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Abstract 
The UC approach of Canetti offers the advantage of stand-alone analysis while 
keeping security guaranties for arbitrary complex environment. When we implement 
by this approach first we have to ensure secure instance separation and based on this 
condition, we are allowed to carry out a stand-alone analysis. In this report we 
propose three issues related to instance separation in UC-context: 
  We consider the problem of universal composability in cases, when we cannot 
assume independence of instances.  Next we formalize the interleaving attack and a 
related security notion. In time-aware protocols time-based separation of instances is 
one of the standard implementation techniques. We propose an event-driven clock 
model towards purely symbolic analysis of time-aware protocols.  
 
 
 
1. Introduction 
 
The instance based approach of Canetti [5] emphasizes the importance of instance 
“independence”. The security analysis of a protocol is simplified considerably, if we 
are allowed to carry out the analysis on a stand-alone model, where we analyze under 
the assumption that there are no other concurrently running instances from the same 
or other protocols. One of the main advantages of the UC approach is that it keeps the 
simplicity of the stand-alone analysis even in complex protocol environment.   
 
In the alternative approach of Pfitzmann et al. [2] (BPW-approach) the requirement of 
instance separation is present in an implicit way. All instances of a protocol “live 
together” within the trusted host (TH) machine: the trusted host is a reactive ideal 
functionality storing all actions during the lifetime of the protocol. The essence of 
their approach is a reactive, composable Dolev-Yao type cryptolibrary, using which 
the protocol is abstracted into a completely symbolic version. Different invocations of 
ideal cryptographic primitives are separated by ideal access guarantees to the 
corresponding non-public stuff by so called handles. That is this separation approach 
works with finer granularity (at the level of crypto building blocks instead of 
complete protocol instances) and at the same time it provides inter- and inner-instance 
separation. For application examples of the BPW-approach see [9-13]. In this report 
we refer to the approach of Canetti [5] in Section 3, and to the BPW-approach in 
Section 4.  
 
An ideal functionality F at Canetti is defined such a way that it excludes the 
possibility of interactions between different instances for honest or adversarial actions 
alike. It follows that a (UC-)secure implementation ρ of  ideal functionality F must  
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ensure similar protection. UC theorem [5] guarantees that, if an F- hybrid protocol π 
invokes (fresh) instances 1,..., mF F , then the composed protocol πρ, where each F –
instance is substituted by a (fresh) instance of ρ, securely implements protocol π (m is 
an arbitrary integer). Recall, universal composability means that UC-security is kept 
under composition with any protocol. 
 
From the viewpoint of instance separation, the main part of the analysis is to show for 
an implementation ρ that an adversary is not able to carry out harmful interactions 
between concurrent instances.  

There can also be the case that some kind of interactions are tolerated by the 
ideal functionality from cost or efficiency reasons, like the cases of “allowed leakage” 
or “allowed delay” in favor of the adversary.  One expects that in this case the stand-
alone approach of analysis will not work in general. In Section 3.1 we will examine 
the composition theorem for such tolerated dependences between instances.  
 

Interleaving attacks are the usual attack types against those protocols, which 
cannot provide secure instance separation. We introduce the chosen instance attack 
(CIA) and a notion of security under CIA. This notion formalizes and generalizes 
interleaving attacks.   
 

A standard technique for instance separation relies on time information. We 
will examine the related problem of time modeling and propose an abstract time 
model.  

Matsuo [7] proposes a UC model for timestamps based on TTP real time clock 
both in the real and the ideal model, where in fact, UC approach refers to the security 
of request/reply communication with TTP clock. Buldas et. al. [4] proposes a UC-
secure time-stamping scheme. Their time model is a quantized real time source: their 
Stamper works in rounds with time unit (hour, day, week, etc.).  Backes [3] analyzes 
the Kerberos protocol in the BPW’s UC model. Here the ideal model is purely 
symbolic and the analysis is carried out on a purely symbolic version of the protocol 
into which the Kerberos protocol is abstracted. They replaced the timestamps by 
nonces assumed known to the participants generating the timestamps, because 
timestamps are not modeled in the BPW’s model. Note, this way they could model 
one characteristic property of time: it is changing. However, the time has a very 
important characteristic lost here: it is increasing continuously and as a consequence, 
the time order of any two events can be obtained. The proved (authentication) 
properties in [3] became weaker than the authentication Kerberos really offers, 
because by this simplification they could not grasp the purpose of timestamps in 
Kerberos.  

In Section 4 we make an attempt to propose a way towards a purely symbolic 
time model by substituting the real-time clock with an event-driven clock.   
 
 
2. Contributions 
 
In this report we propose three issues related to instance separation in UC-context. 
 
Section 3.1: We consider the task of composability in case of dependent instances, 
first of all to emphasize that UC and independence of instances are not “synonyms” of 
each other.  We show that universal composability is possible also for dependent 
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instances, where realization ρ of ideal functionality F is provably secure for all 
tolerable interactions (dependences) between instances defined by the ideal 
functionality. However, the advantage of stand-alone analysis is lost, in general. 
(Proposition 1)   
 
Section 3.2: We generalize and formalize the interleaving attack by introducing the 
definition of chosen instance attack (CIA) and a relation-based security notion under 
CIA. We examine its relationship to standard indistinguishability. (Proposition 2, 
Lemma 1, Lemma 2) 
 
Section 4: We propose a step towards purely symbolic timing approach for the 
analysis of time-aware protocols. In particular, we propose an event-driven clock (e-
time) and discuss a few properties of e-time relevant to an analysis in this model. 
(Property 1, Property 2)    
 
 
3. Dependence of instances 
 
First we show a simple example for the task of instance separation and the 
interleaving attack. (It is for illustration, can be skipped at first reading.)   
 
Example 1: Consider the following two-party key exchange protocol: 
 
1. A  B :  {K}Kb 
2. B  A :  {N}K 
3. A  B :  {sigA(N)}K 
 
Party A generates a fresh key K and encrypts it with the public key of party B.  Party B 
chooses a fresh value (nonce) N and encrypts it with the new secret key K. Party A 
signs the nonce and encrypts the signature with secret key K. The wished goal of the 
protocol is that after the instance finishes the two parties and only those will be aware 
of the new secret key K. At first glance the protocol seems secure but it is not. 
Adversary X is able to implement an interleaving attack: 
 
A  X :  {K}Kx         
 X  B :  {K}Kb 
 B  X :  {N}K 
X  A :  {N}K 
A  X :  {sigA(N)}K 
 X  B :  {sigA(N)}K 
 
The adversary takes part in two concurrent instances (for instance, by corrupting a 
party in both) and channels messages between them. At the end of the runs three 
parties A, B and X become aware of the same key K. The instances are not separated 
in this protocol. A security patch is the following:   
1. A  B :  {K}Kb 
2. B  A :  {N}K 
3. A  B :  {sigA(B, K, N)}K 
□ 
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3.1. UC for dependent instances 
 
Instance separation is a technique of modular design and analysis of protocols. 
Indeed, if we can separate the instances in a secure way, then in the next step of the 
security assessment of the implementation, we can carry out a stand-alone analysis.    
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Fig.1.: Sources of potential interactions between instances 

 
The ITI-model (Interactive Turing machine Instance [5]) of protocol instances has 
three communication ports (in Fig.1. instances iF  and jF  of an ideal functionality F):  

• input/output ports to the environment ((1)),  
• communication ports between instances via the adversary ((2)),  
• input/output ports to subroutines ((3)).  

 
Any interaction between different instances can be realized only via these ports. The 
UC-theorem of Canetti [5] is valid only if parties of subroutines (sub-parties) do not 
accept/send input/output from parties/sub-parties of any other instance:     

Recall, the UC theorem [5] ensures that, if an F- hybrid protocol π invokes 
(fresh) instances F1,…,Fm , then the composed protocol πρ , where each F –instance is 
substituted by a (fresh) instance of ρ, securely implements protocol π (m is an 
arbitrary integer). “Freshness” means not only that all random elements of an instance 
are chosen independently and uniformly but also that the instances must have disjoint 
local states.     
 A typical case of such kind of dependence between instances is, when 
instances rely on a single common instance corresponding to a TTP service (Fig.1). 
The JUC (Joint-state Universal Composition) theorem [6] provides a technique for 
getting rid of such dependence.  Essentially: we produce virtual sub-instances of the 
single common instance by introducing sub-SIDs.  
 

The adversary may be active in several different instances and may try to 
channel information (whole messages or parts of them) between different instances 
(via communication port (2) in Fig.1). Recall, a corresponding type of attack is the 
interleaving attack (Example 1, above).  
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This is the standard type of attempted dependence, which is to be foiled by 
techniques of instance separation: the definition of ideal functionality F forbids such 
an interaction and in case of a secure realization any such attack attempt leads to  the 
abortion of the target instance. Essentially: in the ideal functionality, protocol 
messages carry a unique instance identifier (SID), which cannot be tampered with by 
the adversary and any attempts to channel message from any other instance is 
detected by at least one of honest parties based on the instance SID. 

 
Note, these scenarios do not cover all sources of potential dependence between 

instances. It may be the case that we allow “legal” interactions between instances via 
communication port (2). Tolerable interaction is similar to “allowed leakage” or 
“allowed delay” in favor of the adversary and it is defined also by the ideal 
functionality. Below, we consider universal composability in case of such interactions 
between instances.   

 
 We mention that dependence between instances may happen also from further 
reasons: for example, via dependence between inputs of different instances. For 
instance, a corresponding scenario is the following: there exists a statistical 
dependence between the time samples of a process, where the samples correspond to 
the input values of instances (port (1) in Fig.1).  The adversary as an a priori 
knowledge may be aware of this dependence. Leakage of input information in one 
instance can be a useful predicate for a corresponding quantity in a concurrent 
instance.   
  
Here we would like to emphasize that universal composability, in principle, need not 
assume independence of instances, informally, universal composability and secure 
separation of instances are not “synonyms” of each other. However, in general, we 
loose the simplicity of stand-alone analysis of an implementation ρ of ideal 
functionality F:    
 
Proposition 1: Universal composability is possible also for dependent instances, 
where realization ρ of ideal functionality F is provably secure for all tolerable 
interactions between instances defined by the ideal functionality. However, the 
advantage of stand-alone analysis is lost, in general.     
 
Proof: (sketch) 
We can apply the technique of Canetti [5]. Below we emphasize only those issues, 
which are particular to the statement.      

Assume that protocol ρ UC-realizes ideal functionality F, where no 
distinguishing environment with dummy adversary and black box simulation can 
distinguish a single instance of ρ from a single instance F. Recall, this type of 
distinguishing environment is very powerful: it incorporates the usual adversary, it 
has access not only to the standard input/output interfaces of the parties but it has full 
access also to the communication between parties of instances.      

Recall, the environment models arbitrary protocol environment under 
computational constraint. In particular, it models also an environment of an arbitrary 
set of concurrent instances of ρ, where the environment is able to carry out 
interactions between those instances and the instance target of the distinguishing 
effort.  
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This way, when assessing whether a realization ρ of an ideal functionality F 
with tolerable interaction is UC-secure or not, the distinguishing environment checks 
all security consequences of tolerable interactions.  
 
In the hybrids argument (within an indirect proof, like in [5]), distinguishability of 
hybrid protocol π running with t-tuple of instances of ideal functionality F from 
composed protocol πρ  with t-tuple of instances of protocol ρ is reduced to the 
distinguishability of single instances of ρ and F. The distinguishing “ l -th hybrid –
environment” for the single instance is just one possible inter-instance constellation, 
under which protocol ρ is UC-secure by the above argument and as such, the ρ-
instance is indistinguishable from an instance of ideal functionality F.    
□ 
 
A related research is to explore those security tasks where potential interactions 
between concurrent instances appear as tolerable imperfections, and as such, are part 
of the definition of corresponding ideal functionalities.      
 
 
3.2. A standard definition for interaction-proof property of protocols   
 
Informally, secure separation of instances means that different instances cannot have 
“observable” impact on each other’s “performance”.  Here we give a definition for 
instance separation by defining the “observable impact on performance”.  This way 
we give a definition also for protocols secure against interleaving attacks. Referring to 
the previous section, here we assume that ideally we do not allow interaction between 
instances, i.e. our aim here is to propose a standard definition for interaction-proof 
implementation.  

 
We introduce the notion of chosen instance attack (CIA) and the definition of 

security under CIA.  A few notations follow: 
A target instance is attacked by the adversary. The target instance is chosen 

with input according to a distribution D over the input space. Let M denote the set of 
protocol messages of an instance with output ( )O M . Let S denote the output space of 
a non-attacked instance. Consider an attack against the target instance, which is done 
by modifying message set M. If the modification is detected by the (honest) parties of 
the target instance, we say it is aborted. The probability of an event E under non-abort 
condition will be denoted by ( ) ( | )P E P E non abort= − . 

Let S’ ( 'S S⊃ ) denote the output after running the target instance under 
attack in non-abort cases, i.e. when there is no attack or the attack remains undetected 
by the honest parties of the instance. Here we do not describe the representation of the 
output explicitly; we assume that it can be done by some appropriate way: e.g. by 
giving what the participants (the adversary is included) of all involved instances know 
relative to their a priori knowledge after the run of the instance. For an example see 
Example 1.  

Let : ' {0,1}R SxS → denote an efficiently computable relation, where 
( , ) 1R a b =  means, that a S∈ and 'b S∈ are in relation R. For brevity, below we use 

notation ( , )R a b for equality ( , ) 1R a b = .  
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Definition 1. (chosen instance attack, CIA) 
The goal of adversary CIAX  is the modification of the protocol messages of the 

target instance, such a way, that the resulted output is in relation R with the output of 
the non-attacked target instance. Adversary CIAX has access to a CIA-oracle, where 
the CIA-oracle is the following: 

The adversary is allowed to request the invocation of at most r instances, where 
the set of parties and their inputs are given in the request. □ 
 
 
Example 2: Consider Example 1: 

{ } { } { }{ }, , ( )X AM K K N K sig N K= , 
( )O M ={after the run the two parties A and X of the instance and no one else are 

aware of key K} S∈ , 
( ( ))CIAO X M ={the two parties A and X of the target instance and party B from a 

concurrent instance are aware of the same key K } ' \S S∈ . 
□ 
 
The strength of an adversary rapidly grows with the number of corrupted parties. This 
is especially true for interleaving attacks, where the adversary builds bridges between 
two or more instances via corrupted parties. For simplicity of parametrization, let 

0c ≥  denote the level of corruption in an instance of the protocol, i.e. in each 
interacting instance during the attack.    
 
Here we consider an arbitrary efficiently computable protocol. It may happen that 
some input information is carried to the output by the protocol as publicly accessible 
plaintext, where, in addition, the integrity of this information is not protected. Such 
protocol could be attacked easily by an CIAX  adversary by manipulating the plaintext 
characters. Excluding such protocols does not seem to weaken our definitional 
approach.     
 
Now we define the security under chosen instance attack, which is the advantage of 
an adversary carrying out modification attack against the target instance with the help 
of the CIA-oracle relative to the success of a simulator having access only to public a 
priori information:  
 
Definition 2. (security under CIA) 
A protocol is ( , , , )t r cε -secure under chosen instance attack, if for arbitrary 
probability distribution D over the input space, for arbitrary efficiently computable 
relation R  and for any adversarial algorithm CIAX  with complexity limit t, request 
limit r and corruption level c, there exists a simulator X’ with complexity limit t such 
that  
 

( )( ){ } ( )( ){ }( ), ( ) ( ), '( )CIAP R O M O X M P R O M O X pub ε− ≤   (1) 

 
where pub denotes all publicly available a priori information and where the 
probability is calculated over all random variables (randomness used to set up the 
instances in (1) and the internal random elements of algorithms X and X’). □ 
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One might expect that probability ( )( )( )( ), '( )P R O M O X pub  is negligibly small. 

However, this probability depends on the considered protocol: assume a two-party 
protocol which is only a public key encryption of the input message sent by one of the 
parties and decoded by the other party. Now, if the set of input messages contains 
only two elements, then the considered probability is exactly ½, for the only 
meaningful relation, the dissimilarity.  
 
Definition 2 formally resembles the notion of non-malleability (NM) for public key 
encryption, therefore, for brevity, we refer to it as ( , , , )t r cε NM-security of a protocol 
against adversary CIAX .   
 
Corollary of Definition 2:  ( , , , )t r cε NM-security of a protocol implies its ( , , )t cε  
“stand alone” security. 
 
Proof: 
When an CIAX  adversary does not send requests to the CIA oracle, it simplifies to a 
“stand-alone” adversary.  
□ 
 
 
Definition 2 is illustrated in Fig. 2: if we choose an instance M according to input 
distribution D and choose an CIAX  adversary with complexity parameters ( , , )t r c , 
then instance ( )CIAX M  may fall into set abort or into set non-abort. In case of non-
abort, M and ( )CIAX M  can be distinguishable or non-distinguishable by a standard 
distinguisher (see Definition 3 below).  

Note, abort/non-abort decision is carried out by the set of honest participants 
by running the rules of the protocol. A standard distinguisher is much more powerful: 
it is allowed to run arbitrary distinguishing algorithm under complexity limit t.  

Recall, for public key encryption the implication NM-CPA → IND-CPA 
stands: if the encryption leaks, the obtained information on the plaintext can be used 
to generate a ciphertext with a relation based on this information. Here we guess – 
formally - similar implication for “typical” protocols.   
   
 

abort 

non-abort  

NM-sec IND-insec. 

 
 

Fig.2. Guessed relationship of standard indistinguishability and relation-based 
security notions for “typical” protocols 
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Definition 3. (IND-insecure) 
We call a protocol ( , , , )t r cε  IND-insecure, if there exists a probability distribution D 
over the input space and an adversarial algorithm CIAX  with complexity parameters 
( , , )t r c , such that for all distinguishing algorithms Y  with complexity limit t:   
 

( ){ } 1
2{0,1}

/ 2
r

bb
P Y M b ε

←
= ≤ + ,      (2) 

for instance pair ( )0 1 0, ( )CIAM M X M= , 0 1M M≠ , where the input of 0M  is 

according to distribution D. 
□ 
 
For emphasizing the decision aspect, in formula (2) only the random selection of b is 
designated; the probability is calculated over the following random variables: coin 
flipping variable b, randomness used to set up instance 0M , internal random elements 

of algorithms CIAX and Y. 
 
Now, we state a partial result under the following assumptions:   
A1.) Consider protocols such that ( )( )( )( ), '( )P R O M O X pub  is negligible for 

arbitrary efficiently computable relation R and arbitrary simulator X’ with complexity 
limit t.  
A2.) Adversary CIAX  fabricates instances with output in set '\S S if not aborted.   
 
Both assumptions seem plausible for “typical” protocols and adversarial goal 
 
Proposition 2: Under assumptions A1 and A2, if a protocol is ( , , , )t r cε  IND-secure, 
then it is (~ , , , )t r cε NM-insecure. (Here ~ μ  means a value within a negligible 
distance toμ .) 
 
Proof: A protocol is IND-secure if for any probability distribution D over the input 
space, for any adversarial algorithm CIAX  with complexity parameters ( , , )t r c , there 
exists a distinguishing algorithm Y with complexity limit t , such that  
 

( ){ } 1
2{0,1}

/ 2
r

bb
P Y M b ε

←
= > + .      (3) 

  
We show that there exists an efficiently computable relation R such that adversary 

CIAX  (~ , , , )t r cε -breaks NM-security.  
Relation R is the following: : ( '\ ) 1R Sx S S → , : ( '\ ) 0R Sx S S → . Relation R is 

efficiently computable: by assumption A2 algorithm Y is able to decide if its input 
instance bM  produces an output in set '\S S or in set S with success probability (3).  

Here follows 1( ( ) '\ )P O M S S ε∈ >  and ( )0 1( ( ), ( )) 1P R O M O M ε= > .  Taking into 
account assumption A1 and Definition 2, we arrive to the claim.   
□ 
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The following technical lemma gives hint on our expectation that set IND is strictly 
larger than set NM. 
 
Lemma 1: Two random variables ξ  and η  over space U may be perfectly 
indistinguishable while perfectly related by an efficiently computable relation R.  
 
Proof: Let U={00,01,10,11} and random variables ξ and η have uniform distribution 
over U.  If   

( (01) | (00)) ( (10) | (00)) 1/ 2P Pξ η ξ η= = = = = = , 
( (00) | (01)) ( (11) | (01)) 1/ 2P Pξ η ξ η= = = = = = ,  
( (00) | (10)) ( (11) | (10)) 1/ 2P Pξ η ξ η= = = = = = , 
( (01) | (11)) ( (10) | (11)) 1/ 2P Pξ η ξ η= = = = = = , 

then random variables ξ and η are perfectly indistinguishable and at the same time 
perfectly related by opposite parities.  
□ 
 
Note, if we consider arbitrary efficient protocol, then we can get any output random 
variable produced by an efficient algorithm. Note, furthermore, relations are able to 
explore dependencies given in two-dimensional distributions, which standard 
distinguishers cannot on marginal distributions.  
 
Our intuitive feeling is that non-negligible standard distinguishability implies a non-
negligible and efficiently computable relation between the considered pair of random 
variables. The next technical lemma shows a corresponding result for the case of 
independent variables.  
 
Lemma 2: Assume two random variables ξ  and η  over the space U are 
computationally ( , )tε -distinguishable. If these variables are independent, then there 
exists an efficiently computable relation R, such that ( ) 2( , ) 1P R ξ η ε= > .  
 
Proof: Let Z denote an algorithm, which ( , )tε -distinguishes variables ξ  and η , i.e.  
 
( ) ( )( ) 0 ( ) 0P Z P Zξ η ε= − = >  

 
The statistical distance between probability distributions ( )D yξ  and ( )D yξ , y U∈  of 
random variables ξ  and η  is also at least ε . Let decompose space U to 0 1U U U= ∪ ,  

0 { : ( ) ( )}U y D y D yξ η= ≥ , 1 0\U U U= . It follows, that  ( ) ( )0 0P U P Uξ η ε∈ − ∈ >  

and ( ) ( )1 1P U P Uη ξ ε∈ − ∈ > . Hence ( )0P Uξ ε∈ > and ( )1P Uη ε∈ > . Let R be 
defined the following way: ( , ) 1R a b = , if 0 1{ } { }a U b U∈ ∩ ∈  and zero otherwise. 

Applying the assumed independence, we arrive at ( ) 2( , ) 1P R ξ η ε= > . Relation R is 
efficiently computable: let ( , ) 1R a b = , if { ( ) 0} { ( ) 1}Z a Z b= ∩ =  and zero otherwise.  
□ 
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A standard definition of security, in general, is a notion of breaking under different 
attack classes. Definition 2 of NM-CIA is also of this sort. In simulation-based 
approach (like in UC analysis) the essential point is what we consider the ideal notion 
of breaking.  It is an important problem, in general, to find the relationship between 
these two definitional approaches of secure implementation. It is a research problem 
also for NM-CIA.  
 
Instead of formula (1) we could define the interaction-proof property also by the 
following way:  
 
Definition 2’: 
The protocol is ( , , , )t r cε -secure under chosen instance attack, if for arbitrary 
distribution D over the input space, for arbitrary pair of efficiently computable 
relation R and for any adversarial algorithm CIAX  with complexity limit t, request 
limit r and corruption level c, there exists an adversary Y  with complexity parameters 
( , )t c  such that  
 

 ( )( ){ } ( )( ){ }( ), ( ) ( ), ( )CIAP R O M O X M P R O M O Y M ε− ≤ .  (1’) 

□ 
 
Note, adversary Y is an adversary against the stand-alone instance, therefore, by this 
definition we can focus better on the gain provided by the CIA-oracle.  
 
 
4. An abstract time model: event-driven Clock 
 
The goal of this section is to propose an abstract time model an event-driven Clock. 
Time is an abstraction. Heuristically, it is nothing else than a continuously growing 
index of irreversible changes which happen in the environment surrounding us. 
Indeed, if suddenly all these changes would be reversed we might feel it as a journey 
through the time into the past. The experience about the irreversibility of changes 
leads to the main property of time: it steps only forward. This means that the time is a 
handle for our thinking to arrange the events in order.  
 
The following plausible hypothesis is a justification of our approach: 
If we are not allowed to use a real time clock, then the only possible substitute is 
counting the number of appropriately chosen events within the instances of the 
protocol under examination.  
 
Related theoretical questions are the following: How can a time-aware protocol be 
analyzed in a purely symbolic system? How the answer depends on the adversarial 
model?  
Here we attempt to make a step towards the abstraction of the time source (the event-
driven Clock).  
 
We assume the standard asynchronous communication model ([5]), which is 
characterized by the following properties: within an instance only one party is 
communicating at any given time; reception of a message activates the sending of the 
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next message; messages are transmitted with the mediation of the adversary. This is a 
natural communication model for many cryptographic protocols as well as it models 
strong capabilities of the adversary in controlling communication between honest 
users. In such model the time of sending and receiving messages by honest users are 
the only relevant time-related events.  
 
Note, the Clock model is a tool used only in the analysis. The output of such an 
analysis could be considered as a “proof in event-driven Clock model” (coined after 
“proof in random oracle model”).  
 
 
4.1. The Clock 
 
First, we have to define the underlying set of events. The most natural selection for 
events, are the actions of communication between parties, i.e. the sending and the 
reception of protocol messages.  These are those time moments to which timing 
actions are usually set in time-aware protocols. At each occurrence of such an event, 
the Clock makes one step forward. The Clock has two input ports (Step, Time request) 
and one output port (Time reply) (Fig.3.) 
 
 

 
Clock 

Step 

   Time request 

   Time reply  
 

Fig.3. I/O ports of the Clock 
 
 
The Clock is a common resource for the instances of the protocol. The Clock starts 
running with the first message sending in the first instance. Within an instance, the 
ideal functionality controls the Clock by having exclusive access to Step, Time 
request and Time reply ports of the Clock.  
 
 

ER outu1! ER inu1? H

… 

TH 

M1 … AMi Mj Mn 

Clock 

 
 

Fig.4. Clock is a part of the trusted host (ideal system) 
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The work, which provided samples for symbolic analysis of cryptographic primitives 
in UC-framework is the BPW-approach detailed in [1]. Below we refer to a few 
notations and technical elements from this approach. 
 

In Fig.4 we see that parties have access to the Clock via the Trusted Host 
(TH). Machine TH models the protocol environment. In particular, it schedules the 
invocation of concurrent instances. In Fig.4 one instance is illustrated, where protocol 
machines 1,..., nM M  are the parties of the instance and where parties ,...,j nM M  are 
compromised.  
In database D of the trusted host, TH an entry has the following attributes (see [1]): 
 

1( , , arg, ,...., , , )n Aind type hnd hnd hnd len  
 
which are the following: the index of the entry, the data type (data, list, nonce, enc,… 
etc.), arguments (e.g. a pair of “lists” representing indexes pointing to the plaintext 
and public key behind an encryption (type enc)), the handlers identifying who knows 
this entry and the length of the entry.   

This database stores the history corresponding to the run of the protocol, i.e. 
all past and concurrently running instances of the protocol. Note, the index here is 
“correlated” with the time by the event driven Clock: it increases by one with each 
new entry. What is the point here: we can naturally include the event-driven Clock 
into this TH model. It is an index-like value as it is also an incrementally growing 
natural number. It could be a time data type, which is set by TH at corresponding 
requests of parties.        
 
When machine TH receives an input from a party as well as when TH sends an output 
to a party the Clock makes one step forward. The order of processing a protocol 
message sent from Party A to Party B  is shown in Fig.5.  
 
 

Party A Party B

TH 
(3) 

(4) (2,5) 

(6) 

Adversary 

(1) 

Clock 
 

 
Fig.5. The order of processing a message and stepping the Clock 

(A → TH→ Clock → Adversary → TH → Clock → B) 
 
We add a publicly available event-driven Clock also to the real system (Fig.6.).  
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… Parties of 
instance 1

Clock

Parties of 
instance m 

 
 

Fig.6. Clock functionality as a common resource in the real system 
 

The order of processing a message during message transmission between party A and 
B is the following: 
 
A  → Clock → Adversary → Clock → B 
 
We assume the synchronism of Clocks can be kept in a natural way between the 
event-driven Clock in the real and the ideal system.   
 
 
4.1. Properties of the event driven Clock 
 
Recall, an event-driven Clock model is thought to be used only in the analysis. The 
output of such an analysis could be considered as a “proof in event-driven Clock 
model”. What we can say about the reliability of an analysis carried out in the Clock 
model? In particular: What we can say about the set of potential attacks against the 
real protocol which are not captured in the Clock model?  
A thorough answer needs further research. Here we summarize a few preliminary 
thoughts and straightforward properties.  

When, in general, we speak about a secure emulation of a specification, we 
consider all the possible adversarial algorithms under complexity limitations. Among 
all algorithms we may find also algorithms which manipulate the speed of Clock. 
Note, it is done unintentionally, because the Clock model is used only for the purpose 
of analysis.  
 
For brevity, we use notation e-time for event-driven time and r-time for real-time.  
 
The natural properties of r-time are the following:  

• it steps only forward (it is mapped to an increasing integer number);  
• r-time is consistent with the “earlier/later” property: a larger r-time value 

corresponds to “later”;   
• the difference between two r-time values correspond to their time distance  

 
A usual assumption that the source of r-time cannot be manipulated, which means, 
that we do not consider physical attacks against the real-time clock.  Note, here we are 
talking about the time source and not about the communication with it.   
 
The manipulations by which an adversary could have effect on the e-time are the 
following: deletion, insertion, delaying of protocol messages. We do not assume a 
DoS attacker, therefore we exclude deletion attack. By insertion we mean generation 
of extra “traffic”, e.g. by invoking extra instances of the protocol.      
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Now we consider which r-time properties are retained by e-time. The answer will 
depend on the assumed model of the adversary, i.e. in contrary to real-time source it is 
sensitive to certain adversarial behavior.  

In particular: How e-time retains the (r-)time order and the relative (r-)time 
duration under attacks?  
 
First we consider the strongest adversary with respect to time manipulation, which is 
the standard assumption in the standard asynchronous communication model ([5]): the 
adversary sees all communication between the parties of the protocol and she is 
allowed to delay the protocol messages by her wish.  The other e-time sensitive attack 
is when the adversary generates extra communication, i.e. by invoking concurrent 
instances. For reference, we call such an adversary, the strongest adversary. 
 
Property 1: E-time retains the r-time order under the attack of the strongest 
adversary. (earlier/later consistency)  
Proof:  
Assume messages B and C arrive to TH by r–time t1 and t2, respectively, where t1< t2. 
By delaying message B, the adversary is able to exchange the r-time order of delivery 
of messages B and C. Note, the e-time order of delivery is changing, accordingly.   
When the adversary generates extra message traffic, she is able to “accelerate” e-time. 
Assume the adversary generates extra traffic between messages B and C. Note, such a 
manipulation neither affect the r-time or e-time order of the messages B and C.     
□ 
 
E-time distance between consecutive events is fixed to 1, therefore it cannot reflect 
the magnitude of r-time distance between them:   
 
Property 2: E-time is not consistent with r-time with respect to time durations under 
the attack of the strongest adversary: to different r-time intervals with the same length, 
e-time intervals with different length may correspond.   
Proof: 
Consider messages B and C from the previous proof.  
By delaying messages beyond r–time t2, the adversary can shrink the e-time distance 
between messages B and C (at delivery).  
If the adversary generates extra message traffic between r–time t1 and t2, she can 
widen the e-time distance between message B and C, while their r-time distance 
remains t2-t1.  
□ 
 
In sum, in case of the strongest adversary our best hope from e–time is to retain 
earlier/later consistency, however we cannot attain consistency with respect to  
(r-)time duration.  

Recall, when we talk about adversarial attack against e-time, it means that we 
imagine an analysis in the event-driven Clock model and we consider all possible 
adversarial algorithms (under complexity constraint), among them also those which 
are attacks against e-time. A more fair approach to e-time is when we restrict the 
adversary to a smaller set of attacks which are not directed against e-time.      

For example, if we do not allow the adversary to generate extra traffic in order 
to distort e-time, the adversary is able only to shrink e-time intervals by her delaying 
capabilities (cf. the proof of Property 2).  If such time interval corresponds to a 
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message-acceptance time-window by an honest party, then the expected goal of an 
adversary is to widen and not to shrink time gates between interacting instances.  

Note, furthermore, if an attack exists only in the Clock model, then a security 
claim in this model is a conservative statement. 

 
With Section 4 our intention was to propose a potential direction towards a 

completely symbolic analysis of time-aware protocols, and consider (straightforward) 
limitations. Further research is needed to provide a thorough insight to how reliable an 
analysis can be carried out in the Clock model. Adversarial manipulations of e-time 
which open a gate to “artificial” attacks against the protocol amplify the power of the 
adversary and may lead to needlessly strong security requirements against a protocol 
or in other words to a security claim, which is a conservative statement. On the other 
side, we do not expect relevant attacks efficient against r-time model and inefficient 
(negligible) against e-time model.      
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