
Differential Power Analysis on ZUC Algorithm

TANG Ming
1,2

, CHENG PingPan
2

,QIU ZhenLong
2

1State Key Lab. of AIS & TC, Ministry of Education, Wuhan University, Wuhan 430072, China;

2School of Computers, Wuhan University, Wuhan 430072, China;

Abstract. Stream cipher ZUC plays a crucial role in the next generation of mobile

communication as it has already been included by the 3GPP LTE-Advanced, which is

a candidate standard for the 4G network. Through a long-time evaluation program,

ZUC algorithm is thought to be robust enough to resist many existing cryptanalyses,

but not for DPA, one of the most powerful threat of SCAs(Side Channel Analysis).Up

to the present, almost all the work on DPA is for block ciphers, such as DES and AES,

a very few work has been done on stream ciphers, such as ZUC algorithm, for

particular reasons that would be illustrated in the later section. In this paper, we

generally study the security of unprotected ZUC hardware implementation against

DPA. Our theoretical analysis and experimental results show that ZUC algorithm is

potentially vulnerable to this kind of attack. Furthermore, kinds of common

countermeasures are discussed when we try to apply them to ZUC hardware

implementations, both the security and tradeoffs are considered. The experiments are

given in the last section to verify our conclusions, which would undoubtedly provide

some guidance to the corresponding designers.

Key words: SCA, DPA, Stream Cipher, ZUC algorithm

1 Introduction

In the field of telecommunications, the world is stepping into 4
th

 Generation (4G for

short) standard. During the last few years, the 3rd Generation Partnership Project

(3GPP) has submitted Long Term Evaluation Advanced(LTE-Advanced) [1], which is

the enhancement of the LTEstandard, as a candidate for the 4G network. Particularly

for the radio interface, theLTE-Advanced standard needs a standardized encryption

and integrity algorithmset to guarantee its security.The latest algorithm set isthe

128-EEA3 (EEA is short for the Encryption Algorithm)[2] and the 128-EIA3(EIA is

short for the Integrity Algorithm) [2].Both of the two algorithmsare based on a

proposedstream cipher algorithm ZUC [3] with an internal state of 496 bits initialized

from a 128-bit secret key and a 128-bit initialization vector (IV for short).

 To ensure the security of the proposed ZUC algorithm, it was agreed that a robust,

three–phase evaluation program would be needed, including the evaluations by an

ETSI SAGE task force, the evaluation by two funded teams of academic experts, and

a public evaluation phase.Having experienced such a long-time evaluation program,

up to the present, ZUC algorithm is thought to be robust enough to resist against many

existing cryptanalyses such asWeak Key Attacks, Guess-and-Determine Attacks,

Algebraic Attacks, Timing Attacks, etc.[4]. However, whether the algorithm is

vulnerable to Power Analysis (PA) [5], one of the most effective SCAs（SCA is short

for side channel analysis）[5,6,7] to recover secret keys in numerous cryptosystems, is

not known yet.One point should be noted is that in terms of Power Analysis, we

usually distinguish between Simple Power Analysis (SPA) [5] and the other more

powerful analysis methods, such as Differential Power Analysis (DPA for short) [5],

Correlation Power Analysis (CPA for short) [8], .etc. However, throughout this paper,

we study more particularly about DPA, since it does not depend on the leakage

function and has a better practicability than other PAs.

 In [5] P. Kocher et al. firstproposed DPA, which performs a statistical analysisof

the power consumptionfora smart card and finally retrieve the secret key. The attack

exploits the fact that the power consumption of a cryptographic device is dependent

on the intermediate values operated during the encryption, and it has been shown to

be a practical threat to the security of cryptosystems.

 In this paper, we generally studied the security of the unprotected ZUC algorithm

againstDPA. Furthermore, kinds of effective countermeasureswerediscussed to protect

the hardware implementations of ZUCalgorithm from DPA. Experimental results are

also made to verify our conclusions.

1.1 Related Work

1) DifferentialPower Analysis.During the last decade, sidechannel analysishas been

shown to be a major threat towards the cryptographic implementations, regardless of

software and hardware.Among SCAs, DPA is one of the most commontechniques for

its high efficiency, good applicabilityand convenient performance compared with

other methods. However, almost all the work on DPA is for block ciphers (e.g.

DESand AES) and public key algorithms (e.g. RSA), there is a very few researches on

stream ciphers. The difficulty for DPA against stream ciphers lies in the fact thatthe

key steam generated by a stream cipher is independent from the plaintext and the

ciphertext,so the prerequisites of DPA attacks are not present, because we cannot use

the known values (i.e. the plaintext or the ciphertext) and the guessed values (i.e. a

part of the secret key needed to be recovered) to determine the intermediate result

during the encryptions.

2) DPA on Stream Ciphers. However,Joseph Lanoet al. [9] point out that, in real

applications, for the purpose to keep synchronization between the sender and the

receiver, stream cipher usually needs to be frequently resynchronized. In this situation,

the initial state of the stream cipher is frequently changed with different IVs while the

secret key(the secret key here is actually our attacking target in DPA, it was used to

initial the internal state of ZUC algorithm combined with the IV) is identical. So, we

can just treat the initial value as the plaintext in DPA while regard the generated key

stream as the ciphertext, and use the IV and the guessed key together to determine the

intermediate value of stream ciphers. So, DPA is still possible to attack stream

ciphers.In this paper, actually, our DPA strategy is based on this thought.

From another perspective, Sanjay Burman et al. proposed a PA based SCA

method to attack LFSR-based stream ciphers, which can precisely recover the state of

an n-bit LFSR through collecting the power of the LFSR in each clock period over

consecutive periods linear in n [10].And in [11], with a similar strategy, the authors

use DPA successfully break down the Grain-80 stream cipher and recover the secret

key.All the attacks are based on the fact that there is a high correlation between the

cipher’s power and the switching activity of the state bits of FSR.

3) DPA countermeasures. As the serious threat brought by DPA, lots of efforts have

already been dedicated towards the development of the corresponding

countermeasures on block ciphers [12, 13, 14, 15, 16, 17], all these countermeasures

are supposed to be able to be applied on stream ciphers as well [11].One subject of

research has been on algorithmic countermeasures that try to randomize all the

intermediate results during the processes. Thiskind of countermeasure isusually called

masking [12,13, 14], which can be applied either at algorithm level or at gate level.

However in practice, masking strategy is usually very specific and requires additional

cost of reduced performance, so we often combine this kind of countermeasure and

othercountermeasures for better performance. Hardware countermeasures try to make

the power consumption of a device independent of the data being processed by the

device. Typical examples are noise generatorsand the insertion of random delays [15,

16],logic styles with data-independent power consumption [17, 18], etc. Among

which, in the real applications, the insertion of random delays is the most popular

countermeasure for its simplicity while logic styles with data-independent power

consumption are the most efficient ones for its best performance.

There are also some countermeasures specifically targeting at protecting stream

ciphers. To our best knowledge, in order to counteract the potential threat of power

analysis methods in [10], the author in this paper first proposed an architecture level

countermeasure specifically targeting at LFSR-based stream ciphers. And in

COSADE 2012,Shohreh Sharif Mansouri et al. [11] proposed another architectural

countermeasure against power analysis for FSR-based stream ciphers, which can

resist against DPA, MIA and several more complex power attacks.

1.2 Our Contribution

This is the first paper trying to perform DPA on ZUC algorithm. There havealready

been a few publications towards the security of the ZUC algorithm from traditional

mathematic analyses. Especially, the official design and evaluation report [4]gives the

evaluation of the ZUC algorithm on the resistance against several cryptanalytic

attacks, weak key attacks, guess-and-determine attacks, algebraic attacks, timing

attacks, etc. ChunfangZhou et al. extend the differentialpropertiesof the initialization

stage of ZUC algorithmfrom 20 roundsto four more rounds and shows that ZUC can

still resist against chosen-IV attacks [19]. However, whether ZUC can resist against

DPA is rather unknown.In this paper, this topic is generally studied.Ourfinal analysis

results show that ZUC algorithm is to some extent vulnerable to DPA.

Since DPA is a potential serious threat of ZUC algorithm,it is necessaryfor

designers to add theeffective countermeasures to the ZUC implementation to

guarantee its security in real applications.However, all the countermeasures proposed

in [10, 11] specifically targeting at stream ciphers cannot resist our DPA strategy

proposed in this paper, because our attacking point is not the state of FSR or LFSR

but the outputs of S-box in ZUC stream cipher. Thus, these kinds of countermeasures

which decrease the correlation between the power of FSR and the total power of

cipher cannot work on our attack. In this paper, we generally apply several of the

countermeasures which are initially designed for block ciphers but still working on

stream ciphers to the implementations of ZUC algorithm, and study the ability of

protected ZUC algorithm against DPA.We generally take the tradeoffs and security

into consideration, which wouldundoubtedly provide some guidance to the designers.

1.3 Organization of This Paper

The remainder of this paper is organized as follows. Section 2 presents the

introduction ofthe hardware implementation of ZUC algorithm and the general steps

of DPA [5]. Our detailed DPA strategy on ZUC algorithm is described in Section 3.In

Section 4,we discussthree kinds of countermeasures trying to protect ZUC

implementations from DPA. Our experiments resultsare in Section 5 and finally, we

draw our conclusions in Section 6.

2 Preliminaries

2.1 The Definition of ZUC Algorithm

15s 14s 13s 12s 11s 10s 9s 8s 7s 6s 5s 4s 3s 2s 1s 0s

15

2
17

2
21

2
20

2
6

1+2

31

mod 2 1

16 16 16 16 1616 16 16
0X 1X 2X 3X

1R 2R

16

1S L 2S L

W Z

L
F
S
R

B
R

F

exclusive-OR module
32

2 addition

the addition + the k-bit cyclic shift<<<k

Fig 2-1the structure of ZUC Algorithm

In this section, we briefly introduce the latest ZUC algorithm, for detailed phase

please refer to [2]. The new stream cipher ZUC is a world–orientedstream cipher [],

taking a 128-bit secret key and a 128-bit IVas input, and outputs a keystream of 32-bit

words, which is used to encrypt or decrypt the data.According to the official ZUC

specification [3], ZUC is composed of three logical layers, among whichthe top layer

is a linear feedback shift register (LFSR for short) of 16 cells, the middle layer is the

bit-reorganization (BR for short) operation, and the bottom layer is a nonlinear

function F. The structure of ZUC is illustrated in Fig 2-1.

2.1.1 The Linear Feedback Shift Register (LFSR)

The linear feedback shift register (LFSR) has 16 of 31-bit cells(
0S ,

1S ,…,
15S). Each

register cell (0 15)iS i  is restricted to take values from the following set:

31{1,2,3, . . .,2 1} . The LFSR has two modes of operations: the initialization mode

and working mode. The initialization mode works as Algorithm 1 shown.

Algorithm 1. (){LFSRWithInitialisationMode u

1.
13 10 4

15 17 21 20 8 31

152 2 2 2 (1 2)mod(2 1)v s s s s       ;

2. 31

16 ()mod(2 1)s u v   ;

3. If
16 0s  , then set 31

16 2 1s   ;

4.
1 2 15 16 0 1 14 15(, ,..., ,) (, , , ,)s s s s s s s s  .

 }

In the working mode, the LFSR does not receive any input, and it works as Algorithm

2 shown.

Algorithm 2. (){LFSRWithWorkMode

1. 15 17 21 20 8 31

15 13 10 42 2 2 2 (1 2)mod(2 1)v s s s s       ;

2. If
16 0s  , then set 31

16 2 1s   ;

3.
1 2 15 16 0 1 14 15(, ,..., ,) (, , , ,)s s s s s s s s  .

 }

2.1.2 The Bit-Reorganization

The middle layer of ZUC is the bit-reorganization (BR) procedure. It extracts 128 bits

from the cells of the LFSR and form four32-bit words, where the first three words will

be passed to the next layer, nonlinear function F , and the last word will be involved

in producing the key stream. Assuming that
2s ,

5s ,
7s ,

9s ,
11s ,

14s ,and
15s are eight cells

of LFSR as in section 2.1.1. Then the bit-reorganizationforms 4 of 32-bit words
0X ,

1X ,
2X and

3X from the above cells as Algorithm 3.

Algorithm 3. (){Bitreorganization

1.
0 15 14||H LX s s ;

2.
1 11 9||L HX s s ;

3.
2 7 5||L HX s s ;

4.
3 2 0||L HX s s .

 }

2.1.3 The Nonlinear Function F

There are two 32-bit memory cells, 1R and 2R , in the nonlinear function F . The input

of F is
0X ，

1X ,
2X , which are the first three words ofoutput of the BR procedure,

and it outputs a 32-bit word W. The detailed processof the nonlinear function F is

described in Algorithm 4, where S is a 32 × 32 S-box.

Algorithm 4. 0 1 2(, ,){F X X X

1. W=(X0 ⨁ X1 ⊞)R21;

2. W1=R1 ⊞𝑋1;

3.
2 2 2W R X  ;

4.
1 1 1 2((||))L HR S L W W ;

5.
2 2 2 1((||))L HR S L W W .

}

Both 1L and 2L are linear transforms from 32-bit words, and are defined as

follows:

32 32 32 321

32 32 32 322

() (2) (10) (18) (24)

() (8) (14) (22) (30)

L X X X X X X

L X X X X X X

        

        
.

2.1.5 The Key Loading

The key loading procedure will expand the initial key and the initial vector into 16

31-bit integers as the initial state of the LFSR. Let the 128-bit initial key k and the

128-bit initial vector iv be
0 1 2 15|| || || ... ||k k k k k and

0 1 2 15|| || || ... ||iv iv iv iv iv

separately, where ik and iiv , 0 15i  , are all bytes. Then
ik and

iiv are loaded into the

cells iS as || ||i i i is k d iv , where
id is a known constant.

2.1.6 The Execution of ZUC

The execution of ZUC is composed of two stages: the initialization stage and working

stage. During the initialization stage, the cipher algorithm runs the following

operations 32 times to finish the initialization:

1. ()Bitreorganization ;

2.
0 1 2(, ,)W F X X X ;

3. (1)LFSRWithInitialisationMode w .

After the initialization stage, the algorithm moves into the working stage. At the

beginning of this stage, the algorithm executes the following operations once, and

discards the outputW of nonlinear function F :

1. ()Bitreorganization ;

2.
0 1 2(, ,)F X X X ;

3. ()LFSRWithInitialisationMode .

Then the algorithm goes into the stage of producing keystream, i.e., for eachiteration,

the following operations are executed once, and a 32-bit word Z is produced as an

output:

1. ()Bitreorganization ;

2.
30 1 2(, ,)Z F X X X X  ;

3. ()LFSRWithInitialisationMode .

2.2 Implementation in Hardware

0

LFSR

f (linear)

15 13 10 4 0

BR

1514 11 9 7 5 2

F (nonlinear)

>>1

+

M
U
X

W Z

 Fig 2-2implementation of ZUC Algorithm in Hardware

Thestructure of the hardware implementation of ZUC algorithm is illustrated in Fig

2-2. It is mainly made up of the following parts:

- a LFSR of 16 cells
0s ,

1s , …,
15s ;

- acombinatorial logic block BR , implementing the bit-reorganizationoperation;

- a combinatorial logic block F , implementing the nonlinear function F;

- a combinatorial logic block f, implementing 31mod(2 1) addition operation;

- some extra XORs and other logic operations.

2.3 The Differential Power Analysis Attacks

Over the past ten years, there have been some new DPA attacks, but the main

idea and principles of most DPA attacks [20] are originated from Kocher [5]. Like

other SCAs, DPAs are composed of two phases: the first is data collection, and the

other is statistical analyzing. The following steps provide an example of a DPA

processes proposed by Kocher:

1) Attackers choose a key-dependent selection function D. In this case, the selection

function would have the form (, ,)i sD C b k ;

2) Attackers could observe m encryption operations and capture two kinds of

information as following:

-
iC represents cipher text which is corresponding to one power trace;

- k samplings are collected and each sampling is related to a certain time point.

3) Statistically analyzing to get
sk :

- Firstly, to get the value of []iT j for a certain power sampling, i is the i th

power sampling and j represents the j thsampling point;

- Secondly, to compute the value of differential power based on function (1),

and only iC and []iT j are variable;

1 1

1 1

(, ,) [] (1 (, ,)) []
[]

(, ,) (1 (, ,))

m m
s i s ii ii i

m m
s si ii i

D C b k T j D C b k T j
D j

D C b k D C b k

 

 


  



 

 
(1)

- Eventually, if
sk is incorrect, [] 0lim

m

D j


  ; adversely if
sk is correct, the

computed value of []D j will not be zero and show spikes in regions where

D is correlated to the values being processed. This conclusion has been

proofed by Kocher[5].

While the effects of a single transistor switching would be normally be

impossible to identify from direct observations of a device's power consumption, the

statistical operations used in DPA are able to reliably identify extraordinarily slight

differences in power consumption.

3 DPA attacks on the ZUC Algorithm

As mentioned above, since stream ciphers requirefrequent resynchronizations in many

applications, it is possible for attackers to obtain a huge number of power traces of a

stream cipher using different initial values but the same secret key. In this case, we

can choose a selection function D combined with the IV and the guessed key to

determine the intermediate value of the algorithm.

This section presentsour DPA strategyonZUC algorithm.

3.1 Overview

The main stages of the attack are as follows, we generally recover the secret key bytes

by bytes:

1) Data collection stage: collect power consumptions;

2) Use DPA against the first round of the initialization stage to recover
9k and

5k .

The value of
1R and

2R registers and the state of the 16 LFSR cells derived in the

first round are used in the second round of the initialization stage, to recover
10k

and
6k ;

3) Use the same strategy in the next few rounds, and determine the correct key

information
11k ,

7k ,
12k ,

8k , and
13k separately;

4) Performthe DPA in the sixth round of the initialization stage to make an

exhaustive search of
15k ,

14k ,
4k ,

0k and recover them;

5) Use the same strategy as step 4) to get the values of
11k and

1k in the next round

of the initialization stage;

6) Finally, determine the only left byte of the secret key
2k in the eighth round.

The attack details are given in the next section and the experiment results are

presented in Section 5.

3.2 Attack Details

Step 1:Power measurements are performed for 10000 samplings, each encrypted with

the same secret key and differentIVs.

Collecting the power traces covering the first eight rounds of ZUC algorithm, the

initialization and key-loading operations of EEA3-128 algorithm should be also

covered.

Step 2: Use DPA to recover
9k and

5k . In the first round of the initialization stage of

ZUC algorithm, the inputs of eachS-box are solely related to the correct key

information
9k or

5k . Therefore, for each byte of the secret key,the DPA can perform

an 8-bit exhaustive search over the bits, and use one bit of the outputs of the

corresponding S-box as the partition bit to recover the correct information.The data

flow related with the secret key bitsof
9k and

5k in each operationis as follows:

1R 2R

|| ||

0X 1X

1W 2W

1S L 2S L

L
F
S
R

B
R

F

11S 10S 9S 7S 6S 5S

9k 5k

9k 5k

only rely on
the unknown 9k

only rely on
the unknown 5k

 Fig3-1the data flow related to the secret
9k and

5k in DPA

- (, ,)iKeyLoading IV d KEY .This operation makes each cell
0s , …,

14s ,
15s of the

LFSR solely related with the correct information
0k , …,

14k ,
15k respectively,

and the highesteight bits of each cell are thecorrect key information;

- ()Bitreorganization . Afterthe combinations in this step:

 10 5[30 : 23]X k

1 9[15:8]X k

2 5[15:8]X k

 ,

where [:]X A B represents the highest[A:B] bits of X (A B). We do not

consider
3X in our attacks for it does not involve in the nonlinear function

F(our attacking operation) operation of initialization stage.

- 0 1 2(, ,)W F X X X .The analysis of the nonlinear function Fdisplays the most

crucial part of the total attacks.
0X ,

1X , and
2X derived in the above processes

are needed in this step:

1) In the first three functionsofthe Ffunction（seeSection 2.1.3）, since the

initial state of
1R and

2R are both zero, it is easy to find that the

topeight-bit of W is identical with the secretkeyinformation in
0X , while

1W and
2W cover the same correctkey information with that in

1X and
2X ,

respectively.This relationship can be expressed as:

1 9[15:8]W k

2 5[15:8]W k

 ;

2) Thus, the inputs of the fourth function of the Ffunction
1 2||L HW W are

solely related to
9k , and the inputs of the fifth function

2 1||L HW W are only

related to
5k . The two selection functions in these twice DPAs to recover

9k

and
5k can be represented in the following forms:

1 1 9(,)ib D IV k

2 2 5(,)ib D IV k

 ,

where
1b and

2b are one-bit of the outputs of the corresponding S-boxes;

iIV represents the different and known initial values;
9k and

5k arethe

parts of the only unknown secret key;

3) It is easy to acquire the corresponding values of
1R and

2R , which will be

used in the following attacks.

-  1LFSRWithInitializationMode W  . The value of W derived in the above

step is the input of this operation. After the first two functions of this step, we

could get the results as follows:

13 10 4

15 17 21 20 8 31

152 2 2 2 (1 2)mod(2 1)v s s s s      

31

16 ()mod(2 1)s u v  

 ,

where the generated
16s covers the correct key information of

15k ，
13k ，

10k ，
4k ，

and
0k ；Then, the next two functions are used to update the 16 cells of LFSR,

and the leftmost cell of LFSR is updated with the value of
16s .

Note:It should be noted that the S-box Scontains 4 8 8 S-boxes, namely
0S ，

1S ，
2S ，

3S ，where
1 3S S ，

0 2S S . Actually, we can either choose the outputs of the

S-box S or the outputs of one amongthe 4 S-boxes as the attacking point for there

always exists a S-box whose one-bit output covers the whole correct key information

of
9k or

5k ; Moreover, the specialtyof the analysis on the first round lies in the fact

that the initial values of
1R and

2R are both zeros, thus they would not affect the

inputs of the S-box(that is the values of
1W and

2W). So typically, we further

analyze the attacking details on the second round of the initialization stage.

Step 3:Use DPA to recover
10k and

6k . Similar with the analysis of the first round,

the DPA on the second round can also choose one bit in the outputs of the S-boxes as

the partition bit to recover the correct key. But there exists a slight difference for some

special operations and the values of
1R and

2R are not zero any longer. The data

flow related to
10k and

6k in the DPA is just like the Fig 3-1.

Like the analysis in Step 2, after the bit-reorganization operation, we can get the

results:

11 0[15:8]X k

62[15:8]X k

 ,

In fact, the differences lie in the analysis of nonlinear function F:

- After the middle twofunctions of W1=R1 ⊞𝑋1 and
2 2 2W R X  ,

1W

covers the correct key information of
10k . More precisely, if the outgoing

carry bit of
1 1R X is not zero,then

1[16 :8]W covers the information of
10k .

On the other hand,
1[15:8]W will cover this information; and it is obvious

that
2[15:8]W will cover the correct information

6k .

- Inthe last two functions, the result of
1 2||L HW W is solely related with the

secret
10k , we can use DPA to recover it; with the same way,

6k can be

retrieved in the next step. However, it should be noted that in the process to

recover
6k , the result of

2 1||L HW W maybe rely on both
6k and

10k , for the

existence of the carry bitof
1 1R X . Since

10k is retrieved in the former step,

this does not have influence on our attacks.

The final operation will update the LFSR, and we use
16 'S to represent the new

16S .

Step 4:Usethe same strategies as in Step 3, we are capable to recover
11k and

7k in

the third round,
12k and

8k in the fourth round,
13k and

9k (in fact,
9k has

already been retrieved in the first round) in the fifth round. So far, 72 bits out of the

108 bits secret information have already been recovered in the previous processes.

Step 5: Use DPA to recover
0k ,

4k , and
15k . In the sixth round of the initialization

stage of ZUC algorithm, the attacks become more difficult, for
16S generated in the

first round of the current stage involves in the operations.

More precisely,
16S covers more correctkey informationthan that in the other

cells, whichinvolves 32-bit correct key information of
15k ,

13k ,
10k ,

4k , and
0k .

Fortunately,
13k and

10k have already been recovered in the previous analyses,

moreover,only
0k ，

4k ，
15k are still unknown.

16S makes
1X cover much more correct

key information than that in the bit-reorganization operationof the previous rounds,

which is 32 bits (besides the correct information in
16S , it also covers the secret

14k).

So the adversary has to perform the32-bit exhaustive search over the bits, which is

still reasonable.

Step 6:Use DPA to recover
11k and

1k in the seventh round.The operations in the

seventh round of the current stage involves
16 'S (only covers the correctkey

information of
11k and

1k) generated in the second round.Like the analysis towards

the sixth round, DPA is capable to retrieve the values with the16-bit exhaustive

searches.

Step 7:After the DPA on the first seven rounds, there only leaves
2k uncovered. It is

easy to determine the value in the next round, and we do not give the details.

The overall attacks need 10 times of 8-bit exhaustive search, a 32-bit exhaustive

search, and a 16-bit exhaustive search. So the time complexity is 8 32 16(2 10 2 +2)  .

It should be noted that, since our attacking point is the outputs of the S-box in the

nonlinear function F, which can only be implemented by looking up tables and cannot

be implemented by logics, our DPA strategy actually do not rely on the specific ZUC

hardware implementations, such as the three optimized implementations proposed in

[21].

4 The Probably Secure Hardware Implementations of ZUC Algorithm

The DPA strategydescribed in Section 3 is towards on unprotected ZUC

implementations. However, in real applications, countermeasures are usually added to

the hardware implementations of the algorithm to guarantee its security. So, studying

the effectiveness of different common countermeasures is of great value for it can

provide some imperative guidance for the hardware implementations of ZUC

algorithm in applications.

 In this section, three kinds of popular countermeasures, the insertion of random

delays, WDDL, masking respectively, are discussed as different countermeasures in

hardware implementations of ZUC algorithm.DPAs results on protected circuits are

given in Section 5.

4.1The Insertion of Random Delays

One of the most classic countermeasures against DPA in the real world applications is

the insertion of random delays. With the insertion of random delays, instead of

executing all the operations sequentially, the CPU interleaves the code’s execution

with that of dummy instructions so that the corresponding operation cycles do not

match because of time shifts[15].

Such countermeasures are effective because all the intermediate results are no

longer computed at a fixed instance. It rather occurs at a set of different time instants

with probability distribution, thus we cannot use DPA to attack a fixed point. This

kind of countermeasure is simple, and very convenient to implement with limited

hardware resource increase.

So far, several strategies for this kind of countermeasure have already been

proposed [22, 23, 24]. From [23] and [24], it is clear that the complexity of a DPA

attack grows quadratically or linearly with the standard deviation of the trace

displacement in the attacking point. Among theexisting methods based on this idea,

the method proposed in [24]gets the best performance for achieving a relatively

higher standard deviation of the trace displacement with reasonable resource. In our

corresponding experiment, we implement the strategy for random delaygeneration

proposed in [22] for its best performance in hardware implementation.And we

generally study the ability of the protected circuits to resist DPA.

4.2Wave Dynamic Differential Logic

Using logic styles with data-independent power consumption in hardware

implementations is a rather common hardware countermeasure. Such technologies

have been proposed trying to keep the power of the whole circuits at a constant value

to prevent DPA attacks, andwave dynamic differential logic (WDDL for short)first

proposed in [25]is a typical logic of this kind of countermeasures.The circuits using

WDDL [25, 26, 27] have the following characteristics: whenever an operation is

performed in hardware, a complementary operation should be performed on a

dummyelement to assure that the total power consumption of the unit remains

balanced. The WDDL logics have shown almost the constant power value, thus it

canresist DPA fundamentally. While at the same time, this kind of countermeasure

will definitely increase hardware resources at least three times[17].

In the experiments, based on WDDL principles, the original ZUC circuits are

disintegrated. More precisely, the design uses input signals to replace NOT gates and

logic inverters, and replaces the complicated logics (i.e. NOR gates and NAND gates)

with simple logics (i.e. AND gates and OR gates). And then, built in complementary

principle, the AND gates are added with OR gates while the OR gates are added with

AND gates. After these operations, the overall circuits would be capable to resist

DPA for the power of each operation keeps balanced. Experiment results are shown in

Section 5 to confirm the analysis.

4.3Masking

The masking technique [12, 13, 14] is the most widely used countermeasure against

power analysis. In a masking design, for every execution of the algorithm a new mask

is randomly generated and applied to the input data and to the secret key. All internal

computations are masked from then on and the final resultsare unmasked after the last

round. In this case, the attacker cannot extract any correlation between the secret key

in running and the actual power curves. If the masking scheme is implemented

properly, it has shown that this kind of countermeasure can render DPA rather

complicated or even impossible [13, 14].

However, the existing masking strategies almost allconcentrate on block ciphers

and each cipher usually needs a specific masking scheme.We find it hard to propose a

proper masking strategy for the steam cipher ZUC.There are several distinct reasons:

Firstly,in a masking scheme, the nonlinear operations are generally the most

resource-consuming parts. Particularly for the implementation of ZUC algorithm,

thenonlinear operations - thetwo 8 8 LUTs (LUT is short for look up table) are just

too large to implement in a rather limited hardware resource;More importantly,the

worst cases for a specific masking scheme are the algorithms that repeatedly require

switching between different masking types, such as additive masking to multiplicative

masking or arithmetic masking. Taking the AES masking schemes for example,

Mehdi-Laurent Akkar et al.proposed a masking implementation in [12] and Johannes

Blomeret al. introduced a probably secure masking strategy in [28], both of which

require switching between different kinds of masking types. They were believed to be

secure for a period. However, it was shown in later research that both of these two

strategies are not secure enough to resist DPA for the existence of zero-value attacks

caused by the switching [13, 29].Unfortunately, ZUC algorithm is this kind of

algorithm for it involves several different kinds of operations which needs frequent

switching.

So, we do not apply this kind of countermeasure to the implementations of ZUC

algorithm.

5 Experiments

In this section, two kinds of experiments are conducted to verify our

conclusions:the attacks on the original ZUC hardware implementation, and the attacks

on the protected hardware implementations of ZUC algorithm, respectively. The test

environments as follows:

- CPU: Pentium(R)Dual-Core 2.60GHz

- Memory: 2.0GB RAM

- OS: Windows 7

- Simulation database: TSMC 0.18 μm database

- EDA compiler: Synopsys Design Compiler 2008.9

- Wave simulator: Modelsim SE 6.5b

- Power simulator: Synopsys PrimePower 2004.12

- Program Language: Visual C#

The flow of the whole experimentis illustrated asFig 5-1:

Fig 5-1the flow of our experiment

 Asimplified descriptionof the process of our experiment is as follows:

 Step1:In data collection phase, power measurements are performed for

N(typically 10000)samplings,each encryptedwith a randomly selected initial valueIV

and the same secret key.Then, use EDA simulation tools (i.e. Modersim, PrimePower)

to collect the power data;

Step2:Our attacking point is set at the first bit of outputs of the leftmost S-boxin

the first round of ZUC algorithm in the initialization stage.

Note: Since the DPAfor each round are virtually the same and just differs at the

target bits of the secret key, it makes sensefor ustoonly attack the first round of the

initialization stage for simplicity. Here, in all the experiments, we only try to recover

9k in the first roundas we described in Section 3.

Step3: Use power analyzerto collect certain information such as initial values

IVsand power []iT j on line;

Step4: To put theguess
sk into D function and compute value ofb .

Step5: To compute the differential power traces based on the power model

proposed by Kocher [5],and judge whether the guessed
sk is correct by comparing all

the spikes for each hypothesis
sk .

The details for each experiment are presented in the following parts.

5.1 Attacks on Original ZUC Hardware Implementation

In the experiment,the correctkey is set “C15CB7421B980FD5438D2972F86BE0E4”,

and the guess key is randomly selected.In our hardware implementation, the clock

cycle is 20ns, and we collect the power each 1 ns.We use about 10 clock periods to

implement the first two rounds of the initialization stage of ZUC algorithm, so we

collect about 240 power points in each sampling. The power tracescollected

inPrimePowerare illustrated asFig 5-2, and the analysis results in thepower analyzer

are shown inFig 5-3.

 Fig 5-2 power trace collected in PrimePower in about 12 clock cycles

Fig

5-3thedifferential power traces to recover
9k

 As shown inFig 5-3 b), the spike generated by the correct key is clearly visible

when the sampling number is 5000, while in Fig 5-3a), the spike is not so obvious for

the sampling number is not enough.Furthermore, we can see that the spike shows at

about time point of 130ns, which is exactly the point when the targeted S-box is

operated. Thus, we can successfully recover the secret
9k . Just at the same way, we are

capable to recover the other bits of the secret key.

5.2 Attacks on Protected ZUC Hardware Implementations

Experiment 1:In the ZUC hardware Implementation of the first experiment, we

implement the strategy for random delaygeneration proposed in [].

The core idea of this strategy is to use a configurable switch matrix to control the

position of registers in between functional blocks of an algorithm. Since each register

causes a delay of one clock cycle, these randomly poisoning registers shift the code’s

executions and desynchronize attackers’ observations. And the number of possible

configurations depends on the number m of registers and n of functional blocks.

In our implementation, there are five functional blocks, and we use two registers: one

is between the bit-reorganization operation and the F function, and the other register

is ahead of the nonlinear operation S-box. The clock cycle is set 15ns, and we collect

power point each 1ns. As there are at most two registers in each round, it would take

120ns (i.e. 8 clock cycles, 6 among which implements the original ZUC circuits, and

2 among which implements the delays at most) to implement the first round of the

initialization stage at most. In the statistical analyzing phase,the partition bit is set at

the first bit of the outputs of 1S . The analysis results in thepower analyzer are shown

inFig 5-4.

Fig 5-4differential power traces to recover 9k

 As we can see in both Fig 5-4 a) and b), there is no obvious spikes in all the

differential traces, and the spikes generated by the random key traces even cover the

spikes generated by the correct key traces. When the sampling number increases from

5000 (which is actually the number of samplings needed to break the original ZUC

hardware implementation in our design) to 10000, the trend is still not clear. The DPA

attacks failed when we use this kind of countermeasure.

Experiment 2:In this experiment, WDDL is used to protect ZUC hardware

implementation from DPA.

WDDL is a rather resource-consuming countermeasure.It has been proved that

the nonlinear operations in an algorithm are the most crucial parts to resist DPA [], for

simplicity, it makes sense for us to only apply this kind of countermeasure to one of

the S-boxes of ZUC algorithm, and we choose
1S . As mentioned above, in our

implementation of WDDL, the original netlist of
1S generated in Design Compiler is

disintegrated into simple circuit units,and each circuit unit is added with a

complementary unit to keep the total power balanced. The clock period is set 20ns,

and we collect the power each 0.1ms in the data collection phase.In the statistical

analyzing phase, we set the first bit of the outputs of
1S as the partition bit and use

our power analyzer to attack the design. The analysis results in thepower analyzer are

shown inFig 5-4.

Fig 5-4 differential power traces to attack the S-boxes

 As is shown in Fig 5-4 a), when the sampling number is 5000, the original S-box

generates an obvious spike while the S-box added WDDL does not. It means DPA is

successfully implemented on the original S-box, but the attack on the S-box added

WDDL failed. When we increase the sampling number to 10000, as is shown in Fig

5-4 b),thespike generated by the original S-box is more clearly visible, while DPA on

the S-box added WDDL is still unsuccessful for the corresponding trace does not

produce a visible spike yet. The results confirmed our analysis.

6 Conclusions

 This is the first paper trying to perform DPA on the new proposed standardized

algorithm ZUC.Almost all the present DPA research is towards on block ciphers,

however, based on the frequentresynchronization of stream ciphers in real

applications, we showed that the stream cipher ZUC is still potentially vulnerable to

DPA. Kinds of effective countermeasures are also discussed trying to render the attack

more complicated,and we mounted stimulated DPA attacks to prove the effectiveness

of these countermeasures in our experiments. Our work would undoubtedly provide

some guidance to the hardware implementation designers of ZUC algorithm in real

applications.

 Our DPA strategy is built in the standard DPA proposed by Kocher, and the attack

complexity is in a reasonable level. However, we believe that some other techniques

might be used to reduce the DPA complexity to an even lower level. Additionally, as

hardware design techniques develop, more work could be done on the

countermeasures of ZUC algorithm to against DPA, especially masking. If properly

implemented, masking is undoubtedly one of the most efficient countermeasures

against DPA.

References

[1] 3rd Generation Partnership Project. Long Term Evaluation Release 10 and beyond

(LTE-Advanced). Proposed to ITU at 3GPP TSG RAN Meeting, Spain (2009)

[2] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &

128-EIA3. Document 1: 128-EEA3 and 128-EIA3 Specification. ETSI/SAGE

Specification, Version: 1.5 (January 4, 2011)

[3] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &

128-EIA3. Document 2: ZUC Specification. ETSI/SAGE Specification, Version: 1.5

(January 4, 2011)

[4] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &

128-EIA3. Document 4: Design and Evaluation Report. ETSI/SAGE Specification,

Version: 2.0 (September 9, 2011)

[5] P.C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in

Cryptology – CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science

(LNCS), pages 388–397. Springer, 1999

[6] D. Agrawal, B. Archambeault, J.R. Rao, and P.Rohatgi. The EM Side-channel(s).

In Cryptographic Hardware and Embedded Systems – CHES 2002, Lecture Notes in

Computer Science (LNCS). Springer, 2002

[7] P.C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS

and Related Attacks. In Advances in Cryptology – CRYPTO 1996, volume 1109 of

Lecture Notes in Computer Science(LNCS), pages 104–113. Springer, 1996

[8] E. Brier, C. Clavier, F. Olivier. Correlation Power Analysis with a Leakage Model,

In Cryptographic Hardware and Embedded Systems – CHES 2004, volume 3156 of

Lecture Notes in Computer Science (LNCS), pages 16–29. Springer, 2004

[9] J. Lano, N. Mentens, B. Preneel, and I. Verbauwhede. Power Analysis of

Synchronous StreamCiphers with Resynchronization Mechanism. In The State of the

Art of StreamCiphers–SASC 2004, Workshop Record, pages 327–333

[10] S. Burman, D. Mukhopadhyay, and K. Veezhinathan. LFSR Based Stream

Ciphers Are Vulnerable to Power Attacks. In INDOCRYPT 2007, volume 4859 of

Lecture Notes in Computer Science(LNCS), pages 384–392. Springer, 2007

[11] S. S. Mansouri and E. Dubrova.An Architectural Countermeasure against Power

Analysis Attacks for FSR-Based Stream Ciphers. In COSADE 2012, volume 7275 of

Lecture Notes in Computer Science (LNCS), pages 54–68. Springer, 2012

[12] M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure against

Some Attacks. In Cryptographic Hardware and Embedded Systems – CHES 2001,

volume 2162 of Lecture Notes in Computer Science (LNCS), pages 309–318.

Springer, 2001

[13] J. D. Goli ć and C. Tymen. Multiplicative Masking and Power Analysis of AES.

In Cryptographic Hardware and Embedded Systems – CHES 2002, volume 2535 of

Lecture Notes in Computer Science (LNCS), pages 198–212. Springer, 2003

[14] L. Genelle, E. Prouff and M. Quisquater.Thwarting Higher-Order Side Channel

Analysis with Additive and Multiplicative Maskings. In Cryptographic Hardware and

Embedded Systems – CHES 2011, volume 6917 of Lecture Notes in Computer

Science (LNCS), pages 240–255. Springer, 2011

[15] C. Clavier, J.-S.Coron, and N. Dabbous. Differential Power Analysis in the

Presence of Hardware Countermeasures. In Cryptographic Hardware and Embedded

Systems – CHES2000, volume 1965 of Lecture Notes in Computer Science (LNCS),

pages 252–263. Springer, 2000

[16] S. Mangard. Hardware Countermeasures against DPA – A Statistical Analysis of

Their Effectiveness. In Cryptology – CTRSA2004, The Cryptographers’ Track at the

RSA Conference 2004, volume 2964 of Lecture Notes inComputer Science (LNCS),

pages 222–235. Springer, 2004

[17] K. Tiri and I. Verbauwhede.Securing Encryption Algorithms against DPA at the

Logic Level: Next Generation Smart Card Technology. In Cryptographic Hardware

and EmbeddedSystems – CHES 2003, volume 2779 of Lecture Notes in Computer

Science (LNCS), pages 137–151. Springer, 2003

[18] K. Tiri and I. Verbauwhede.A Logic Level Design Methodology for a Secure

DPA Resistant ASIC or FPGA Implementation. In 2004 Design, Automation andTest

in Europe Conference and Exposition (DATE 2004), 16-20 February 2004,Paris,

France, pages 246–251. IEEE Computer Society, 2004

[19] Chunfang Zhou, XiutaoFeng, and Dongdai Lin.The Initialization Stage Analysis

of ZUC v1.5*’**. In CANS 2011, volume 7092 of Lecture Notes in Computer

Science (LNCS), pages 40–53. Springer, 2011

[20] T. S. Messerges, E. A. Dabbish and R. H. Sloan.Investigations of Power Analysis

Attacks on Smart Cards.Usenix Workshop on Smartcard Technology, USA,

pages151-162,1999

[21] Lei Wang, Jiwu Jing, Zongbin Liu, Lingchen Zhang, and Wuqiong Pan.

Evaluating Optimized Implementations of Stream Cipher ZUC Algorithm on FPGA*.

In ICICS 2011, volume 7043 of Lecture Notes in Computer Science (LNCS), pages

202–215. Springer, 2011

[22] N. Mentens, B. Gierlichs, and I. Verbauwhede.Power and Fault Analysis

Resistance in Hardware through Dynamic Reconfiguration.In Cryptographic

Hardware and EmbeddedSystems – CHES 2008, volume 5154 ofLecture Notes in

Computer Science (LNCS), pages 346–362. Springer, 2008

[23]M.Tunstall, O.Benoit.Efficient Use of Random Delays in Embedded Software. In

WISTP 2007, volume 4462of Lecture Notes in Computer Science (LNCS), pages

27–38. Springer, 2007

[24] J.-S. Coron and I. Kizhvatov.An Efficient Method for Random Delay Generation

in Embedded Software. In Cryptographic Hardware and EmbeddedSystems – CHES

2009, volume 5747 ofLecture Notes in Computer Science (LNCS), pages 156–170.

Springer, 2009

[25] K. Tiri, and I. Verbauwhede.A Logic Level Design Methodology for a Secure

DPA Resistant ASIC or FPGA Implementation. In: Design, Automation and Test in

Europe, DATE’04. (2004) pages 246–251

[26] K. Tiri, and I. Verbauwhede.A VLSI Design Flow for Secure Side-Channel

Attack Resistant ICs. In: Design, Automation and Test in Europe, DATE’05. Vol. 3.

(2005) pages 58–63

[27] K. Tiri, and I. Verbauwhede.Place and Route for Secure Standard Cell Design. In:

6th International Conference on Smart Card Research and Advanced

Applications,CARDIS’04. (2004) pages 143–158

[28] J.Bl ömer, J. G.Merchan, and V.Krummel. Provably SecureMasking of AES.

Cryptology ePrint Archive (http://eprint.iacr.org/), Report2004/101, 2004

[29] E. Oswald, S.Mangard, N.Pramstaller,and V.Rijmen. A Side-Channel Analysis

Resistant Descriptionof the AES S-Box*.In FSE 2005, volume 3557 ofLecture Notes

in Computer Science (LNCS), pages 413–423. Springer, 2005.

