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Abstract. We provide the first two-party protocol allowing Alice and Bob to evaluate privately even
against active adversaries any completely positive, trace-preserving map F ∈ L(Ain ⊗ Bin) →
L(Aout ⊗Bout), given as a quantum circuit, upon their joint quantum input state ρin ∈ D(Ain ⊗Bin).
Our protocol leaks no more to any active adversary than an ideal functionality for F provided Alice
and Bob have the cryptographic resources for active secure two-party classical computation. Our pro-
tocol is constructed from the protocol for the same task secure against specious adversaries presented
in [DNS10].

1 Introduction

We provide the first active-secure two-party protocol for computing on quantum data. We look at a
model where Alice and Bob hold an input ρin on registersAin and Bin, where Alice holds register
Ain and Bob holdsBin. They agree on a completely positive, trace-preserving (CPTP) map F from
registersAin⊗Bin to registersAout⊗Bout, and they want to compute ρout = F (ρin) such that, at
the end of the protocol, Alice is in possession ofAout and Bob is in possession of Bout. They want
to do this in an actively secure manner. Our notion of active security is phrased via simulation, but
intuitively it simply guarantees that any cheating Alice, even an infinitely powerful Alice, which
might deviate from the protocol, can only affect the output of the protocol by replacing her own
input and that she will at any point during the execution of the protocol only hold information
which can be computed (efficiently) from either ρAin or ρAout. The equivalent condition should hold
for Bob.

A simple example of such an F is the quantum swap, where Ain = Aout = A, Bin =
Bout = B, and ρAout = ρBin and ρBout = ρAin. Securely implementing this unitary basically means
to do an atomic swap of quantum states, which was shown impossible in [DNS10] even against
a restricted class of adversaries called specious. Extra assumptions are therefore needed to get
unconditional security. Our way out is to look at a model where the two parties have access to an
ideal functionality which allows them to securely do any classical computation on any classical
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data held jointly by the two parties. In this model we give an unconditionally secure protocol with
active security. This is the first such protocol.

Formally, we use the notationally simpler model of [DNS10], but it is easy to see that secu-
rity in this model implies security in the stand-alone model of [HSS11], as long as the simulator is
poly-time. The stand-alone model of [HSS11] allows, inside a secure quantum protocol, to replace
a classical ideal functionality by a classical protocol which securely implements that ideal func-
tionality against poly-time quantum adversaries. The result is a protocol secure against poly-time
quantum adversaries. This, in particular, implies sequential security, i.e., if a protocol is secure,
it remains secure when run in sequence with other secure protocols. Since the secure evaluation
of any classical function with security against poly-time quantum adversaries can be done un-
der the assumption that learning with errors is hard [Reg05,HSS11] and under the more general
assumption that mixed commitment schemes exist [LN11], our poly-time simulator provides an
active-secure two-party plain-model protocol for computing on quantum data with security against
any poly-time quantum adversaries. This is the first such protocol.

1.1 Overview of our construction

We reuse many ideas from the protocol provided in [DNS10], which gives a two-party protocol for
computing on quantum data securely against so-called specious adversaries. The protocol therein
is unconditionally secure given an ideal functionality for classical computation. Specious adver-
saries are a quantum version of the classical notion of passive adversaries. Technically, a specious
adversary is an adversary which is allowed to deviate from the protocol, except that at any step of
the protocol it should be able to reconstruct the honest state of the protocol from its current state.
This basically allows it to purify itself and not much else.

In the protocol in [DNS10], all wires are encrypted using a Pauli encryption: a qubit |v〉 is
represented as |V 〉 = XxZz|v〉, where the two uniform key bits x and z are secret-shared between
Alice and Bob. For example, to secret-share x, Alice will hold a uniformly random bit xA and Bob
will hold a uniformly random bit xB such that x = xA⊕xB . All wires are independently encrypted
like this, which ensures that intermediate states are perfectly hidden from both parties. Computa-
tion is then done “through the encryption”. The CPTP map F is described by a quantum circuit
made out of the universal set of gates UG consisting of gates X, Y, Z, CNOT, H = 1√
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, together with a set of ancilla wires initialized in state |0〉, and a

set of output wires that are discarded (or, in our case, that remain encrypted forever). The protocol
evaluates each gate of F while preserving privacy. Handling the Pauli gates X, Y and Z is easy,
as they commute or anti-commute with the encryption operators. As an example, assume that the
parties want to apply an X gate to a qubit |v〉, i.e., compute an encryption of |v′〉 = X|v〉. Since up
to an overall phase factor XZ = ZX, it follows that X|V 〉 = XXxZz|v〉 = XxZzX|v〉 = XxZz|v′〉.
So, the evaluation is simply performed on the encrypted qubit |V 〉 and the key bits x and z are
maintained. For the remaining Clifford gates CNOT, H and P other “commutation” rules with X
and Z are used. For H, it is used that HX = ZH and HZ = XH, so H is simply applied to the
encrypted qubit, and then the keys x and z are swapped: Alice sets x′A = zA and z′A = xA and
similarly for Bob. This leaves the non-Clifford gate R, where the relation RXxZz = PxXxZzR
almost does the job, except that it leaves an extra Px. Getting rid of this requires quantum com-
munication and a classical secure two-party computation, which computes how the parties should
update their key bits. After such a gate-by-gate computation of U on the encrypted qubits, the
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shares of the keys needed for learning the states on ones own output wires are swapped with the
other party in one atomic step, using the ideal functionality for classical secure computation.

The protocol in [DNS10] is actually secure against an active adversary up to the final swap of
key bits, as the encryptions of the wires are guaranteed to be perfect, independent of the behavior
of the other party, as the parties pick their own shares of the sharings of x and z. This means that
no party can get any information on any intermediary states, no matter how it deviates. It can,
however, easily force the computation to be incorrect, by applying gates to the encrypted states,
so the full protocol is not active secure. We note, however, that [DNS10] is secure against what
we could call ultimately specious adversaries: Adversaries promising to attack in such a way that
both parties always be able to reconstruct the correct state at the end of the protocol, but that can
otherwise behave as they want. This follows from the active security in the middle and a theorem
in [DNS10] which says that any attack which always allows both parties to obtain the correct
output can be simulated given just the output of the corrupted party—basically, there is no way to
learn extra information without sometimes irrevocably destroying the state of the other party.

In this paper, we use this observation in a protocol proceeding along the same lines as [DNS10]
but where we force the adversary to be ultimately specious. This is done by not only encrypting
the wires, but by unconditionally authenticating them. In addition, we commit the parties to their
key bits, to allow the recipient to verify the key bits swapped at the end. Since an unconditional
quantum authentication code is also an unconditionally secure encryption, we get a protocol with
at least the security of [DNS10], but with the added property that an adversary who deviates from
the protocol will be caught. More technically, if all checks of the authentication code succeed,
then the authenticated values collapse to the correct values. This forces the adversary to either
be detected or be ultimately specious. Since we do all the checks of the authentication codes
before any key bits are revealed, the case where the adversary is detected can be simulated by
simply asking the ideal world to abort too. The case where the adversary is ultimately specious is
simulated similarly to [DNS10].

The main technical challenge is then to devise an authentication code with these two proper-
ties:

1. It allows to perform computation “through the authentication”.
2. It allows to check the authentication code without revealing what is authenticated.

The first property is important for hiding intermediate values during the computation. The second
property is important when we force the adversary to either be detected or ultimately specious:
when he is detected, he should learn nothing on the incorrect outputs.

We devise an authentication code with these properties based on the Clifford-based quantum
authentication code proposed in [ABE08]. It authenticates a quantum message using a random
unitary implementable using gates X, Y, Z, CNOT, H and P. The authentication works as follows.
In order to satisfy the second property, take a qubit |v〉 on some wire. Alice prepends n new wires,
in the all-zero state |0n〉. Then she applies a uniformly random (n+ 1)-bit Clifford operator A to
the n + 1 wires. She then sends the state to Bob, who appends n more wires in the all-zero state
and applies a uniformly random (2n+1)-bit Clifford operatorB to the 2n+1 wires. We can write
this as |V 〉 = B(|0n〉⊗A(|v〉|0n〉)). The key is (A,B). This authentication can be checked in two
different ways. Either, apply B† to the authenticated state and check that the first n wires are all
zero. Or, apply B† and then apply A† to the last n + 1 wires and check that the last n wires are
all zero. One way is used for Alice to check that Bob did not change the authenticated value. The
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other is used by Bob to check Alice. In order to perform these without leakage, we use a 2-party
classical ideal functionality as described below.

In our scheme, Alice will hold A as her share of the key and Bob will hold B as his key share.
They are committed to their share by being committed to a poly-size classical description of the
operator applied. We sketch why the scheme has the two necessary properties.

1. Since the authentication is performed using only Clifford gates, an approach as in [DNS10]
will allow to fairly easily apply Clifford gates “through the authentication”. Since the Clifford
unitaries form a group, the operation consisting of decrypting a qubit, applying a Clifford
gate to it and reauthenticating it using a different key is also Clifford unitary. Hence, we can
apply a Clifford gate to a swaddled qubit simply by changing the authentication keys in the
appropriate manner. More precisely, to execute the Clifford gate G ∈ C1, Alice updates her
key to A(G† ⊗ 1n), and Alice and Bob use a TPC to update Alice’s commitment to her
key. Executing CNOT gates is similar, but involves two swaddlings. The R-gate requires new
techniques reminiscent of the fault tolerant implementation of it [Sho96,Got97,Got10]. The
details appear within, but we basically reduce it to securely producing a state |0〉, a magic
state, a measurement in the computational basis, and applying secure Clifford gates together
with a carefully chosen secure classical computation which tells the parties how to update their
keys.

2. If Bob is to check an authenticated qubit, we simply give him |V 〉 and he applies B† and mea-
sures the first nwires, rejecting if they are not all zero. After that he re-appliesB to recover the
authentication |V 〉. If Alice is to perform the check, we perform a secure classical computation
where the inputs are the committed descriptions of A and B which effectively swaps the inner
and outer authentications (see below for details). Alice then holds the outermost authentication
and can easily test its integrity.

The final state of the computation is obtained after each party reveals the authentication keys
needed by the other party to open its output wires.

2 Preliminaries

We refer to [DNS10] for a more complete introduction to the notation used throughout. In the
following, various Hilbert spaces will be seen as collections of wires, represented in lower-case
typewriter font (such as w, x, y); each wire represents a qubit involved in a computation. We will
denote by w ∈ A the fact that w is part of the system A. In the following, registers like A are
considered as being composed by a set of wires or qubit registers. Henceforth, we shall denote a
negligible function in n by negl(n).

The set of hermitian operators on A is denoted by Herm(A), the set of positive semi-definite
operators on A is denoted by Pos(A) and the one with trace 1 are denoted by D(A); D(A) is
the set of all possible quantum states for register A. An operator A ∈ L(A,B) is called a linear
isometry if A†A = 1A. The set of unitary operators (i.e., linear isometries with B = A) acting
in A is denoted by U(A). The identity operator in A is denoted 1A while the completely mixed
state in D(A) is denoted by IA. For any positive integer N > 0, 1N and IN denote the identity
operator respectively the completely mixed state in the N -dimensional Hilbert space HN . When
the context requires, a pure state |ψ〉 ∈ A⊗B will be written |ψ〉AB to make explicit the registers
in which it is stored. For Hilbert spaces A and B, we write A ≈ B whenever dimA = dimB.
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A linear mapping Φ : L(A) 7→ L(B) is called a super-operator. Φ is said to be positive
if Φ(A) ∈ Pos(B) for all A ∈ Pos(A). The super-operator Φ is said to be completely positive if
Φ⊗1L(Z) is positive for every choice of the Hilbert spaceZ . A super-operator Φ can be physically
realized or is admissible if it is completely positive and preserves the trace: tr(Φ(A)) = tr(A)
for all A ∈ L(A). We call such a super-operator a quantum operation or a CPTP map. Any
quantum operation Φ : L(A) 7→ L(B) can be written in its Kraus form {Ej}dim (A)·dim (B)

j=1

where Ej ∈ L(A,B) satisfies
∑

j E
†
jEj = 1A and Φ(ρ) =

∑
j EjρE

†
j , for any ρ ∈ Pos(A).

Another, yet equivalent, way to represent any quantum operation is through a linear isometry
W ∈ L(A,B ⊗ Z) such that Φ(ρ) = trZ(WρW †), for some extra space Z . Any such isometry
W can be implemented by a physical process as long as resources to implement the space Z are
available. This is just a unitary transform in U(A⊗Z) where the system in Z is initially in known
state |0〉Z . If E : L(A) 7→ L(B) and F : L(B) 7→ L(C) are two quantum operations (i.e. CPTP
maps) then F ◦ E : L(A) 7→ L(C) denotes the quantum operation that first applies E then F .

For ρ0, ρ1 ∈ D(A), we denote by ∆(ρ0, ρ1) the trace norm distance between ρ0 and ρ1:
∆(ρ0, ρ1) := 1

2 ‖ρ0 − ρ1‖.
The Pauli group on one qubit is defined as P1 := {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ}

while the n-qubit Pauli group is simply Pn := P⊗n1 . We denote by Cn := {U ∈ U(H2n) : (∀σ ∈
Pn)[UσU † ∈ Pn]}, the set of all Clifford operators acting on n qubits. The Clifford group is just
the set of n-qubit unitary operators U with the property that for all Pauli operators σ ∈ Pn, we
have σ′ ∈ Pn such that Uσ = σ′U .

2.1 Secure Two-Party Classical Computation Against Quantum Adversaries

Our protocol will use various classical two-party computations throughout its execution, each
modeled as an ideal functionality. Recent work [LN11,HSS11] show that composable classical
two-party computation protocols can be devised with security against quantum adversaries pro-
vided some classical computational assumptions hold against this class of adversaries. One ex-
ample of such an assumption is learning with errors is hard [Reg05,HSS11]. The framework in
[HSS11] allows us to replace the ideal functionalities with such secure protocols. Here we there-
fore focus on proving security given the ideal functionalities.

In the following, the ideal functionality for string commitment will be denoted by idSC. It is
defined as follows:

idSC((id, s),⊥) = (id, (id,committed)) if id is new ,

idSC(⊥, (id, s)) = ((id,committed), id) if id is new ,

idSC(s, s
′) = (⊥,⊥) otherwise .

In order for Alice to commit on s ∈ {0, 1}∗, Alice and Bob call idSC((id, s),⊥), where id is
an unused identifier chosen by Alice. In order for Bob to commit on s, Alice and Bob call
idSC(⊥, (id, s)), where id is chosen by Bob. The opening of a commitment is performed by calling
the ideal functionality idOPEN defined as:

idOPEN(id, id) = (s, s) if idSC((id, s),⊥) or idSC(⊥, (id, s)) was performed ,

idSC(·, ·) = (⊥,⊥) otherwise .
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Note that state has to be passed from idSC( , ) to idOPEN( , ) for the above descriptions to make sense.
Our framework exactly allows that an ideal functionality from an earlier round passes its state to
an ideal functionality in a later round. In the framework of [HSS11] they would be considered
one ideal functionality, with a state. We prefer the above notation for brevity of later protocol
descriptions.

Ideal functionalities computing functions applied to committed values can now be easily de-
fined. Suppose that Alice and Bob want to let Alice learn a function f : {0, 1}∗×{0, 1}∗ → {0, 1}∗
upon two committed values, s and s′, where s is committed upon by Alice under id and s′ is com-
mitted upon by Bob under id′. It suffices to define the ideal functionality id∗f as

id∗f ((id, id′), (id, id′)) = (f(s, s′),⊥) if idOPEN(id, id) = (s, s) ∧ idOPEN(id′, id′) = (s′, s′) ,

id∗f (·, ·) = (⊥,⊥) otherwise .

The same if it is Bob who is to learn the output, but with id∗f ((id, id′), (id, id′)) = (⊥, f(s, s′)).
The same construction can be used to implement any efficiently computable function f evaluated
upon any number of committed values. The ideal functionality can also easily be extended to
produce commitments to the outputs of f . It is this extended ideal functionality we use most
often. Again, id∗f (·, ·) will have to share state with idSC(·, ·) and idOPEN(·, ·), which is allowed in our
framework.

Note that all the above ideal functionalities are defined such that at most one party has a non-
trivial output (i.e., an output which is not known before the inputs are provided). We avoid using
functions where both parties have a non-trivial output as an easy way to deal with the problem that
fairness in classical secure two-party computation is provably impossible for most functionalities.
It is not hard to see that it follows from known completeness results of quantum-secure classical
two-party computation[LN11,HSS11] that the classical ideal functionalities specified above can
be implemented with security against poly-time quantum adversaries. We skip the details of this,
as our focus here is on using the classical ideal functionalities for constructing secure two-party
protocols for computing on quantum data.

2.2 Clifford-Based Quantum Authentication

In order to detect misbehaviors of an active adversary, we will be evaluating a circuit upon authen-
ticated quantum bits. We will be using a quantum authentication scheme (QAS) [BCG+02] based
on Clifford operators introduced in [ABE08] as our main building block.

Definition 2.1 (Quantum authentication scheme). A quantum authentication scheme is a set
of encryption and decryption superoperators {(E S→C

k ,DC→SF
k ) : k ∈ K}, where K is the set

of possible keys, S is the input system, C is the ciphertext system, and F is a “flag” system that
contains either |acc〉 or |rej〉. A QAS is such that for all k ∈ K, (Dk ◦Ek)(ρS) = ρS⊗|acc〉〈acc|F .

A QAS is secure if it satisfies the following:

Definition 2.2 (Security of a QAS). Let E S→C
k and DC→SF

k be the encoder and decoder cor-
responding to key k. Then, we say that the QAS (E ,D) is ε-secure if, for all attacks UCR, there
exists two CP maps U acc

R→R and U rej
R→R with U acc + U rej = 1 such that for all inputs ψSR, we
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have that for some fixed state ΩS:∥∥∥ 1

#K
∑
k∈K

Dk

(
UCREk (ψSR)U †CR

)
−
(
U acc(ψSR)⊗ |acc〉〈acc|F + U rej(ψR)⊗ΩS ⊗ |rej〉〈rej|F

) ∥∥∥
1
6 ε .

(1)

This definition can be shown to be equivalent to the existence of a simulator that interacts only
with an ideal functionality in which Eve’s only choice is whether or not to destroy the state and
cause a rejection.

Definition 2.3 (Clifford-based QAS[ABE08]). Let S be an s–qubit system, A be an n-qubit
system, and let C = S ⊗ A. Let K index all Clifford unitaries Ck on s + n qubits. Then, the
Clifford-based QAS is defined by the following encryption and decryption maps where PSAacc =
1S ⊗ |0n〉〈0n|A and PSArej = 1SA − PSAacc :

Ek(ρS) = Ck (ρS ⊗ |0n〉〈0n|A)C†k ,

Dk(σSA) = trA

(
PaccC

†
kσSACkPacc ⊗ |acc〉〈acc|F

+ tr (PrejC
†
kσSACk)πSA ⊗ |rej〉〈rej|F

)
,

where πSA is an arbitrary fixed state that the decoder outputs when it rejects the authentication.

The following establishes the security of the QAS based on random Clifford operators. The
proof of security is more or less the same as in [ABE08] and is provided in Appendix C for
completeness:

Theorem 2.4 (Security of Clifford-based QAS). The QAS defined above is ε(n)-secure for
ε(n) = 6× 2−n.

It should be mentioned that picking a random Clifford operation acting upon ` qubits requires
to pick a uniformly random poly(`)-bit classical key k and the mapping between k and the cor-
responding Clifford operation can be performed efficiently [Got97,ABE08]. In other words, the
key size of the Clifford-based QAS is polynomial in the number of qubits ` = s + n used to
authenticate an s–qubit quantum state.

2.3 Two-Party Quantum Protocols

We define two-party strategies in a similar way as in [DNS10,GW07], with some adaptations
made for the fact that we are computing a CPTP map and not just a unitary and that we allow
ideal functionalities of different rounds to share states (equivalent to considering one, stateful
functionality). Two-party protocols for the evaluation of some CPTP map are particular cases of
two-party strategies. Two-party strategies have access to some oracle in each round. An oracle is
just a CPTP map acting on registers at both Alice and Bob. Oracles implement some functionalities
like a communication channel or some more complex two-party functionalities.

An m–turn two-party strategy with oracle calls is defined by tuples of quantum operations
A := (A1, . . . ,Am+1), B := (B1, . . . ,Bm+1), and O := (O1, . . . ,Om). For i ∈ [1..m + 1],
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operations Ai ∈ L(Ai−1⊗AO,out
i−1 ) 7→ L(Ai⊗AO,in

i ) and Bi ∈ L(Bi−1⊗BO,out
i−1 ) 7→ L(Bi⊗BO,in

i )

are the actions performed at turn i by Alice and Bob respectively. The operation Oi : L(AO,in
i ⊗

Oi−1 ⊗ BO,in
i ) 7→ L(AO,out

i ⊗Oi ⊗ BO,out
i ) models the oracle provided to Alice and Bob at turn

i, and Oi a register used for passing state from the oracle of one round to the oracle at the next
round. The oracle call at turn i ∈ [1..m] takes place right after Ai and Bi have been applied. In
particular, these operations set the input registers AO,in

i and BO,in
i for the call to Oi. The outputs

are available to Alice and Bob in the next turn, in the output registersAO,out
i and BO,out

i . We make
one exception to this general form, the last turn (that is turn m + 1) of a strategy does not invoke
any oracle, and is there simply to allow Alice and Bob to post-process the output of the last oracle.

Let Π = (A ,B,O,m) be an m-turn two-party strategy with oracle calls. The final state of
the interaction between A and B upon joint input state ρin ∈ D(A0 ⊗ B0 ⊗ R), where R is a
reference system with dimR = dimA0 dimB0, is denoted by

[A ~ B]O(ρin) :=(Am+1 ⊗Bm+1 ⊗ 1L(R⊗Om+1))

(1L(Am⊗Bm⊗R) ⊗ Om)(Am ⊗Bm ⊗ 1L(R⊗Om))

. . . (1L(A1⊗B1⊗R) ⊗ O1)(A1 ⊗B1 ⊗ 1L(R))(ρin) .

A communication oracle from Alice to Bob is modeled by having AO,in
i ≈ BO,out

i and letting Oi

move the state in AO,in
i to BO,out

i . A classical ideal functionality, as those described in Sect. 2.1,
can easily be made available as oracle calls. The parties place their inputs in the appropriate reg-
isters AO,in

i and BO,in
i . The operation of the oracle Oi is as follows: it measures the input registers

AO,in
i and BO,in

i to force classical inputs. Then, it applies the appropriate classical ideal function-
ality on those classical inputs plus its classical internal state found inOi−1. This produces outputs
for the parties and a new internal state. The outputs are placed in AO,out

i and BO,out
i . The new

internal state of the oracle is placed in Oi.
A two-party hybrid protocol for F : L(Ain⊗Bin)→ L(Aout⊗Bout) between parties A and

B upon joint input state ρin ∈ D(Ain ⊗ Bin ⊗R) is defined as:

Definition 2.5. An m-turn two-party hybrid protocol ΠO
F = (A ,B,O,m) for F : L(Ain ⊗

Bin) → L(Aout ⊗ Bout) is a m–turn two-party strategy with oracle calls, where A0 := Ain,
B0 := Bin, Am+1 := Aout, Bm+1 := Bout, and where for all ρin ∈ D(A0 ⊗ B0 ⊗ R),
∆
(
[A ~ B]O(ρin), (F ⊗ 1R)(ρin)

)
= 0. In the following, we often write simply two-party pro-

tocol to refer to a two-party hybrid protocol.

For i ∈ [0..m], the joint state after turn i + 1 in ΠO
F is denoted by [A ~ B]Oi+1(ρin) :=

(1L(Bi+1⊗Ai+1⊗R)⊗Oi+1)(Ai+1⊗Bi+1⊗1L(R⊗Oi+1))[A ~B]Oi (ρin), where [A ~B]O0 (ρin) :=

ρin, and [A ~ B]Om+1(ρin) := [A ~ B]O(ρin).

3 Modeling Active Security

We start by extending the framework in [DNS10] to handle active security. Our model is very
standard, defining security via simulation, but for completeness we describe and motivate the
changes made in Appendix B.

LetΠO
F = (A ,B,O,m) be am-turn two-party hybrid protocol. Let Ã and B̃ be adversaries

in ΠO
F . We denote by [Ã ~ B]O and [A ~ B̃]O the resulting m–turn two-party strategies. We
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will as usual define the security of such actively attacked protocols by comparing to a simulation.
The simulation is basically an ideally secure evaluation of F .

The ideally secure protocol for evaluating F would be in a world where F actually existed as
an oracle—the parties would simply call this oracle. We can, however, not expect any protocol to
be as secure as this, as for most protocols we cannot ensure that either both parties get the output
or no party gets the output, known as fairness, which is ensured in the above ideal setting. We will
therefore consider a setting where one of the parties learns its output first, and where the party
learning it first, if corrupted, can prevent the other party from learning its output. We will only
give the definition for the case where Alice learns first. Deriving the definition for the symmetric
case where Bob learns first is trivial.

To avoid confusion between the parties in the real protocol and in the ideal protocol, we formu-
late the ideal protocol with parties Charleen, C, and Dan, D, taking the seats of Alice respectively
Bob. So, we look at an ideal functionality F : L(Cin ⊗ Din) → L(Cout ⊗ Dout), but where we
keep a mental note reminding that Cin := Ain, Cout := Aout, Din := Bin and Dout := Bout.

The ideal protocol for F is then a 2-turn two-party hybrid protocol ΓF = (C ,D ,F , 2), which
lets the parties query F in turn 1, but only letting C see her output in turn 1. In turn 2, Charleen
then inputs a bit f , with f = 1 indicating that Dan should receive his output and f = 0 indicating
that Dan should not receive his output. Dan will receive f , and if f = 1 he will additionally
be given his output. This is handled by the second oracle. Then the parties output whatever they
received from the oracles. In the honest protocol, Charleen always inputs f = 1. We call this the
ideal protocol for evaluating F without fairness for Dan.

The ideal protocol ΓF = (C ,D ,F , 2) for F without fairness for Dan:
1. By convention we have C0 = Cin andD0 = Din whileO0 is empty. In the ideal protocol, we let CF,in

1 ≈ C0
and DF,in

1 ≈ D0. C1 and D1 simply send their respective input stored in C0 and D0 to CF,in
1 and DF,in

1

respectively. The oracle F1 : L(CF,in
1 ⊗O0⊗DF,in

1 ) 7→ L(CF,out
1 ⊗O1⊗DF,out

1 ), we set CF,out
1 ≈ Cout,

O1 ≈ Dout and we let DF,out
1 be empty. F1 simply applies the quantum operation F to the inputs supplied

by the parties and sends Charleen’s output to Charleen in CF,out
1 . Dan’s output is saved in the internal state

O1 of the oracle, giving Dan no output so far.
2. We let C2 ≈ CF,out

1 ≈ Cout and we let CF,in
2 be a one qubit register, holding a qubit denoted |f〉. We let

C2 moves the output from the oracle stored in CF,out
1 to C2 and sets |f〉 = |1〉 in CF,in

2 . D2 does nothing at
this point.
For the second oracle F2 : L(CF,in

2 ⊗ O1 ⊗ DF,in
2 ) 7→ L(CF,out

2 ⊗ O2 ⊗ DF,out
2 ), we let CF,out

2 and
O2 be empty, and we let DF,out

2 be of the same dimension as Dout, plus room for one qubit |a〉. It starts by
measuring |f〉 in the computational basis. If |f〉 = |1〉, it then sets DF,out

2 to hold |a〉 = |1〉 along with the
state in O1. If |f〉 = |0〉, it sets DF,out

2 to hold |a〉 = |0〉 along with some fixed dummy state |⊥〉 of the
right dimension to fill CF,out

2 . When Charleen inputs f = 1, Dan will get his output. If f = 0, Dan gets no
output, except a bit a = 0 telling him that Charleen cheated him of his output (we say that Charleen aborted
the computation).

3. We let C3 := Cout ≈ C2 and D3 := Dout ≈ DF,out
2 . C3 and D3 simply output whatever they received

from F1 and F2 in C2 and DF,out
2 respectively, except qubit |a〉 in the latter register. When the execution

has aborted, Dan outputs a dummy state.

Consider the powers of a corrupted Charleen, C̃ . She might in the first round provide an
alternative input for F , possibly saving her original input, or a part thereof, in some ancilla. This
is input substitution. Her choice of alternative input can only depend on her own original input,
not that of Dan. This is input independence. Then she learns only the output of the oracle. This is
privacy. After learning her own output she might then specify that Dan is not to learn his output.
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This is the necessary lack of fairness. A corrupted Dan has similar powers, except that he cannot
abort after seeing his output. We then say that a protocol is secure if it only allows attacks which
could be mounted in the ideal protocol, i.e., it only allows the inevitable attack.

Definition 3.1. LetΠO
F = (A ,B,O,m) be a two-party hybrid protocol for F : L(Ain⊗Bin)→

L(Aout ⊗ Bout). Let ΓF = (C ,D ,F , 2) be the ideal protocol for F without fairness for Dan.
Let δ ∈ [0..1]. We say that ΠO

F is δ-active secure without fairness for Bob, if for all adversaries
Ã and B̃ in ΠO

F , there exist adversaries C̃ and D̃ in ΓF with sizes polynomial in the sizes of Ã

and B̃ such that for all input states ρin ∈ D(Ain ⊗ Bin ⊗R),

∆
(

[Ã ~ B]O(ρin), [C̃ ~ D ]F (ρin)
)
≤ δ and ∆

(
[A ~ B̃]O(ρin), [C ~ D̃ ]F (ρin)

)
≤ δ.

If a protocol is δ-active secure for δ = 0, then it is called perfectly active secure. If it is δ-active
secure for δ negligible in some security parameter n, then it is called statistically active secure (in
n).

4 Securely Swaddling Wires to Ensure Ultimate Speciousness

The Clifford based QAS, described in Sect. 2.2, can be used to share the authentication of a quan-
tum message in a way that allows any of the players, when helped by a TPC, to verify that a
state has not been tampered with, and this without being able to get information on the encoded
state. This primitive will be used extensively in our protocol to ensure that both players are ulti-
mately specious. It relies on a string commitment scheme and secure TPCs provided as oracles, as
described in Sect. 2.1.

The basic idea consists in swaddling each input wire w into a set of 2n dummy wires where n
belongs to Alice and n belongs to Bob. No party will be able to extract information about the state
of the original wire from the swaddling. Moreover, any attempt to modify the state of the orig-
inal wire will be detected except with negligible probability in n. The subprotocol Swaddle(w),
described below, uses two applications of the Clifford-based QAS (one on top of the other) in
order to achieve this. Alice authenticates the state of her wire w and commits to her authentication
key Kw,a using identifier idA(w). She then sends the resulting system to Bob who authenticates it
using key Kw,b that he also commits upon using identifier idB(w). Bob sends back the resulting
system to Alice allowing her to test the validity of the swaddling. The swaddling therefore uses a
total of 2n+ 1 wires, where Alice holds the innermost and Bob the outermost key of the resulting
swaddling s(w) for wire w.

Consider now the test performed by Alice at Step 7. Let A and B be the Clifford operators
corresponding to keysKw,a andKw,b respectively. Notice that Alice can easily test the authenticity
of a swaddling when she holds the outermost authentication. She simply applies A† upon the
2n + 1 wires, measures her n dummy wires in the computational basis to verify that they are in
state |0n〉. She then re-applies A to the 2n+1 wires of the swaddling. If Alice holds the innermost
authentication of the swaddling, the testing procedure relies on the ideal functionality idTEST defined
as:

idTEST((ia, ib), (i
′
a, i
′
b)) =

{
((t,K ′w,a),K

′
w,b) if ia = i′a = idA(w) ∧ ib = i′b = idB(w) ,

(⊥,⊥) otherwise ,

10



where K ′w,a, and K ′w,b correspond to random Clifford operations A′ ∈ C2n+1 and B′ ∈ Cn+1

respectively, and t corresponds to Clifford T ∈ C2n+1 subject to:

1. idOPEN(idA(w), idA(w)) = (⊥,K ′w,a) and idOPEN(idB(w), idB(w)) = (K ′w,b,⊥), and

2. If Alice holds the innermost key of w then T = (1n ⊗B′)(A† ⊗ 1n)B†.

Swaddle(W), withW ⊆ A:
1. Alice initializes n ·#W dummy wires in state |0〉.
2. For each w ∈ W , Alice randomly chooses Clifford Kw,a on n + 1 qubits, commits to it in
idSC((idA(w),Kw,a),⊥), and applies it to w and her dummies.

3. Alice sends these #W · (n+ 1) wires to Bob.
4. Bob initializes #W · n dummy wires in the state |0〉.
5. For each w ∈ W , Bob randomly chooses a Clifford Kw,b on 2n + 1 qubits, commits to it in
idSC(⊥, (idB(w),Kw,b)), and applies it to the n+ 1 wires received from Alice as well as his own dummies.

6. Bob sends all #W · (2n+ 1) wires back to Alice. Let s(w) denote the resulting swaddling of w ∈ W .
7. For each w ∈ W , Alice calls TestSwaddling(s(w)).

Condition 1 ensures that the authentication keys with identifiers idA(w) and idB(w) have been
updated to hold values K ′w,a and K ′w,b respectively. Conditions 2 makes sure that the state |σ〉 of a
valid swaddling s(w) satisfies T |σ〉 = |0n〉⊗B′(|ϕ〉⊗ |0n〉), where |ϕ〉 is the logical state of s(w).
Notice that Alice gets no information about Bob’s Clifford B′ if she had no information about B
to start with. The security of Swaddle(w) will be established in Appendix G.

TestSwaddling(s(w)), with Alice doing the testing:
1. If Alice holds the outermost authentication key Kw,a then:

– Alice applies A† on s(w), where A is the Clifford corresponding to string Kw,a,
– Alice tests that her dummies are together in state |0n〉. Otherwise, she aborts.
– Alice re-applies A on the 2n+ 1 qubits of the swaddling.

2. Else they call ((t,K′w,a),K′w,b) = idTEST((idA(w), idB(w)), (idA(w), idB(w))),
– If one party gets ⊥ in idTEST then abort.
– Alice applies T on s(w) where T is the Clifford operator corresponding to string t.
– Alice tests that her dummies are together in state |0n〉. Otherwise, she aborts.
– Alice applies A′ to the the 2n+1 qubits of the swaddling (note that A′ and B′ are committed upon with

identifiers idA(w) and idB(w) respectively).

At the end of TestSwaddling(s(w)), Alice holds the outermost authentication key K ′w,a of the
resulting swaddling. Bob can do the testing by the exact same procedure provided the roles of
Alice and Bob are reversed in TestSwaddling(s(w)). The security of these procedures will be
discussed in Sect. 5.5. Intuitively, we expect that TestSwaddling(s(w)) allows parties to test that
a swaddling s(w) has not been tampered with. It will also be used to test that each party transforms
a swaddling s(w) the way they should during the execution of the protocol. Notice that no informa-
tion about the logical state of wire w leaks to any party in Swaddle(w) and TestSwaddling(s(w))
since statistically secure authentication must also encrypt w [BCG+02].

At the end of the our protocol, each party will be asked to verify that the other party’s registers
upon which the circuit is evaluated are all in the states they should be. This subprotocol is called
TestAllSwaddlings. It simply consists in the execution of TestSwaddling(s(w)) for all wires
w held by each party.
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TestAllSwaddlings:
1. For all wires w held by Bob, Bob sends s(w) to Alice before Alice and Bob run TestSwaddling(s(w)) with

Alice doing the testing.
2. All swaddles s(w) received by Alice are sent back to Bob before Alice and Bob run TestSwaddling(s(w))

with Bob doing the testing.
3. For all wires w held by Alice, Alice sends s(w) to Bob before Alice and Bob run TestSwaddling(s(w))

with Bob doing the testing.
4. All swaddles s(w) received by Bob are sent back to Alice before Alice and Bob run TestSwaddling(s(w))

with Alice doing the testing.

The following subprotocol implements the obvious way the openings of all committed Clifford
operators, thereby allowing Alice and Bob to get the final state of the computation. Notice that
since Alice learns Bob’s secret keys before she unveils her own, our protocol will lack fairness for
Bob.

OpenAllSwaddlings:
1. For each wire w ∈ Aout, Bob reveals to Alice his committed secret key encrypting w, with identifier idB(w),

by calling idOPEN(idB(w), idB(w)). If Alice or Bob get ⊥ from the ideal functionality then abort.
2. For each wire w ∈ Bout, Alice reveals to Bob her committed secret key encrypting w, with identifier idA(w),

by calling idOPEN(idA(w), idA(w)). If Alice or Bob get ⊥ from the ideal functionality then abort.

5 Description of the protocol

We first start by defining the various spaces on which (the honest) Alice and Bob will be working.
The circuit that they want to execute acts on some wires in Alice’s possession and some in Bob’s
possession, and these will be swaddled as described above. We will denote by Au, Bu the spaces
corresponding to Alice and Bob’s unswaddled wires, reserving A and B for the actual swaddled
wires.

The core idea of our protocol is the same as in [DNS10]: we first initialize all the qubits by
swaddling them, we then perform each gate from the circuit one after the other on the authenticated
data. Hence, we need to give subprotocols for the initialization as well as for each of the gates in
our universal set.

For all Clifford gates (i.e., all gates in UG except for R), the subprotocols are fairly simple: we
use classical two-party computation to reveal a Clifford operation that executes the gate while up-
dating the encryption key; the revealed Clifford then looks uniformly distributed and independent
of everything else.

Implementing the R-gate is more involved. We use ideas from fault-tolerant computation,
where this gate is implemented by doing gate teleportation via a so-called magic state: one pre-
pares a special state (namely |M〉 = 1√

2
(|0〉+ eiπ/4|1〉)) and then use a teleportation-like circuit,

which itself requires only Clifford gates and measurements, to execute the gate. The problem is
then reduced to that of producing this magic state, which can be done by a distillation process. The
distillation process that we use is exactly the one considered in [BK05] (where |M〉 is an “H-type
magic state” in their language); a description of it can also be found in Appendix D.

5.1 Main Protocol

We now give the full description of our protocol, denoted Π̂O′
F = (A ,B,O ′,m), allowing to

evaluate the CPTP map F : L(Ain ⊗ Bin) 7→ L(Aout ⊗ Bout) upon joint input state ρin ∈
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D(R ⊗ Ain ⊗ Bin). The oracle list needed to run the protocol in the hybrid model is provided
implicitly in Sect. 5. The operations performed at each step by A and B are described informally
as the instructions of Alice and Bob respectively. We will view F as being implemented by a
quantum circuit acting on Ain ⊗ Bin together with ancillas Aa and Ba initialized in state |0〉 (we
shall explain below how to test that ancillas are really in state |0〉). At the end of the circuit, some of
these wires become part of the outputsAout and Bout, and the rest are part of the environment that
will remain encrypted (Ae and Be). In the following, we denote by UF ∈ U(Ain⊗Aa⊗Bin⊗Ba)
the unitary transform implemented by the circuit that satisfies, for all mixed quantum state ρAinBin

in ,

F (ρAinBin
in ) = trAeBe

(
UFρ

AinBin
in ⊗ |0〉〈0|Aa ⊗ |0〉〈0|BaU †F

)
,

where Ae ⊆ Ain ⊗Aa, Be ⊆ Bin ⊗ Ba.
LetG1, G2, . . . , G`(n) be an enumeration of all gates of the circuit for F where `(n) is polyno-

mial in n, and Gi is executed before Gi+1. This protocol calls a number of subprotocols described
next and in Appendix E.

Protocol Π̂O′
F for the evaluation of F upon joint input ρin ∈ D(R⊗Ain ⊗ Bin):

1. Alice and Bob run Initialization,
2. For i = 1 . . . `(n):

– IfGi is a one-bit Clifford gate applied to wire w then Alice and Bob call OneQubitClifford(Gi, s(w)),
– If Gi is a CNOT-gate applied to control wire wc and wt then Alice and Bob call CNOT(s(wc), s(wt)),
– If Gi is an R-gate applied to wire w then Alice and Bob call RGate(s(w)),

3. Alice and Bob call TestAllSwaddlings,
4. Alice and Bob call OpenAllSwaddlings ,
5. Alice and Bob decrypt the swaddlings for all wires in Aout and Bout using the keys received by the other

party together with their own.

5.2 Subprotocols

The Initialization subprotocol prepares all swaddlings required during the evaluation of the
circuit. In addition to swaddling all wires holding the qubits upon which the circuit acts, some
ancillary states also have to be swaddled: one wire in the magic state and one wire in state |0〉 per
R-gate in the circuit.

Initialization:
1. For each R-gate being applied to a wire inA, Alice adds one additional wire ma,i initialized in state |M〉 =

1√
2
(|0〉+ eiπ/4|1〉) to A.

2. For each R-gate being applied to a wire in B, Bob adds an additional wire mb,i initialized in state |M〉 to B.
3. For each R-gate being applied to a wire in B, Alice adds an additional wire ca,i initialized in state |0〉 toA.
4. For each R-gate being applied to a wire in A, Bob adds an additional wire cb,i initialized in state |0〉 to B.
5. Alice calls Swaddle(A).
6. Bob calls Swaddle(B).
7. For every wire a ∈ Aa or added in step 3 above, Alice calls VerifyAncilla(s(a)).
8. For every wire a ∈ Ba or added in step 4 above, Bob calls VerifyAncilla(s(a)).
9. For each magic wire m ∈ A, Alice calls DistillMagic(s(m)).
10. For each magic wire m ∈ B, Bob calls DistillMagic(s(m)).

Subprotocols VerifyAncilla(s(a)) and DistillMagic(s(m)) are described in Appendices E
and D. The following subprotocols evaluates any one-qubit Clifford, the CNOT-gate, respectively
the R. The idea behind the one-qubit protocol is to use TPC to compute the gate through the
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authentication. The idea in the CNOT-subprotocol is to take the two swaddled qubits involved
and turn them into one big swaddling. Then, performing a CNOT on them is no different from
performing any other Clifford gate on the whole block. We then separate the big swaddling back
into its components.

To express the TPCs needed for these subprotocols, we will need to define some more ideal
functionalities. For the one-qubit Clifford gates, we will define id1QC, which simply updates the
commitment to the inner key of the swaddling: a call to id1QC((i, G), (i′, G′)), if i = i′ = idA(w)
for some wire w for which Alice has the inner swaddling and G = G′ is some one-qubit Clifford,
results in the commitments to the key Kw,a to be updated to commitments to Kw,aG

†(and likewise
when Bob holds the inner key).

The subprotocols are then as follows:

OneQubitClifford(C, s(w)):
1. If Alice has the inner swaddling of w, Alice and Bob call id1QC((idA(w), C), (idA(w), C)), otherwise they

call id1QC((idB(w), C), (idB(w), C)).

CNOT(s(wc), s(wt)) with wire wc ∈ A as control and wt as target:
1. Bob sends s(wt) to Alice if Bob holds it, in which case Alice calls TestDummies(s(wt)).
2. Alice performs a randomly selected Clifford C on 4n+ 2 qubits jointly on s(wc) and s(wt).
3. Alice sends s(wc) and s(wt) to Bob; Bob calls TestDummies jointly on them.
4. Alice and Bob perform a TPC whose outcome tells Bob to perform a Clifford unitary C′ = (K′c ⊗
K′t)(CNOT)K† where K is the key of the swaddling at this point, and K′c and K′t are randomly-chosen
Cliffords that become the new key.

5. Bob sends s(wc) (and s(wt) if she held this one too) to Alice. Alice calls TestDummies on them.

RGate(s(w)) with w ∈ A:
1.
2. Alice performs a swaddled CNOT with mw as a control, and w as target.
3. Alice sends s(w) to Bob. Bob calls TestSwaddling(s(w)) on it.
4. Alice calls Measure(s(w)).
5. Alice and Bob perform a TPC whose result is a Clifford which, if both measurement results were zero,

updates the key, and if both measurement results were one, performs a swaddled eiπ/4XP † and then updates
the key. If the measurement results differ, then they abort.

6. Alice relabels ma,i to w.

The RGate subprotocol performs the R-gate using gate teleportation[GC99b,GC99a] via the magic
state similarly to the fault-tolerant version of the R-gate introduced in [Got10,Sho96]. To perform
an R-gate on a wire w via gate teleportation, we would first perform a CNOT from the magic state
to w, and then measure w in the computational basis. If the answer is 0, we do nothing, and if it
is 1, we perform eiπ/4XP † on the former magic state, that we then rename w. Measure(s(w)) is
described in Appendix E.

5.3 Security of the subprotocols

We will now show that the protocol described in the previous section has the following property:
any adversary which deviates significantly from the protocol will be caught cheating with high
probability. The general strategy will be as follows. For the initialization, any adversary will be
forced to input something into the protocol, and will end up with some state that is properly
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swaddled. Then, for every other protocol step, we will assume that at the beginning, the inputs
are properly swaddled, and will aim to show that after the protocol step is done, we are once
again left with a correct swaddling of the data, to which the correct operation has been applied.
Furthermore, at every step, any deviation from the protocol will be essentially equivalent to an
attack on the authentication scheme, which means that an adversary’s chances of succeeding in
changing the state without getting caught will be negligible in the number of dummy wires per
qubit.

5.4 Some additional definitions

Before we start, we will find it convenient to introduce some additional notation. From now on, ρ0
will consist of ρin augmented with all additional qubits introduced in the Initialization phase:
the additional ancillas, and the dummy wires Alice and Bob use for swaddling. Furthermore, we
will denote by Ka and Kb systems which represent Alice’s and Bob’s current key, respectively.
These should be thought of as being part of the inner state of the TPC ideal functionality, and
therefore cannot be changed at will. A represents all other systems at Alice, B represents all
systems in Bob’s possession, and R is a system that includes everything else and ensures that the
total state is pure.

In the sequel, we will call a step an execution of any of the subprotocols listed above; each of
these steps consists of multiple turns in the sense of Section 2.3: the state at turn i consists of the
state before the ith use of an oracle in the protocol (either a communication oracle or a classical
computation oracle).

We will denote by Ca,s the operation that encodes Alice’s qubits according to the keys stored in
the TPC ideal functionalities at turn s in the protocol, and likewise for Bob’s encoding operation
Cb,s. See Appendix F for more precise definitions. Furthermore, we will denote by [Ã ~ B ∧
E-ABORT]O

′
s

(
ρAinBinR
in

)
the global state of the protocol at turn s conditioned on the fact that the

protocol doesn’t abort before TestAllSwaddlings is completed. Note that this state is not
normalized; its trace corresponds to the probability of not aborting before the end.

Definition 5.1 (Forcing). We will say that the protocol is GAB-forcing for Ã at turn s with initial
operation ẼA0 if there exists a final operation ẼA such that:

∆
(

[Ã ~ B ∧ E-ABORT]O
′

s

(
ρAinBinR
in

)
, Ẽ ◦ Cb,s ◦ G ◦ Ẽ0

(
ρAinBinR
in

))
6 negl(n) ,

where Ẽ0 is a completely positive, trace non-increasing map that acts only on qubits in Alice’s
possession at the beginning of the protocol: her own input qubits, the dummies she inputs in the
swaddling, and the various ancillas that she adds.

In other words, if the protocol is G -forcing for Alice at some turn s, then, if the protocol doesn’t
abort early, regardless of what she tries to do, it will be essentially equivalent to changing her input
(using the initial operation Ẽ0), executing the operation G (which will turn out to be the circuit
that is supposed to be executed up to turn s), swaddling the result, and then doing an arbitrary
operation on her share alone, represented by Ẽ .

Definition 5.2. We say that a subprotocol is G -forcing if the protocol is G ◦ G0-forcing at the end
of the subprotocol given that it was G0-forcing at the beginning.
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Definition 5.3 (Hiding). We will say that the protocol is hiding for Ã at turn s, if, for all input
states ρAinBinRin

in , we have that

∆
(

trB

(
[Ã ~ B]O

′
s (ρAinBinRin

in )
)
, trB

(
[Ã ~ B]O

′
s (ρAinRin

in ⊗ |0〉〈0|Bin)
))

6 negl(n) .

Hence, the protocol is hiding if the state seen by a dishonest Alice is independent of Bob’s input.
Note that this in particular implies that Ã ’s action at turn s is necessarily independent of Bob’s
input.

5.5 Proving hidingness and forcingness

To construct the simulator needed to prove security, we will need to show two things. First, we
will have to show that before the keys are revealed, the cheater’s internal state can be produced by
running the protocol internally with a dummy input from the honest party; this will follow from
the fact that the Clifford QAS is a secure encryption scheme. Second, we will have to show that
after the keys are revealed, the correct circuit has been applied. These two properties correspond
to the “hiding” and “forcing” properties defined in the previous section, and proving these for our
protocol will be the focus of this section. The fact that the protocol is hiding simply follows from
the security of the Clifford QAS as an encryption scheme; we state this as a lemma below. To
prove forcingness, the usual trick will be to assume that we pass every call to TestDummies in the
protocol (since we only need to look at the no-early-abort case) and use the security definition of
the Clifford QAS (Definition 2.2) to show that the dishonest party’s attack can be represented by
a completely positive, trace non-increasing map U acc that acts only on his/her other systems (i.e.
the ones that were not involved in the TestDummies). If the adversary decides to try to break the
QAS at this step, this U acc will simply decrease the trace to reflect the probability of abortion. We
prove the forcingness of the various subprotocols in Appendix G, and simply summarize the end
result as Lemma 5.5 below.

Lemma 5.4. For every turn before OpenAllSwaddlings, the protocol is hiding for every adver-
sary Ã and B̃.

Proof. During this phase of the protocol, all Ã ever gets from Bob (and B̃ from Alice) is en-
crypted in a QAS, whose key is managed by the classical two-party computations. Hence, this
follows directly from the security of the Clifford QAS (see Section 2.2 and Appendix C).

Lemma 5.5. All subprotocols are G -forcing for any Ã and B̃, where G is the operation per-
formed by the subprotocol.

6 Proving Active Security

In this section, we prove active security of Π̂O′
F by providing a simulator C̃ . We prove that for any

shared input state, when C̃ interacts with D , it reproduces the state generated by Ã interacting
with B on that same input state.

At the beginning, C̃ simulates the view of any execution between Ã and B that aborts be-
fore all swaddlings are opened. This part of the simulation is described and analyzed in the next
subsection. In Sect. 6.2, we provide and analyze the simulation when no early aborting occurs
between Ã and B.
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6.1 Simulation of Early Aborting Executions

Here is the rough description of C̃ ’s operations for the start of the simulation. These steps allow
to simulate any execution aborting in the real world before the adversary Ã receives back all her
swaddlings from B in TestAllSwaddlings. Let s∗ be the turn in Π̂O′

F at which this transmis-
sion is received by Ã . The simulator C̃ runs Ã as a subroutine using an internal copy of B’s
instructions run upon a (or any) dummy input state |0〉Bin . We denote by B∗ the simulated B on
a dummy input run internally in C̃ . In order to distinguish the registers of the real B from the
ones of B∗, register B of B will be denoted by B∗ when used by B∗. Consider the simulator C̃
starting its simulation as follows:

1. C̃ simulates the protocol execution between Ã and B∗ holding the dummy input state |0n〉B
∗
in

until turn s∗ is reached. Remember that C̃ simulates all oracle calls during the execution
between Ã and B∗. In particular C̃ stores all queries to classical oracles made by Ã and B∗.

2. If the execution aborts at any point before Ã and B∗ reach turn s∗ then C̃ aborts as well
after having deleted all its internal registers except the ones held by Ã .

At Step 2 , C̃ and B∗ aborts with the same probability as a real world execution aborts prior to
turn s∗. The simulation reproduces Ã ’s view in the real world when such an aborting execution
occurs. This follows from the fact that up to that point, B∗ never provides any information about
its input state. We now prove that the simulation of an early abort is correct. We only provide the
proof that the simulator does the job when the adversary Ã is impersonating A . The proof for an
adversary B̃ impersonating B follows the same lines.

We define E-ABORTs as the event consisting in an execution between two parties aborting at
turn s < s∗. Let [Ã ~ B ∧ E-ABORTs]

O′(ρin) be denoting the the joint state of an execution
that aborts at turn s whenever Ã and B are interacting upon joint input state ρin. Let [C̃ ~ D ∧
E-ABORTs]

F (ρin) be denoting an execution between C̃ and D (in the ideal world) upon joint input
state ρin aborting while C̃ is simulating Ã and B∗ at turn s upon input state trBin(ρAinBinR

in ) ⊗
|0〉〈0|B

∗
in . States [C̃ ~D∧E-ABORTs]

F (ρin) and [Ã ~B∧E-ABORTs]
O′(ρin) are not normalized,

tr([C̃ ~ D ∧ E-ABORTs]
F (ρin)) and tr([Ã ~ B ∧ E-ABORTs]

O′(ρin)) are the probabilities that
[C̃ ~ D ]F (ρin) and [Ã ~ B]O

′
(ρin) aborts at step s respectively. We have,

Lemma 6.1 (Early abort). Let Ã be an adversary in hybrid protocol Π̂O′
F = (A ,B,O ′,m) for

F : L(Ain ⊗ Bin) → L(Aout ⊗ Bout). Let s∗ be the turn in Π̂O′
F at which B returns all of Ã ’s

swaddlings in TestAllSwaddlings and let 0 ≤ s < s∗. Then, there exists an adversary C̃ in
ΓF (polysize in the size of Ã ) such that for any ρin ∈ D(Ain ⊗ Bin ⊗R),

∆
(

[C̃ ~ D ∧ E-ABORTs]
F (ρin), [Ã ~ B ∧ E-ABORTs]

O′(ρin)
)
≤ negl(n) .

By symmetry, the same is also true with respect to adversaries B̃ in Π̂O′
F and D̃ in ΓF .

Proof (sketch). The proof proceeds along the same lines than in [DNS10]. Since all communica-
tions between parties are statistically encrypted, an execution between Ã and B upon joint input
state ρAinR

in ⊗ |0〉〈0|Bin is identical to an execution with joint input state ρin from the adversary’s
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point of view. Remember that when C̃ ~ D and Ã ~ B abort at turn s < s∗, D and B output a
special state |⊥〉〈⊥|. We have,

∆
(

[C̃ ~ D ∧ E-ABORTs]
F (ρin), [Ã ~ B ∧ E-ABORTs]

O′(ρin)
)

= ∆
(

[Ã ~ B ∧ E-ABORTs]
O′(ρAinR

in ⊗ |0〉〈0|Bin), [Ã ~ B ∧ E-ABORTs]
O′(ρin)

)
(2)

= ∆
(

trB

(
[Ã ~ B ∧ E-ABORTs]

O′(ρAinR
in ⊗ |0〉〈0|Bin)

)
,

trB

(
[Ã ~ B ∧ E-ABORTs]

O′(ρin)
))

(3)

≤ negl(n) , (4)

where (2) is a consequence of how the simulator is constructed, and (3) follows from the fact that
in such executions, the output of the honest player is |⊥〉〈⊥|. Equation (4) follows from the hiding
property at every turn stated in Lemma 5.4. Notice that some measurements can be applied to
some swaddled ancillas (initially in state |0〉) or magic states while performing VerifyMagic
or evaluating an R-gate. None of these measurements can reveal anything non-negligible about
B’s input state. For the evaluation of an R-gate, the outcome of measurements are independent
of B’s input state. For the magic state distillation process, measurements are only applied to
candidate magic states also independent of B’s input state.

To prove the statement for adversary B̃ interacting with A in Π̂O′
F , we define s∗ to be the turn

at which B̃ receives all his swaddlings from A . The simulator D̃ for executions aborting early
proceeds the same way than C̃ except that B̃ replaces Ã while A ∗ replaces B∗. ut

6.2 Simulation of Executions that do not Abort Early

It remains to simulate the execution from turn s∗ until the end. In the simulated world, if C̃ reaches
the end of Step 2 then the output state F (ρAinR

in ⊗ |0〉〈0|) can be recovered. The reason being that
at turn s∗ (taking place before OpenAllSwaddlings), all swaddlings have been tested by B∗ in
TestAllSwaddlings. C̃ can get the output state since it knows all keys allowing to decrypt all
logical wires, and all these wires have not been tampered with. The simulation then works along
the same lines than in [DNS10]. At turn s∗, C̃ is simulating B∗’s quantum transmission of all
swaddlings belonging to Ã back to Ã . These swaddlings have been successfully tested by B∗

in TestAllSwaddlings. C̃ intercepts all these swaddlings and decrypts them together with all
swaddlings held by B∗. C̃ then recovers the output state. C̃ undoes the quantum operation F
in order to recover Ã ’s effective input state before querying F1 with the effective input state.
This operation is performed using U †F ∈ U(Aout ⊗ Aa ⊗ Bout ⊗ Ba), where UF is the unitary
implemented by the circuit as defined in Sect. 5.1. Obviously, U †F has the same circuit complexity
than UF .

Then, C̃ swaddles back the answer to the query using the same keys. The swaddlings are
finally sent to Ã before resuming the interaction between Ã and B∗. Two things can happen
during the execution of OpenAllSwaddlings: 1) Ã ’s behavior makes the execution abort, and
2) Ã and B reach the end of the execution in normal conditions. In the first case, Ã may even get
the output state of the computation while preventing B from recovering his own. When the output
state is available to Ã , C̃ will need to call F1 (with Ã ’s effective input) and F2 where the later
call is without fairness (i.e., f = 0) when Ã prevents B from decrypting his output logical wires.
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More precisely, the simulator C̃ will proceed as follows for the rest of the simulation:

3. When C̃ receives from B∗ all of Ã ’s swaddlings in TestAllSwaddlings, it decrypts them
together with all of B∗’s swaddlings. This can be done since C̃ knows all (classical) encryp-
tion keys. The ancilla held in register Z is also decrypted.

4. The output of the computation (i.e., between Ã and B∗) is now available to C̃ . C̃ then runs
U †F upon the output registers in order to recover Ã ’s effective input state.

5. C̃ queries F1 with Ã ’s effective input state. C̃ then re-swaddles all of Ã ’s logical wires (now
storing the real-world output of the computation) using all secret keys used by C̃ at Step 3. C̃
then sends all of Ã ’s swaddlings back to Ã .

6. Ã and B∗ resume their execution from turn s∗ onward. If Ã aborts the execution before B∗

gets his output state then C̃ queries F2 with f = 0 otherwise C̃ queries F2 with f = 1. C̃
deletes all its internal registers except the ones held by Ã .

Let E-ABORT be the event of not having E-ABORTs at any turn s < s∗. Let [Ã ~ B ∧
E-ABORT]O

′
(ρin) be denoting an execution between Ã and B upon joint input state ρin that

does not abort before turn s∗. Let [C̃ ~ D ∧ E-ABORT]F (ρin) be denoting an execution between
C̃ and B, where the simulated Ã and B∗ do not abort before turn s∗ upon joint input state
trBin(ρAinBinR

in )⊗ |0〉〈0|B
∗
in .

Next lemma establishes the active security when no early aborting occurs. The following
lemma follows from the forcingness of the protocol established in Lemma 5.5.

Lemma 6.2 (No early abort). For any quantum adversary Ã in hybrid protocol Π̂O′
F = (A ,B,O ′,m)

for F : L(Ain ⊗Bin)→ L(Aout ⊗Bout), there exists an adversary C̃ in ΓF (polysize in the size
of Ã and B) such that for any ρin ∈ D(Ain ⊗ Bin ⊗R),

∆
(

[C̃ ~ D ∧ E-ABORT]F (ρin), [Ã ~ B ∧ E-ABORT]O
′
(ρin)

)
≤ negl(n) .

By symmetry, the same is also true with respect to adversaries B̃ in Π̂O′
F and D̃ in ΓF .

Proof (sketch). Remember that turn s∗ is where B∗ is sending Ã ’s swaddlings after having tested
them with success in TestAllSwaddlings. At Step 3, C̃ intercepts this quantum transmission
from B∗ to Ã . Let [C̃ ~D ]FS3(ρ

AinBinR
in ) be denoting the joint state when C̃ reaches Step 3 in the

simulation above. As we have seen in the proof of Lemma 6.1, we have [C̃ ~ D ]FS3(ρ
AinBinR
in ) =

[Ã ~ B]O
′

s∗ (ρAinR
in ⊗ |0〉〈0|Bin) since turn s∗ occurs before any player reveals its encryption keys

to the other player. Moreover, Lemma 5.5 tells us that

∆
(

[Ã ~ B]O
′

s∗ (ρAinR
in ⊗ |0〉〈0|Bin), Ẽ ◦ Cs∗ ◦ Gs∗ ◦ Ẽ0(ρ

AinR
in ⊗ |0〉〈0|Bin)

)
≤ negl(n) . (5)

where Ẽ0 is defined in Definition 5.1, Gs∗ is the honest operation so far, and Ẽ does not act on
any of the swaddlings held by C̃ since B∗ just checked them with success (since E-ABORT)
and are not held by Ã yet. At this point of the protocol, Gs∗ corresponds to the application of
UF ∈ U(Ain⊗Aa⊗Bin⊗Ba) whereAa and Ba are the spaces of the ancilla needed to implement
F unitarily. Notice that Cs∗ is the authentication encoding using all keys (and not only B∗’s keys)
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since all Ã ’s swaddlings have been tested with success by B∗ before they were returned to Ã .
We have:

Ẽ ◦ Cs∗ ◦ Gs∗ ◦ Ẽ0(ρ
AinR
in ⊗ |0〉〈0|B

∗
in) = Ẽ ◦ Cs∗ ◦ UF

(
Ẽ0(ρ

AinR
in )⊗ |0〉〈0|B

∗
in ⊗ |0〉〈0|Z

)
U †F .

Using this in (5) before applying U †F ◦ C
†
s∗ , as C̃ does at Steps 3 and 4, results in:

∆
(
U †F ◦ C

†
s∗ ◦ [Ã ~ B]O

′
s∗ (ρAinR

in ⊗ |0〉〈0|B
∗
in),

Ẽ ◦
(
Ẽ0(ρ

AinR
in )⊗ |0〉〈0|B

∗
in ⊗ |0〉〈0|Z

))
≤ negl(n) .

At Step 5, C̃ calls the ideal functionality F1 evaluating F upon Ã ’s effective input together with
B’s input while keeping B’s output state:

∆
(
F1 ◦ U †F ◦ C

†
s∗ ◦ [Ã ~ B]O

′
s∗ (ρAinBinR

in ⊗ |0〉〈0|B
∗
in),

Ẽ ◦
(
F1(Ẽ0(ρ

AinBinR
in ))⊗ |0〉〈0|B

∗
in ⊗ |0〉〈0|Z

))
≤ negl(n) . (6)

At this point, C̃ encrypts/authenticates, using the same keys as before, all of Ã ’s output wires
(including her part of Z and B∗in) held by C̃ :

∆
(
Cs∗ ◦F1 ◦ U †F ◦ C

†
s∗ ◦ [Ã ~ B]O

′
s∗ (ρAinBinR

in ⊗ |0〉〈0|B
∗
in),

Ẽ ◦ Cs∗
(
F1(Ẽ0(ρ

AinBinR
in ))⊗ |0〉〈0|B

∗
in ⊗ |0〉〈0|Z

))
≤ negl(n) . (7)

Applying Lemma 5.5 once again, results in:

∆
(

[Ã ~ B]O
′

s∗ (ρin), Ẽ ◦ Cs∗ ◦F
(
Ẽ0(ρ

AinBinR
in )

))
≤ negl(n) . (8)

Let [C̃ ~D ]FS6(ρ
AinBinR
in ) := Cs∗ ◦F1 ◦U †F ◦C

†
s∗ ◦ [Ã ~B]O

′
s∗ (ρAinBinR

in ⊗ |0〉〈0|B
∗
in) be denoting

the joint state when C̃ reaches Step 6 in the simulation above. Using the triangle inequality for the
trace-norm distance using (7) and (8) results in:

∆
(

trB∗

(
[C̃ ~ D ]FS6(ρ

AinBinR
in )

)
, [Ã ~ B]O

′
s∗ (ρin)

)
≤ negl(n) . (9)

Equation (9) implies the statement to prove since the interaction between Ã and B∗ is resumed
once C̃ transmitted Ã ’s swaddlings back to Ã . It follows that Ã ’s further actions will produce
an output at negligible distance from [Ã ~B ∧ E-ABORT]O

′
(ρin) and since C̃ deletes all of B∗’s

registers before getting its output.
To prove the statement for adversary B̃ interacting with A in Π̂O′

F is easier than for adversary
Ã . Remember that for D̃ , s∗ is defined to be the turn at which B̃ receives all his swaddlings from
A . In this case, D̃ always allows A to get the final state of the computation since the protocol has
no lack of fairness for A (i.e. f = 1 always). Apart from this difference, D̃ proceeds in a very
similar way than C̃ . ut
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7 Conclusion

Since Lemmas 6.1 and 6.2 together show that a simulator succeeds in reproducing any real execu-
tion, we conclude the active security of the protocol:

Theorem 7.1 (Active security). For any polynomial-time quantum operation F : L(Ain⊗Bin)→
L(Aout ⊗ Bout), the two-party hybrid protocol Π̂O′

F is statistically active secure without fairness
for Bob.

Since the simulator establishing Theorem 7.1 is poly-time, the result in [HSS11] allows us to
conclude that instantiating all TCP oracles with computationally secure classical protocols pre-
serves security of our protocol, provided the computational assumption is secure against quantum
adversaries.

Our construction can be seen as a compiler that transforms protocols secure against specious
adversaries into protocols for the same task secure against any adversary, in a spirit somewhat
similar to Section 7.4 in [Gol04]. The technique we used allows us to force all players to behave
speciously. It would be interesting to find out how general is this compiler in the computational
setting.
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A Two-Party Strategies

We define two-party strategies the same way than in [DNS10,GW07]. These strategies may have
access to oracles implementing some functionalities, like a communication channel between par-
ties or any other more evolved and non-trivial two-party functionality. The only difference with
[DNS10] is that we explicitly allow for A and B to apply one final operation after the last oracle
call. More precisely,

Definition A.1. A m–turn two party strategy with oracle calls denoted ΠO = (A ,B,O,m)
consists of:

1. input spaces A0 and B0 for parties A and B respectively, together with memory spaces
A1, . . . ,Am+1 and B1, . . . ,Bm+1 for A and B respectively. SpacesAi and Bi can be written
asAi = AO

i ⊗A′i and Bi = BO
i ⊗B′i, (1 ≤ i ≤ m), and O = (O1,O2, . . . ,Om) is anm-tuple

of quantum operations: Oi : L(AO
i ⊗ BO

i ) 7→ L(AO
i ⊗ BO

i ), (1 ≤ i ≤ m).
2. an m + 1-tuple of quantum operations (A1, . . . ,Am+1) for A , Ai : L(Ai−1) 7→ L(Ai),

(1 ≤ i ≤ m+ 1),
3. an m + 1-tuple of quantum operations (B1, . . . ,Bm+1) for B, Bi : L(Bi−1) 7→ L(Bi),

(1 ≤ i ≤ m+ 1).

B Discussion of our Security Definition

In extending the model in [DNS10] the following changes have been made.

1. The adversary is no more restricted in how it deviates from the protocol, i.e., it can deviate
from the protocol as it wants, except that it has to run in polynomial time.
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2. The simulator is now allowed to do an input substitution. This is needed as an active attacker
might replace its original input by some alternative input and then run the input honestly. This
will be indistinguishable from an honest party running with the alternative input, hence the
protocol will and must complete successfully. To simulate this “attack” the simulator must be
able to ask the ideal functionality to use the alternative input on behalf of corrupted party.

3. In [DNS10], it was required that each step of the protocol could be simulated. This is needed
with passive security, as the fact that the view at the end can be simulated is not the same as
the view at an earlier point can be simulated, due to no-cloning (cf., [DNS10]). However, an
active adversary is allowed to stop its attack at any intermediary step and output its state at that
step. Hence security at the end against all adversary implies security at all intermediary steps
against all adversaries.

4. When we compare the outputs of the simulation and the protocol, we will compare the entire
view, not just the view of the corrupted party. This is usual in defining active security, as it
models privacy and correctness. In [DNS10] only the view of the adversary and the simulator
was compared, which is sufficient to model privacy, as it shows that whatever the adversary
learns can be computed given what it is allowed to learn. When comparing also the output
of the honest party in the two settings, we also show that whatever influence the adversary
can have on the output of the honest party in the protocol, it could also have on the output
of the honest party in the simulation. This captures that basically only input substitution is
possible, which is the definition of correctness. Furthermore, privacy and correctness cannot
meaningfully be separated into separate notions, which is why we capture them using one
definition (cf., the discussion on page 150 in [Can00]).

5. Finally, in [DNS10] a simulator contained an explicit bit q which specified whether it would
like to call the ideal functionality or not. This was needed to allow the simulator to preserve
its original input. An active adversary has the power to just run the ideal functionality on a
dummy input and move its original input to an ancilla if it so desires, so we can remove the
explicit bit q.

Our model is reminiscent of previous models of quantum secure two-party computation, but as
opposed to the UC models from [BM02,Unr10,HSS11] our model only guarantees sequential se-
curity. That said, since our simulators do not access the code of the adversary or rewind the adver-
sary, our protocol might very well be UC secure in one of the models from [BM02,Unr10,HSS11].
However, here we want to focus on what we consider the main novelty, namely that actively se-
cure 2-party quantum computation is possible at all, and how, and we prefer to avoid cluttering
that presentation by dealing with the connoisseur details needed to obtain and prove UC security.
We think this is best done in the above simple model.

C Security of the Clifford-Based QAS

For completeness, we provide the proof of security of the Clifford-based authentication scheme of
[ABE08]:

Theorem C.1 (Security of Clifford-based QAS). The Clifford-based QAS defined in Definition
2.3 is ε-secure for ε = 6× 2−n.
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Proof. Let UCR be the attack unitary, and let us decompose it into the Pauli basis on C:

UCR =
∑
P

PC ⊗ UPR .

We also define the following:

U acc
R→R(ρ) = U1

RρU
1

R
†

U rej
R→R(ρ) =

∑
P 6=1

UPR ρU
P
R
†

ΩS = πS .

We now compute the state given that the decoder accepts:

PaccEkDk

(
UCREk(ψSR)U †CR

)
Pacc

= Ek
∑
P,P ′

trA

[
PaccC

†
k(PC ⊗ U

P
R )Ck(ψSR ⊗ |0n〉〈0n|A)C†k(P

′
C
† ⊗ UP ′R

†
)CkPacc

]
(a)
= Ek

∑
P

trA

[
PaccC

†
k(PC ⊗ U

P
R )Ck(ψSR ⊗ |0n〉〈0n|A)C†k(PC

† ⊗ UPR
†
)CkPacc

]
= U1

RψSRU
1

R
†

+ Ek
∑
P 6=1

trA

[
PaccC

†
k(PC ⊗ U

P
R )Ck(ψSR ⊗ |0n〉〈0n|A)C†k(PC

† ⊗ UPR
†
)CkPacc

]
= U acc(ψSR) +

∑
P 6=1

EP̃ 6=1 trA

[
Pacc(P̃C ⊗ UPR )(ψSR ⊗ |0n〉〈0n|A)(P̃ †C ⊗ U

P
R
†
)Pacc

]
= U acc(ψSR) +

2−n|P|
|P| − 1

∑
P 6=1

UPR (πS ⊗ ψR)UPR
† − 1

|P| − 1

∑
P 6=1

UPRψSRU
P
R
†

= U acc(ψSR) +
2−a|P|
|P| − 1

U rej(ψR)⊗ πS −
1

|P| − 1
U rej(ψSR) ,

where (a) comes from Lemma B.3 in [ABE08], and where P denotes the set of all Pauli operators
on n qubits. Likewise, the state given that the decoder rejects is given by:

PrejEkDk

(
UCREk(ψSR)U †CR

)
Prej
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= Ek
∑
P,P ′

trA

[
PrejC

†
k(PC ⊗ U

R
R )Ck(ψSR ⊗ |0n〉〈0n|A)C†k(P

′
C
† ⊗ UP ′R

†
)CkPrej

]
(a)
= Ek

∑
P

trA

[
PrejC

†
k(PC ⊗ U

R
R )Ck(ψSR ⊗ |0n〉〈0n|A)C†k(PC

† ⊗ UPR
†
)CkPrej

]
= Ek

∑
P 6=1

trA

[
PrejC

†
k(PC ⊗ U

P
R )Ck(ψSR ⊗ |0n〉〈0n|A)C†k(PC

† ⊗ UPR
†
)CkPrej

]
=
∑
P 6=1

EP̃ 6=1 trA

[
Prej(P̃C ⊗ UPR )(ψSR ⊗ |0n〉〈0n|A)(P̃ †C ⊗ U

P
R
†
)Prej

]
=

(1− 2−n)|P|
|P| − 1

∑
P 6=1

UPR (πS ⊗ ψR)UPR
† − 1

|P| − 1

∑
P 6=1

UPRψSRU
P
R
†

=
(1− 2−n)|P|
|P| − 1

U rej(ψR)⊗ πS −
1

|P| − 1
U rej(ψSR)

= U rej(ψR)⊗ πS −
2−a|P| − 1

|P| − 1
U rej(ψR)⊗ πS −

1

|P| − 1
U rej(ψSR) .

Now, it is easy to see that the trace distance in Definition 2.2 can be upper-bounded by:

tr

[
2× 2−n|P|
|P| − 1

U rej(ψR)⊗ πS +
2

|P| − 1
U rej(ψSR)

]
6 2× 2−n|P|

|P| − 1
+

2

|P| − 1

= 2× 2−n4n+s

4n+s − 1
+

2

4n+s − 1

6 6× 2−n .

ut

D R-gate teleportation and magic state distillation

The gate teleportation protocol for the R-gate works as follows. Suppose one wants to execute R on
wire w. One would need to initialize a wire m in the magic state |M〉 := 1√

2

(
|0〉+ eiπ/4|1〉

)
. The

protocol then consists of a CNOT from m to w, and then of a measurement of w in the computational
basis. If the result is 0, one does nothing, and if the result is 1, we apply the gate A := e−iπ/4PX
to m. We then rename m to w, and one can check that an R-gate has been applied to w.

We therefore need a supply of magic states for our protocol. However, we need some way of
generating them securely. For this, we turn to ideas from fault-tolerant computation, more specifi-
cally from [BK05]. There, they consider a model of computation in which we can perform perfect
Clifford gates, but where we only have a supply of noisy magic states. We therefore need to distill
good magic states from noisy ones. We will use this technique to ensure that we have a supply
of good magic states: we will first let Alice prepare a large supply of magic states, and then we
will have Bob distill a smaller number of states from this untrusted supply. Bob will first test a
random sample of the states and check that there are no errors in the sample, and he will then use
the distillation protocol from [BK05] to get the final states.

Here we will simply state the protocol from [BK05] without attempting to explain how and
why it works. The protocol is based on a CSS code which is constructed from two linear classical
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codes L1 and L2, whose generator matrices are given in Figure D.1 along with the stabilizer
generators of the resulting CSS codes.


1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


(a) Generator matrix of code L1



0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
1 1 1 1 0 1 0 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 0 1 0 1 0 1 0
1 1 1 1 1 0 0 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0


(b) Generator matrix of code L2

X I X I X I X I X I X I X I X
I X X I I X X I I X X I I X X
I I I X X X X I I I I X X X X
I I I I I I I X X X X X X X X
Z I Z I Z I Z I Z I Z I Z I Z
I Z Z I I Z Z I I Z Z I I Z Z
I I I Z Z Z Z I I I I Z Z Z Z
I I I I I I I Z Z Z Z Z Z Z Z
I I Z I I I Z I I I Z I I I Z
I I I I Z I Z I I I I I Z I Z
I I I I I I I I Z I Z I Z I Z
I I I I I Z Z I I I I I I Z Z
I I I I I I I I I Z Z I I Z Z
I I I I I I I I I I I Z Z Z Z


(c) Stabilizer generators of the CSS code used for magic state distillation

Fig. D.1: Description of the code used for magic state distillation.

Here’s how one step of the magic state distillation works:

1. Dephase all qubits (apply A to each qubit with probability 1/2).
2. Randomly permute all the qubits.
3. Measure µ (the syndrome of L2).
4. Compute the vector w as w =

∑
g µ(g)g, where the sum ranges over stabilizer generators of

L2.
5. Apply A(w)†.
6. Measure η (syndrome of L1 with X’s)
7. If η 6= 0, declare an error.
8. Apply the decoding operation for the X/Z CSS code.
9. Dephase all the qubits again.

In [BK05], the protocol is analyzed assuming that the input consists of n independent, iden-
tically distributed states of the form ρ = (1 − ε)|M〉〈M | + ε|M̄〉〈M̄ |, where |M̄〉 := 1√

2
(|0〉 −
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eiπ/4|1〉) is a state orthogonal to |M〉. If we assume this, then it can then be shown that, if the input
has an error rate of ε, then the output error rate is εout 6 40ε3 whenever ε 6 0.041 (see [BK05],
Equation (36)). This means that after repeating this recursively ` times, we have a final error rate

of εf 6 1√
40

(√
40ε
)3`

.
However, our scenario is somewhat different from this: we do not have an source of indepen-

dently and identically distributed magic states with a predefined error rate. Instead, we control the
error rate of the magic states by sampling a fraction of them, and reject if some of them are not
|M〉. This gives us that with very high probability, the set of magic states after sampling lies in a
subspace containing at most some fraction ε of errors. That the distillation protocol nevertheless
works in this case follows from Theorem D.1 below, which shows that if the protocol has a low
probability of failure on iid states with a low error rate, it also has a low probability of failure on
states supported on a low-error subspace.

Theorem D.1. Let H = span{|0〉, |1〉}, Ht := span{|w〉 : w ∈ {0, 1}n, |w| = t} ⊂ H⊗n, and
let H6t :=

⊕
s6tHs. Furthermore, let ρ ∈ D(H6t) be diagonal in the computational basis, let

P : L(H⊗n) → L(H⊗m) be a CPTP map such that P(πωπ†) = P(ω) for any permutation π
of the input qubits and any ω ∈ Herm(H⊗n) and whose output is guaranteed to be diagonal in
the computational basis. Then,∥∥P(ρ)− |0〉〈0|⊗m

∥∥
1
6 (n+ 1) max

s6t

∥∥P(σ⊗ns )− |0〉〈0|⊗m
∥∥
1
,

where σs = n−s
n |0〉〈0|+

s
n |1〉〈1|.

This theorem is somewhat reminiscent of the “postselection” technique from [CKR09], which can
be used to reduce the security of QKD against general attacks to security against collective attacks.

Proof. Without loss of generality, assume that ρ is invariant under permutations of the n qubits
(otherwise replace it by Eππρπ†). Then, ρ is of the form

ρ =
t∑

s=0

λs

(
n

s

)−1
Ps 6 (n+ 1)

∑
s6t

λsσ
⊗n
s ,

where Ps is the projector ontoHs, and {λs} forms a probability distribution. The inequality above
stems from the fact that tr[Psσ

⊗n
s ] is at least as large as the average of tr[Ps′σ

⊗n
s ] over a uniform

choice of s′. (See [Csi98, Lemma II.2] for a proof.) Hence, we now have that:

‖P(ρ)− |0〉〈0|⊗m‖1 = 2 tr[(1− |0〉〈0|⊗m)P(ρ)]

6 2(n+ 1) tr

[
(1− |0〉〈0|⊗m)P

(∑
s6t

λsσ
⊗n
s

)]
6 2(n+ 1) max

s6t
tr
[
(1− |0〉〈0|⊗m)P

(
σ⊗ns

)]
= (n+ 1) max

s6t

∥∥P(σ⊗ns )− |0〉〈0|⊗m
∥∥
1
.

In the above, the two equalities are due to the fact that the output of P is guaranteed to be diagonal
in the computational basis, and that it is trace preserving. This concludes the proof. ut
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To apply this theorem to the problem at hand, we let P be the distillation protocol after the
sampling step and after having dephased all the input states, set t = b0.041nc, and replace the
computational basis with the {|M〉, |M̄〉} basis. The dephasing and permutation steps ensure that
P satisfies the requirements of the theorem. We have now shown that if the number of errors in
the input is less than or equal to 0.041n, the final error rate will be negligible. All that is now left
to do is to ensure that, if the actual error rate was above 0.041, then the adversary would have been
caught with overwhelming probability. Note that since the alleged magic states were dephased in
the A-basis, this corresponds to a purely classical sampling problem: if one has a set of n states,
with a fraction of at least 0.041 being faulty, what is the probability p that sampling k of them
reveals only good states? This can be calculated as follows:

p =

(
b0.959nc

k

)(
n

k

)−1
6

2b0.959nch(k/b0.959nc)

1
n+12nh(k/n)

6 (n+ 1)20.959nh(k/0.959n)−nh(k/n) .

Here, the inequality follows again from [Csi98, Lemma II.2]. Now, it can be shown that the right-
hand side is upper-bounded by (n+ 1)2−0.1n whenever k/n > 0.8.

E Description of the subprotocols

The ancillas swaddled during Initialization also need to have their initial state verified. We
now describe the verification procedure VerifyAncilla that verifies that a swaddled ancilla is
indeed in state |0〉. This subprotocol relies on the ideal functionality idINTCNOT defined as follows:

idINTCNOT((ia, ib), (i
′
a, i
′
b)) =

{
(K ′w,a, (t,K

′
w,b)) if ia = i′a = idA(w) and ib = i′b = idB(w)

(⊥,⊥) otherwise,

where t is the description of a Clifford T ∈ C2n+1 such that

T =

{
B′(A′ ⊗ 1n)C(A† ⊗ 1n)B† if Alice holds the inner key,
A′(1n ⊗B′)C(1n ⊗B†)A† if Alice holds the outer key,

where C is a CNOT from the data qubit as control and Bob’s first dummy qubit as target, and A′

and B′ are Cliffords of the appropriate size chosen uniformly at random.

VerifyAncilla(s(w)), with w ∈ A:
1. Alice sends s(w) to Bob.
2. Bob runs TestSwaddling(s(w)).
3. Alice and Bob call (K′w,a, (t,K′w,b))← idINTCNOT((idA(w), idB(w)), (idA(w), idB(w))). Bob executes T on
s(w).

4. Bob sends s(w) back to Alice.
5. Alice runs TestSwaddling(s(w)) and sends s(w) to Bob.
6. Bob runs TestSwaddling(s(w)).
7. Bob sends s(w) back to Alice.
8. Alice runs TestSwaddling(s(w)).

In the above, the idea is to measure the swaddled state in the computational basis by first executing
a CNOT with the swaddled state as the control and one of Bob’s dummies as the target. Bob then
performs the measurement implicitly when he tests his dummies in step 6.

The next procedure implements the magic state distillation outlined in Appendix D.
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DistillMagic(s(w)), with w ∈ A:
1. Alice creates N qubits in state |M〉.
2. Swaddle all of them.
3. Apply A to each qubit with probability 1/2.
4. Measure µ (the syndrome of L2).
5. Compute the vector w as w =

∑
g µ(g)g, where the sum ranges over stabilizer generators of L2.

6. Apply A(w)† to the qubits.
7. Measure η (syndrome of L1 with X’s).
8. If η 6= 0, declare an error.
9. Apply the decoding operation for the X/Z CSS code.
10. Apply A to each qubit again with probability 1/2.

In the above, the measurement are done by calling the subprotocol Measure, given further down.

RGate(s(w)) with w ∈ A:
1. Alice performs a swaddled CNOT with mw as a control, and w as target.
2. Alice sends s(w) to Bob. Bob runs TestSwaddling(s(w)) on it.
3. Alice runs Measure(s(w)).
4. Alice and Bob perform a TPC whose result is a Clifford which, if both measurement results were zero,

updates the key, and if both measurement results were one, performs a swaddled eiπ/4XP † and then updates
the key. If the measurement results differ, then they abort.

5. Alice relabels ma,i to w.

To see that such a procedure indeed performs an R-gate, we will analyze its behavior when the
w is in some arbitrary pure state α|0〉+ β|1〉; hence, if we include the magic state, the initial state
here is

1√
2

(|0〉+ eiπ/4|1〉)(α|0〉+ β|1〉) .

After the CNOT, we get

1√
2

(α|00〉+ β|01〉+ eiπ/4α|11〉+ eiπ/4β|10〉) .

Measuring the second qubit then yields either α|0〉 + eiπ/4β|1〉 if the measurement result was 0,
and β|0〉+ eiπ/4α|1〉 if the result was 1. This is the desired result in the first case, and performing
eiπ/4XP † in the second case also yields the same state.

We now know how to perform all of these operations on swaddled states; the only difficulty is
to ensure that Alice doesn’t lie about the measurement result. Hence, we first copy the measure-
ment result into another swaddled register that Bob gets, ensuring that he also gets the measure-
ment result.

Measure(s(w)), with w ∈ A:
1. Let a be an ancilla in state |0〉 prepared during Initialization, and let Alice call CNOT(s(w), s(a)).
2. Alice sends s(a) to Bob.
3. Bob runs TestDummies(s(a)).
4. Alice and Bob call idOPEN(idB(w), idB(w)) and idOPEN(idA(a), idA(a)).
5. Alice decrypts w and measures it in the computational basis, and Bob decrypts a and measures it in the

computational basis.

This subprotocol measures w in the computational basis and ensures that both Alice and Bob get
the result.
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F Additional definitions

Definition F.1 (Inner swaddling operation). We define CI,a,w, Alice’s inner swaddling operation
for wire w, as follows:

CI,a,w(ρ) :=
∑

Ca∈C(k+1)

(
|ka〉〈ka|Ka ⊗ Cs(w)

ka

)
ρ

(
|ka〉〈ka|Ka ⊗ Cs(w)

ka

†
)
,

where ka is a classical description of Ca. Likewise, CI,b,w is Bob’s inner swaddling operation and
is defined the same way.

Definition F.2 (Outer swaddling operation). We define CO,a,w, Alice’s outer swaddling opera-
tion for wire w, as follows:

CO,a,w(ρ) :=
∑

Ca∈C(2k+1)

(
|ka〉〈ka|Ka ⊗ Cs(w)

ka

)
ρ

(
|ka〉〈ka|Ka ⊗ Cs(w)

ka

†
)
,

where ka is a classical description of Ca. Likewise, CO,b,w is Bob’s outer swaddling operation and
is defined the same way.

Definition F.3 (Swaddling pattern). For every turn s of the protocol, let AI,s (resp. BI,s) be the
set of wires for which Alice (resp. Bob) holds the inner key, and AO,s (resp. BO,s) be the set of
wires for which Alice holds the outer key. Wires that are not swaddled yet are in none of these sets,
and wires which only have an inner swaddling are only in the corresponding inner set. We call
these sets the swaddling pattern at turn s.

Definition F.4. Let Cs be the operation that takes all the unswaddled wires and swaddles accord-
ing to the swaddling pattern at turn s:

Cs :=

 ⊗
w∈AO,s

CO,a,w

⊗
 ⊗

w∈BO,s

CO,b,w

 ◦
 ⊗

w∈AI,s

CI,a,w

⊗
 ⊗

w∈BI,s

CI,b,w

 .
Furthermore, we define Alice’s total swaddling operation:

Ca,s :=

 ⊗
w∈AO,s

CO,a,w

 ◦
 ⊗

w∈AI,s

CI,a,w

 ,

and likewise for Bob’s total swaddling operation Cb,s.

G Proving forcingness

In the following, we will not give explicit bounds for the various negligible functions, and assume
that states that have negligible trace distance to each other are equal. Explicit bounds can be
derived from Theorem 2.4, which gives an upper bound on the error of the the Clifford-based
QAS.
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Lemma G.1. Initialization is G -forcing for any Ã and any B̃, where G tests the ancillas in
the |0〉 state and distills magic states (see Lemmas G.3 and G.2).

Proof. We first prove forcingness against Ã . Let the state just before Alice sends her qubits to
Bob in the first call to Swaddle be

ρABR1 = Ẽ0

(
ρABR0

)
,

for some operation Ẽ0 on Alice’s systems. At this point, Alice commits to a Clifford CA, sends
n+ 1 qubits to Bob and receives s(w) from Bob. Alice then gets the qubits back from Bob, along
with more qubits in the second call to Swaddle. At this point, the global state is

ρABR2 = Cb,s ◦ Ẽ0

(
ρABR0

)
.

She will then send back some of these qubits to Bob. Now, since we are looking at the case where
there is no abortion before the end, the fact that she passes Bob’s TestDummies means that her
attack can be represented by a CP map U acc on her qubits that she is not sending, as in Definition
2.2. The state after sending the qubits back to Bob is therefore

ρABR3 = U acc ◦ Cb,s ◦ Ẽ0

(
ρABR0

)
.

and the protocol is therefore 1-forcing for Ã so far. The rest of the protocol only involves calls to
other subprotocols which are proven to be forcing later on.

The proof of forcingness against B̃ follows the same argument. ut

Lemma G.2. VerifyAncilla(s(w)) is G -forcing for any Ã and any B̃, where G (·) = |0〉〈0| ·
|0〉〈0|.

Proof. We first prove forcingness against Ã . Assume that the state at the beginning of the protocol
(in the no-early-abort case) is

ρABR = Ẽ ◦ Cb,s ◦ G0 ◦ Ẽ0

(
ρABR0

)
.

Since the state passes Bob’s TestDummies in step 2, one can assume that Ã ’s attack in step 1 can
be represented by some U acc

1 on her systems. Furthermore, Bob implemented a measurement of
the logical qubit in the computational basis, via his own dummy: since his dummy was initialized
to |0〉 the CNOT that was performed from the logical qubit to the dummy, followed by measuring
all his dummies in the computational basis means that the logical qubit was also measured. Since
for forcingness, we only consider the case in which all TestDummies are passed, it follows that
the operation G defined above was applied. Again, in step 5, Alice must have sent something that
passes Bob’s TestDummies, so her operation can be represented by some U acc

2 on her systems.
Finally, in step 8, she can again do an arbitrary operation Ẽf on her systems. Hence, the final state
looks like

ρABRf = Ẽ ′ ◦ Cb,s ◦ G ◦ G0 ◦ Ẽ0

(
ρABR0

)
,

where Ẽ ′ := Ẽf ◦U acc
2 ◦U acc

1 ◦ Ẽ .
We now prove forcingness against B̃. Assume that the state at the beginning is

ρABR = Ẽ ◦ Ca,s ◦ G0 ◦ Ẽ0

(
ρABR0

)
.
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Since Bob passes the TestDummies in step 5, his attack must correspond to a U acc
1 on his other

systems; likewise at step 8 with U acc
2 . The final state can therefore be expressed as

ρABRf = Ẽ ′ ◦ Ca,s ◦ G0 ◦ Ẽ0

(
ρABR0

)
,

where Ẽ ′ := U acc
2 ◦U acc

1 ◦ Ẽ . Finally, since Alice is honest, she has indeed prepared the ancilla
in state |0〉, so adding G in the above expression leaves it invariant, and we have

ρABRf = Ẽ ′ ◦ Ca,s ◦ G ◦ G0 ◦ Ẽ0

(
ρABR0

)
as the final states. ut

Lemma G.3. DistillMagic(s(w)) is G -forcing for any Ã and any B̃, where G is the magic
state distillation protocol described in Appendix D.

Proof. The distillation protocol is simply a combination of other subprotocols, so the forcingness
of the subprotocols used guarantee the forcingness of the distillation protocol. ut

Lemma G.4. CNOT(s(wc), s(wt)) with wc at Alice, is G -forcing for any Ã and any B̃, where G is
a CNOT on the appropriate wires.

Proof. We start by proving forcingness for Ã . Assume that the state at the beginning of the pro-
tocol (in the no-early-abort case) is

ρABR = Ẽ ◦ Cb,s ◦ G0 ◦ Ẽ0

(
ρABR0

)
.

Since the state passes Bob’s joint TestDummies in step 3, one can assume that Ã ’s attack in step
2 can be represented by some U acc on her systems. Bob then applies the CNOT honestly, so it
follows that the operation G defined above was applied. Finally, in step 8, she can again do an
arbitrary operation Ẽf on her systems. Hence, the final state looks like

ρABRf = Ẽ ′ ◦ Cb,s ◦ G ◦ G0 ◦ Ẽ0

(
ρABR0

)
,

where Ẽ ′ := Ẽf ◦U acc ◦ Ẽ .
We now prove forcingness for B̃; we will suppose that Bob holds wt, if not one can easily

see that the proof is a slightly simpler version of the same argument. Assume that the state at the
beginning of the protocol is

ρABR = Ẽ ◦ Ca,s ◦ G0 ◦ Ẽ0

(
ρABR0

)
.

Since the state passes Alice’s TestDummies in step 1, one can assume that B̃’s attack in step 2 can
be represented by some U acc

1 on his systems. Alice then sends s(wc) and s(wc) to Bob, and since
Bob passes TestDummies in step 5, one can represent his attack by some U acc

2 on his systems.
Hence, the final state looks like

ρABRf = Ẽ ′ ◦ Ca,s ◦ G ◦ G0 ◦ Ẽ0

(
ρABR0

)
,

where Ẽ ′ := U acc
2 ◦U acc

1 ◦ Ẽ . ut
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Lemma G.5. Measure(s(w)), with w at Alice, is G -forcing for any Ã and any B̃, where G per-
forms a measurement in the computational basis, and stores the output in registers in both A and
B.

Proof. Since CNOT is forcing, Alice must have actually performed it, and since Bob runs TestDummies
on s(a), Alice must actually send it. Finally, once they measure, the honest party’s measurement
ensures that the adversary’s state also collapses, so that the register only contains the classical
measurement result. The same holds for Bob. ut

Lemma G.6. RGate(s(w)) with w at Alice, is G -forcing for any Ã and any B̃, where G (·) :=
R ·R† on w.

Proof. This subprotocol is simply a composition of other subprotocols that have already been
shown to be forcing. ut

Lemma G.7. OneQubitClifford(C, s(w)) with w at Alice, is G -forcing for any Ã and any B̃,
where G (·) := C · C† on w. ut

Proof. Suppose that the state at the beginning in the no-early-abort case is

ρABR = Ẽ ◦ Cb,s ◦ G0 ◦ Ẽ0

(
ρABR0

)
.

Since this subprotocol doesn’t actually involve Bob at all, we can simply let Ẽf be the operation
applied by Alice on her qubits, and define Ẽ ′ := Ẽf ◦ Ẽ . The final state is therefore

ρABRf = Ẽ ′ ◦ Cb,s ◦ G ◦ G0 ◦ Ẽ0

(
ρABR0

)
.

The same reasoning applies to B̃. ut
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