenge vector (recall

that
−→
δ is of length n+1).

Note that if j < k, the user chooses whatever IDi if Pi = ∗ and chooses IDi = Pi if Pi 6= ∗, where
i = j + 1, . . . , k, to run the delegation algorithm and get the new G2 components of the key:

−→
Γ ′′ =

−→
Γ ′ +

〈
0, . . . , 0︸ ︷︷ ︸

n

,−
k∑

i=j+1

r2aiIDi, 0, . . . , 0

〉
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The user also runs the algorithm to recover the corresponding ciphertext by using these identities IDi,
i = 1, . . . , k, and now the vector G2 components of ciphertext is
−→
δ∗ =

(〈−→
δ , 0

〉
+
〈

0, . . . , 0, 0, δn+1(zc +
∑

i∈W (P ) aiPi +
∑

i∈W (P ) aiIDi)
〉)

.

Now, if
−→
Γ is orthogonal to

−→
δ , then the challenge key is nominally semi-functional (and well-

distributed as such). If
−→
Γ is not orthogonal to

−→
δ , then the challenge key is truly semi-functional (and

also well-distributed).
It is clear that B can easily handle Phase 2 queries, since the challenge key cannot be queried

on here when its identity vector matches the ciphertext’s pattern. Hence, B can use the output of A
to gain a non-negligible advantage in distinguishing the distributions (

−→
δ , f(τ)) and (

−→
δ , f(τ ′)). This

violates Corollary 6.3 in [20], since these distributions have a negligible statistical distance for f with
this output size.

In conclusion, the challenger, depending on the difference of advantages in the game KeyLeak0 and
KeyLeak1, can determine the nature of T . ut

KeyLeakC ≈ KeyLeakCK: we denote by Q the maximum number of queries that adversary makes.
Thus, the total number of different secret keys is Q, Q is a polynomial in λ. For q ∈ [0, Q] we define
the game SFq to be like the KeyLeakC game, semi-functional versions for the first q different keys, and
normal versions for the remaining keys. The order is defined by the first leakage or reveal query made
on each key. So, SF0 is the KeyLeakC game and SFQ is the KeyLeakCK game.
If the advantage of KeyLeakC 6= KeyLeakCK with a non-negligible value, then there exists a q∗ ∈ [0, Q]
such that the difference of advantage between two games SFq and SFq+1 is non-negligible.

Assume B is an adversary which attacks game KeyLeakb, B simulates A as follow and uses the
output of A to distinguish the difference of advantage between two games KeyLeak0 and KeyLeak1
with a non-negligible value, this is a contradiction of the result above.
B requests semi-functional keys for the first q∗ keys, chooses the (q∗+1)−th key to be the challenge

key, and requests normal keys for the remaining keys. Give those toA. If the KeyLeakb challenger picked
b = 0, then A plays the SFq∗ game. Otherwise, it plays the SFq∗+1 game.

KeyLeakCK gives no advantage to the adversary: we use A with non-negligible advantage in break-
ing KeyLeakCK game to build a PPT simulator B that breaks assumption 3. From the input of the
assumption’s challenger, D3 = (N , G, GT , e, g1, g2, g3, g

α
1 g

ν
2 , gz1g

µ
2 ) and T which is either e(g1, g1)

αz

or a random term of GT , B can answer all queries from A. When A gives the challenge key to B, B
uses T to create the ciphertext. Depending on the nature of T , this is a ciphertext of real message or
ciphertext of random message. If this is a ciphertext of real message then B stimulates the KeyLeakCK
game.

All in all, from the above reductions between the successive games, we deduce that Leak−WIBE
≈ KeyLeakCK and therefore, the advantage of adversary in Leak−WIBE game is negligible. ut

3.3 Key-Leakage Resilient Revoke Scheme Immune to Pirates 2.0

The definition and adaptive security model of KIDTR scheme can be found in Appendix D.1 and D.2.
The construction of KIDTR is the same as in [27] except we use KWIBE instead of WIBE for encryption.
The construction and security of KIDTR are provided in Appendix D.3 and 21.

Proposition 13. In KIDTR scheme, if we call p1, p2, p3 are primes of λ1, λ2, λ3 bits, then each user’s
secret key with length m = (n+ 2)(λ1 + λ2 + λ3) is m′-independent source where m′ = ((n+ 1)(λ1 +
λ2 + λ3) + λ2 + λ3).

Proof. In our KIDTR scheme, we make use of a KWIBE scheme in which each user’s secret key is at
leaf node 3.2, therefore an user’s secret key is of the following form:

SK =
−→
K1 =

〈gt11 , gt21 , . . . , gtn1 , gα1
(
h ·

j∏
i=1

uIDii

)−r n∏
i=1

g−xiti1 , gr1

〉
∗ g
−→ρ
3 ∗ g

−→γ
2
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where r, t1, t2, . . . , tn, zk
$← ZN , −→ρ $← Zn+2

N , and −→γ = (γ1, . . . , γn+2) in which (γ1, . . . , γn, γn+2)
$←

Zn+1
N , γn+1 = γn+2(zk −

∑j
i=1 aiIDi).

We realize that in each secret key, the elements corresponding to the indices 1, . . . , n, n+2 are randomly
generated in the whole group G = G1 × G2 × G3, the element corresponding to the indice n + 1 is
not independent in G1 but randomly generated in G2×G3. Therefore, it’s easy to see that each user’s
secret key is of (n+ 2)(λ1 +λ2 +λ3) bit length and is a ((n+ 1)(λ1 +λ2 +λ3) +λ2 +λ3)-independent
source.

Theorem 14. The KIDTR scheme is immune to Pirates 2.0 attacks for any choice of parameters
n, c, λ1, λ2 such that 2(n−1−2c)λ2−λ1 > Nu, where Nu is the number of subscribed users in the systems

Proof. From the theorems 10 and theorem 21, we decude that the KIDTR scheme is `SK−leakage
resilient with `SK = (n− 1− 2c)λ2 for any fixed positive constant c > 0 (such that p−c2 is negligible).
From the theorem 7, one cannot mount a Pirates 2.0 attack with an anonymity level larger than
α = Nu

2`SK+m′−m = Nu
2(n−1−2c)λ2−λ1

< 1. ut

We note that there is no need to choose particular parameters for our system. For example, simply
with c = 1, n = 5 and λ1 = λ2 = 512 (p−c2 = 2−512 is negligible) and suppose that there are Nu = 240

subscribed users, our system is immune to Pirates 2.0 because 2(n−1−2c)λ2−λ1 = 2512 > Nu and the
user’s secret key contains only 7 elements in G.

4 Discussion

4.1 Traceability in our scheme

The effectiveness of Pirates 2.0 in practice is to allow a very large scale of public collaboration of
traitors. This relies on the anonymity of each contributor. By formally proving in Section 2 that the
anonymity can not be assured, there is no risk for a large scale of public collaboration of traitors in our
system. Concerning to the classical tracing where traitors contribute their whole secret keys, because
our scheme which is based on the structure of complete-subtree scheme, it achieves the same level of
traceability as the schemes in the subset-cover framework [23]: the tracer, having black-box access to
a pirate decryption box D, can outputs either a set of traitors or a way to render the illegal decryption
box useless.

4.2 Computational entropy and Pirates 2.0

We consider the information-theoretic notion of entropy and design a scheme where the keys of users
are all high-independent source. One might ask a natural question if it suffices to use the computational
entropy (a distribution X has k bit computational entropy if there is a distribution Y of k bit min-
entropy such that X an Y and computationally indistinguishable). A positive result would imply that
almost all known algebraic broadcast encryptions resist Pirates 2.0 attacks if they are key-leakage
resilient. Unfortunately, it seems hard for us that the computational entropy is suitable in the context
of Pirates 2.0. The main reason is that if an user has a key of k bit computational entropy, the key can
still remain k bit computational entropy even after the user contributes some k′ bit information about
the key. Therefore, we cannot control the remaining computational entropy of the keys after each round
of leaking information in Pirates 2.0, especially when the users choose the form to leak information.
It seems thus an open problem to determine whether the other known broadcast encryptions resist
Pirates 2.0. As a concrete example, in BGW scheme[7], the key of the user i is di = vα

i
which is zero-

independent source (one key is totally determined in information-theoretic sense by an another key).
These keys have high computational entropy (under the bilinear Diffie-Hellman Exponent assumption)
but as explained above, it’s not easy to explore this computational entropy in the context of Pirates
2.0.
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4.3 Active leakage in cryptography

In the last few years, theoretical foundations have been developed in order to formally address the
problem of side-channel attacks - a very frequent and practical attack against implementations of
cryptographic protocols. These led to the development of Leakage Resilient Cryptography with the
objective is to deal with any form of side-channel attacks. The source of leakage comes from the
possibility of an adversary to extract the information about the secret key. We would like to furthermore
investigate the question of active leakage where users intentionally leak partial information of their
secret keys. The main property is probably the anonymity of the colluded users: users want to leak
information in discretion to break the security of the system. This scenario could be very relevant in
multi-user cryptography. In fact, Pirates 2.0 exactly formalizes the active leakage in the context of
multi-user encryption and the view of Pirates 2.0 as a form of leakage resilience led us to the research
in this paper. We believe that the question of active leakage is deserved to be more studied in many
scenarios of multi-user cryptography including secret sharing, threshold cryptography. As an example,
we wonder whether there exist a threshold scheme that is secure against classical collusions of less
than t users but is vulnerable to a collusion of more than t users in the active leakage model where the
main requirement is that all the contributors rest assured to be anonymous even against an unbounded
authority.
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A Composite Order Bilinear Groups

We recall three assumptions from [21].
Assumption 1 (Subgroup decision problem for 3 primes) Given a group generator G, we
define the following distribution:

G = (N = p1p2p3, G,GT , e)
$← G; g

$← Gp1 ;X3
$← Gp3 .

D = (G, g,X3); T1
$← Gp1p2 , T2

$← Gp1 .

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=| Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1] | .

We note that T1 can be written (uniquely) as the product of an element of Gp1 and an element of Gp2 .
We refer to these elements as the ”Gp1 part of T1” and the ”Gp2 part of T1” respectively.

Definition 15. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function of λ for
any polynomial time algorithm A.
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Assumption 2 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
$← G; g,X1

$← Gp1 ;X2, Y2
$← Gp2 ;X3, Y3

$← Gp3 .

D = (G, g,X1X2, X3, Y2Y3); T1
$← G,T2

$← Gp1p3 .

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv2G,A(λ) :=| Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1] | .

We use Gp1p3 to denote the subgroup of order p1p3 in G. We note that T1 can be (uniquely) written
as the product of an element of Gp1 , an element of Gp2 , and an element of Gp3 . We refer to these as
the ”Gp1 part of T1”, the ”Gp2 part of T1”, and the ”Gp3 part of T1”, respectively. T2 can similarly be
written as the product of an element of Gp1 and an element of Gp3 .

Definition 16. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible function of λ for
any polynomial time algorithm A.

Assumption 3 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
$← G;α, s

$← ZN ; g
$← Gp1 ;X2, Y2, Z2

$← Gp2 ;X3
$← Gp3 .

D = (G, g, gαX2, X3, g
sY2, Z2); T1 = e(g, g)αs, T2

$← GT .

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv3G,A(λ) :=| Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1] | .

Definition 17. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible function of λ for
any polynomial time algorithm A.

B Construction of BBG-WIBE Scheme in Composite Order Groups

Setup The setup algorithm chooses a bilinear group G of order N = p1p2p3. We will assume that users
are associated with vectors of identities whose components are elements of ZN . We let D denote
the maximum depth of the WIBE, the setup algorithm chooses a generator g ∈ G1, X3 ∈ G3,

α, b, a1, . . . , aD
$← ZN . Denote u1 = ga1 , . . . , uD = gaD , h = gb. The master key is msk = α, the

public parameters are published as:

mpk = (N, g, h, u1, . . . , uD, X3, e(g, g)α)

Keyder(msk, (ID1, ID2, . . . , IDj),mpk) The key generation algorithm chooses r
$← ZN and also

chooses random elements R3, R
′
3, Rj+1, . . . , RD of G3. It sets:

K1 = grR3,K2 = gα
(
uID1
1 · · ·uIDjj h

)r
R′3, Ej+1 = urj+1Rj+1, . . . , ED = urDRD.

Delegate Given a key K ′1,K
′
2, E

′
j+1, . . . , E

′
D for (ID1, . . . , IDj), the delegation algorithm creates a

key for (ID1, . . . , IDj+1) as follows. It chooses r′
$← ZN and random elements of G3 denoted, e.g.,

by R̃3. The new key is set as:

K1 = K ′1g
r′R̃3, K2 = K ′2

(
uID1
1 · · ·uIDjj h

)r′
(E′j+1)

IDj+1u
r′IDj+1

j+1 R̃′3,

Ej+2 = E′j+2u
r′
j+2R̃j+2, . . . , ED = E′Du

r′
DR̃D

We note that this new key is fully re-randomized: its only tie to the previous key is in the values
(ID1, . . . , IDj).
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Enc(M, (P1, P2, . . . , Pj)) The encryption algorithm chooses s
$← ZN and outputs the ciphertext:

C0 = M · e(g, g)αs, C1 = (h ·
∏

i∈W (P )

uPii )s, C2 = gs, C3 = (C3,i = usi )i∈W (P )

Dec Any other receiver with identity ID = (ID1, ID2, . . . , IDj) matching the pattern P to which
the ciphertext was created can decrypt the ciphertext as follows
First, he recovers the message by computing

C ′1 = C1 ·
∏

i∈W (P )

(usi )
IDi

then computes the blinding factor as:

e(K2, C2)

e(K1, C ′1)
=
e(g, g)αse(uID1

1 · · ·uIDjj h, g)rs

e(g, uID1
1 · · ·uIDjj h)rs

= e(g, g)αs

B.1 Security of BBG-WIBE Scheme in Composite Order Groups

Semi-functional Keys. We let g2 denote a generator of Gp2 . To create a semi-functional key for
identity (ID1, . . . , IDj), we first create a normal key K ′1,K

′
2, E

′
j+1, . . . , E

′
D using the key generation

algorithm. We choose random exponents γ, zk
$← ZN and output

K1 = K ′1g
γ
2 ,K2 = K ′2g

γ(zk+
∑j
i=1 aiIDi)

2 , Ej+1 = E′j+1g
γaj+1

2 , . . . , ED = E′Dg
γaD
2 ,

Semi-functional Ciphertext. A semi-functional ciphertext is created for pattern (P1, . . . , Pj) as
follows: first, we use the encryption algorithm to form a normal ciphertext C ′0, C

′
1, C

′
2, C

′
3. We choose

random exponents x, zc ∈ ZN and output:

C0 = C ′0, C1 = C ′1g
x(zc+

∑
i∈W (P ) aiPi)

2 , C2 = C ′2g
x
2 , C3 = (C3,i = C ′3,i.g

xai
2 )i∈W (P )

We note that when a semi-functional key is used to decrypt a semi-functional ciphertext, the de-
cryption algorithm will compute the blinding factor multiplied by the additional term of

e(g2, g2)
xγ(zk+

∑j
i=1 aiIDi−zc−

∑
i∈W (P ) aiPi−

∑
i∈W (P ) aiIDi). If the identity (ID1, . . . , IDj) matches the pat-

tern (P1, . . . , Pj) and zk = zc, decryption will still work. In this case, the key is nominally semi-
functional.
We recall three assumptions 1, 2, 3 in Appendix A.

Theorem 18. If Assumptions 1, 2, and 3 hold, then our WIBE system is fully secure.

Overview of Proof of Security Our proof of security will be structured as a hybrid argument over
a sequence of games. The first game, GameReal, is the real WIBE security game. The next game,
GameReal′, is the same as the real game except that all key queries will be answered by fresh calls to
the key generation algorithm (the challenger will not be asked to delegate keys in a particular way).
The next game, GameRestricted is the same as GameReal′ except that the attacker cannot ask for
keys for identities which have at least a component is equal to a respective component of the challenge
pattern (at positions not a wildcard) modulo p2 and not also equal modulo N . We will retain this
restriction in all subsequent games. We let q denote the number of key queries the attacker makes. For
k from 0 to q, we define Gamek as:

Gamek This is like GameRestricted, except that the ciphertext given to the attacker is semi-
functional and the first k keys are semi-functional. The rest of the keys are normal. In Game0, only
the challenge ciphertext is semi-functional. In Gameq, the challenge ciphertext and all of the keys are
semi-functional. We define GameFinal to be like Gameq, except that the challenge ciphertext is a
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semi-functional encryption of a random message, not one of the messages provided by the attacker. We
will prove the security of the scheme by showing these games are indistinguishable. Informally, we have:

GameReal ≈ GameReal′: Keys are identically distributed whether they are produced by the key
delegation algorithm from a previous key or from a fresh call to the key generation algorithm. Thus,
in the attacker’s view, there is no difference between these games.

GameReal′ ≈ GameRestricted: Essentially, if the adversary is able to ask for key for identities
which have at least a component is equal to a respective component of the challenge pattern (at
positions not a wildcard) modulo p2 and not also equal modulo N , then this means that the adversary
can find a non-trivial factor of N and can be used to break the Assumption 2 (the same proof of
lemma 5 in [21]).

GameRestricted ≈ Game0: In Game0, the challenge ciphertext C is semi-functional, while all keys
are normal. Notice that from the input values of Assumption 1 the challenger is able to generate mpk
and msk, and to answer to all secret key queries. Moreover, the challenger can use T to generate C
and, depending on the nature of T, C can be normal as in GameRestricted or semi-functional as in
Game0.

Gamek−1 ≈ Gamek: Under Assumption 2, these two games are indistinguishable. From the input
values (g,X1X2, X3, Y2Y3, T ) of Assumption 2, the challenger is able to generate mpk and msk by using
g and X3. The challenger can answer the first k − 1 secret key queries, which are semi-functional, by
employing Y2Y3, g,X3. The last q − k queries, which are normal, can be answered by invoking the
key generation algorithm using msk. Finally, the challenger can generate the ciphertext by employing
X1X2 and generate the k − th secret key by employing T .
Now, if T ∈ Gp1p3 , then the k − th secret key is normal and the joint distribution of the k − th
secret key and the challenge ciphertext is as in Gamek−1. In contrast, if T ∈ Gp1p2p3 , then the joint
distribution of the k − th secret key and the challenge ciphertext is as in Gamek, and the k − th key
is nominally semi-functional with respect to the challenge ciphertext. Hence, the simulator cannot
test by himself the nature of T . Moreover, the nominality of k − th key is hidden to the adversary
under the restriction of the game that the adversary cannot ask secret keys for identities matching
with the challenge patterns, and under the restriction of GameRestricted. The nominality of semi
components C3,i and semi components Ei is also hidden to the simulator and the adversary under the
choosing compatibly the distribution of exponents of Gp2 components in the semi-functional key and
the semi-functional ciphertext

Gameq ≈ GameFinal: In Gameq, the challenge ciphertext and secret keys are semi-functional. It
is easy to see that these two games are indistinguishable under Assumption 3.

GameFinal gives no advantage: From the input of the assumption 3, (N , G, GT , e, g1, g2, g3, g
α
1 g

ν
2 ,

gz1g
µ
2 ) and T which is either e(g1, g1)

αz or a random term of GT , challenger can answer all queries.
When the challenger receives the challenge key it uses T to create the ciphertext. Depending on the
nature of T , this is a ciphertext of real message or ciphertext of random message. If this is a ciphertext
of real message then challenger stimulates the GameFinal game. Hence the attacker can obtain no
advantage in breaking the scheme.

C KWIBE Scheme

Security Model for KWIBE
Formally, the security model of a `SK-key-leakage resilient WIBE, we call Leak−WIBE security game,
is defined as follows:
We let I∗ denote the set of all possible identity vectors, R denote the set of all revealed identities

Setup : The challenger makes a call to Setup(1λ) and gets the master secret key msk and the
public parameters mpk. It gives mpk to the attacker. Also, it sets R = ∅ and T = ∅, note that
R ⊆ I∗, T ⊆ {I∗,SK,N} (identity vectors - secret keys - leaked bits) thus initially no leakage on
each secret key.
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Phase 1 : The adversary can be interleaved in any possible way to request three types of query:

Create(
−→
I ): The challenger initially scans T to find the identity vector

−→
I . If this identity vector

exists in T , it responds with ⊥.

Otherwise, the challenger makes a call to KeyDer(msk,
−→
I ) → SKI and adds the tuple (

−→
I ,

SKI , 0) to the set T .

Leak (
−→
I , f): In this query, the adversary requests leakage from a key that has identity

−→
I with

a polynomial-time computable function f of constant output size. The challenger scans T to

find the specified identity vector. It is of the form (
−→
I , SKI , L). It checks if L+ | f(SKI)| ≤

`SK . If this is true, it responds with f(SKI) and updates the L in the tuple with L+| f(SKI)|.
If the checks fails, it returns ⊥ to the adversary.

Reveal (
−→
I ): Now the adversary requests the entire key with identity vector

−→
I . The challenger

scans T to find the requested entry. Let’s say the tuple is (
−→
I , SKI , L). The challenger responds

with SKI and adds the identity vector
−→
I to the set R.

Challenge : The adversary submits a challenge pattern
−→
P ∗ with the restriction that no identity vector

inRmatches
−→
P ∗. It also submits two messages M0,M1 of equal size. The challenger flips a uniform

coin c
$← {0, 1} and encrypts Mc under

−→
P ∗ with a call to Enc(Mc,

−→
P ∗). It sends the resulting

ciphertext CT ∗ to the adversary.
Phase 2 : This is the same as Phase 1, except the only allowed queries are Create queries for all

identity vector, and Reveal queries for secret keys with identity vectors which do not matches−→
P ∗.

Guess : The adversary outputs a bit c
′ $← {0, 1}. We say it succeeds if c

′
= c.

Definition 19. A KWIBE scheme is (`SK)-key-leakage secure if all PPT adversaries have at most a
negligible advantage in the above security game.

D KIDTR Scheme

D.1 Definition

We follow the same framework of the identity-based traitor tracing (IBTT) in [3] and the identity-based
trace and revoke (IDTR) in [27]. Under this framework, each group is associated with an identity string
ID ∈ {0, 1}∗. The maximum number in each group is assumed to be bounded by Nu = 2l. Each user
in a group is associated with an index id ∈ {0, 1}l and is provided a personal decryption key dID,id.
Let NID be the set of all users in the group ID and RID be a set of revoked users, the system should
be able to to allow anyone to encrypt a message to the group ID such that any user u ∈ NID\RID can
correctly decrypt the ciphertexts, while the coalition of all members of RID cannot correctly decrypt.

Formally, a key-leakage resilient IDTR scheme consists of five polynomial-time algorithms (Setup,
KeyDer, Enc, Dec, Trace):

Setup(1k, Nu): The key generation algorithm taking as input security parameter 1k and number of
users for each group Nu (we assume that the maximum number of users in each group is bounded
by Nu). This algorithm generates a master public key mpk, a master secret key msk.

KeyDer(msk, ID, id): The key extraction algorithm which given the master secret key msk, a group
identity ID ∈ {0, 1}∗ and a user identity id generates a user secret key dID,id.

Enc(mpk, ID,RID,M): The encryption algorithm which on input of the master public key mpk, a
group identity ID, a revocation list RID of revoked users in the group ID, and a message M
outputs a ciphertext C.

Dec(dID,id, C): The decryption algorithm which on input of a user secret key dID,id and a ciphertext
C outputs a plaintext message M , or ⊥ to indicate a decryption error.
For correctness we require that Dec(dID,id,Enc(mpk, ID,RID,M)) = M with probability one

for all k ∈ N, ID,M ∈ {0, 1}∗, id ∈ {0, 1}l, (mpk,msk)
$← Setup(1k, Nu) and dID,id

$←
KeyDer(msk, ID, id).
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TraceD(msk, ID): The traitor tracing algorithm which has oracle access to a “pirate” decryption box
D. The tracing algorithm takes as input the master secret key msk and a group identity ID, and
outputs either a set of user identifiers (called “traitors”) T ⊂ NID or a way to render the illegal
decryption box useless.

D.2 Security Model for Key-Leakage Resilient Identity-Based Trace and Revoke
Systems.

Setup: The challenger takes a parameter k, a maximum number of users in each group Nu and
runs setup(1k, Nu) algorithm. The master public key mpk is passed to the adversary. Also, it sets
RID = ∅, TID = ∅, note that RID ⊆ 〈ID, id〉, and TID ⊆ (〈ID, id〉,SK,N ) (group’s identity and
users’ identities - secret key of users - leaked bits) for all ID. Thus initially has no leakage on each
secret key.

Phase 1: The adversary can be interleaved in any possible way to request three types of query:

1. Create(ID, id): The challenger initially scans TID to find the identity (ID, id). If this identity
exists in TID, it responds with ⊥.
Otherwise, the challenger makes a call to KeyDer(msk, ID, id) → dID,id and adds the tuple
((ID, id), dID,id, 0) to the set TID.

2. Leak((ID, id), f) In this query, the adversary requests leakage from a key that has identity
(ID, id) with a polynomial-time computable function f of constant output size. The challenger
scans TID to find the specified identity. It is of the form ((ID, id), dID,id, L). It checks if L+
| f(dID,id)| ≤ `SK . If this is true, it responds with f(dID,id) and updates the L in the tuple
with L+| f(dID,id)|. If the checks fails, it returns ⊥ to the adversary.

3. Reveal(ID, id): Now the adversary requests the entire key with identity (ID, id). The chal-
lenger scans TID to find the requested entry. Let’s say the tuple is ((ID, id), dID,id, L). The
challenger responds with dID,id and adds the identity (ID, id) to the set RID.

Challenge: The adversary submits two equal length messages M0,M1 and an identity ID∗. The
challenger picks a random bit b ∈ {0, 1} and set C = Encrypt(msk, ID∗,RID∗ ,Mb). The ciphertext
C is passed to the adversary.

Phase 2: This is identical to phase 1 except that the allowed queries are Create queries, and only
Reveal(ID, id) queries in which ID 6= ID∗ or ID = ID∗ and id ∈ RID∗ .

Guess: The adversary outputs a guess b′ of b.

Definition 20. A KIDTR scheme is (`SK)-key leakage secure if all PPT adversaries have at most a
negligible advantage in the above security game.

D.3 Generic Construction of KIDTR

The construction of KIDTR closely follows the construction of WIBE-IDTR in [27], using the new
primitive KWIBE instead of WIBE for encryption. We integrate KWIBE into the complete subtree
method: each group ID ∈ {0, 1}∗ represents a binary tree and each user id ∈ {0, 1}l (id = id1id2 · · · idl,
idi ∈ {0, 1}) in a group ID is assigned to be a leaf of the binary tree rooted at ID. For encryption,
we will use a KWIBE of depth l + 1, each user is associated with a vector (ID, id1, · · · , idl).

Setup(1k, Nu): Take a security parameter k and the maximum number in each group Nu (thus l =
dlog2Nue). Run the setup algorithm of KWIBE with the security parameter k and the hierarchical
depth L = l+ 1 which returns (mpk,msk). The setup then outputs (mpk,msk). As in the complete
subtree method, the setup also defines a data encapsulation method EK : {0, 1}∗ → {0, 1}∗ and
its corresponding decapsulation DK .

Keyder(msk, ID, id): Run the key derivation of KWIBE for l+1 level identityWID = (ID, id1, . . . , idl)
(the j-th component corresponds to the j-th bit of the identity id) and get the decryption key
dWID. Output dID,id = dWID.
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Enc(mpk, ID,RID,M): A sender wants to send a message M to a group ID with the revocation list
RID. The revocation works as in the complete subtree scheme. Considering a group ID with its
revocation list RID, the users in NID\RID are partitioned into disjoint subsets Si1 , . . . , Siw which
are all the subtrees of the original tree (rooted at ID) that hang off the Steiner tree defined by
the set RID.
Each subset Sij , 1 ≤ j ≤ w, is associated to an l+1 vector identity IDSij

= (ID, idij ,1, . . . , idij ,k, ∗, .., ∗)
where idij ,1, . . . , idij ,k is the path from the root ID to the node Sij and the number of wildcards
∗ is l−k. The encryption algorithm randomly chooses a session key K, encrypts M under the key
K by using a symmetric encryption, and outputs as a header the encryption of KWIBE for each
IDSi1

, . . . , IDSiw .

C = 〈[i1, . . . , iw][KWIBE.Enc(mpk, IDSi1
,K), . . . ,KWIBE.Enc(mpk, IDSiw ,K)], EK(M)〉

Dec(dID,id, C): The user received the ciphertext C as above. First, find j such that id ∈ Sij (in case
id ∈ RID the result is null). Second, use private key dID,id to decrypt KWIBE.Enc(mpk, IDSij

,K)

to obtain K. Finally, compute DK(EK(M)) to recover the message M .
TraceD(msk, ID): Tracing algorithm takes as input msk, ID, an illegal decryption box D, returns

either a subset consisting at least one traitor or a new partition of NID\RID that renders the
illegal decryption box useless.

D.4 Proof of Security of KIDTR Scheme

Theorem 21 (Security of KIDTR). If the KWIBE is (`SK) - key-leakage secure then our KIDTR is
also (`SK) - key-leakage secure.

Proof. Our proof follows closely to the proof of theorem 2 in [27]. We also organize our proof as a
sequence of games. The first game Game 0 defined will be the real KIDTR game and the last one
will be one in which the adversary has no advantage unconditionally. We will show that each game is
indistinguishable from the next, under the assumptions of the security of KWIBE.

Game 0: This is the real attack game of an adversary B against the proposed KIDTR system. After
receiving the public key mpk, B can issue adaptively three types of query Create, Leak, and
Reveal on identity (ID, id). The challenger can easily responds these queries.
B finally outputs two equal length plantexts M0,M1 ∈M and a targeted set ID∗.
The revoked set RID∗ consists the users’ identity id such that (ID∗, id) has been asked in the
Reveal query by adversary B.
The challenger picks then a random bit b ∈ {0, 1} and set C = KIDTR.Enc(msk,NID∗\RID∗ ,Mb).
It sends C as the challenge to B.
Upon receiving the challenge C, B outputs a guess b′ ∈ {0, 1}. B wins the game if b′ = b.
In our construction, the encryption of trace and revoke system is performed as:

KIDTR.Enc(msk,NID∗/RID∗ ,M)

= (KWIBE.Enc(mpk, IDSi1
,M), · · · ,KWIBE.Enc(mpk, IDSiw ,M)),

where NID∗/RID∗ is partitioned to be w subsets corresponding to nodes IDSi1
, · · · , IDSiw

In the following games, we will modify step by step the challenge given to the adversary. We define
a modified encryption KIDTR.Enck as follow:

KIDTR.Enck(msk,NID∗/RID∗ ,M)

= (KWIBE.Enc(mpk, IDSi1
,M0), · · · ,KWIBE.Enc(mpk, IDSik

,M0),

KWIBE.Enc(mpk, IDSik+1
,M) · · · ,KWIBE.Enc(mpk, IDSiw ,M))

Note that

KIDTR.Enc0(.) = KIDTR.Enc(.)

KIDTR.Enck(msk,NID∗/RID∗ ,M0) = KIDTR.Enc(msk,NID∗/RID∗ ,M0) for any k

KIDTR.Encw(msk,NID∗/RID∗ ,M) = KIDTR.Enc(msk,NID∗/RID∗ ,M0) for any M
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Gamek for k = 1, 2, . . . , w: This is the same as in the game k−1 with an exception that the challenger
use KIDTR.Enck(.) instead of KIDTR.Enck−1(.). We call Advkidtr−kwibeind,k (B) the advantage of the
adversary B in Game k. We remark that, in the game w, the adversary B has zero advantage
because B receives two ciphertext of the same message M0. Therefore, the proof directly holds
under the following lemma:

Lemma 22.
Advkidtr−kwibeind,k (B)−Advkidtr−kwibeind,k−1 (B) ≤ ε∗,

where ε∗ is the bound on the advantages of the adversaries against KWIBE.

Proof. We will construct an adversary B′ that breaks the IND-WID-CPA security of the underlying
KWIBE with an advantage of Advkidtr−kwibeind,k (B)−Advkidtr−kwibeind,k−1 (B).

Setup: The challenger of B′ runs setup algorithm of KWIBE to generate key pair (mpk,msk). It
sends mpk to B′ and keeps msk private. B′ passes this mpk to B.

Phase 1: When B asks three types of key query for a user id = id1 . . . idl in a group ID, B′ sends
these queries WID = (ID, id1, . . . , idl) (a (l + 1)−vector) to its challenger and gets the results.
B′ passes the results to B. It assures the correctness because in the construction dID,id is defined
to be dWID in the same way.
For each Reveal query on (ID, id), B′ updates the revocation list for group ID by adding id to
RID (initially empty).

Challenge: The adversary B′ submits two equal length messages M0,M1 and an identity ID∗.
The challenger picks a random bit b ∈ {0, 1} and set C = Encrypt(msk, ID∗,RID∗ ,Mb). The
ciphertext C is passed on to the adversary.
B′ partitions NID∗\RID∗ to (Si1 , S2 , · · · , Siw) as in the original Game0.
B′ submits M0,M1 and the identity IDSik

to its challenger and receives a challenge ciphertext
Cb = KWIBE.Enc(msk, IDSik

,Mb).
B′ encrypts M0 for identities IDSi1

, . . . IDSik−1
and encrypts M1 for identities IDSik+1

, . . . IDSiw .

B′ finally gives B the following challenge ciphertext:

(KWIBE.Enc(mpk, IDSi1
,M0), · · · ,KWIBE.Enc(mpk, IDSik

,M0),

Cb,KWIBE.Enc(mpk, IDSik+1
,M) · · · ,KWIBE.Enc(mpk, IDSiw ,M))

Phase 2: B′ responses B’s key queries in a similar way to the Phase 1. As B is not allowed to
ask Leak query and queries on ID∗, B′ will not make Leak query and queries on the targeted
identity.

Guess: When B gives its guess, B′ outputs the same guess. We realizes that, when b = 0, the
adversary B exactly plays the Gamek−1 and when b = 1, the adversary B exactly plays the
Gamek. Therefore, the advantage of B′ is |Advkidtr−kwibeind,k (B)−Advkidtr−kwibeind,k−1 (B)|.
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