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Abstract. In TCC 2007, Adida and Wikström proposed a novel approach to shuffle, called a public shuffle,
in which a shuffler can perform shuffle publicly without needing information kept secret. Their scheme uses
an encrypted permutation matrix to shuffle ciphertexts publicly. This approach significantly reduces the cost
of constructing a mix-net to verifiable joint decryption. Though their method is successful in making shuffle
to be a public operation, their scheme still requires that some trusted parties should choose a permutation to be
encrypted and construct zero-knowledge proofs on the well-formedness of this permutation.
In this paper, we propose a method to construct a public shuffle without relying on permutations and ran-
domizers generated privately: Given an n-tuple of ciphertext (c1, . . . , cn), our shuffle algorithm computes
fi(c1, . . . , cn) for i = 1, . . . , ` where each fi(x1, . . . , xn) is a symmetric polynomial in x1, . . . , xn. De-
pending on the symmetric polynomials we use, we propose two concrete constructions. One is to use ring
homomorphic encryption with constant ciphertext complexity and the other is to use simple ElGamal encryp-
tion with linear ciphertext complexity in the number of senders. Both constructions are free of zero-knowledge
proofs and publicly verifiable.
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1 Introduction

Given n distinct elements, (m1, . . . ,mn), from each sender, a shuffle is an n-party functionality that
allows all users to learn

⋃n
i=1{mi}, but does not reveal any information on link between mi and its

sender without negligible probability. Shuffles can be used in various applications including e-voting
and private set union ensured to hide the link between messages and their senders. Chaum [12] firstly
provided a way to mix messages by combining a private permutation and a fresh randomness, which
is called a mix-net. Here the private permutation means the random permutation of each mix-server.
A mix-net consists of multiple mix-servers which have their private permutation and randomizers. If a
mix-net consists of a single mix-server, then the mix-server knows who sent what message. Thus, there
must be at least one honest mix-server in a mix-net.

The assumption that there exists an honest mix-server (a.k.a., a trusted third party) in real life,
however, may be quite strong. Thus many researchers have focused on strengthening verifiability in
Chaum’s construction (e.g., [18,26,27,17,35,21]). Their goal is to efficiently enforce each mix-server to
behave as being in public under the assumption. When a shuffle allows public verifiability, in general,
by using zero-knowledge proofs, but requires a secret permutation and randomizers, Neff [26] (and later
Groth [20]) call it a verifiable secret shuffle.

In TCC 2007, Adida and Wikström [3] proposed a way by which mix-servers carry out shuffling in
public. Their work is based on the notion of public-key obfuscation studied by Ostrovsky and Skeith [29]
for different purposes. Later, in PKC 2012, Parampalli et al. [31] provided efficiency improvements
using permutation networks instead of permutation matrix. Very informally, their basic idea is that mix-
servers precompute their private permutation and then publish it in public. Though secret information
is concealed by a homomorphic cryptosystem, it should be generated by a trusted party. Here and in
what follows, we call their work a public shuffle with a private permutation. In this paper, we will try to
construct a verifiable public shuffle without a private permutation.



1.1 Our Contributions and Underlying Ideas

In this work, we consider the problem of constructing a verifiable public shuffle. Our contributions are
twofold: (1) definitions; (2) constructions.

Motivations. As mentioned above, in [3] shuffles are precomputed with a random permutation and
randomizers and published in public together with zero-knowledge proofs. Although shuffling can be
run in public, secret information used in precomputing is assumed to be kept secret. In order to find
the possibility of removing the secret information that precomputing shuffles needs to use, we con-
sider homomorphic tallying since only public computation is required for the anonymization process.
Indeed, Benaloh and Yung [8] proposed a Yes/No voting scheme using homomorphic tallying.1 How-
ever, homomorphic tallying cannot recover the individual input plaintexts. This can be problematic in
some cases including write-in votes. One feasible solution is to encode input messages into primes be-
fore encrypting them. However, this way has two limitations: (1) the ciphertext space should be large;
(2) recovering the original messages (e.g., factorization over Z) may require exponential computation
complexity. In this paper, we give verifiable public shuffles that require only public computation, and
support the original message recovery in polynomial time.

Our definitions. In [28], the authors define a shuffle over a re-randomizable public-key cryptosystem
as a polynomial-time algorithm that takes a set of n input ciphertexts and a random permutation, and
outputs a set of n output ciphertexts. Other definitions do not make a big difference from this. As we will
show later, this definition seems too restrictive to exploit all possibilities for achieving a construction
that roughly corresponds to our goal. Our definitional approach consists of two steps. First, we relax the
restriction that the number of output ciphertexts should be equal to that of input ciphertexts. We call it
generalized shuffle. Our interpretation of verifiable secret shuffles is that they play a role of hiding the
order of input ciphertexts using a secret permutation and a fresh randomness. In contrast, our verifiable
public shuffles remove the order of input ciphertexts itself. In Section 2, we formally define this concept.
Then, we formally describe what means by a secure shuffle with respect to verifiability and unlinkability
(in [28] the authors called it shuffle privacy) in Section 2.2.

Our constructions. Our construction of verifiable public shuffles also consists of two steps. First, in
Section 3, we show how construct a verifiable public shuffle from a ring homomorphic cryptosystem.
We would like to stress that if we assume a ring homomorphic cryptosystem, this construction is a more
or less straightforward result, and therefore may seem obvious in hindsight, but it is actually non-trivial
as long as a group homomorphic cryptosystem is concerned. In Section 4, we then show how to construct
public shuffle schemes from a group homomorphic cryptosystem.

Our idea is to use a homomorphic encryption Enc on a Unique Factorization Domain (UFD) R and
symmetric polynomials f1, . . . , f` ∈ R[x1, . . . , xn] satisfying

fi(Encpk(m1), . . . ,Encpk(mn)) = Encpk(fi(m1, . . . ,mn))

for m1, . . . ,mn ∈ R. Given an n-tuple of ciphertexts (c1, . . . , cn) with ci = Encpk(mi), our shuffle
algorithm outputs fi(c1, . . . , cn) = Encpk(fi(m1, . . . ,mn)) for i = 1, . . . , `. This output is not a shuffle
of (c1, . . . , cn), but plays the same role with it, i.e. their decryption can be transformed into the set of
original messages {m1, . . . ,mn} using factorization on R[x], which is a UFD. It is easy to see that
this shuffle provides unlinkability between inputs and outputs because a permutation of inputs does not
result in changes of the output of shuffle.

1 Due to the Paillier cryptosystem [30], even though the message space dramatically increased, aggregate voting
schemes [13,14,6] do not consider the original message recovering.
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Using a ring homomorphic cryptosystem, we can construct a public shuffle with O(1) ciphertext
complexity in the number of senders. However, ring homomorphic cryptosystems are highly expensive
and not practical yet. Thus, we construct public shuffles using a group homomorphic encryption–CCA1-
secure ElGamal encryption, at the cost of O(n) ciphertext complexity. Note that a basic public shuffle
without relying on a trusted third party yields O(n2) ciphertext complexity where n is the number of
senders.

Our construction using a ring homomorphic encryption hasO(n)(E+D)+O(n2 log p)MFp compu-
tational complexity, where E, D, and MFp denote the cost of encryption, decryption and multiplication
in Fp, respectively. The construction using CCA1-secure ElGamal encryption over Fp3 has O(n2 log p)
MFp computational complexity. In contrast, the Adida and Wikström scheme requires O(n2) exponen-
tiations to precompute and evaluate.

1.2 Related Work

Shuffles were introduced by Chaum [12] as a new primitive that can be used to build a mix-net, and
the problem of verifiable shuffles was introduced by Sako and Kilian in [33]. Since then the work on
verifiable shuffles in the next years has been extensive and varied [1,2,18,26,27,17,35,21,36,7]. Abe [1]
considered the problem of compact proofs of shuffles. Later Furukawa and Sako [18] use a permuta-
tion matrix to shuffle the ciphertexts More recently, generalizing the Neff’s scheme [26], Groth and
Lu [21] give a verifiable shuffle that is non-interactive, uses paring-based verifiability, and obtains linear
proof size in the number of senders. In Eurocrypt 2012, Bayer and Groth [7] achieves sub-linear proof
size in the number of senders. The common properties that all of these schemes hold are that a shuf-
fler must keep his permutation and randomness secret. Therefore, if we build a mix-net using one of
these schemes, then we should assume that there exists at least one honest shuffler (a.k.a a mix-server).
To weaken such a strong assumption, Adida and Wikström [3] proposed a way to shuffle the cipher-
texts in public. Later Parampalli et al. [31] improved the computational efficiency. However, a private
permutation and secret randomizers are still required in the setup phase but not in the shuffle phase.
The advantage, as outlined above, that our construction has over all of these is that our shuffles do
not require any secret information such as permutations and randomizers; we do not require expensive
zero-knowledge proofs to support public verifiability. See Appendix E for details on concurrent related
work.

2 Generalized Shuffle

Notation. For n ∈ N, [1, n] denotes the set {1, . . . , n}. If A is a probabilistic polynomial-time (PPT)
machine, we use a ← A to denote A which produces output according to its internal randomness. In

particular, if U is a set, then r $←− U is used to denote sampling from the uniform distribution on U . For
an integer a, ‖a‖ denotes the bit length of a.

We shall write

Pr[x1
$←− X1, x2

$←− X2(x1), . . . , xn
$←− Xn(x1, . . . , xn−1) : ϕ(x1, . . . , xn)]

to denote the probability that when x1 is drawn from a certain distribution X1, and x2 is drawn from a
certain distribution X2(x1), possibly depending on the particular choice of x1, and so on, all the way to
xn, the predicate ϕ(x1, . . . , xn) is true.

A function g : N → R is negligible if for every positive polynomial µ(·) there exists an integer N
such that g(n) < 1/µ(n) for all n > N .

LetR(·, ·) be a polynomial-time computable relation in the size of its first input. Associated withR,
we consider a language LR = {x : ∃w such thatR(x,w) = 1}. A proof system (P,V) for a relation
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R allowing a prover P to prove that a value x is in the associated language LR consists of two PPT
algorithms: The algorithm P that outputs a proof Γ that Γ ∈ LR and the algorithm V that verifies the
proof.

2.1 Definitions

In this section, we give a formal definition of generalized shuffle in a public-key setting. We begin
with the definition of public-key encryption, following its variants supporting group operations or ring
operations.

Definition 1 A public-key cryptosystem E is a 3-tuple of PPT algorithms (KG,Enc,Dec) such that

1. The key generation algorithm KG takes as input the security parameter λ and outputs a pair of
keys (pk, sk). For given pk, the message space Mpk and the randomness space Rpk are uniquely
determined.

2. The encryption algorithm Enc takes as input a public key pk and a message m ∈Mpk, and outputs
a ciphertext c ∈ Cpk where Cpk is a finite set of ciphertexts. We write this as c ←− Encpk(m). We
sometimes write Encpk(m) as Encpk(m, r) when the randomness r ∈ Rpk used by Enc needs to be
emphasized. .

3. The decryption algorithm Dec takes as input a private key sk and a ciphertext c, and outputs a
message m or a special symbol ⊥ which means failure.

We say that a public-key cryptosystem E is correct if, for any key-pair (pk, sk) ←− KG(λ) and any
m ∈Mpk, it is the case that: m← Decsk(Encpk(m)).

Definition 2 ([19]) A public-key cryptosystem E = (KG,Enc,Dec) with a security parameter λ is
called to be semantically secure (IND-CPA secure) if after the standard CPA game being played with
any PPT adversary A = (A1,A2), the advantage Advcpa

E,A(λ), formally defined as∣∣∣∣Pr
b,r

[
(pk, sk)←− KG(λ), (state,m0,m1)←− A1(pk),
c = Encpk(mb; r) : b←− A2(state,m0,m1, c)

]
− 1

2

∣∣∣∣ ,
is negligible in λ for all sufficiently large λ.

In the experiment above, when we allowA1 to query the decryption oracle, if the advantage Advcca
E,A(λ)

is negligible, we say E is IND-CCA1 secure, in short, CCA1 secure.
For a public-key encryption scheme E = (KG,Enc,Dec) with an additional randomized algorithm

ReRand that, on input a ciphertext outputs a new ciphertext with the same message, a given adversary
A = (A1,A2), let Advrerand

E,A (λ) be the advantage of the following game:∣∣∣∣∣∣∣Pr
b

 (pk, sk)←− KG(λ), (state, c)←− A1(pk),

ĉ =

{
Encpk(Decsk(c)) if b = 0

ReRandpk(c) if b = 1
: b′ ←− A2(state, c, ĉ)

− 1

2

∣∣∣∣∣∣∣ .
We say that the public-key encryption scheme is re-randomizable if for all PPT algorithms A, the ad-
vantage in the game above is negligible in λ.

Most public-key cryptosystems are defined over algebraic groups or rings, such as Z×N or ZN .
Public-key cryptosystems defined over a group naturally support a single operation, usually denoted
by multiplication or addition, and cryptosystems defined over a ring naturally support two operations,
usually denoted by addition and multiplication. Thus, if the encryption algorithm for a public-key cryp-
tosystem, where both the message space and the ciphertext space are groups (or rings), is homomorphic,
then such public-key cryptosystems are referred to as homomorphic cryptosystems. Now we define them
more formally.
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Definition 3 A group homomorphic cryptosystem is a public-key cryptosystem (KG,Enc,Dec) where
the set of possible messages Mpk and the set of possible ciphertexts Cpk are both groups such that for
any public key pk and any two ciphertexts c1 ∈ Encpk(m1), c2 ∈ Encpk(m2), the following condition
holds:

Decsk(c1 · c2) = m1 ·m2

where · represents the respective group operations in Cpk and Mpk. When additive notation is used,
Decsk(c1 + c2) = m1 +m2.

We can easily define a homomorphic encryption scheme with a re-randomization algorithm using a
similar way above.

Definition 4 A ring homomorphic cryptosystem is a public-key cryptosystem where the set of possible
messages Mpk and the set of possible ciphertexts Cpk are both rings such that for any public key pk
and any two ciphertexts c1 ∈ Encpk(m1), c2 ∈ Encpk(m2), the following conditions hold:

1. Decsk(c1 + c2) = m1 +m2

2. Decsk(c1 · c2) = m1 ·m2

where + and · represent the respective ring operations in Cpk and Mpk.

Now we describe the syntax of a generalized shuffle. First, we rephrase the formal definition of a
verifiable shuffle given by Nguyen et al. [28, Def. 4]. In [28] they extensively use a re-randomizable
public-key encryption scheme. We then extend it to the definition of a generalized shuffle. We addition-
ally introduce some notation used to define public verifiability.

Let E = (KG,Enc,Dec,ReRand) be an encryption scheme with a re-randomization algorithm sat-
isfying semantic security. Let c, ĉ be two lists of ciphertexts, but all elements of each list belong to the
ciphertext space Cpk defined in E . We use Σn to denote the set of all permutations on [1, n]. For a set
X = {a1, . . . , an}, we denote by |X| the number of elements in the set, i.e., |X| = n. Let Φ(·, ·) be an
efficient shuffle relation that holds if the witness w =

(
π, s1, . . . , s|c|

)
demonstrates that |c| = |ĉ| and

∃
(
π, s1, . . . , s|c|

)
,∀ i ∈ [1, |c|] : ĉi = ReRandpk(cπ(i), sπ(i)) (2.1)

where π ∈ Σ|c|, ci ∈ c, and ĉπ(i) ∈ ĉ. Associated with Φ, we define a language LΦ = {x = (δ, c, ĉ) :
∃w such that Φ(x,w) = 1} where δ is a public parameter including pk.

Definition 5 A verifiable shuffle scheme ΦE over a re-randomizable public-key cryptosystem E =
(KG,Enc,Dec,ReRand) is a triple of PPT algorithms (Setup, Shuffle,Verify) which works as follows:

– δ ← Setup(λ, n) : The setup algorithm takes as input a security parameter λ and n ∈ N, and
outputs a public parameter δ := (pk,Σn) where pk ←− KG(1λ).

– (ĉ, Γ ) ← Shuffle(δ, w, c) : First the shuffle algorithm generates a random permutation π ∈ Σn
and a list of randomness (s1, . . . , sn) ∈ (Rpk)

n, and sets the secret parameter w = (π, s1, . . . , sn).
Using the public parameter δ and secret parameter w, the shuffle algorithm encodes a list of cipher-
texts c = (c1, . . . , cn) as a shuffled set of ciphertexts ĉ = {ĉ1, . . . , ĉn} such that Decsk

(
cπ(i)

)
=

Decsk (ĉi) for all i ∈ [1, n] where ci = Encpk(mi, ri) and ĉi = ReRandpk
(
cπ(i), sπ(i)

)
. Finally

it forms a proof Γ for the shuffle performed by the shuffler in possession of π $←− Σn and a list of
randomness {s1, . . . , sn}.

– {accept, reject} ← Verify(δ, c, ĉ, Γ ) : The verification algorithm takes as input the public param-
eter δ, two lists of ciphertexts c, ĉ and a proof Γ , and checks the validity of the proof by running
(P,V)(δ, c, ĉ, Γ ); if this fails output reject and otherwise output accept.
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When the shuffle algorithm requires the secret parameter in order to output a permuted and re-
randomized version of input ciphertexts, we call it secret shuffle. If the verification algorithm does not
requires any secret parameter, we call it (publicly) verifiable shuffle. Thus, if w is secret but Verify does
not take it as input, we call this type of shuffle schemes publicly verifiable secret shuffle. We remark
that decryption shuffles also belong to secret shuffle because they use a random secret permutation in
shuffling.

As a symmetry it is not difficult to make the definition of publicly verifiable public shuffle or pub-
lic shuffle for short. Namely, public shuffle is a publicly verifiable shuffle scheme such that its shuffle
algorithm also does not require any secret parameter. However, it is not easy to design and construct
a public shuffle scheme following Definition 5. Although Adida and Wikström [3] and Parampalli et
al. [31] achieve public shuffle by utilizing the public-key obfuscation technique, secret parameters in
their schemes are required in the setup algorithm instead of the shuffle algorithm. To remove dependen-
cies on secret parameters in a shuffle scheme, we first consider how to construct a secret shuffle without
a secret permutation as a intermediate step toward public shuffle. However, we observed that it is diffi-
cult to achieve a secret shuffle without requiring a secret permutation under the legacy definition. Hence,
we will relax the shuffle definition above in order to realize the notion of public shuffle. In particular,
it is worth noting it has been a long standing hard problem to design a secure shuffle protocol without
relying on TTP.

Definition 6 (Generalized Shuffle) Let E = (KG,Enc,Dec,ReRand) be a re-randomizable public-
key cryptosystem with semantic security. A generalized shuffle scheme Φ̃E over E is a triple of PPT
algorithms as defined in Definition 5 except for

– (δ, w)← Setup(λ, n, `) : The setup algorithm takes as input a security parameter λ and parameters
n, ` ∈ N, and outputs a public parameter δ := (pk), a parameter w :=

(
{σj}`j=1, {Ti}ni=1

)
where

pk ←− KG(1λ), σj : (Cpk)
n → Cpk, and Ti : (Mpk)

` →Mpk.
– (ĉ, Γ ) ← Shuffle(δ, w, c) : The shuffle algorithm takes as input a pair of parameters (δ, w) and

a list of ciphertexts c = (c1, . . . , cn) where ci ∈ Encpk(mi), and outputs a set of ciphertexts ĉ =
{ĉ1, . . . , ĉ`} where ĉj = ReRandpk (σj(c1, . . . , cn), r̂j)) along with a proof Γ , satisfying

Decsk(ci) = Ti′ (Decsk(ĉ1), . . . ,Decsk(ĉ`))

for some i, i′ ∈ [1, n], j ∈ [1, `].

A generalized shuffle scheme is correct if for all messages mi ∈Mpk and any n, ` ∈ N, there exists
each transformation Ti : (Mpk)

` →Mpk such that

{T1 (Decsk(ĉ1), . . . ,Decsk(ĉ`)) , . . . ,Tn (Decsk(ĉ1), . . . ,Decsk(ĉ`))}
= {m1, . . . ,mn}
= {Decsk(c1), . . . ,Decsk(cn)}.

(2.2)

In the above definition, if we choose functions σj’s and transformations Ti’s such that {σ1, . . . , σn}
and {T1, . . . ,Tn} are the set of all projection maps corresponding to random permutation π, then we
obtain a standard shuffle defined in Definition 5. Note that in this case, ` = n andw is a secret parameter.

Definition 7 (Generalized Public Shuffle) A generalized shuffle scheme Φ̃E is public if the parameter
w is public.
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2.2 Security Model

In this section we give the security definition for generalized shuffle. Before describing the formal
definition we identify which classes of entities participate in a given shuffle scheme, which will be
given in Appendix A. Our security definition for shuffle begins with the definition given by [28], but we
need to slightly modify theirs since some parameters could be public or secret in generalized shuffle.

Security Definition. As mentioned in [28], one of the primary requirements for being secure is veri-
fiability and the other is unlinkability. Roughly speaking, verifiability means that a malicious shuffler
cannot produce an incorrect output without detection by verifiers. What means that a shuffle scheme is
unlinkable is that it is hard to find a permutation from input ciphertexts and output ciphertexts.

In this paper the adversary is PPT bounded and can be either semi-honest or malicious. A semi-
honest party is assumed to follow the protocol exactly as what is prescribed by the protocol, except that
it analyzes the records of intermediate computations. On the other hand, a malicious party can arbitrarily
deviate from the protocol. However, we will not consider preventing those malicious behaviors such as
independently and arbitrarily selecting inputs from the message space, and quitting the protocol at any
step.

Verifiability. For a generalized shuffle scheme, we first modify the shuffle relation described in Eq. (2.1).
A generalized shuffle relation Φ̃(x,w) is satisfied if the witness w = (s1, . . . , s`) demonstrates that

∃ (s1, . . . , s`) , ∀ j ∈ [1, `] : ĉj = ReRandpk (σj(c1, . . . , cn), sj) . (2.3)

The completeness condition of a proof system requires that for all x = (δ, c, ĉ) ∈ LΦ̃, the verifica-
tion algorithm V of the proof system always accept. The soundness condition requires that if x 6∈ LΦ̃,
then V rejects with overwhelming probability. Verifiability is formally rephrased in Appendix A.

Recall that our eventual goal is to construct a public shuffle scheme. According to our definition, the
public shuffle scheme makes its shuffle algorithm run without any secret information. What this means
is that we need to use a different technique from zero-knowledge proofs for checking whether a shuffler
works correctly. Indeed it can be easily done by re-computing what the shuffler computed only using
public values. Let denote ε the empty string. We define a public shuffle relation Φ̃Pub(x,w) with the
witness w = ε that holds if

∃(σ1, . . . , σ`),∀j ∈ [1, `] : ĉj = σj(c1, . . . , cn) (2.4)

where x = (δ, c, ĉ) and δ, c with ĉ defined as in Definition 6. Since σj∈[1,`] is a public n-argument
function, any verifier is able to check whether a public shuffler is cheating or not. It is straightforward
to define completeness and soundness of a proof system for a public shuffle relation with associated
language LΦ̃Pub

.

Unlinkability. In order to show that a verifiable secret shuffle is unlikable, Nguyen et al. [28] proposed
two security models: Chosen Permutation Attack (CPAΣ) and Chosen Transcript Attack (CTAΣ). The
CPAΣ security condition requires that even though the adversary A chooses two permutations of his
choice, it should not distinguish which permutation was used to produce an output list of ciphertexts,
with non-negligible advantage. On the other hand, the CTAΣ security notion states that although the
adversary can query an inversion oracle on (c, ĉ), which will give A a permutation π such that ĉπ(i) =
ReRand(ci, ·) for all i ∈ [1, |c|], it should not have non-negligible advantage in guessing which of the
two permutations in its challenge was used. The unlinkability security experiment by Nguyen et al. [28]
is shown in Appendix A.

In Definition 6, w can be public or secret. That is, a generalized shuffle does not always take the
information about permutation as a secret parameter. So we cannot directly apply the Nguyen et al.’s
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model to prove the unlinkability security of generalized shuffles. Recall that even if a generalized shuffle
scheme requires only a list of randomness in its definition as a secret parameter, it is a secret shuffle. We
need a new one, but this is not very much different from the Nguyen et al.’s model. For completeness,
we provide the security model for unlinkability of generalized secret shuffles in Appendix A.

Now we consider the case that a generalized shuffle scheme does not require even a list of random-
ness, i.e., during shuffling a shuffler does not use any secret information. We see that we cannot rely on
the Nguyen et al.’s model at all. Instead we define a specific security experiment for generalized public
shuffles.

Definition 8 (Unlinkability for Generalized Public Shuffle) Let Φ̃E = (Setup,Shuffle,Verify) be a
generalized public shuffle scheme and A = (A1,A2) be an adversary.

Experiment ExpPubShf
A (Φ̃E , λ)

(δ, w)← Setup(λ, n, `);
(state, π0, π1,m)← AOD

1 (δ, n, `) where πi ∈ Σn, i ∈ {0, 1} and m = (m1, . . . ,mn);

(ĉ, Γ )← Shuffle(δ, w, c) where ci = Encpk
(
mπb(i), ri

)
with b $←− {0, 1};

b′ ← AOD
2 (ĉ, c, w, state);

where OD is the decryption oracle.

In the experiment above, A2 is not permitted make the query OD(ci) for all ci∈[1,n] ∈ c. We define
the advantage of an adversary A, running in probabilistic polynomial time and making a polynomial
number of queries, as:

AdvPubShf
A (Φ̃E , λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
A generalized public shuffle scheme is unlikable if the advantage AdvPubShf

A (Φ̃E , λ) is negligible in the
security parameter λ.

2.3 Cryptographic Assumption

Let Gq be a cyclic group of order q, not necessarily prime, with a generator g. Given an algorithm D,
that takes as input quadruples of group elements and outputs a bit, the DDH-advantage of D with a
generator g is defined as

Advddh
D,g(λ) :=

∣∣∣Pr
[
α, β

$←− Zq : D(g, gα, gβ, gαβ) = 1
]
− Pr

[
α, β, γ

$←− Zq : D(g, gα, gβ, gγ) = 1
]∣∣∣ .

If Advddh
D,g is negligible for any polynomial time adversaryD and any generator g, we say that the DDH

assumption holds for Gq.
We consider a group Gq where DDH problem is hard. It induces a subgroup of order q in the group

of modular residues Z×p such that q|(p− 1), ‖p‖= 2048, ‖q‖= 256 and a group of points on an elliptic
curve with order q for ‖q‖= 256. For more examples of groups, refer to [9].

3 Instructive Constructions

In this section we provide a generalized public shuffle using a ring homomorphic cryptosystem. That
is, the shuffle schemes work correctly without a secret parameter such as a private permutation. Let
us denote (ρ, η)-E a ring homomorphic cryptosystem supports ρ additions and η multiplications on
encrypted data.

8



Construction 1. The basic intuition of our first generalized shuffle scheme is as follows: Let n1 =(
n
bn/2c

)
and n2 = n − 1. Consider a semantically secure cryptosystem (n1, n2)-E on a Unique Fac-

torization Domain (UFD) R, which allows re-randomization. Each message mi is encrypted into ci ∈
Enc

(n1,n2)
pk (mi) by each sender Si for 1 ≤ i ≤ n. After receiving all the ci’s from each sender, a shuffler

computes ĉk = σk(c1, . . . , cn) ∈ Enc
(n1,n2)
pk (σk(m1, . . . ,mn)) where σk is the k-elementary symmetric

polynomial with
σk(x1, . . . , xn) =

∑
1≤i1<...<ik≤n

xi1 · · ·xik ,

for each k ∈ [1, `]. Since the underlying encryption is a ring homomorphism, the shuffler can carry out
such computations over ciphertexts.

Let us check that this scheme is correct. Decrypting an `-tuple ciphertext {ĉ1, . . . , ĉ`} received
from the shuffle protocol, any party who holds the private key sk learns all the coefficients of F (t) =∏n
i=1(t−mi) ∈ R[t]. SinceR[t] is also a UFD, F (t) is uniquely factorized into irreducibles (t−mi). For

example, such a computation clearly runs in polynomial time in log p on R = Fp. Since a factorization
algorithm outputs the same result on inputs F (t) and Fπ(t) =

∏n
i=1

(
t−mπ(i)

)
for any permutation π

of n elements, by the Definition 6 ĉ1, . . . , ĉ` can be regarded as a generalized shuffle of c1, . . . , cn.
As a careful reader will observe, another generalized shuffle can be constructed from (1, n)-E . The

full description of this construction is given in Appendix B.

4 Main Constructions

The constructions presented in the previous section require the use of a ring homomorphic encryption
scheme, which currently may not be practical, but apparently would be an overkill for applications such
as shuffle. In this section we show how to construct generalized public shuffle schemes using an encryp-
tion scheme with only a group homomorphism, specifically ElGamal encryption [16] (due to technical
reason, in fact we will use Damgård ElGamal [15]). The first generalized shuffle scheme extensively
uses ElGamal encryption over extension fields. The other shuffle scheme is based on ElGamal encryp-
tion on prime fields, so it is more intuitive than the former but has a restriction on the size of input
messages.

4.1 Building Blocks

We present some building blocks used to construct generalized public shuffle schemes.

ElGamal Encryption over Fp3 . An ElGamal encryption scheme over Fp3 consists of the following
three polynomial time algorithms (KG,Enc,Dec):

– KG(1λ): The key generation algorithm chooses a large prime p such that (p3−1) = (p−1)(p2+p+
1) = 2q1q2 for large primes q1, q2. Then select an irreducible polynomial ℘(t) ∈ Fp[t] of degree 3
and a generator g(t) from Gq1q2 which is a multiplicative subgroup of F×

p3
of order q1q2. It computes

y(t) = g(t)x mod ℘(t) where a secret key x is randomly chosen from [0, p3 − 2], and publishes a
public key pk = 〈p,Gq1q2 , g(t), y(t), ℘(t)〉.

– Encpk(m(t)): Encryption with the public key pk and message m(t) ∈ Gq1q2 proceeds as follows.
First, a random value r ∈ [0, p3 − 2] is chosen. The ciphertext is then published as:

C(t) = (v(t), u(t)) := (g(t)r mod ℘(t),m(t) · y(t)r mod ℘(t)) .

– Decsk(C(t)): Suppose that a ciphertext C(t) = (v(t), u(t)) is encrypted with a public key pk and
we have a secret key x. Then the ciphertext can be decrypted as:

m(t) ≡ u(t) · v(t)−x mod ℘(t).

9



Parameter Generation. First, we check whether there exists a large prime p such that p3 − 1 = (p −
1)(p2+p+1), and p = 2q1+1 and a prime q2 = p2+p+1. Assuming the Bateman-Horn conjecture [4,5],
the number of primes of the form (pd − 1)/(p− 1) = ψd(p) not exceeding t, denoted by H(t), is given
by

H(t) ∼ c
∫ t1/2

2
(log u)−2du

for a constant c ≈ 2 where ψd(p) is the d-th cyclotomic polynomial. Therefore, we see that the proba-
bility that ψd(p) is prime for an integer p� t is significant.

In addition, we need to choose a sufficiently large prime p to resist against the index-calculus attack.
In order to obtain the ElGamal encryption scheme with semantic security, we take two subgroups Gq1

and Gq2 as follows:

Gq1 = {a(t)2q2 : a(t) ∈ (Fp[t]/℘(t))×} and Gq2 = {a(t)2q1 : a(t) ∈ (Fp[t]/℘(t))×}.

In particular, we set a generator g = g1g2 of Gq1q2 such that 〈g1〉 = Gq1 and 〈g2〉 = Gq2 .

Security Analysis. Now we verify whether the DDH assumption holds in Gq1q2 .

Lemma 1 Let Gq1 and Gq2 be groups of prime order q1, q2, respectively, where gcd(q1, q2) = 1. Sup-
pose that the DDH assumption holds in Gq1 and Gq2 . Then the DDH assumption holds in the group
Gq1q2 .

Proof. Suppose that there exists an algorithm D and a generator g0 ∈ Gq1q2 such that Advddh
D,g0 is

not negligible. We want to show that there exists an algorithm D′ and generator g1 ∈ Gq1 such that
Advddh

D′,g1 is not negligible. Choose g1 := gq20 and suppose that we are given a quadruple (g1, g
a
1 , g

b
1, g

c
1).

We first choose a triple of random values x, y, z $←− Zq1q2 . Then compute
(
g1g2, g

a
1g
x
2 , g

b
1g
y
2 , g

c
1g
z
2

)
, and

submit the quadruple to D. According that c = ab or c is a random value in Zq1q2 , the distinguisher
may answer the query. Hence, if the output of D is 1, then ab ≡ c mod q1. A similar argument holds for
Gq2 . ut

Message Encoding. Since a message m ∈ {0, 1}∗ or m ∈ Fp in general, we need to give a way
to encode the message into a message space of our ElGamal encryption. Without loss of generality,
suppose that a message m ∈ Fp. We write the message m by m(t) := t −m. We then encrypt m(t)
using the ElGmal encryption scheme over Fp3 . As a result, to provide a natural encoding that embeds an
input m(t) ∈ Fp[t] into Gq1q2 , we should slightly modify the encryption algorithm Encpk(·) as follows:

u(t) = m(t)2 · y(t)r mod ℘(t),

while keeping v(t) unchanged. We can easily check that the modified ElGamal encryption scheme with
this message encoding is semantically secure under the DDH assumption in Gq1q2 by Lemma 1.

Keeping the Shuffler Honest without Zero-knowledge Proofs. One important property of our con-
struction allows to prevent a shuffler from behavior maliciously without depending on zero-knowledge
proofs (ZKPs). This gets rid of the expensive cost of computation and communication required for ZKPs
mandatorily. For this purpose, a verifier only have to re-compute the shuffler’s output using public val-
ues.

4.2 A Generalized Public Shuffle Scheme Based on Polynomial Factorization

Since the decryption oracle is given to adversary in the definition 8, we need CCA1-secure ElGamal
encryption. One candidate is Damgård ElGamal which satisfies CCA1 security [15]. We consider a
variant of Damgård ElGamal encryption over Fp3 given in Appendix F, which is also CCA1-secure in a
cyclic subgroup of F×

p3
.
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Extended Damgård ElGamal Encryption. Turning our basic idea into constructing a generalized pub-
lic shuffle scheme requires that we modify the basic Damgård ElGamal (DEG) encryption over Fp3 . We
just describe modifications for extended DEG encryption over Fp3 , denoted by Ed = (KGd,Encd,Decd).
According to modified parameters, its encryption and decryption algorithms should be modified as fol-
lows:

– Modifying Key Generation. We run KGd(1λ) as in the basic scheme. Further, choose ` irreducible
polynomials ℘1(t), . . . , ℘`(t) ∈ Fp[t] of degree 3. Find a field isomorphism φj : Fp[t]/℘(t) →
Fp[t]/℘j(t) for j ∈ [1, `]. Finally compute yj = φj(y) and hj = φj(h) for j ∈ [1, `], and
publish pk = (g, y, h, {yi}`i=1, {hi}`i=1,Gq1q2 , ℘(t), {℘i(t)}`i=1, {φi}`i=1) and keep a secret key
sk = (x1, x2).

– Modifying Encryption and Decryption Algorithms. We define `-tuple DEG encryption by extending
DEG encryption over Fp3 . Given a message m(t) ∈ Fp[t], its encryption algorithm `-Encd

pk(·) is
defined as follows:

`-Encd
pk(m(t)) := (gr, yr1,m(t)2·hr1, . . . , yr` ,m(t)2·hr`) ∈ Fp[t]/℘(t)×(Fp[t]/℘1(t))

2×· · ·×(Fp[t]/℘`(t))2.

For decryption, first compute φj(gr) and m(t)2 ≡ (φj(g
r))−x2 ·m(t)2 · hrj mod ℘j . Then we get

m(t)2 (mod ℘1 · · ·℘`) using the Chinese remaindering algorithm (in short, CRT). After comput-
ing square root of the value, we get m(t),−m(t) (mod ℘1 · · ·℘`). Since m(t) is linear, we can
determine the original message m(t) uniquely.

The Construction. We describe the generalized public shuffle using the `-tuple DEG encryption
scheme over extension fields.

Setup(λ, n, `). This algorithm takes as input a security parameter λ and size parameter n, `. It outputs
a description of σ : (Gq1q2)n → Gq1q2 given by (c1, . . . , cn) 7→ c1 · · · cn and {Ti}ni=1 as runnung
the CRT, a square root finding algorithm, and a factorization in turn along with the public key pk,
i.e., it outputs two public parameters δ = (pk) and w = (σ, {Ti}ni=1)

Shuffle(δ, w, c). Shuffling with the public parameter δ and a list of ciphertexts c = (c1, . . . , cn) where
ci is an `-tuple DEG ciphertext, given from each sender Si, proceeds as follows. Here ci ∈ `-Encd

pk(mi(t))
and

`-Encd
pk(mi(t)) =

(
gri , yri1 ,mi(t)

2 · hri1 , y
ri
2 ,mi(t)

2 · hri2 , . . . , y
ri
` ,mi(t)

2 · hri`
)

where ri
$←− [0, p3 − 2] for 1 ≤ i ≤ n.

1. The shuffler computes
∏n
i=1 `-Encd

pk(mi(t)) where the product of `-Encd
pk(mi(t)) means coordinate-

wise product. Namely,

n∏
i=1

`-Encd
pk(mi(t)) =

(
σ (gr1 , . . . , grn) , σ (yr11 , . . . , y

rn
1 ) , σ

(
m1(t)

2 · hr11 , . . . ,mn(t)2 · hrn1
)
, . . . ,

σ
(
yr1` , . . . , y

rn
`

)
, σ

(
m1(t)

2 · hr1` , . . . ,mn(t)2 · hrn`
))

=

(
g
∑n

i=1 ri , y
∑n

i=1 ri
1 , (

n∏
i=1

mi(t))
2 · h

∑n
i=1 ri

1 , . . . , y
∑n

i=1 ri
` , (

n∏
i=1

mi(t))
2 · h

∑n
i=1 ri

`

)

And for all j ∈ [1, `] set

ĉj =

φj (g∑n
i=1 ri

)
, y

∑n
i=1 ri

j ,

(
n∏
i=1

mi(t)

)2

· h
∑n

i=1 ri
j


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2. The shuffler outputs a list of ciphertexts ĉ = (ĉ1, . . . , ĉ`) along with a proof Γ = ε.

Verify(δ, σ, c, ĉ, Γ ). Upon receiving this tuple, the verifier will first run the verification algorithm by
non-interactively running V(δ, σ, c, ĉ, Γ ) – whether all ĉj ∈ ĉ were correctly computed by using c
from senders and δ; if this fails abort and return reject. Otherwise, output accept.

Theorem 1 If the shuffler performs correctly the scheme, our public shuffle scheme is correct.

Proof. We know that each transformation Ti (1 ≤ i ≤ n) as running the CRT, a square root finding
algorithm, and a factorization algorithm in turn. The correctness of shuffle can be easily checked. We
know that if one knows the secret key x, he decryptsφj (g∑n

i=1 ri
)
, y

∑n
i=1 ri

j ,

(
n∏
i=1

mi(t)

)2

· h
∑n

i=1 ri
j


to (
∏n
i=1mi(t))

2 mod ℘j(t), 1 ≤ j ≤ `. He then computes (
∏n
i=1mi(t))

2 mod ℘1(t) · · ·℘`(t) from
each (

∏n
i=1mi(t))

2 mod ℘j(t) by using a Chinese remainder algorithm. He obtains
∏n
i=1mi(t) by

solving square root of (
∏n
i=1mi(t))

2 over Fp[t], since m(t) is monic. Finally a factorization algorithm
outputs {m1, . . . ,mn}. �

According to our definitions, the next theorem proves that the generalized public shuffle satisfies
unlinkability if the DDH assumption holds. The proof is presented in Appendix D.

Theorem 2 Assuming the DDH assumption holds, our public shuffle scheme is unlinkable.

Theorem 3 Assuming the DDH assumption holds, our public shuffle scheme is verifiable.

Proof. It follows from the fact that completeness and soundness conditions can be easily checked by
the verifier’s re-computation. �

Computational Complexity. Each sender encrypts his plaintext ` times with O(` log p) MFp complexity.
The shuffler computes the product of encrypted data. It takes O(n`) MFp . The shuffler computes iso-
morphism φj(g(t)

∑n
i=1 ri), 1 ≤ j ≤ `, with O(1) MFp . The decryption requires O(` log p) MFp and∏n

i=1(mi(t))
2 mod

∏`
i=1 ℘i(t) is obtained by using a fast CRT in O(` log `) MFp . Solving square root

of (
∏n
i=1mi(t))

2 mod
∏`
i=1 ℘i(t) requiresO(` log p) MFp , and factoring

∏n
i=1mi(t) over Fp[t] incurs

O(n2 log p) MFp . Therefore, the total complexity amounts to O(n2 log p) MFp .

Ciphertext Size. The number of ciphertexts each sender transmits is O(`) and the shuffler takes as input
O(n`) ciphertexts and outputs O(`) ciphertexts.

Keeping the Sender Honest. To prevent the sender himself from attempting to cheat the shuffle, we
require that each sender should be prepared to give a zero-knowledge proof of the plaintext of his
ciphertext. For example, given a DEG ciphertext c = (u, v, w) = (gr, yr,mhr) under the public key
y, h, a sender prover knowledge of m by instead proving knowledge of r.

It is unlikely to detect all malicious behavior of dishonest senders during encoding and encrypting
their messages. Instead we can deal with the case where a malicious sender replaces at most α positions
with random values of his choice instead of all the samemi’s. When decrypting the output of the shuffle,
after applying the CRT, we will run the extended Euclidean algorithm and apply the rational reconstruc-
tion theorem [34, Sec. 4.6]. If the number of malicious positions is at most α, we can efficiently recover
the original value mi from its malicious encoding. The polynomial analog takes the same approach [34,
Sec. 17.5].
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4.3 A Generalized Public Shuffle Scheme Based on Integer Factorization

In this section we present another public shuffle which can work correctly and efficiently, especially
when each user has short messages enough to support recovering original messages in polynomial time.
However, the intuition is the same as the public shuffle scheme given in Section 4.2.

This construction uses `-tuple DEG encryption extended by standard Damgård ElGamal encryption
over prime fields. We just describe the differences compared to that used in Section 4.2: (1) Since a
field isomorphism is not available, each user should send ` full DEG ciphertexts to a shuffler. Namely,
the number of group elements transmitted by each sender is 3`. Recall that the previous construction
allows a sender to send (`+1) group elements; (2) For unique factorization over the integers, we should
provide a specific encoding algorithm. For example, the encoding algorithm converts an input message
into a prime number in a message space. The full description of ElGamal and its extension over prime
fields are shown in Appendix C. From this we can easily obtain DEG encryption over prime field. If no
confusion arises, we abuse notation and use the same symbol for extended DEG encryption.

The Construction. The following is the description of the generalized public shuffle using the `-tuple
DEG encryption scheme over prime fields.

Setup(1λ, n, `). This algorithm takes as input a security parameter λ and size parameter n, `. It outputs
a description of σ given by (c1, . . . , cn) 7→ c1 · · · cn and {Ti}ni=1 as runnung the CRT, a square root
finding algorithm, and a factorization in turn along with the public key pk, i.e., it outputs two public
parameters δ = (pk) and w = (σ, {Ti}ni=1) .

Shuffle(δ, w, c). Shuffling with the public parameter δ and a list of ciphertexts c = (c1, . . . , cn) where
ci ∈ `-Encd

pk(mi) from a sender Si, proceeds as follows. Here `-Encd
pk(mi) = {(uij , vij , wij)}`j=1

with uij = g
rij
j , vij = y

rij
j , wij = m2

i · h
rij
j .

1. The shuffler computes and outputs

(ĉ1, . . . , ĉ`) =

((
n∏
i=1

ui1,

n∏
i=1

vi1,

n∏
i=1

wi1

)
, . . . ,

(
n∏
i=1

ui`,

n∏
i=1

vi`,

n∏
i=1

wi`

))
with a proof Γ = ε.

Verify(δ, w, c, ĉ, Γ ). The verification algorithm checks if each ĉj ∈ ĉ was correctly computed by using
c and δ; if this fails abort and return reject. Otherwise, output accept.

Theorem 4 If the shuffler performs correctly, our public shuffle scheme is correct.

Proof. Suppose that the shuffler follows the above algorithm properly. We know that each transforma-
tion Ti (1 ≤ i ≤ n) as running the CRT, a square root finding algorithm and a factorization algorithm
in turn. Then the correctness of shuffle can be easily checked. Specifically, a decryption algorithm takes
as input `-tuple DEG ciphertexts (

∏n
i=1 uij ,

∏n
i=1 vij ,

∏n
i=1wij) for 1 ≤ j ≤ `, and outputs

M1 = (m1m2 · · ·mn)2 (mod p1)

...

Mn = (m1m2 · · ·mn)2 (mod p`)

M = (m1m2 · · ·mn)2 mod p1 · · · p` is obtained by using the CRT. It computes square roots of M
modular p1 · · · p`, say z1 = m1 · · ·mn and z2 = −m1m2 · · ·mn, respectively. Since all mi’s are odd
prime numbers, the least significant bit (LSB) of z1 is 1. On the other hand, the LSB of z2 is 0 since
p1 · · · p` −m1 · · ·mn = −m1 · · ·mn (mod p1 · · · p`). Hence, it can uniquely determine which one is
a correct product of {m1, . . . ,mn}. Finally it runs a factorization algorithm for m1 · · ·mn over Z using
trial division since mi’s are small. ut
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Further, with respect to unlinkability and public verifiability it is straightforward from a similar
argument proved in the previous section.

Computational Complexity. Let us define p̌ = max{p1, . . . , p`}, and p̂ = min{p1, . . . , p`}. Each sender
encrypts his plaintext ` times withO(` log p̌) MFp complexity. The shuffler computes (

∏n
i=1 uij ,

∏n
i=1 vij ,∏n

i=1wij) for 1 ≤ j ≤ ` with O(`2) MFp complexity. Decryption requires O(` log p̌) MFp complexity,
and computing the CRT requires O(M(log p̌) log log p̌)MFp to get (m1 · · ·mn)2 mod p1 · · · p`. Solving
square roots of (m1 · · ·mn)2 mod p1 · · · p` incurs O(n log3 p̌)) MFp . Since the message space is small,
factorizing m1 · · ·mn using trial division takes O(nm̄ log p̌) when messages are taken to be a prime
less than m̄

Ciphertext Size. The number of ciphertexts each user sends isO(`) and the shuffler takes as inputO(n`)
ciphertexts and outputs O(`) ciphertexts.

Remark 1 If the message space is small, the shuffle algorithm may output (ĉ1, . . . , ĉ`) for ` < n. This
reduces the computation and transmission cost. Suppose each message is encoded into a prime of κ bits.
Decrypting (ĉ1, . . . , ĉ`) gives (m1 · · ·mn)2 mod p1 · · · p`. One can recover an integer m1 · · ·mn when
2nκ < `‖p‖, i.e. ` > (2nκ)/‖p‖.

For example, consider κ = 10, n = 104 and ‖p‖= 2048. Then it is enough to take ` = 98, which is
much less than n = 104.

5 Further Discussions

We studied how to construct a public shuffle, which does not require any private setup for generating
a random permutation. For this purpose, we proposed two constructions. Our constructions use CCA1
ElGamal encryption schemes,but one is based on integer factorization which requires exponential com-
plexity in general, the other is based on polynomial factorization. Further, we exploit a field isomorphism
to reduce the size of ciphertexts.

However, still there are two remaining open problems. The first one is that our schemes let each
sender transmit O(n) ciphertexts to a shuffler. Therefore, the total transmission complexity is O(n2).
Thus, how to construct a public shuffle scheme with O(n) transmission complexity in total is an inter-
esting problem. The second one is to apply our technique to Adida and Wikström’s work. Namely, how
to generate an obfuscated permutation matrix by using our scheme is also an interesting question.
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A Basic Definitions

A.1 Participating Parties.

In our description, we use a few classes of entities which participate in shuffle.

– Senders. There are an arbitrary number of senders participating in a shuffle scheme (we will denote
the number of senders by n). Each sender has a secret input.

– Shuffler. A shuffler receives the n ciphertexts of all the senders and outputs the ` ciphertexts as a
result of shuffle.
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– Verifier. A verifier is a party that verifies that the shuffler correctly follows the shuffle scheme.
Although there can be many verifiers (and senders can be verifiers as well) the verifiers are deter-
ministic and use only public information, so we model them as a single party.

– Adversary. The adversary attempts to subvert a shuffle scheme. We detail the adversarial model in
the later.

A.2 Verifiability for Secret Shuffles

We rephrase the verifiability condition for secret shuffles in our language. The reader is encouraged to
refer to [28] for in-depth discussions on the verifiability condition of shuffles.

Definition 9 ([28]) Let a set of algorithms (P,V) be a proof system for an efficient generalized shuffle
relation Φ̃ with associated language LΦ̃. A generalized shuffle scheme Φ̃E = (Setup, Shuffle,Verify) is
verifiable if its proof system (P,V) has an efficient algorithm V and satisfies completeness and sound-
ness below.

1. Completeness. For all x = (δ, c, ĉ) ∈ LΦ̃, (P,V)(x, Γ ) = 1 for all proofs Γ ← P(x,w) where
δ ← Setup(λ, n, `).

2. Soundness. For all PPT A and for δ ← Setup(λ, n, `), the probability that A(λ, n, `, δ) outputs
(x, Γ ) such that x 6∈ LΦ̃ but (A,V)(x, Γ ) = 1, is negligible in the security parameter λ.

A.3 Unlinkability Experiments

One definition for security of a secret shuffle ΦE = (Setup,Shuffle,Verify) is indistinguishability
against chosen permutation attack (CPAΣ), which is analogous to indistinguishability against chosen
plaintext attack in public-key cryptosystems [28]. Nguyen et al. [28] proposed a different definition
called semantic privacy against CPAΣ , but they showed that the two notions are eventually equivalent.

For a proof system, we use ViewP,V(x) to denote all that V can see from the execution of the proof
system on input x.

Definition 10 (Unlinkability in [28]) Let ΦE = (Setup,Shuffle,Verify) be a secret shuffle scheme.

Experiment ExpShuffle
A (ΦE , λ)

δ ← Setup(λ, n);
(π0, π1, c)← A(δ, n) where πi ∈ Σn for i = 1, 2;

(ĉ, Γ )← Shuffle(δ, wb, c) where wb
$←− {π0, π1};

ν ←
(
ĉ,ViewP,V(δ, c, ĉ, Γ ), c, {mi}ni=1, {ri}ni=1

)
where ci = Encpk(mi, ri);

b′ ← A(δ, ν);

In the experiment above, we define the advantage of an adversaryA, running in probabilistic polynomial
time and making a polynomial number of queries, as:

AdvShuffle
A (ΦE , λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
A verifiable secret shuffle scheme is unlikable if

AdvShuffle
A (ΦE , λ) ≤ negl(λ)

where negl(·) is a negligible function of its input.

For a generalized secret shuffle, we describe a variant of the unlinkability notion against the chosen
random attack.
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Definition 11 (Unlinkability for a Generalized Secret Shuffle) Let Φ̃E = (Setup, Shuffle,Verify) be
a generalized secret shuffle scheme.

Experiment ExpGenShf
A (Φ̃E , λ)

δ ← Setup(λ, n, `);
(r0, r1, c)← A(δ, n, `) where ri = (ri1, . . . , ri`) for i = 1, 2;

(ĉ, Γ )← Shuffle(δ, wb, c) where wb
$←− {r0, r1};

ν ←
(
ĉ,ViewP,V(δ, c, ĉ, Γ ), c, {mi}ni=1, {ri}ni=1

)
where ci = Encpk(mi, ri);

b′ ← A(δ, ν);

In the experiment above, we define the advantage of an adversaryA, running in probabilistic polynomial
time and making a polynomial number of queries, as:

AdvGenShf
A (Φ̃E , λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
A generalize secret shuffle scheme is unlikable if the advantage AdvGenShf

A (Φ̃E , λ) is negligible in the
security parameter λ.

B Additional Constructions

We base another generalized shuffle scheme on (1, n)-E that is a ring homomorphic cryptosystem that
supports 1 addition and n multiplications on ciphertexts, and re-randomization. In this construction,
the intuition is that a shuffler first publishes all ĉj ∈ Enc

(1,n)
pk (B(αj)), 1 ≤ j ≤ ` = n for B(t) =∏n

i=1(t + mi) where αj’s are chosen uniformly at random from a random space. After decrypting
properly, B(t) is recovered through Lagrange interpolation and then factorized into each linear term as
above.

Lemma 2 Assuming that there exists a ring homomorphic cryptosystem (1, n)-E that meets the condi-
tions required in the construction above, our generalized shuffle scheme based on (1, n)-E is correct.

Proof. . Suppose that the shuffler follows the above algorithm properly. If one takes each transformation
Ti (1 ≤ i ≤ n) as running a polynomial reconstruct algorithm and a factorization algorithm in turn,
then he can easily see that the correctness condition – Eq. (2.2) holds.

More specifically, anyone who can decrypt takes as input (ĉ1, . . . , ĉn), and outputs
∏n
i=1(αj +mi)

for each j ∈ [1, n]. Then he reconstructs a polynomial B(t) =
∏n
i=1(t + mi) using the Lagrange

interpolation as follows:

B(t) =

n∑
j=1

B(αj)
∏

1≤i≤n,i 6=j

t− αi
αj − αi

.

Finally {m1, . . . ,mn} can be recovered by using a factorization algorithm over R[t]. ut

Computational Complexity. Denote by E and D the cost of an encryption algorithm and a decryption
algorithm for an underlying cryptosystem, respectively. MD denotes the cost of multiplication in a
domain D. Additionally, M(d) denotes the cost of multiplication of two d-bit integers, and M(d, p) the
cost of multiplication of two polynomials of degree d over Fp.

Each sender only has to encrypt his message once. The shuffler computes Enc
(1,n)
pk (αj), 1 ≤ j ≤ n.

The shuffler should compute
∏n
i=1 Enc

(1,n)
pk (αj +mi) for each j ∈ [1, n], whose complexity is n E and

n(n − 1) MFp , if Cpk = Fp. In summary, the total complexity amounts to O(n)(E) + O(n2) MFp , on
R = Fp.
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Ciphertext Size. The number of ciphertexts each sender sends is 1. The shuffler takes as input n cipher-
texts and outputs n another ciphertexts.

Remark 2 For completeness we present the total complexity including a process recovering input plain-
texts. Anyone who is authorized to decrypt should decrypt ĉ1, . . . , ĉn and reconstruct the polynomial
B(x) of degree n with complexity n D + O(n2) MFp . Further, this incurs O(n2 log p) MFp to fac-
torize using Cantor-Zassenhaus algorithm [11], if R = Fp. Hence, the total complexity amounts to
O(n)(E + D) +O(n2 log p) MFp , on R = Fp.

C ElGamal and Its Extension over Prime Fields

The description of the ElGamal encryption scheme E = (KG,Enc,Dec) over prime fields consists of
the following algorithms. Let Fp be a prime field and Gq be a multiplicative cyclic subgroup of order q
in F×p , where p = 2q + 1. Assume that the DDH assumption holds in Gq.

– KG(1λ). Choose a generator g of Gq. Choose a random x ∈ [0, q−2] and compute y = gx (mod p).
A public key is pk = (p, g, y,Gq) and a secret key is sk = x.

– Encpk(m). Choose random r ∈ [0, q − 2] and compute gr and m · yr. The ciphertext of m ∈ Gq is
given by (v, u) = (gr,m · yr).

– Decsk(v, u). Compute m = v−xu (mod p).

If the input message m ∈ Gq, then the encryption algorithm simply continues to the next step.
However, if m 6∈ Gq, it is required to convert m into an element of the group. Thus, we need to
modify its encryption algorithm into computing u = m2 · yr (mod p). Also we define `-tuple ElGamal
encryption as its extension. That is, for m ∈Mpk

`-Encpk(m) = (gr1,m
2yr1, g

r
2,m

2yr2, . . . , g
r
` ,m

2yr` ) ∈ F2
p1 × F2

p2 × · · · × F2
p`
,

where p1 < p2 < · · · < p` are add primes and yj = gxj for all j ∈ [1, `].
Actually, since we use factorization to get message, message space must be prime set which is

smaller than p1. Instead we use encoding to remove restriction of plaintexts. There is a plaintext incoding
algorithm Ω to make prime number. We instantiate an message encoding algorithm Ω as follows: We
first assign a prime number to a message by a small-sized random padding and check whether the padded
message is a prime number. Namely, we append a padding s to the message m̄, and then check whether
m = m̄ ‖ s is a prime number. When we define m̄ ‖ s = m̄log s + s, the size of s is determined by the
distribution of primes. Let π(m) be the number of primes equal to or less than m. Huxley [23] proved
that

π(m+∆(m))− π(m) ∼ ∆(m)

logm

is true for almost all x if∆(m) = m1/6+ε (ε > 0 fixed). (See [25] for a survey on this topic.) This result
implies that there exists a prime number if ‖s‖= dκ6 e with overwhelming probability, where κ =‖m‖.

D Proof of Theorem(s)

As we have discussed above, the security of the generalized public shuffle is the fact that a permutation
of inputs does not result in changes of the output of our shuffle. In this section, we prove the following
theorem, stating that if its underlying encryption scheme is secure, our generalized public shuffle is
unlinkable.

Theorem 2 Assuming the DDH assumption holds, our generalized public shuffle scheme is unlinkable.
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Proof. We now construct a CCA1 adversary Acca that works as follows. A graphical representation of
the attacker is given in Figure 1. First,Acca sets δ = pk and gets the system parameterw as defined in its
definition. Then as a shuffle challenger, B = Acca sends δ, w to the shuffle adversary A. The adversary
A choose a pair of permutations π0, π1 ∈ Σn of his choice and a list of messages m = (m1, . . . ,mn) ∈
(Mpk)

n, and sends all of these values to B = Acca. Acca gets a random bit b $←− {0, 1}, from this
choose a permutation πb. Next, it computes ci = Encd

pk(mπb(i), ri) for 1 ≤ i ≤ n and c =
∏n
i=1 ci,

and sends (c1, . . . , cn) and c to the adversary. The adversary verifies all computations; if this fails abort.
Otherwise it can query the decryption oracle OD on c. The only problem is that Acca does not have sk.
Here, we use the fact that E is CCA2-secure and so in the CCA1 experiment,Acca can use the decryption
oracle to decrypt everything. However, Acca cannot query OD on all ci’s and its challenge c∗. This is
the important point of this proof here. After finishing its training phase, the adversary sends to Acca its
challenge consisting of a pair of challenge permutations π∗0, π

∗
1 ∈ Σn and a list of challenge messages

m∗ = (m∗1, . . . ,m
∗
n). On receiving the challenge, Acca does the following according to a random bit

b
$←− {0, 1} and a random index j $←− [1, n]:

1. Prepare a pair of challenge messages, m̄0 = 1 and m̄∗1 = mπ∗1(j)
;

2. Send m̄∗0, m̄
∗
1 to the CCA1 challenger as its challenge;

3. Receive cβ = Encd
pk(m

∗
β, r
∗) where β is a random bit chosen by the CCA1 challenger;

4. According to its random choice b,

c∗j =

{
Encd

pk(m
∗
π0(j)

, r∗i ) if b = 0

cβ if b = 1

5. For all i = [1, n]\{j}, compute c∗i = Encd
pk

(
m∗πb(i), r

∗
i

)
;

6. Compute c∗ =
∏n
i=1 c

∗
i and send it to the adversary.

Note that the adversary is not allowed to query OD on all c∗i ’s and the challenge ciphertext c∗.
Further, due to the restriction of CCA1 experiment the adversary cannot utilize the decryption oracle
any more. When the adversary sends its guess b′ to the shuffle challenger,Acca outputs its guess β′ = b′

to the CCA1 challenger.
From here on, we can see thatAcca perfectly simulates the generalized public shuffle experiment for

the adversary A. So far we have discussed the attack strategy by Acca, and so we now proceed to prove
thatAcca outputs the correct β with probability ε(λ)+1

2 which is non-negligible if ε(λ) is non-negligible.
Define Fail to be the event causing Acca to output a random bit in its attack. Further, we say that the

generalized public shuffle experiment ExpPubShf
A (Φ̃E , λ) = 1 iff b = b′. We have

Pr
[
ExpPubShf

A (Φ̃E , λ) = 1
]

= Pr
[
ExpPubShf

A (Φ̃E , λ) = 1|¬Fail
]
· Pr[¬Fail] +

Pr
[
ExpPubShf

A (Φ̃E , λ) = 1|Fail
]
· Pr[Fail].

Now, by the definition of Fail, we have that Pr
[
ExpPubShf

A (Φ̃E , λ) = 1|Fail
]

= 1
2 . It can be seen that

the probability Acca outputs an incorrect bit with Fail not happening is negligible, and

Pr
[
ExpPubShf

A (Φ̃E , λ) = 1|¬Fail
]
≥ 1− negl(λ)

for some negligible function negl(·). Then we compute Pr[Fail] and Pr[¬Fail]. By the assumption
regarding A, we assume that the advantage A breaks our shuffle is ε(λ). Thus, Pr[¬Fail] = ε(λ).
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In contrast, when A fails to output a correct bit, then Acca always outputs an incorrect bit. Thus,
Pr[Fail] = 1− ε(λ). Combining the above, we have

Pr
[
ExpPubShf

A (Φ̃E , λ) = 1
]

= (1− negl(λ)) · ε(λ) +
1

2
· (1− ε(λ))

= ε(λ)− negl′(λ) +
1

2
− ε(λ)

2

=
ε(λ) + 1

2
− negl′(λ).

Thus, if ε(λ) is non-negligible, thenAcca succeeds in the generalized public shuffle experiment with
non-negligible probability.

Fig. 1. Graphical View of Security
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E Related Work

A mix-net consists of n senders with his own message mi and a center called a mix-server which
publishes his RSA public key. Each sender sends a ciphertext under the mix-server’s public-key to the
mix-server. The mix-server decrypts them and publicizes {m1, . . . ,mn} in the lexicographical order.
The problem of this single mix-server construction is that the mix-server knows who sent what message.
Thus, Chaum proposed a mix-net in which k mix-servers are sequentially connected. Anonymity is
protected if at least one mix-server is honest.

A problem of Chaum’s construction based on RSA, is that the encryption complexity required by
senders increases linearly in the number of mix-servers. Park et al. [32] resolved this problem using
ElGamal encryption. Since then, many suggestions have been made how to build mix-nets or prove the
correctness of a shuffle [33,1,18,26,27,35,21,36,20]. So this type of shuffles is called a verifiable secret
shuffle. Among them, Furukawa and Sako’s approach [18] and Neff’s work [26,27] are considered as
a breakthrough; a linear complexity in the number of input ciphertexts. Furukawa and Sako’s approach
utilizes permutation matrices and has been further developed in [17,21]. Neff’s approach is based on
the invariance of polynomials under permutation of the roots. This idea was generalized by Groth [20].

The idea of a public shuffle was introduced by Adida and Wikström [3]. Their approach exploits
the notion of public-key obfuscation by Ostrovsky and Skeith [29]. More specifically, they showed how
mix-servers can publish an encrypted permutation matrix by the BGN cryptosystem [10] and the Pail-
lier cryptosystem [30]. However, there remain mix-servers having the private permutation. Parampalli
et al. [31] combined the Paillier cryptosystem and permutation networks, so obtained sub-quadratic
computational complexity (O(n log3.5 n) exponentiations where n is the number of senders) rather than
quadratic complexity in [3].

As a different line of relevant work, we need to review private set union protocols [24,22]. Kissner
and Song [24] pointed out that private set union protocols are a variant of shuffle protocol. They pro-
posed a protocol for the threshold set union operation, where given a union of input sets, outputs the
elements that appears in the union more than a threshold value. More recently, Hazay and Nissim [22]
provided more efficient set-union protocols, however, for two-party setting.

F Damgård ElGamal Encryption

Damgård ElGamal Encryption over Fp3 . A Damgård ElGamal encryption scheme over Fp3 consists
of the following three polynomial time algorithms (KGD,EncD,DecD):

– KGd(1λ): The key generation algorithm chooses a large prime p such that (p3 − 1) = (p− 1)(p2 +
p + 1) = 2q1q2 for large primes q1, q2. Then select an irreducible polynomial ℘(t) ∈ Fp[t] of
degree 3 and a generator g(t) from Gq1q2 which is a multiplicative subgroup of F×

p3
of order q1q2. It

computes y(t) = g(t)x1 mod ℘(t), h(t) = g(t)x2 mod ℘(t) where a secret key x1, x2 are randomly
chosen from [0, p3 − 2], and publishes a public key pk = 〈p,Gq1q2 , g(t), y(t), h(t), ℘(t)〉.

– Encd
pk(m(t)): Encryption with the public key pk and message m(t) ∈ Gq1q2 proceeds as follows.

First, a random value r ∈ [0, p3 − 2] is chosen. The ciphertext is then published as:

C(t) = (u(t), v(t), w(t)) := (g(t)r mod ℘(t), y(t)r mod ℘(t),m(t) · h(t)r mod ℘(t)) .

– Decd
sk(C(t)): Suppose that a ciphertext C(t) = (u(t), v(t), w(t)) is encrypted with a public key

pk and we have a secret key x1, x2. Return ⊥ if v(t) 6= u(t)x1 . Otherwise the ciphertext can be
decrypted as:

m(t) ≡ w(t) · u(t)−x2 mod ℘(t).
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