
Threshold Implementations of all
3 × 3 and 4 × 4 S-boxes

Begul Bilgin1,3, Svetla Nikova1, Ventzislav Nikov4, Vincent Rijmen1,2,
and Georg Stütz2

1 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC and IBBT, Belgium
2 Graz University of Technology, IAIK, Austria

3 University of Twente, EEMCS-DIES, The Netherlands
4 NXP Semiconductors, Belgium

Abstract. Side-channel attacks have proven many hardware implemen-
tations of cryptographic algorithms to be vulnerable. A recently proposed
masking method, based on secret sharing and multi-party computation
methods, introduces a set of sufficient requirements for implementations
to be provably resistant against first-order DPA with minimal assump-
tions on the hardware. The original paper doesn’t describe how to con-
struct the Boolean functions that are to be used in the implementation.
In this paper, we derive the functions for all invertible 3×3, 4×4 S-boxes
and the 6 × 4 DES S-boxes. Our methods and observations can also be
used to accelerate the search for sharings of larger (e.g. 8 × 8) S-boxes.
Finally, we investigate the cost of such protection.
Keywords: DPA, masking, glitches, sharing, nonlinear functions, S-box,
decomposition

1 Introduction

Side-channel analysis exploits the information leaked during the compu-
tation of a cryptographic algorithm. The most common technique is to
analyze the power consumption of a cryptographic device using differen-
tial power analysis (DPA). This side-channel attack exploits the correla-
tion between the instantaneous power consumption of a device and the
intermediate results of a cryptographic algorithm.

Several countermeasures against side-channel attacks have been pro-
posed. Circuit design approaches [30] try to balance the power consump-
tion of different data values. Another method is to randomize the inter-
mediate values of an algorithm by masking them. This can be done at
the algorithm level [1, 4, 11, 23], at the gate level [12, 26, 31] or even in
combination with circuit design approaches [24].

Many of these approaches result in very secure software implemen-
tations. However, it has been shown that hardware implementations are



much more difficult to protect against DPA [16]. The problem of most of
these masking approaches is that they underestimate the amount of infor-
mation that is leaked by hardware, for instance during glitches or other
transient effects. The security proofs are based on an idealized hardware
model, resulting in requirements on the hardware that are very expensive
to meet in practice. The main advantages of the threshold implementation
approach are that it provides provable security against first-order DPA
attacks with minimal assumptions on the hardware technology, in par-
ticular, it is also secure in the presence of glitches, and that the method
allows to construct realistic-size circuits [19,21,22].

1.1 Organization and contributions of this paper

The remainder of this paper is organized as follows. In Section 2 we in-
troduce the notation and provide some background material. Section 2.6
contains our first contribution: a classification of S-boxes which simpli-
fies the task to find implementations for all S-boxes. In Section 3 we
present our second contribution: a method to decompose permutations
as a composition of quadratic ones. We prove that all 4-bit S-boxes in the
alternating group can be decomposed in this way. We extend the sharing
method in Section 4 and show that all 3×3, 4×4 and DES 6×4 S-boxes
can be shared with minimum 3 and/or 4 shares. We investigate the cost
of an HW implementation of the shared S-boxes in Section 5. We present
some ideas for further improvements in Section 6 Finally, we conclude in
Section 7.

2 Preliminaries

We consider n-bit permutations sometimes defined over a vector space Fn
2

or over a finite field GF (2n). The degree of such a permutation F is the
algebraic degree of the (n, n) vectorial Boolean function [5] or also called
n-bit S-box. Any such function F (x) can be considered as an n-tuple
of Boolean functions (f1(x), . . . , fn(x)) called the coordinate functions of
F (x).

2.1 Threshold implementations

Threshold implementations (TI), are a kind of side-channel attack coun-
termeasures, based on secret sharing schemes and techniques from mul-
tiparty computation. The approach can be summarized as follows. Split



a variable x into s additive shares xi with x =
∑

i xi and denote the
vector of the s shares xi by x = (x1, x2, . . . , xs). In order to implement
a function a = F (x, y, z, . . . ) from Fm

2 to Fn
2 , the TI method requires a

sharing, i.e. a set of s functions Fi which together compute the output(s)
of F . A sharing needs to satisfy three properties:

Correctness: a = F (x, y, z, . . . ) =
∑

i Fi(x,y, z, . . . ) for all x,y, z, . . .
satisfying

∑
i xi = x,

∑
i yi = y,

∑
i zi = z, . . .

Non-completeness: Every function is independent of at least one share
of the input variables x, y, z. This is often translated to “Fi should be
independent of xi, yi, zi, . . . .”

Uniformity (balancedness): For all (a1, a2, . . . , as) satisfying
∑

i ai =
a, the number of tuples (x,y, z, . . . ) ∈ Fms for which Fj(x,y, z, . . . ) =
aj , 1 ≤ j ≤ s, is equal to 2(s−1)(m−n) times the number of (x, y, z, . . . ) ∈
Fm for which a = F (x, y, z, . . . ). Hence, if F is a permutation on Fm,
then the functions Fi define together a permutation on Fms. In other
words, the sharing preserves the output distribution.

This approach results in combinational logic with the following proper-
ties. Firstly, since each Fi is completely independent of the unmasked
values, also the subcircuits implementing them are, even in the presence
of glitches. Because of the linearity of the expectation operator, the same
holds true for the average power consumption of the whole circuit, or any
linear combination of the power consumptions of the subcircuits. This
implies perfect resistance against all first-order side-channel attacks [22].
The approach was recently extended and applied to Noekeon [22], Kec-
cak [3], Present [25] and AES [18]. Whereas it is easy to construct for
any function a sharing satisfying the first two properties, the uniformity
property poses more problems. Hence reasonable questions to ask are:
which functions (S-boxes) can be shared with this approach, how many
shares are required and how can we construct such sharing?

A similar approach was followed in [27], where Shamir’s secret shar-
ing scheme is used to construct hardware secure against dth-order side-
channel attacks in the presence of glitches. Instead of constructing dedi-
cated functions Fi, they propose a general method which replaces every
field multiplication by 4d3 field multiplications and 4d3 additions, using
2d2 bytes of randomness. While the method is applicable everywhere, in
principle, there are cases where it may prove too costly.



2.2 Decomposition as a tool to facilitate sharing

In order to share a nonlinear function (S-box) with algebraic degree d, at
least d+1 shares are needed [19, Theorem 1]. Several examples of functions
shared with 3 shares, namely quadratic Boolean function of two and three
variables, multiplication on the extension field GF (22m)/GF (2m) (e.g.
multiplication in GF (4)), and the Noekeon S-box have been provided
[19, 21, 22]. A realization of the inversion in GF (16) with 5 shares was
given in [19]. Since the area requirements of an implementation increase
with the number of shares, it is desirable to keep the number of shares as
low as possible.

The block ciphers Noekeon and Present have been designed for com-
pact hardware implementations. They have S-boxes, which are not very
complex 4 × 4 cubic permutations. Realizations for these two block ci-
phers have been presented for Noekeon in [21,22] and in [25] for Present.
In order to decrease the algebraic degree of the functions for which shar-
ings need to be found, these three realizations decompose the S-box into
two parts. For the Present S-box, decompositions S(x) = F (G(x)) with
G(0) = 0 have been found [25] where F (x) and G(x) are quadratic permu-
tations. By varying the constant term G(0) the authors found all possible
decompositions of S(X) = F (G(X)). Both S-boxes F (x), G(x) have been
shared with three shares (F1, F2, F3) and (G1, G2, G3) that are correct,
non-complete and uniform. Figure 1 illustrates this approach.

Fig. 1: Decomposition approach

When the AES S-box (with algebraic degree seven) is presented using
the tower field approach, the only nonlinear operation is the multiplication
in GF (4), which is a quadratic mapping [18]. This observation has lead
to a TI for AES with 3 shares. In order to guarantee the uniformity, re-
sharing (also called re-masking) has been used four times. Re-sharing is a
technique where fresh uniform and random masks/shares are added inside



a pipeline stage in order to make the shares follow an uniform distribution
again.

A novel fault attack technique against several AES cores including
one claimed to be protected with TI method has been proposed in [17].
But as the authors pointed out, contrary to the AES TI implementation
in [18], their targeted core has been made without satisfying the non-
completeness and uniformity properties by “sharing” the AND gates with
4 shares formula from [18,19]. Since the used method does not satisfy the
TI properties it should not be called a TI implementation of AES. In
addition, the TI method was never claimed to provide protection against
fault attacks.

2.3 Equivalence classes for n = 2, 3, 4

Definition 1. [7] Two S-boxes S1(x) and S2(x) are affine/linear equiva-
lent if there exists a pair of invertible affine/linear permutation A(x) and
B(x), such that S1 = B ◦ S2 ◦A.

Every invertible affine permutation A(x) can be written as A · x+ a with
a an n-bit constant and A an n×n matrix which is invertible over GF (2).
It follows that there are

2n ×
n−1∏
i=0

(2n − 2i) (1)

different invertible affine permutations.
The relation “being affine equivalent” can be used to define equiva-

lence classes. We now investigate the number of classes of invertible n×n
S-boxes for n = 2, 3, 4. Note that the algebraic degree is affine invariant,
hence all S-boxes in a class have the same algebraic degree.

It is well known that all invertible 2×2 S-boxes are affine, hence there
is only one class. The set of invertible 3×3 S-boxes contains 4 equivalence
classes [7]: 3 classes containing quadratic functions, and one class contain-
ing the affine functions. Table 7 in the Appendix lists a representative of
each class.

The maximal algebraic degree of a balanced 4-variable Boolean func-
tion is 3 [6, 15]. De Cannière uses an algorithm to search for the affine
equivalent classes which guesses the affine permutation A for as few input
points as possible, and then uses the linearity of A and B to follow the
implications of these guesses as far as possible. This search is acceler-
ated by applying the next observation, which follows from linear algebra
arguments (change of basis):



Lemma 1 ([14]). Let S be an n×n bijection. Then S is affine equivalent
to an S-box S̃ with S̃(0) = 0, S̃(1) = 1, S̃(2) = 2, . . . , S̃(2n−1) = 2n−1.

In the case n = 4, this observation reduces the search space from 16! ≈ 244

to 11! ≈ 225.
De Cannière lists the 302 equivalence classes for the 4 × 4 bijections

[7]: the class of affine functions, 6 classes containing quadratic functions
and the remaining 295 classes containing cubic functions. 1 The classes
are listed in Tables 8–10 in the Appendix. The numbering of the classes
is derived from the lexicographical ordering of the truth tables of the S-
boxes. In order to increase readability, we introduce the following notation
An

i , Qn
j , Cnk to denote the Affine class number i, Quadratic class number

j and Cubic class number k of permutations of Fn
2 .

2.4 Order of a permutation

All bijections from a set X to itself (also called permutations) form the
symmetric group on X denoted by SX . A transposition is a permuta-
tion which exchanges two elements and keeps all others fixed. A classical
theorem states that every permutation can be written as a product of
transpositions [28], and although the representation of a permutation as
a product of transpositions is not unique, the number of transpositions
needed to represent a given permutation is either always even or always
odd. The set of all even permutations form a normal subgroup of SX ,
which is called the alternating group on X and denoted by AX . The al-
ternating group contains half of the elements of SX . Instead of AX and
SX , we will write here An and Sn, where n is the size of the set X.

2.5 Known S-boxes and their classes

There are only few cryptographically significant 3× 3 S-boxes: the Inver-
sion in GF (23), the PRINTcipher [13], the Threeway [9] and the Baseking
[10] S-boxes. They all belong to Class 3. There are many cryptograph-
ically significant 4 × 4 S-boxes. Table 11 in the Appendix lists some of
them and the class to which they belong.

2.6 The inverse S-box

Note that S−1, the inverse S-box, is not necessarily affine equivalent to
S and in this case may not have the same algebraic degree. We know

1 Independent of [7, 14], Saarinen classified the 4× 4 S-boxes using a different equiv-
alence relation [29].



however, that the inverse of an affine permutation is always an affine
permutation. In the case of 3 × 3 S-boxes it follows that the inverse of
a quadratic permutation is again a quadratic permutation. Moreover, it
can be shown that the 3 quadratic classes in S8 are self-inverse, i.e. S−1

belongs to the same class as S. In the case n = 4, we can apply the
following lemma.

Lemma 2 ([5]). Let F be a permutation of GF (2n), then deg(F−1) =
n− 1 if and only if deg(F ) = n− 1.

Since the inverse of an affine S-box is affine, and, when n = 4, the inverse
of a cubic S-box is cubic, it follows that in this case the inverse of a
quadratic S-box is quadratic. The Keccak S-box (n = 5) [2] is as an
example where the algebraic degree of the inverse S-box (3) is different
from the algebraic degree of the S-box itself (2).

We have observed that there are 172 self-inverse classes in S16. The
remaining 130 classes form 65 pairs, i.e., any S-box S of the first class has
an inverse S-box S−1 in the second class (and vice versa). Table 1 gives
the list of the pairs of inverse classes.

Table 1: Pairs of inverse classes

65 pairs of inverse classes; the remaining 172 classes are self-inverse

(C429,C430),(C433,C434),(C439,C440),(C443,C444), (C447,C448),(C449,C450),(C452,C453),(C458,C459), (C460,C461),
(C463,C464),(C466,C467),(C468,C469),(C470,C471), (C473,C474),(C479,C480),(C485,C486),(C487,C488), (C490,C491),
(C493,C494),(C495,C496),(C497,C498),(C4103,C4104), (C4105,C4106),(C4108,C4109),(C4110,C4111), (C4112,C4113),
(C4114,C4115),(C4116,C4117), (C4120,C4121), (C4123,C4124),(C4126,C4127),(C4128,C4129), (C4130,C4131),
(C4132,C4133),(C4143,C4144),(C4147,C4148), (C4150,C4151),(C4152,C4153),(C4154,C4155), (C4156,C4157),
(C4158,C4159),(C4161,C4162),(C4164,C4165), (C4166,C4167),(C4169,C4170),(C4171,C4172), (C4181,C4182),
(C4183,C4184),(C4185,C4186),(C4190,C4191), (C4199,C4200),(C4201,C4202),(C4203,C4204), (C4206,C4207),
(C4209,C4210),(C4211,C4212),(C4214,C4215), (C4226,C4227),(C4229,C4230),(C4233,C4234), (C4241,C4242),
(C4243,C4244),(C4256,C4257),(C4259,C4260), (C4296,C4297).

3 Decomposition of 4 × 4 S-boxes

In this section we consider all 4 × 4 bijections, and investigate when a
cubic bijection from S16 can be decomposed as a composition of quadratic
bijections. We will refer to the minimum number of quadratic bijections
in such a decomposition as decomposition length. Recall that the Noekeon
S-box is cubic but defined as a composition of two quadratic S-boxes in



F4
2 : S(x) = S2(S1(x)). Similarly the Present S-box is cubic but has also

been shown to be decomposable in two quadratic S-boxes.

Lemma 3. If an S-box S can be decomposed into a sequence of t quadratic
S-boxes, then all S-boxes which are affine equivalent to S can be decom-
posed into a sequence of t quadratic S-boxes.

Proof. Let S be a cubic permutation which can be decomposed as a com-
position of quadratic bijections Q1 ◦ Q2 ◦ . . . ◦ Qt−1 ◦ Qt with length t.
Let W be an S-box which is affine equivalent to S. By definition, there
exist affine permutations A and B s.t. W = B ◦ S ◦ A. Therefore W =
B◦Q1◦Q2◦. . .◦Qt−1◦Qt◦A, now by defining two quadratic permutations
Q′1 = B ◦Q1 and Q′t = Qt ◦A we obtain that W = Q′1 ◦Q2 ◦ . . .◦Qt−1 ◦Q′t
has a decomposition with quadratic permutations and that its length is
t. ut

Lemma 4 ([32]). For all n, the n× n affine bijections are in the alter-
nating group.

Lemma 5. All 4 × 4 quadratic S-boxes belong to the alternating group
A16.

Proof. Since all invertible affine transformations are in the alternating
group (the previous Lemma), two S-boxes which are affine equivalent,
are either both even or both odd. We have taken one representative of
each of the 6 quadratic classes Q4

i for i ∈ {4, 12, 293, 294, 299, 300} [7] and
have verified that their parities are even. ut

Now we investigate which permutations we can generate by combining
the affine and the quadratic permutations. We start with the following
lemma.

Lemma 6. Let Qi be 6 arbitrarily selected representatives of the 6 quadratic
classes Q4

i . (Hence i ∈ {4, 12, 293, 294, 299, 300}.) Then all cubic permu-
tations S that have decomposition length 2, are affine equivalent to one
of the cubic permutation that can be written as

S̃i×j = Qi ◦A ◦Qj , (2)

where A is an invertible affine permutation and i, j ∈ {4, 12, 293, 294, 299,
300}.

Proof. Assume that S = Qa ◦Qb. Then we know that there are invertible
affine maps Aa, Ba, Ab, Bb such that S = (Ba ◦Qi ◦ Aa) ◦ (Bb ◦Qj ◦ Ab),
where Qi, Qj are two of the representatives defined above. We choose
A = Aa ◦Bb and S̃i×j = Ba

−1 ◦ S ◦Ab
−1. ut



It follows that we can construct all cubic classes of decomposition length
2 by running through the 36 possibilities of i×j and the 322560 invertible
affine transformations in (2). This approach produces 30 cubic classes. In
the remainder, we will denote the S-boxes S̃i×j by i× j and refer to them
as the simple solutions. Table 12 in the Appendix lists the simple solutions
for all 30 decompositions with length 2. Note that if Qi◦A◦Qj = S, i.e. S
can be decomposed as a product of i×j, then Q−1j ◦A−1◦Q

−1
i = S−1. Since

for n = 4 all quadratics are affine equivalent to their inverse, it follows
that S−1 is decomposed as a product of j × i. Thus any self-inverse class
has decomposition i× j and j × i as well. For the pairs of inverse classes
we conclude that if i × j belongs to the first class then j × i belongs to
the second class.

To obtain all decompositions with length 3 we use similar approach as
for length 2 but the first permutation Qi is cubic (instead of quadratic)
and belongs to the already found list of cubic classes decomposable with
length 2. It turns out that we can generate in this way the 114 remaining
elements of A16.

Summarizing, we can prove the following Theorem and Lemma (stated
without proof in [8]).

Theorem 1. A 4× 4 bijection can be decomposed using quadratic bijec-
tions if and only if it belongs to the alternating group A16 (151 classes).

Proof. (⇒) Let S be a bijection which can be decomposed with quadratic
permutations say Q1 ◦ Q2 ◦ . . . ◦ Qt. Since all Qi ∈ A16 (Lemma 5) and
the alternating group is closed it follows that S ∈ A16.
(⇐) Lemma 3, Lemma 6 and the discussion following it imply that we
can generate all elements of the alternating group using quadratic per-
mutations. ut

The left-hand-side columns of Table 2 list the decompositions of all 4×4 S-
boxes. Theorem 1 implies that the classes which are not in the alternative
group i.e. in S16 \ A16, can’t be decomposed as a product of quadratic
classes. Now we make the following simple observation:

Lemma 7. Let S̃ be a fixed permutation in S16 \ A16 then any cubic
permutation from S16 \ A16 can be presented as a product of S̃ and a
permutation from A16.

Proof. By definition, all permutations in S16 \A16 are odd permutations,
and if S̃ ∈ S16 \A16, then S̃−1 ∈ S16 \A16. Since the product of two odd
permutations is even, we have: ∀S ∈ S16 \A16 : S ◦ S̃−1 ∈ A16. It follows
that ∃T ∈ A16 : S ◦ S̃−1 = T , i.e. S = T ◦ S̃. ut



4 Sharing with 3, 4 and 5 shares

In this section we focus first on the permutations which can be shared
with 3 shares, i.e. all S-boxes in F3

2 and half of the S-boxes in F4
2 . Next we

focus on those functions that can be shared with 4 shares, i.e. the other
half of the S-boxes in F4

2 . Then, we will show how to share all of these
S-boxes in F4

2 with 5 shares without need of a decomposition.

4.1 A basic result

Theorem 2. If we have a sharing for a representative of a class, then
we can derive a sharing for all S-boxes from the same class.

Proof. Let S be an n× n S-box which has a uniform, non-complete and
correct sharing S̄ using s shares Si. Denote the input vector of S by x,
and the shares by xi. Each Si contains n coordinate shared functions
depending on at most (s − 1) of the xi, such that the noncompleteness
property is satisfied. We denote by xi the vector containing the s − 1
inputs of Si.

We now construct a uniform, non-complete and correct sharing for
any S-box S̃ which is affine equivalent to S. By definition, there exist two
n× n invertible affine permutations A and B s.t. S̃ = B ◦ S ◦A. In order
to lighten notation, we give the proof for the case that A and B are linear
permutations. We define Ā, B̄ as the ns×ns permutations that apply A,
respectively B, to each of the shares separately:

Ā(x1, x2, . . . xs) = (A(x1), A(x2), . . . A(xs)),

B̄(x1, x2, . . . xs) = (B(x1), B(x2), . . . B(xs)).

Denote yi = A(xi), 1 ≤ i ≤ s and define yi as the vector containing the s−
1 shares yi that we need to compute Si. Consider S̄(Ā(x1, x2, . . . , xs)) =
(S1(y1), S2(y2), . . . Ss(ys)). By slight abuse of notation we can write yi =
Ā(xi) and see that the noncompleteness of the S̄i is preserved in S̄ ◦ Ā.
Since Ā is a permutation, it preserves the uniformity of the input and
since S̄ is uniform so will be the composition S̄ ◦ Ā. The correctness
follows from the fact that S̄ is a correct sharing and that

y1+y2+· · ·+ys = A(x1)+A(x2)+· · ·+A(xs) = A(x1+x2+. . . xs) = A(x).

Consider now B̄(S̄(A(x))) = (B(S1(y1)), B(S2(y2)), . . . , B(Ss(ys))). Since
B̄ is a permutation, it preserves uniformity of the output and since S̄



is uniform, the composition B̄ ◦ S̄ is uniform. The composition is non-
complete since the S̄i are non-complete and B̄ doesn’t combine different
shares. Correctness follows from the fact that S̄ is a correct sharing and
hence

B(S1(y1)) +B(S2(y2)) + · · ·+B(Ss(ys))

= B(S1(y1) +S2(y2) + · · ·+ Ss(ys)) = B(S(A(x))). ut

4.2 Direct sharing

The most difficult property to be satisfied when the function is shared
is the uniformity. Assume that we want to construct a sharing for the
function F (x, y, z) with 3 shares. Then it is easy to produce a sharing
which satisfies the correctness and the non-completeness requirements
and is rotation symmetric, by means of a method that we call the direct
sharing method, and that we now describe. First, we replace every input
variable by the sum of 3 shares. The correctness is satisfied if we ensure
that

F1 + F2 + F3 = F (x1 + x2 + x3, y1 + y2 + y3, z1 + z2 + z3).

In order to satisfy non-completeness, we have to divide the terms of the
right hand side over the three Fj in such a way that Fj doesn’t contain
a term in xj . We achieve this by assigning the linear terms containing
an index j to Fj−1, the quadratic terms containing indices j and j + 1
to Fj−1 and the quadratic terms containing indices j only to Fj−1. For
example,

F (x, y, z) = x+ yz, gives:

F1 = x2 + z2y2 + z2y3 + z3y2

F2 = x3 + z3y3 + z3y1 + z1y3

F3 = x1 + z1y1 + z1y2 + z2y1.

Note that the uniformity of sharing produced in this way is not guaran-
teed. It has to be verified separately. The method can easily be generalized
for larger number of shares.

Direct sharing has been used in [25] for the decomposition of the
quadratic permutations F and G of the Present S-box S and similarly for
Noekeon [22], Keccak [3].

With the direct sharing method we were able to find sharings respect-
ing the uniformity condition for all 1344 permutations of Q3

1, but none of



Q3
2 and Q3

3. We were also able to find sharings for all 322560 permutations
of Q4

4, Q4
294 and Q4

299, but none of Q4
12, Q4

293 and Q4
300. So, unfortunately

half of the quadratic S-boxes can’t be shared directly with length 1 but we
still can find a sharing with length 2 by decomposing them as a composi-
tion of the already shared quadratic S-boxes. Thus, if we use only direct
sharing we will be able to find sharings for all S-boxes in the alternating
group but at the cost of longer path.

4.3 Correction terms

Since direct sharing not always results in an uniform sharing the use of
correction terms (CT) has been proposed [19, 21]. Correction terms are
terms that can be added in pairs to more than one share such that they
satisfy the non-completeness rule. Since the terms in a pair cancel each
other, the sharing still satisfies the correctness.

By varying the CT one can obtain all possible sharings of a given
function. Consider a Boolean quadratic function with m variables (1 out-
put bit), which we want to share with 3 shares. Note that the only terms
which can be used as CT are xi or xiyi (or higher degree) for i = 1, 2, 3.
Indeed terms like xiyj for i 6= j can’t be used in the i-th and j-th share
of the function because of the non-completeness rule and therefore such
a term can be used in only 1 share, hence it can’t be used as a CT.

Thus counting only the linear and quadratic CT and ignoring the
constant terms, which will not influence the uniformity, for a quadratic
function with m variables we obtain that there are 3(m+

(
m
2

)
) CT. Taking

into account all possible positions for the CT we get 23(m+(m2 )) sharings.
For example, for a quadratic function of 3 variables there are 218 possible
CT and therefore for a 3 × 3 S-boxes the search space will be 254. This
makes the exhaustive search (to find a single good solution) over all CT
unpractical, even for small S-boxes. For sharing with 4 shares even more
terms can be used as CT.

4.4 A link between the 3 × 3 S-boxes and some quadratic
4 × 4 S-boxes

Lemma 8. There is a transformation which expands Q3
1, Q3

2 and Q3
3 into

Q4
4, Q4

12 and Q4
300 correspondingly.

Proof. Starting from a 3 × 3 S-box S and adding a new variable we can
obtain a 4× 4 S-box S̃. Namely, the transformation is defined as follows:
let S(w, v, u) = (y1, y2, y3) and define S̃(x,w, v, u) = (y1, y2, y3, x). It is



easy to check that this transformation maps the first 3 classes into the
other 3 classes. ut

The relation from Lemma 8 explains why if we have a sharing for a class
in F3

2 we also obtain a sharing for the corresponding class in F4
2 and vice

versa, i.e., if we can’t share a class the corresponding class also can’t be
shared. The results we have obtained with 3 shares are summarized in
Table 2 (middle columns).

Recall that if we use only direct sharing we will be able to share with
3 shares all S-boxes in the alternating group but at the cost of longer
path than the one obtained by decomposition. However using CT we
found sharing for classes: Q3

1, Q3
2, Q4

4, Q4
12, Q4

293, Q4
294 and Q4

299. So all
quadratic classes except Q3

3 and Q4
300 can be shared with 3 shares and

without decomposition. We want to pose an open question: find sharing
without decomposition to classes Q3

3 and Q4
300 or show why they can’t be

shared with 3 shares in that way.

4.5 Sharing using decomposition

As an alternative to the search through a set of correction terms, we can
also construct sharings after using decomposition: we try to decompose
S-boxes into S-boxes for which we already have sharings. This decom-
position problem is more restrained than the basic problem discussed in
Section 3 for sharing with 3 shares, since we can use only the quadratic
S-boxes for which we already have a sharing. It turns out that this extra
requirement sometimes increases the decomposition length by one. For
example, decomposition for Q3

3 is 1×2 and 2×1, i.e., we obtain a sharing
for Q3

3 at the cost of length 2 (instead of length 1). Similarly Q4
300 can be

decomposed as 4×12, 4×293, 12×4, 12×294, 293×4, 293×294, 294×12
and 294× 293 so, again we obtain a sharing with length 2. Table 2 (right
columns) gives the results.

Recall that one can’t find a sharing with 3 shares for cubic functions
outside the alternating group. Thus, 4 shares will be required in this case.
Using direct sharing with 4 shares we obtain slightly better results for
the quadratic S-boxes compared to 3 shares since we were able to share
also class Q4

300 (and therefore Q3
3 too). The sharing of class Q4

300 has
further improved the sharings of C4130, C4131 and C424 which have sharing
with shorter length for 4 shares than for 3 shares. We have also found
sharings with 4 shares for the cubic classes C41 , C43 , C413 and C4301 from
S16 \ A16 using direct sharing. By using Lemma 7 we obtain sharings
with 4 shares for all 4 × 4 S-boxes. Observe that the total length of the



sharing depends on the class we use (C41 , C43 , C413 and C4301) and also on
the class from the alternating group, which is used for the decomposition.
For example, class C47 can be decomposed using C41 with length 4 but with
classes C43 and C413 it can be decomposed with length 3. Note also that the
number of solutions differ. We have found 10, 31 and 49 solutions when
using C41 , C43 and C413 classes, correspondingly. Surprisingly for the classes
in the alternating group we have only slight improvement with 4 shares
compared to 3 shares and only a few classes in S16 \ A16 have direct
sharing with 4 shares. However with 5 shares all classes can be shared
directly without decomposition which is a big improvement compare to
the situation with 4 shares.

Table 2: Overview of the numbers of classes of 4 × 4 S-boxes that can
be decomposed and shared using 3 shares, 4 shares and 5 shares. The
numbers are split up according to the decomposition length of the S-
boxes (1, 2, 3, or 4), respectively their shares.

unshared 3 shares 4 shares 5 shares remark
1 2 3 1 2 3 4 1 2 3 1

6 5 1 6 6 quadratics
30 28 2 30 30 cubics in A16

114 113 1 114 114 cubics in A16

– – 4 22 125 151 cubics in S16\A16

An open question is why for all S-boxes the sharing with 4 shares does
not improve significantly the results compared to 3 shares and suddenly
with 5 shares we can share all classes with length 1.

Recall that for the Present S-box, decompositions S(x) = F (G(x))
have been found in [25]. The authors also made an observation that ex-
actly 3

7 sharings out of the decompositions automatically satisfy the uni-
formity condition (i.e. without any correction terms). Recall that with the
direct sharing method without CT we (as well as the authors of [25]) were
able to share only 3 quadratic classes: Q4

4, Q4
294 and Q4

299. The Present
S-box belongs to C4266 and has 7 simple solutions (see Table 12) but only
3 of them can be shared namely 294 × 299, 299 × 294, 299 × 299, which
explains the authors’ observation.

In Tables 7–10, the column Sharing describes the length of the found
sharings with 3 and with 4 shares, separated by a comma. Since all classes
can be shared with 5 shares with length 1 we omit this fact in these tables.



Recall that for the S-boxes in S16 \ A16 no solution with 3 shares exist
which is indicated in the table by a −. Note that the DES 6× 4 S-boxes
can be considered as an affine 2 × 2 selection S-box with four 4 × 4 S-
boxes attached. Since we have sharings for both 2× 2 and 4× 4 S-boxes
we conclude that we have sharings for the DES 6× 4 S-boxes as well.

5 HW implementation of the sharings

In this section, our aim is to provide a fair comparison and prediction
what the cost (ratio of area to a NAND gate referred to as GE) will be
for a protected S-box in a specified library. For our investigations we used
the TSMC 0.18µm standard cell library in the Synopsis development tool.

Quadratic classes and cubic classes with length 1 form the basis to
all our implementations. Therefore, we concentrated our efforts on these
classes. While considering 3× 3 S-boxes we synthesized 840 affine equiv-
alent S-boxes for each class. However the number of S-boxes in a class
increases to more than 322560 as we move to 4× 4 S-boxes. In that case,
we choose 1000 S-boxes per class to synthesize.

Table 3: S8: Quadratic S-boxes sharing

3×3 S-boxes Sharing Original Unshared Shared Shared Shared
Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S8 (L) L reg L reg 1 reg 1 reg

Q3
1

Min
1

27.66
-

98.66 138.00 148.00
Max 29.66 121.66 150.00 185.66

Q3
2

Min
1

29.00
-

116.66 174.00 180.00
Max 29.66 155.00 226.66 220.33

Q3
3

Min
2

30.00 50.00 194.33 140.00 167.00
Max 32.00 51.00 201.00 194.33 228.66

In tables 3, 4 and 5 we show the implementation results for each class
only the S-box with the minimum GE from the result of our original S-
box synthesis (over the class), as well as the S-box with the maximum
GE. However, note that the Min and Max values should only be taken
as indications.

The area results listed in the column original S-box for an n×n S-box
include one n-bit register. If a decomposition is necessary for a correct,
non-complete and uniform sharing, then we included registers in between



Table 4: A16: Quadratic S-boxes sharing

4×4 S-boxes Sharing Original Unshared Shared Shared Shared
Quadratic Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S16 (L) L reg L reg 1 reg 1 reg

Q4
4

Min
1

37.33
-

121.33 168.33 186.33
Max 44.00 223.33 258.00 309.00

Q4
12

Min
1

36.66
-

139.33 204.00 218.00
Max 48.00 253.33 290.33 340.66

Q4
293

Min
1

39.33
-

165.33 194.33 235.00
Max 48.66 297.33 313.00 358.33

Q4
294

Min
1

40.00
-

141.33 170.33 210.33
Max 49.66 261.00 240.00 255.00

Q4
299

Min
1

40.33
-

174.33 211.00 247.00
Max 48.00 298.00 295.33 294.66

Q4
300

Min
2

33.66 58.00 207.33 209.66 249.33
Max 52.66 70.00 346.00 295.00 342.33

every pipelining operation as required [22] which increases the cost as
expected.

For classes with decomposition length more than 1, we randomly
choose a class representative i.e. an S-box. Then we implement the small-
est amongst all possible decompositions of this S-box, namely the one
which gives minimum GE. We saw that, classes Q3

3, Q4
300, C4150, C4151, C4130,

C4131, C424, C4204, C4257 and C4210 give relatively small results when imple-
mented as 2 × 1, 12 × 4, 12 × 293, 293 × 12, 12 × 4 × 299, 299 × 12 × 4,
299 × 12 × 4 × 299, 3 × 294, 3 × 12 and 3 × 293 × 12 respectively. The
area figures for C4204 and C4257 differ significantly. Closer inspection reveals
that this is due to the fact that their decompositions use different S-boxes
from C43 ; the S-box used in the decomposition of C4204 is smaller than the
one in the decomposition of C4257.

6 Extensions

We present here two extensions to the basic approach.

6.1 Virtual variables and virtual shares

For some Boolean functions with two inputs there is no sharing with
3 shares satisfying the three requirements [19, 21]. For example, this is
the case with the multiplication of two variables. On the other hand,



Table 5: S16: Cubic S-boxes sharing

4×4 S-boxes Sharing Original Unshared Shared Shared Shared
Cubic Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S16 (L,L′) L’ reg L reg L’ reg 1 reg

C41 ∈ S16 \A16 Min
1,1

39.66 – 213.66 273.66
Max 40.33 – 378.00 464.66

C43 ∈ S16 \A16 Min
1,1

40.33 – 230.33 286.33
Max 43.00 – 413.66 500.66

C413 ∈ S16 \A16 Min
1,1

40.33 – 260.00 319.00
Max 41.33 – 423.00 502.66

C4301 ∈ S16 \A16 Min
1,1

39.33 – 289.33 350.33
Max 59.33 – 526.33 605.66

C4150 ∈ A16 2,2 46.33 71.66 305.33 430.66 414.33

C4151 ∈ A16 2,2 47.33 69.66 286.00 410.00 390.00

C4130 ∈ A16 3,2 48.00 97.33 393.00 375.66 442.66

C4131 ∈ A16 3,2 50.00 99.00 386.00 363.33 435.66

C424 ∈ A16 4,3 48.33 151.33 674.00 616.66 734.66

C4204 ∈ S16 \A16 2,2 49.00 80.33 - 413.00 501.33

C4257 ∈ S16 \A16 2,2 47.66 73.66 - 486.00 594.00

C4210 ∈ S16 \A16 3,3 47.66 119.33 - 602.00 695.33

sharings with 3 shares do exist for all quadratic Boolean functions with
3 inputs. This fact leads to an approach where we define extra input
variables, virtual variables for the function that we want to find a sharing
for. A virtual variable is hence an additional input to the function, whose
value doesn’t influence the output of the function. In the implementation
however, it must be ensured that the attacker can’t predict the value of
the virtual variable: it has to be random. Hence, the approach requires
additional randomness as input. For example, assume that we want to
construct a sharing for the function F (x, y) = xy. By adding a virtual
variable z, we can share F (x, y, z) = xy as follows [21]:

F1 = x2y2 + x2y3 + x3y2 + x2z2 + x3z3 + y2z2 + y3z3

F2 = x3y3 + x1y3 + x3y1 + x3z3 + x1z1 + y3z3 + y1z1

F3 = x1y1 + x1y2 + x2y1 + x1z1 + x2z2 + y1z1 + y2z2.

Without virtual variable, we can share the product of two variables if we
use 4 shares [19], hence in total 2×4 = 8 elements. With virtual variable,
we obtain 3× 3 = 9 elements, which is in fact not an improvement.

Since z in the previous example F = xy was a virtual variable, its
shares z1, z2 and z3 can be called virtual shares. Instead of introducing all
the 3 virtual shares, we can also introduce fewer of them. Since a virtual



share is not related to a ‘real’ input of the function, it doesn’t need to be
taken into account when we check the non-completeness of the sharing.
The previous example can be shared using only one virtual share:

F1 = x2y2 + x2y3 + x3y2 + z

F2 = x3y3 + x1y3 + x3y1 + x1z + y1z

F3 = x1y1 + x1y2 + x2y1 + x1z + y1z + z.

In this sharing, we use only 7 elements.

6.2 Varying the number of shares

Until now we have considered the case when the inputs and the outputs
of a function have to be shared with the same number of shares, e.g.,
s. In fact, it is possible to generalize the approach, such that the inputs
are shared with si shares, the outputs (i.e., the function) with so shares
providing that si ≥ so holds. We will shortly illustrate this approach by
sharing the product xy, such that the input is shared with 4 shares and
the output with 3 shares.

F1 = (x2 + x3 + x4)(y2 + y3) + y4

F2 = (x1 + x3)(y1 + y4) + x1y3 + x4

F3 = (x2 + x4)(y1 + y4) + x1y2 + x4 + y4.

7 Conclusions

In this paper we have considered the threshold implementation method,
which is a method to construct implementations of cryptographic func-
tions that are secure against a large class of side-channel attacks, even
when the hardware technology is not glitch-free.

We have analyzed which basic S-boxes can be securely implemented
using 3, 4 or 5 shares. We have constructed sharings for all 3 × 3, 4 × 4
S-boxes and 6 × 4 DES S-boxes. Thus we have extended the threshold
implementation method to secure implementations for any cryptographic
algorithm which uses these S-boxes. Note that the mixing layer in the
round function of a block cipher is a linear operation and thus it is trivially
shared even with 2 shares. Finally, we have implemented several of the
shared S-boxes in order to investigate the cost of the sharing as well as
the additional cost due to the pipelining stages separated by latches or
registers.



Table 6: Range for the ratio area of the Shared with length L S-box
area of the Original S-box

3 shares 4 shares 5 shares remark
1 2 3 4 1 2 3 1

3.6–5.2 6.3–6.5 – – 5.0–7.6 – – 5.4–7.4 quadratics in S8

3.3–6.2 6.2–6.6 – – 4.3–6.4 – – 5.1–7.4 quadratics in S16

– 6.0–6.6 7.7–8.2 13.9 – 7.3–9.3 12.8 8.2–15.2 cubics in A16

– – – – 5.4–10.2 8.4–10.2 12.6 10.2–14.6 cubics in S16\A16

Our results summarized in Table 6 show that such secure implementa-
tion can also be made efficient. Note that we consider the cost of sharing
with L registers which is the total price for the sharing (since it includes
the sharing logic plus registers). Observe that the increase of the cost for
sharing with 3 shares of a quadratic S-box is similar for n = 3 and n = 4.
As expected, the longer length a sharing has, the more costly it becomes
(for 3 and 4 shares). It can be seen that sharings with 4 and 5 shares cost
up to 50% more than sharings with 3 shares. However, there are several
cases when using 4 or 5 shares reduces the cost by up to 30%, respectively
10%, compared to 3 shares with longer sharing length. For certain S-boxes
using 5 shares may be even beneficial compared to 4 shares (up to 4%)
but in general 5 shares are up to 30% more expensive than 4 shares.

An obvious conclusion is that the cost of the TI method heavily de-
pends on the class the given S-box belongs to as well as the chosen number
of shares and the associated sharing length. Therefore, in order to mini-
mize the implementation cost the number of shares have to be carefully
chosen. For all tested S-boxes we were able to find a sharing with cost
ranging from 3.3 till 12.8 times the area of the original S-box. However,
note that the area numbers are based on a few implementations from each
class. The ratios may change significantly if the smallest/biggest S-boxes
are found for every class.

8 Acknowledgement

We would like to thank Christophe De Cannière for the fruitful discussions
and for sharing with us his toolkit for affine equivalent classes.

This work has been supported in part by the Research Council K.U.Leuven:
GOA TENSE (GOA/11/007) and by the European Commission under
contract ICT-2007-216646 (ECRYPT II).



References

1. Akkar, M.L., Giraud, C.: “An Implementation of DES and AES, Secure against
Some Attacks,” CHES 2001, LNCS 2162, pp. 309–318.

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: “Keccak specifications,”
NIST SHA3 contest 2008.

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: “Building power analysis
resistant implementations of Keccak”, Round 3 finalist of the Cryptographic Hash
Algorithm Competition of NIST, 2010.

4. Blömer, J., Guajardo, J., Krummel, V.: “Provably Secure Masking of AES,” SAC
2004, LNCS 3357, pp. 69–83.

5. Boura, C., Canteaut, A.: “On the influence of the algebraic degree of F−1 on the
algebraic degree of G ◦ F”, e-print archive 2011/503.

6. Carlet, C.,: “Vectorial Boolean Functions for Cryptography,” to appear.

7. De Cannière, C.: “Analysis and Design of Symmetric Encrytption Algorithms,”
Ph.D. thesis, 2007.

8. De Cannière, C., Nikov, V., Nikova, S., Rijmen, V.: “S-box decompositions for
SCA-resisting implementations,” poster session of CHES 2011.

9. Daemen, J., Vandewalle, J.: “A New Approach Towards Block Cipher Design,”
FSE 1993, LNCS, pp. 18–33.

10. Daemen, J., Peeters, M., Van Assche, G.: “Bitslice Ciphers and Power Analysis
Attacks,”, FSE 2000, LNCS, pp. 10–12.

11. Golic, J.D., Tymen, C.: “Multiplicative Masking and Power Analysis of AES,”
CHES 2002, LNCS 2523, pp. 198–212.

12. Ishai, Y., Sahai, A., Wagner, D.: “Private Circuits: Securing Hardware against
Probing Attacks,” CRYPTO 2003, LNCS 2729, pp. 463–481.

13. Knudsen, L.R., Leander, G., Poschmann, A., Robshaw, M.: “PRINTcipher: A
Block Cipher for IC-Printing”, CHES 2010, LNCS 6225, pp. 16–32.

14. Leander, G., Poschmann, A.:“On the classification of 4 bit s-boxes”, WAIFI 2007,
LNCS 4547, pp. 159-–176.

15. Lidl, R., Niederreiter, H.: “Finite Fields”, Encyclopedia of Mathematicsand its
Applications, vol. 20, Addison-Wesley, 1983.

16. Mangard, S., Pramstaller, N., Oswald, E.: “Successfully Attacking Masked AES
Hardware Implementations,” CHES 2005, LNCS 3659, pp. 157–171

17. Moradi, A., Mischke, O., Paar, C., Li, Y., Ohta, K., Sakiyama, K.: “On the Power
of Fault Sensitivity Analysis and Collision Side-Channel Attacks in a Combined
Setting,” CHES 2011, LNCS 6917, pp. 292–311.

18. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.:“Pushing the Limits: A
Very Compact and a Threshold Implementation of AES”, Eurocrypt 2011, LNCS
6632, pp. 69–88.

19. Nikova, S., Rechberger, C., Rijmen, V.: “Threshold Implementations Against Side-
Channel Attacks and Glitches,” ICICS 2006, LNCS 4307, pp. 529–545.

20. Nikova, S., Rijmen, V., Schläffer, M.: “Using Normal Bases for Compact Hardware
Implementations of the AES S-Box,” SCN 2008, LNCS 5229, pp. 236–245.

21. Nikova, S., Rijmen, V., Schläffer, M.: “Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches,” ICISC 2008, LNCS 5461, pp. 218–234.

22. Nikova, S., Rijmen, V., Schläffer, M.: “Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches,” J. Cryptology 24 (2), pp. 292–321,
2011.



23. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: “A Side-Channel Analysis
Resistant Description of the AES S-Box,” FSE 2005, LNCS 3557, pp. 413–423.

24. Popp, T., Mangard, S.: “Masked Dual-Rail Pre-charge Logic: DPA-Resistance
Without Routing Constraints,” CHES 2005, LNCS 3659, pp. 172–186

25. Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: “Side-
Channel Resistant Crypto for less than 2,300 GE,” J. Cryptology 24 (2), pp. 322–
345, 2011.

26. Rivain, M., Prouff, E.: “Provably Secure Higher-Order Masking of AES,” CHES
2010, LNCS 6225, pp. 413-427, 2010.

27. Prouff, E., Roche, T.: “Higher-Order Glitches Free Implementation of the AES Us-
ing Secure Multi-party Computation Protocols,” CHES 2011, LNCS 6917, pp. 63–
78, 2011.

28. Rotman, J.:“ An introduction to the theory of groups,” Graduate texts in mathe-
matics, Springer-Verlag, 1995.

29. Saarinen, M.-J. O.,: “Cryptographic analysis of all 4 × 4-bit s-boxes”, SAC 2011,
LNCS 7118, pp. 118–133, 2012.

30. Tiri, K., Verbauwhede, I.: “A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation,” DATE 2004, IEEE Computer Society,
pp. 246–251.

31. Trichina, E., Korkishko, T., Lee, K.H.: “Small Size, Low Power, Side Channel-
Immune AES Coprocessor: Design and Synthesis Results,” 4th AES Conference,
LNCS 3373, pp. 113–127, 2004.

32. Wernsdorf, R.: “The Round Functions of RIJNDAEL Generate the Alternating
Group,” FSE 2002, LNCS 2365, pp. 143–148.

A Appendix - Tables

Table 7: The 4 classes of 3× 3 S-boxes

Class Truth table Sharing

A3
0 01234567 1,1
Q3

1 01234576 1,1
Q3

2 01234675 1,1
Q3

3 01243675 2,2



Table 8: The 302 classes of 4× 4 S-boxes

Class Truth table Sharing Class Truth table Sharing Class Truth table Sharing

A4
0 0123456789ABCDEF 1,1 C445 012345786A9CFBDE -,3 C490 012345786ABCF9ED -,3
C41 0123456789ABCDFE -,1 C446 012345786ABCDEF9 3,3 C491 012345786ACFBD9E -,3
C42 0123456789ABCEFD 3,3 C447 012345786AC9DEBF -,3 C492 012345786ABC9EDF 3,3
C43 0123456789ABDEFC -,1 C448 012345786AC9EDFB -,3 C493 012345786ABC9EFD -,3
Q4

4 0123456789ABDCFE 1,1 C449 012345786A9CDEBF 3,3 C494 012345786ACED9FB -,3
C45 0123456789ACDBFE -,2 C450 012345786A9CFDBE 3,3 C495 012345786A9CDFEB 3,3
C46 0123456789ACBDFE 3,3 C451 012345786ABCDE9F -,3 C496 012345786A9CEDFB 3,3
C47 0123456789ACBEFD -,3 C452 012345786ACBDE9F 3,3 C497 0123458A6BCEDF97 -,3
C48 0123456789ACDEFB 3,3 C453 012345786ACBDFE9 3,3 C498 0123458A6BCF97ED -,3
C49 0123456789ACDEBF -,3 C454 012345786A9BCEFD -,2 C499 0123458A6BC97FDE 3,3
C410 0123456789BCAEFD 3,3 C455 012345786AB9CFDE 3,3 C4100 0123458A6B9CF7ED -,3
C411 0123456789BCEFDA -,2 C456 012345786AC9BFDE -,3 C4101 0123458A6BCFED79 3,3
Q4

12 0123456789CDEFAB 1,1 C457 012345786A9CBEFD 3,3 C4102 012345786A9CDBEF -,3
C413 0123456789CDEFBA -,1 C458 012345786ACFDE9B -,3 C4103 0123458A69C7DFEB 3,3
C414 0123456879CDEFBA 3,3 C459 012345786ACEDFB9 -,2 C4104 0123458A69C7FDBE 3,3
C415 012345687A9CBEFD -,3 C460 012345786ACFB9DE 3,3 C4105 0123458A697CBEFD -,3
C416 012345687A9CDFBE 3,3 C461 012345786ACFDEB9 3,3 C4106 0123458A697CBFDE -,3
C417 0123456879CDEFAB -,2 C462 012345786A9CBFED -,3 C4107 0123458A69CE7FDB 3,3
C418 0123456879ACDBFE 3,3 C463 012345786AC9DEFB 3,3 C4108 0123458A6C9FEB7D -,2
C419 0123456879ACDFBE -,3 C464 012345786ABCED9F 3,3 C4109 0123458A6CB9F7ED -,3
C420 0123456879ACDEBF 3,3 C465 012345786A9CFDEB -,3 C4110 0123458A69CFD7BE 3,3
C421 0123456879ACBDFE -,3 C466 012345786ACB9EFD 3,3 C4111 0123458A69BC7FDE 3,3
C422 0123456879ACFEDB 3,3 C467 012345786ACF9DBE 3,3 C4112 0123458A6C7EBFD9 -,3
C423 0123456879BCEFAD -,3 C468 0123457869ACDFEB -,3 C4113 0123458A6C7FBE9D -,3
C424 012345687A9CFBDE 4,3 C469 0123457869ACDEBF -,3 C4114 012345786ACFBDE9 3,3
C425 0123456879ABCEFD -,3 C470 012345786ACBF9ED 3,3 C4115 012345786ACBE9DF 3,3
C426 0123456879BCDEFA 3,3 C471 012345786ACEBD9F 3,3 C4116 0123458A6C9D7FBE -,2
C427 012345687ABCDEF9 -,3 C472 012345786ACDF9EB -,3 C4117 0123458A6C9D7EFB -,3
C428 0123456879BCEAFD 3,3 C473 012345786ACDF9BE 3,3 C4118 0123458A6C9FDB7E 3,3
C429 012345687ABCEFD9 -,3 C474 012345786ACDE9FB 3,3 C4119 012345786ACB9FED -,3
C430 012345687ABCE9FD -,3 C475 012345786AC9FBED -,3 C4120 0123458A6C7EBDF9 3,3
C431 0123456879ACBEFD 3,3 C476 012345786ACEBFD9 3,3 C4121 0123458A6C7FBD9E 3,3
C432 0123456879ACFBDE -,3 C477 012345786A9CEFDB -,3 C4122 0123458A6BCE79FD -,3
C433 0123456879BCEFDA 3,3 C478 0123457869ACBEDF 3,3 C4123 0123458A69BCE7DF 3,3
C434 0123456879BCFEAD 3,3 C479 0123457869ACBFDE -,3 C4124 0123458A69CEBDF7 3,3
C435 0123456879CEAFDB -,3 C480 0123457869ACBEFD -,3 C4125 0123458A69CB7EFD -,3
C436 0123456879CEAFBD 3,3 C481 0123457869ACEFDB 3,3 C4126 012345786AC9EDBF 3,3
C437 0123456879ACDEFB -,3 C482 0123457869ACEBDF -,3 C4127 012345786ABC9FED 3,3
C438 0123456879ABDEFC 3,3 C483 0123457869ACEBFD 3,3 C4128 0123458A6B9CDE7F -,2
C439 012345768A9CBEFD -.3 C484 012345786ACF9EBD -,3 C4129 0123458A6BC7F9ED -,3
C440 012345768A9CBFDE -,2 C485 012345786A9CEBDF 3,3 C4130 0123458A6CBDE79F 3,2
C441 012345768A9CBFED 3,3 C486 012345786A9CFBED 3,3 C4131 0123458A6CE9BDF7 3,2
C442 012345786ACBED9F -,3 C487 012345786ACD9EFB -,3 C4132 0123458A6CBD7E9F -,3
C443 012345786ABCF9DE 3,3 C488 012345786ACD9FBE -,2 C4133 0123458A6C9FBD7E -,3
C444 012345786AC9BFED 3,3 C489 012345786ACD9EBF 3,3 C4134 0123458A69C7DEBF 3,3



Table 9: The 302 classes of 4× 4 S-boxes

Class Truth table Sharing Class Truth table Sharing Class Truth table Sharing

C4135 0123458A69CDE7FB -,3 C4180 0123458A6C9D7FEB 3,3 C4225 0123456879CEBFDA 3,3
C4136 0123458A69C7FBED 3,3 C4181 012345896ABC7FDE -,3 C4226 012345786ABC9FDE -,3
C4137 0123458967CEAFBD -,3 C4182 0123458A67BC9FDE -,3 C4227 012345786ACFD9BE -,3
C4138 0123458967CEAFDB 3,3 C4183 012345896ACF7BED 3,3 C4228 0123458A69BCEDF7 3,3
C4139 0123456879BCAEFD -,3 C4184 0123458A67CF9BED 3,3 C4229 0123458A6C9DBFE7 -,3
C4140 012345687ABC9FDE 3,3 C4185 012345896ACE7BFD -,3 C4230 0123458A6CEB7FD9 -,3
C4141 0123458967CEBFDA -,3 C4186 0123458A67CF9BDE -,3 C4231 0123468B59CEDA7F 3,3
C4142 012345786ACD9FEB 3,3 C4187 012345786ACEFB9D 3,3 C4232 0123458A6C9FDBE7 -,3
C4143 0123458A69CFB7DE -,3 C4188 012345786ACFEB9D -,3 C4233 0123458A67B9CFDE 2,2
C4144 0123458A69CFDEB7 -,3 C4189 0123457869CEFBDA 3,3 C4234 012345896AB7CFDE 2,2
C4145 0123458A69BCF7ED 3,3 C4190 0123458A6C7DBEF9 -,3 C4235 0123458A69B7CEFD -,3
C4146 0123458A69CB7FDE -,3 C4191 0123458A6C7FB9DE -,3 C4236 0123458A6B97CFDE 2,2
C4147 012345786ABCFDE9 3,3 C4192 0123458A6C7FBED9 3,3 C4237 0123458A69B7CFDE -,3
C4148 012345786ABCE9FD 3,3 C4193 0123458A6C7FDB9E -,3 C4238 0123457689CEAFBD 2,2
C4149 012345786ABCFD9E -,3 C4194 012345786ACFED9B 3,3 C4239 0123457689CEAFDB -,3
C4150 0123458A6BCFDE97 2,2 C4195 0123458A6BC7DE9F -,3 C4240 012345768A9CDEFB 3,3
C4151 0123458A6BCF97DE 2,2 C4196 0123468C59BDEA7F 3,3 C4241 012345768A9CDEBF -,2
C4152 0123458A6BCF7E9D -,3 C4197 0123458A6CBDE97F -,3 C4242 012345768A9CDFEB -,3
C4153 0123458A6B9CEDF7 -,3 C4198 0123458A69C7BEFD 3,3 C4243 012345768ACF9BDE 2,2
C4154 0123467859CFBEAD 3,3 C4199 0123458A6BCFD9E7 -,2 C4244 012345768ACE9BFD 2,2
C4155 0123467859CFEBDA 3,3 C4200 0123458A6BCFD79E -,3 C4245 012345768ACF9BED -,3
C4156 0123458A69CFE7BD -,3 C4201 012345786ACB9FDE 3,3 C4246 0123456879BAEFDC -,2
C4157 0123458A69CEFB7D -,3 C4202 012345786ACE9DFB 3,3 C4247 012345687AB9DEFC 3,3
C4158 0123458A6BCF7D9E 2,2 C4203 012345786ACF9BDE -,3 C4248 0123456879CEFBDA -,2
C4159 0123458A6BCED79F 2,2 C4204 012345786ACE9BFD -,2 C4249 0123458A69CFEB7D 3,3
C4160 0123468B59CED7AF -,3 C4205 012345786ACDB9EF 3,3 C4250 0123458A69CD7FEB -,3
C4161 0123458A6B7CEDF9 3,3 C4206 012345896ABCEDF7 -,3 C4251 0123458A69CEF7DB -,3
C4162 0123458A6B7CDFE9 3,3 C4207 0123458A67BCEDF9 -,3 C4252 0123458A69CEFBD7 2,2
C4163 0123468C59BDE7AF -,3 C4208 0123458A69C7BFDE 3,3 C4253 0123458A69CE7FBD -,3
C4164 0123458A6B7C9FDE 3,3 C4209 0123468B59CF7DAE -,3 C4254 0123458A69BCFD7E 3,3
C4165 0123458A6B7C9EFD 3,3 C4210 0123468A5BCF7D9E -,3 C4255 012345786ABCEDF9 -,3
C4166 012345896ABCE7DF -,2 C4211 0123458A69CED7FB 3,3 C4256 012345896ACF7BDE -,3
C4167 0123458A67BC9EFD -,3 C4212 0123458A69BC7EFD 3,3 C4257 012345896ABCFD7E -,2
C4168 0123458A6CBFE7D9 2,2 C4213 012345896ABC7EFD -,2 C4258 012345896ACE7BDF 2,2
C4169 012345786ACFB9ED -,3 C4214 0123458A67CEB9FD 2,2 C4259 012345896ACEFDB7 2,2
C4170 012345786ACEB9DF -,2 C4215 012345896ACEB7FD 2,2 C4260 012345896AB7CEFD 2,2
C4171 0123458A6CBF7E9D 2,2 C4216 0123457869CDEFBA -,2 C4261 0123458A69CEB7FD -,3
C4172 0123458A6C9DBF7E 2,2 C4217 012345687ABC9EFD 3,3 C4262 0123458A6C7DB9FE 2,2
C4173 012345786A9CBDFE -,3 C4218 0123457869BCDEFA -,3 C4263 0123458A6BC7EDF9 -,3
C4174 0123458A69CF7EBD 3,3 C4219 012345786ACF9BED 3,3 C4264 0123458A6C7DFEB9 2,2
C4175 012345786ACDE9BF -,3 C4220 0123468A59CFDE7B -,3 C4265 0123458A6BCDE9F7 -,3
C4176 0123457869ACFEBD 3,3 C4221 0123457869CEAFDB 3,3 C4266 0123468A5BCFED97 2,2
C4177 0123457869BCEAFD -,3 C4222 0123467859CFEADB -,3 C4267 012345786ABCE9DF -,3
C4178 0123458A6C7DBFE9 3,3 C4223 0123468A5BCFDE79 2,2 C4268 0123458A69CFBED7 3,3
C4179 012345786A9CEDBF -,3 C4224 0123457869CEBFDA -,3 C4269 0123458A69CEBFD7 -,3



Table 10: The 302 classes of 4× 4 S-boxes

Class Truth table Sharing Class Truth table Sharing Class Truth table Sharing

C4270 0123468B5C9DEA7F 3,3 C4281 0123457869ACFBDE 3,3 C4292 012345768A9BCEFD 2,2
C4271 0123468B5C9DAFE7 -,3 C4282 0123468B5CD7F9EA -,3 Q4

293 0123457689CDEFBA 1,1
C4272 0123468B5CD79FAE -,3 C4283 0123468B5C9DE7AF -,3 Q4

294 0123456789BAEFDC 1,1
C4273 0123458A6C7FEB9D 3,3 C4284 0123458A6BCF9D7E -,3 C4295 0123468C59DFA7BE -,3
C4274 0123458A6BCED97F -,3 C4285 0123457869CEAFBD -,2 C4296 0123468A5BCF7E9D 2,2
C4275 0123458A6CF7BE9D 3,3 C4286 0123458967CEFBDA 2,2 C4297 0123468A5BCF79DE 2,2
C4276 0123458A6CF7BD9E -,3 C4287 012345768A9CDFBE 3,3 C4298 012345687ACEB9FD -,2
C4277 0123458A6BC9DE7F 3,3 C4288 0123456789CEFBDA 2,2 Q4

299 012345678ACEB9FD 1,1
C4278 0123468B5CD7AF9E 3,3 C4289 0123456789CEBFDA -,3 Q4

300 0123458967CDEFAB 2,1
C4279 0123458A6BC7DFE9 -,3 C4290 0123456789BCEAFD -,3 C4301 0123458967CDEFBA -,1
C4280 0123457869ACEDBF 3,3 C4291 012345768A9BCFED -,3

Table 11: Known S-boxes and their classes

Class Cipher Class Cipher

C439 DESL Row2, DESL Row3 C4190 Twofish q0 t0

C446 DES7 Row3 C4197 Lucifer S1

C459 DES7 Row1 C4204 DES2 Row2, DES3 Row2, DESL Row1

C469 DES3 Row1, DES7 Row0 C4206 Gost K7

C474 DES6 Row1 C4208 Twofish q0 t1

C480 DES8 Row2 C4209 Serpent4, Serpent5, HB2 S2

C485 DES1 Row0, DES1 Row1, C4210 Clefia0, Twofish q0 t2, HB1 S0, HB2 S3
DES1 Row2, DES8 Row3

C497 DES8 Row0 C4220 DES6 Row0

C4108 Twofish q1 t1 C4221 DES5 Row2

C4117 DES2 Row0, DES6 Row3 C4223 Noekeon, Luffa v1, Piccolo

C4120 Twofish q0 t3 C4229 Twofish q1 t2

C4137 DES8 Row1 C4231 JH S0, JH S1

C4139 DES3 Row0, DES5 Row0 C4253 Gost K3

C4142 Twofish q1 t3 C4254 DES5 Row1

C4145 Gost K6 C4257 DES3 Row3

C4148 DES5 Row3 C4266 Present, Serpent2, Serpent6, Luffa v2, Hamsi

C4153 Twofish q1 t0 C4267 Gost K4

C4154 Gost K5 C4270 Klein, KhazadP, KhazadQ,
Iceberg G0, Iceberg G1, Puffin

C4160 Serpent3, Serpent7, Clefia2, C4275 Gost K2
Clefia3, HB1 S1, HB1 S3, HB2 S0

C4163 Clefia1, HB1 S2, HB2 S1 C4279 DES2 Row3, DES4 Row0, DES4 Row1,
DES4 Row2, DES4 Row3, DES7 Row2

C4166 DES2 Row1, DESL Row0 C4281 DES6 Row2

C4172 Gost K1 C4282 Inversion in GF (24), mCrypton S0,S1,S2,S3

C4177 Gost K8 C4296 Serpent1

C4184 DES1 Row3 C4297 Serpent0

C4188 Lucifer S0



Table 12: Quadratic decomposition length 2

Class # Quadratic Decomposition length 2: # simple
in A16 quadratic × quadratic solutions

C4130 300× 299 1

C4131 299× 300 1

C4150 12× 293, 293× 300, 300× 12, 300× 300 4

C4151 12× 300, 293× 12, 300× 293, 300× 300 4

C4158 299× 293 1

C4159 293× 299 1

C4168 12× 300, 293× 293, 300× 12, 300× 300 4

C4171 293× 12, 293× 300, 294× 293, 294× 300 4

C4172 12× 293, 293× 294, 300× 293, 300× 294 4

C4214 4× 299, 12× 12, 12× 294, 12× 299, 293× 4, 293× 12, 293× 294, 293× 299,
294× 12, 294× 294, 294× 299, 300× 4, 300× 12, 300× 294, 300× 299 15

C4215 4× 293, 4× 300, 12× 12, 12× 293, 12× 294, 12× 300, 294× 12, 294× 293,
294× 294, 294× 300, 299× 4, 299× 12, 299× 293, 299× 294, 299× 300 15

C4223 12× 293, 293× 293, 293× 294, 294× 293, 294× 294, 299× 12, 299× 299 7

C4233 12× 12, 293× 293, 293× 300, 294× 12, 294× 300, 299× 12, 300× 293,
300× 300 8

C4234 12× 12, 12× 294, 12× 299, 293× 293, 293× 300, 300× 293, 300× 294,
300× 300 8

C4236 12× 12, 293× 293, 293× 294, 293× 300, 294× 293, 294× 294, 299× 299,
300× 293, 300× 300 9

C4238 12× 300, 293× 293, 300× 12, 300× 300 4

C4243 4× 293, 4× 294, 12× 4, 12× 293, 12× 294, 12× 299, 293× 12, 293× 294,
294× 4, 294× 12, 294× 293, 294× 294, 299× 4, 299× 293, 299× 294,
300× 12, 300× 294, 300× 299 18

C4244 4× 12, 4× 294, 4× 299, 12× 293, 12× 294, 12× 300, 293× 4, 293× 12,
293× 294, 293× 300, 294× 4, 294× 12, 294× 293, 294× 294, 294× 299,
294× 300, 299× 12, 299× 300 18

C4252 299× 300, 300× 299 2

C4258 4× 12, 4× 300, 12× 4, 12× 12, 12× 293, 12× 294, 12× 299, 12× 300,
293× 12, 293× 294, 293× 299, 294× 12, 294× 293, 294× 299, 294× 300,
299× 12, 299× 293, 299× 294, 299× 300, 300× 4, 300× 12, 300× 294,
300× 299 23

C4259 4× 12, 4× 300, 12× 12, 12× 293, 12× 294, 12× 299, 12× 300, 293× 4,
293× 12, 293× 294, 293× 299, 294× 4, 294× 12, 294× 293, 294× 294,
294× 300, 299× 12, 299× 293, 299× 294, 299× 300, 300× 12, 300× 294,
300× 299 23

C4260 4× 293, 4× 294, 12× 4, 12× 12, 12× 293, 12× 294, 12× 299, 12× 300,
293× 12, 293× 294, 293× 299, 294× 12, 294× 293, 294× 294, 294× 299,
294× 299, 299× 12, 299× 293, 299× 300, 300× 4, 300× 12, 300× 294,
300× 299 23

C4262 12× 299, 294× 299, 299× 12, 299× 294 4

C4264 12× 294, 293× 293, 293× 300, 294× 12, 294× 300, 299× 299, 300× 293,
300× 294 8

C4266 12× 12, 293× 300, 294× 299, 299× 294, 299× 299, 300× 293, 300× 300 7

C4286 12× 293, 12× 300, 293× 12, 293× 300, 300× 12, 300× 293, 300× 300 7

C4288 12× 12, 293× 300, 300× 293, 300× 300 4

C4292 4× 4, 4× 12, 4× 294, 12× 4, 12× 12, 12× 293, 12× 294, 12× 300, 293× 12,
293× 294, 293× 299, 294× 4, 294× 12, 294× 293, 294× 294, 294× 299,
294× 300, 299× 293, 299× 294, 299× 300, 300× 12, 300× 294, 300× 299 23

C4296 12× 299, 293× 293, 293× 300, 294× 12, 294× 300, 299× 294, 299× 299 7

C4297 12× 294, 293× 293, 294× 299, 299× 12, 299× 299, 300× 293, 300× 294 7


