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Abstract. Stream cipher ZUC plays a crucial role in the next generation of mobile 

communication as it has already been included by the 3GPP LTE-Advanced, which is 

a candidate standard for the 4G network. Through a long-time evaluation program, 

ZUC algorithm is thought to be robust enough to resist many existing cryptanalyses, 

but not for DPA, one of the most powerful threat of SCAs(Side Channel Analysis).Up 

to the present, almost all the work on DPA is for block ciphers, such as DES and AES, 

a very few work has been done on stream ciphers, such as ZUC algorithm, for 

particular reasons that would be illustrated in the later section. In this paper, we 

generally study the security of unprotected ZUC hardware implementation against 

DPA. Our theoretical analysis and experimental results show that ZUC algorithm is 

potentially vulnerable to this kind of attack. Furthermore, kinds of common 

countermeasures are discussed when we try to apply them to ZUC hardware 

implementations, both the security and tradeoffs are considered. The experiments are 

given in the last section to verify our conclusions, which would undoubtedly provide 

some guidance to the corresponding designers. 
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1 Introduction 

In the field of telecommunications, the world is stepping into 4
th

 Generation (4G for 

short) standard. During the last few years, the 3rd Generation Partnership Project 

(3GPP) has submitted Long Term Evaluation Advanced(LTE-Advanced) [1], which is 

the enhancement of the LTEstandard, as a candidate for the 4G network. Particularly 

for the radio interface, theLTE-Advanced standard needs a standardized encryption 



and integrity algorithmset to guarantee its security.The latest algorithm set isthe 

128-EEA3 (EEA is short for the Encryption Algorithm)[2] and the 128-EIA3(EIA is 

short for the Integrity Algorithm) [2].Both of the two algorithmsare based on a 

proposedstream cipher algorithm ZUC [3] with an internal state of 496 bits initialized 

from a 128-bit secret key and a 128-bit initialization vector (IV for short). 

 To ensure the security of the proposed ZUC algorithm, it was agreed that a robust, 

three–phase evaluation program would be needed, including the evaluations by an 

ETSI SAGE task force, the evaluation by two funded teams of academic experts, and 

a public evaluation phase.Having experienced such a long-time evaluation program, 

up to the present, ZUC algorithm is thought to be robust enough to resist against many 

existing cryptanalyses such asWeak Key Attacks, Guess-and-Determine Attacks, 

Algebraic Attacks, Timing Attacks, etc.[4]. However, whether the algorithm is 

vulnerable to Power Analysis (PA) [5], one of the most effective SCAs（SCA is short 

for side channel analysis）[5,6,7] to recover secret keys in numerous cryptosystems, is 

not known yet.One point should be noted is that in terms of Power Analysis, we 

usually distinguish between Simple Power Analysis (SPA) [5] and the other more 

powerful analysis methods, such as Differential Power Analysis (DPA for short) [5], 

Correlation Power Analysis (CPA for short) [8], .etc. However, throughout this paper, 

we study more particularly about DPA, since it does not depend on the leakage 

function and has a better practicability than other PAs. 

 In [5] P. Kocher et al. firstproposed DPA, which performs a statistical analysisof 

the power consumptionfora smart card and finally retrieve the secret key. The attack 

exploits the fact that the power consumption of a cryptographic device is dependent 

on the intermediate values operated during the encryption, and it has been shown to 

be a practical threat to the security of cryptosystems.  

 In this paper, we generally studied the security of the unprotected ZUC algorithm 

againstDPA. Furthermore, kinds of effective countermeasureswerediscussed to protect 

the hardware implementations of ZUCalgorithm from DPA. Experimental results are 

also made to verify our conclusions. 



1.1 Related Work 

1) DifferentialPower Analysis.During the last decade, sidechannel analysishas been 

shown to be a major threat towards the cryptographic implementations, regardless of 

software and hardware.Among SCAs, DPA is one of the most commontechniques for 

its high efficiency, good applicabilityand convenient performance compared with 

other methods. However, almost all the work on DPA is for block ciphers (e.g. 

DESand AES) and public key algorithms (e.g. RSA), there is a very few researches on 

stream ciphers. The difficulty for DPA against stream ciphers lies in the fact thatthe 

key steam generated by a stream cipher is independent from the plaintext and the 

ciphertext,so the prerequisites of DPA attacks are not present, because we cannot use 

the known values (i.e. the plaintext or the ciphertext) and the guessed values (i.e. a 

part of the secret key needed to be recovered) to determine the intermediate result 

during the encryptions. 

2) DPA on Stream Ciphers. However,Joseph Lanoet al. [9] point out that, in real 

applications, for the purpose to keep synchronization between the sender and the 

receiver, stream cipher usually needs to be frequently resynchronized. In this situation, 

the initial state of the stream cipher is frequently changed with different IVs while the 

secret key(the secret key here is actually our attacking target in DPA, it was used to 

initial the internal state of ZUC algorithm combined with the IV) is identical. So, we 

can just treat the initial value as the plaintext in DPA while regard the generated key 

stream as the ciphertext, and use the IV and the guessed key together to determine the 

intermediate value of stream ciphers. So, DPA is still possible to attack stream 

ciphers.In this paper, actually, our DPA strategy is based on this thought.   

From another perspective, Sanjay Burman et al. proposed a PA based SCA 

method to attack LFSR-based stream ciphers, which can precisely recover the state of 

an n-bit LFSR through collecting the power of the LFSR in each clock period over 

consecutive periods linear in n [10].And in [11], with a similar strategy, the authors 

use DPA successfully break down the Grain-80 stream cipher and recover the secret 

key.All the attacks are based on the fact that there is a high correlation between the 



cipher’s power and the switching activity of the state bits of FSR. 

3) DPA countermeasures. As the serious threat brought by DPA, lots of efforts have 

already been dedicated towards the development of the corresponding 

countermeasures on block ciphers [12, 13, 14, 15, 16, 17], all these countermeasures 

are supposed to be able to be applied on stream ciphers as well [11].One subject of 

research has been on algorithmic countermeasures that try to randomize all the 

intermediate results during the processes. Thiskind of countermeasure isusually called 

masking [12,13, 14], which can be applied either at algorithm level or at gate level. 

However in practice, masking strategy is usually very specific and requires additional 

cost of reduced performance, so we often combine this kind of countermeasure and 

othercountermeasures for better performance. Hardware countermeasures try to make 

the power consumption of a device independent of the data being processed by the 

device. Typical examples are noise generatorsand the insertion of random delays [15, 

16],logic styles with data-independent power consumption [17, 18], etc. Among 

which, in the real applications, the insertion of random delays is the most popular 

countermeasure for its simplicity while logic styles with data-independent power 

consumption are the most efficient ones for its best performance. 

There are also some countermeasures specifically targeting at protecting stream 

ciphers. To our best knowledge, in order to counteract the potential threat of power 

analysis methods in [10], the author in this paper first proposed an architecture level 

countermeasure specifically targeting at LFSR-based stream ciphers. And in 

COSADE 2012,Shohreh Sharif Mansouri et al. [11] proposed another architectural 

countermeasure against power analysis for FSR-based stream ciphers, which can 

resist against DPA, MIA and several more complex power attacks. 

1.2 Our Contribution 

This is the first paper trying to perform DPA on ZUC algorithm. There havealready 

been a few publications towards the security of the ZUC algorithm from traditional 

mathematic analyses. Especially, the official design and evaluation report [4]gives the 



evaluation of the ZUC algorithm on the resistance against several cryptanalytic 

attacks, weak key attacks, guess-and-determine attacks, algebraic attacks, timing 

attacks, etc. ChunfangZhou et al. extend the differentialpropertiesof the initialization 

stage of ZUC algorithmfrom 20 roundsto four more rounds and shows that ZUC can 

still resist against chosen-IV attacks [19]. However, whether ZUC can resist against 

DPA is rather unknown.In this paper, this topic is generally studied.Ourfinal analysis 

results show that ZUC algorithm is to some extent vulnerable to DPA. 

Since DPA is a potential serious threat of ZUC algorithm,it is necessaryfor 

designers to add theeffective countermeasures to the ZUC implementation to 

guarantee its security in real applications.However, all the countermeasures proposed 

in [10, 11] specifically targeting at stream ciphers cannot resist our DPA strategy 

proposed in this paper, because our attacking point is not the state of FSR or LFSR 

but the outputs of S-box in ZUC stream cipher. Thus, these kinds of countermeasures 

which decrease the correlation between the power of FSR and the total power of 

cipher cannot work on our attack. In this paper, we generally apply several of the 

countermeasures which are initially designed for block ciphers but still working on 

stream ciphers to the implementations of ZUC algorithm, and study the ability of 

protected ZUC algorithm against DPA.We generally take the tradeoffs and security 

into consideration, which wouldundoubtedly provide some guidance to the designers.  

1.3 Organization of This Paper 

The remainder of this paper is organized as follows. Section 2 presents the 

introduction ofthe hardware implementation of ZUC algorithm and the general steps 

of DPA [5]. Our detailed DPA strategy on ZUC algorithm is described in Section 3.In 

Section 4,we discussthree kinds of countermeasures trying to protect ZUC 

implementations from DPA. Our experiments resultsare in Section 5 and finally, we 

draw our conclusions in Section 6.   



2 Preliminaries 

2.1 The Definition of ZUC Algorithm 
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Fig 2-1the structure of ZUC Algorithm 

In this section, we briefly introduce the latest ZUC algorithm, for detailed phase 

please refer to [2]. The new stream cipher ZUC is a world–orientedstream cipher [ ], 

taking a 128-bit secret key and a 128-bit IVas input, and outputs a keystream of 32-bit 

words, which is used to encrypt or decrypt the data.According to the official ZUC 

specification [3], ZUC is composed of three logical layers, among whichthe top layer 

is a linear feedback shift register (LFSR for short) of 16 cells, the middle layer is the 

bit-reorganization (BR for short) operation, and the bottom layer is a nonlinear 

function F. The structure of ZUC is illustrated in Fig 2-1. 

2.1.1 The Linear Feedback Shift Register (LFSR) 

The linear feedback shift register (LFSR) has 16 of 31-bit cells(
0S ,

1S ,…,
15S ). Each 



register cell (0 15)iS i  is restricted to take values from the following set: 

31{1,2,3,  . . .,2 1} . The LFSR has two modes of operations: the initialization mode 

and working mode. The initialization mode works as Algorithm 1 shown. 

 

Algorithm 1. ( ){LFSRWithInitialisationMode u  

1. 
13 10 4

15 17 21 20 8 31

152 2 2 2 (1 2 )mod(2 1)v s s s s       ; 

2. 31

16 ( )mod(2 1)s u v   ; 

3. If 
16 0s  , then set 31

16 2 1s   ; 

4. 
1 2 15 16 0 1 14 15( , ,..., , ) ( , , , , )s s s s s s s s  . 

           } 

 

In the working mode, the LFSR does not receive any input, and it works as Algorithm 

2 shown. 

 

Algorithm 2. (){LFSRWithWorkMode  

1. 15 17 21 20 8 31

15 13 10 42 2 2 2 (1 2 )mod(2 1)v s s s s       ; 

2. If 
16 0s  , then set 31

16 2 1s   ; 

3. 
1 2 15 16 0 1 14 15( , ,..., , ) ( , , , , )s s s s s s s s  .  

           } 

 

2.1.2 The Bit-Reorganization 

The middle layer of ZUC is the bit-reorganization (BR) procedure. It extracts 128 bits 

from the cells of the LFSR and form four32-bit words, where the first three words will 

be passed to the next layer, nonlinear function F , and the last word will be involved 



in producing the key stream. Assuming that
2s ,

5s ,
7s ,

9s ,
11s ,

14s ,and
15s are eight cells 

of LFSR as in section 2.1.1. Then the bit-reorganizationforms 4 of 32-bit words
0X ,

1X , 
2X and

3X from the above cells as Algorithm 3. 

 

Algorithm 3. (){Bitreorganization  

1. 
0 15 14||H LX s s ; 

2. 
1 11 9||L HX s s ; 

3. 
2 7 5||L HX s s ; 

4. 
3 2 0||L HX s s .  

           } 

 

2.1.3 The Nonlinear Function F 

There are two 32-bit memory cells, 1R and 2R , in the nonlinear function F . The input 

of F is
0X ，

1X ,
2X , which are the first three words ofoutput of the BR procedure, 

and it outputs a 32-bit word W. The detailed processof the nonlinear function F is 

described in Algorithm 4, where S is a 32 × 32 S-box. 

Algorithm 4. 0 1 2( , , ){F X X X  

1. W=(X0 ⨁ X1 ⊞)R21; 

2. W1=R1 ⊞𝑋1; 

3. 
2 2 2W R X  ; 

4. 
1 1 1 2( ( || ))L HR S L W W ; 

5. 
2 2 2 1( ( || ))L HR S L W W . 

} 



Both 1L and 2L  are linear transforms from 32-bit words, and are defined as 

follows: 

32 32 32 321

32 32 32 322

( ) ( 2) ( 10) ( 18) ( 24)

( ) ( 8) ( 14) ( 22) ( 30)

L X X X X X X

L X X X X X X

        

        
.

 

2.1.5 The Key Loading 

The key loading procedure will expand the initial key and the initial vector into 16 

31-bit integers as the initial state of the LFSR. Let the 128-bit initial key k and the 

128-bit initial vector iv be 
0 1 2 15|| || || ... ||k k k k k  and 

0 1 2 15|| || || ... ||iv iv iv iv iv  

separately, where ik and iiv , 0 15i  , are all bytes. Then 
ik and

iiv are loaded into the 

cells iS as || ||i i i is k d iv , where 
id  is a known constant.  

2.1.6 The Execution of ZUC 

The execution of ZUC is composed of two stages: the initialization stage and working 

stage. During the initialization stage, the cipher algorithm runs the following 

operations 32 times to finish the initialization: 

1. ()Bitreorganization ; 

2.
0 1 2( , , )W F X X X ; 

3. ( 1)LFSRWithInitialisationMode w . 

After the initialization stage, the algorithm moves into the working stage. At the 

beginning of this stage, the algorithm executes the following operations once, and 

discards the outputW of nonlinear function F : 

1. ()Bitreorganization ; 

2.
0 1 2( , , )F X X X ; 

3. ()LFSRWithInitialisationMode . 



Then the algorithm goes into the stage of producing keystream, i.e., for eachiteration, 

the following operations are executed once, and a 32-bit word Z is produced as an 

output: 

1. ()Bitreorganization ; 

2.
30 1 2( , , )Z F X X X X  ; 

3. ()LFSRWithInitialisationMode . 

2.2 Implementation in Hardware 
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   Fig 2-2implementation of ZUC Algorithm in Hardware 

Thestructure of the hardware implementation of ZUC algorithm is illustrated in Fig 

2-2. It is mainly made up of the following parts: 

- a LFSR of 16 cells 
0s ,

1s , …, 
15s ; 

- acombinatorial logic block BR , implementing the bit-reorganizationoperation; 

- a combinatorial logic block F , implementing the nonlinear function F; 

- a combinatorial logic block f, implementing 31mod(2 1)  addition operation;  

- some extra XORs and other logic operations.  

2.3 The Differential Power Analysis Attacks 

Over the past ten years, there have been some new DPA attacks, but the main 

idea and principles of most DPA attacks [20] are originated from Kocher [5]. Like 



other SCAs, DPAs are composed of two phases: the first is data collection, and the 

other is statistical analyzing. The following steps provide an example of a DPA 

processes proposed by Kocher: 

1) Attackers choose a key-dependent selection function D. In this case, the selection 

function would have the form ( , , )i sD C b k ; 

2) Attackers could observe m encryption operations and capture two kinds of 

information as following: 

- 
iC  represents cipher text which is corresponding to one power trace; 

- k samplings are collected and each sampling is related to a certain time point. 

3) Statistically analyzing to get 
sk : 

- Firstly, to get the value of [ ]iT j for a certain power sampling, i is the i th 

power sampling and j  represents the j thsampling point; 

- Secondly, to compute the value of differential power based on function (1), 

and only iC and [ ]iT j are variable; 

1 1

1 1

( , , ) [ ] (1 ( , , )) [ ]
[ ]

( , , ) (1 ( , , ))

m m
s i s ii ii i

m m
s si ii i

D C b k T j D C b k T j
D j

D C b k D C b k

 

 


  



 

 
(1) 

- Eventually, if 
sk is incorrect, [ ] 0lim

m

D j


  ; adversely if 
sk  is correct, the 

computed value of [ ]D j will not be zero and show spikes in regions where 

D is correlated to the values being processed. This conclusion has been 

proofed by Kocher[5]. 

While the effects of a single transistor switching would be normally be 

impossible to identify from direct observations of a device's power consumption, the 

statistical operations used in DPA are able to reliably identify extraordinarily slight 

differences in power consumption. 

3 DPA attacks on the ZUC Algorithm   

As mentioned above, since stream ciphers requirefrequent resynchronizations in many 



applications, it is possible for attackers to obtain a huge number of power traces of a 

stream cipher using different initial values but the same secret key. In this case, we 

can choose a selection function D combined with the IV and the guessed key to 

determine the intermediate value of the algorithm.  

This section presentsour DPA strategyonZUC algorithm. 

3.1 Overview 

The main stages of the attack are as follows, we generally recover the secret key bytes 

by bytes: 

1) Data collection stage: collect power consumptions; 

2) Use DPA against the first round of the initialization stage to recover 
9k and

5k . 

The value of
1R and 

2R registers and the state of the 16 LFSR cells derived in the 

first round are used in the second round of the initialization stage, to recover 
10k

and
6k ; 

3) Use the same strategy in the next few rounds, and determine the correct key 

information
11k , 

7k , 
12k , 

8k , and 
13k  separately; 

4) Performthe DPA in the sixth round of the initialization stage to make an 

exhaustive search of
15k ,

14k ,
4k ,

0k  and recover them; 

5) Use the same strategy as step 4) to get the values of
11k and 

1k  in the next round 

of the initialization stage; 

6) Finally, determine the only left byte of the secret key 
2k  in the eighth round. 

The attack details are given in the next section and the experiment results are 

presented in Section 5.  

3.2 Attack Details  

Step 1:Power measurements are performed for 10000 samplings, each encrypted with 

the same secret key and differentIVs. 



Collecting the power traces covering the first eight rounds of ZUC algorithm, the 

initialization and key-loading operations of EEA3-128 algorithm should be also 

covered.  

Step 2: Use DPA to recover 
9k and

5k . In the first round of the initialization stage of 

ZUC algorithm, the inputs of eachS-box are solely related to the correct key 

information 
9k or

5k . Therefore, for each byte of the secret key,the DPA can perform 

an 8-bit exhaustive search over the bits, and use one bit of the outputs of the 

corresponding S-box as the partition bit to recover the correct information.The data 

flow related with the secret key bitsof 
9k  and

5k in each operationis as follows: 

1R 2R

|| ||

0X 1X

1W 2W

1S L 2S L

L
F
S
R

B
R

F

11S 10S 9S 7S 6S 5S

9k 5k

9k 5k

only rely on 
the unknown  9k

only rely on 
the unknown  5k

 

  Fig3-1the data flow related to the secret 
9k  and

5k in DPA  

- ( , , )iKeyLoading IV d KEY .This operation makes each cell 
0s , …,

14s , 
15s of the 

LFSR solely related with the correct information
0k , …, 

14k , 
15k respectively, 

and the highesteight bits of each cell are thecorrect key information;  



- ()Bitreorganization . Afterthe combinations in this step: 

 
 
 

 
 10 5[30 : 23]X k

1 9[15:8]X k

2 5[15:8]X k

 , 

where [ : ]X A B  represents the highest[A:B] bits of X ( A B ). We do not 

consider 
3X  in our attacks for it does not involve in the nonlinear function 

F(our attacking operation) operation of initialization stage. 

- 0 1 2( , , )W F X X X .The analysis of the nonlinear function Fdisplays the most 

crucial part of the total attacks.
0X , 

1X , and
2X  derived in the above processes 

are needed in this step: 

1) In the first three functionsofthe Ffunction（seeSection 2.1.3）, since the 

initial state of 
1R  and 

2R  are both zero, it is easy to find that the 

topeight-bit of W  is identical with the secretkeyinformation in 
0X , while

1W  and
2W  cover the same correctkey information with that in 

1X and 
2X , 

respectively.This relationship can be expressed as: 

 
1 9[15:8]W k

2 5[15:8]W k

 ; 

2) Thus, the inputs of the fourth function of the Ffunction
1 2||L HW W  are 

solely related to
9k , and the inputs of the fifth function 

2 1||L HW W  are only 

related to
5k . The two selection functions in these twice DPAs to recover 

9k  

and 
5k  can be represented in the following forms:  

 
1 1 9( , )ib D IV k

2 2 5( , )ib D IV k

 , 

where 
1b  and 

2b  are one-bit of the outputs of the corresponding S-boxes;

iIV  represents the different and known initial values;
9k  and 

5k  arethe 



parts of the only unknown secret key; 

3) It is easy to acquire the corresponding values of 
1R and

2R , which will be 

used in the following attacks.   

-  1LFSRWithInitializationMode W  . The value of W  derived in the above 

step is the input of this operation. After the first two functions of this step, we 

could get the results as follows: 

 
13 10 4

15 17 21 20 8 31

152 2 2 2 (1 2 )mod(2 1)v s s s s      

31

16 ( )mod(2 1)s u v  

 , 

where the generated 
16s covers the correct key information of 

15k ，
13k ，

10k ，
4k ，

and 
0k ；Then, the next two functions are used to update the 16 cells of LFSR, 

and the leftmost cell of LFSR is updated with the value of
16s .   

Note:It should be noted that the S-box Scontains 4 8 8  S-boxes, namely 
0S ，

1S ，
2S ，

3S ，where
1 3S S ，

0 2S S . Actually, we can either choose the outputs of the 

S-box S or the outputs of one amongthe 4 S-boxes as the attacking point for there 

always exists a S-box whose one-bit output covers the whole correct key information 

of 
9k or

5k ; Moreover, the specialtyof the analysis on the first round lies in the fact 

that the initial values of
1R  and 

2R  are both zeros, thus they would not affect the 

inputs of the S-box(that is the values of 
1W  and 

2W ). So typically, we further 

analyze the attacking details on the second round of the initialization stage.    

Step 3:Use DPA to recover 
10k and

6k . Similar with the analysis of the first round, 

the DPA on the second round can also choose one bit in the outputs of the S-boxes as 

the partition bit to recover the correct key. But there exists a slight difference for some 

special operations and the values of 
1R  and 

2R  are not zero any longer. The data 

flow related to 
10k and

6k  in the DPA is just like the Fig 3-1. 

Like the analysis in Step 2, after the bit-reorganization operation, we can get the 



results: 

 
11 0[15:8]X k

62[15:8]X k

 , 

In fact, the differences lie in the analysis of nonlinear function F: 

- After the middle twofunctions of W1=R1 ⊞𝑋1 and
2 2 2W R X  ,

1W  

covers the correct key information of
10k . More precisely, if the outgoing 

carry bit of 
1 1R X  is not zero,then

1[16 :8]W  covers the information of 
10k . 

On the other hand, 
1[15:8]W  will cover this information; and it is obvious 

that 
2[15:8]W  will cover the correct information

6k .       

- Inthe last two functions, the result of 
1 2||L HW W is solely related with the 

secret
10k , we can use DPA to recover it; with the same way, 

6k  can be 

retrieved in the next step. However, it should be noted that in the process to 

recover
6k , the result of 

2 1||L HW W  maybe rely on both
6k and

10k , for the 

existence of the carry bitof
1 1R X . Since 

10k  is retrieved in the former step, 

this does not have influence on our attacks. 

The final operation will update the LFSR, and we use 
16 'S  to represent the new 

16S . 

Step 4:Usethe same strategies as in Step 3, we are capable to recover 
11k  and 

7k  in 

the third round, 
12k  and 

8k  in the fourth round, 
13k  and 

9k  (in fact, 
9k  has 

already been retrieved in the first round) in the fifth round. So far, 72 bits out of the 

108 bits secret information have already been recovered in the previous processes.   

Step 5: Use DPA to recover
0k ,

4k , and 
15k . In the sixth round of the initialization 

stage of ZUC algorithm, the attacks become more difficult, for 
16S generated in the 

first round of the current stage involves in the operations.  



More precisely, 
16S  covers more correctkey informationthan that in the other 

cells, whichinvolves 32-bit correct key information of
15k ,

13k ,
10k ,

4k , and
0k . 

Fortunately, 
13k and

10k  have already been recovered in the previous analyses, 

moreover,only
0k ，

4k ，
15k  are still unknown. 

16S makes
1X  cover much more correct 

key information than that in the bit-reorganization operationof the previous rounds, 

which is 32 bits (besides the correct information in
16S , it also covers the secret

14k ). 

So the adversary has to perform the32-bit exhaustive search over the bits, which is 

still reasonable. 

Step 6:Use DPA to recover
11k and

1k  in the seventh round.The operations in the 

seventh round of the current stage involves
16 'S  (only covers the correctkey 

information of 
11k  and

1k ) generated in the second round.Like the analysis towards 

the sixth round, DPA is capable to retrieve the values with the16-bit exhaustive 

searches.   

Step 7:After the DPA on the first seven rounds, there only leaves 
2k  uncovered. It is 

easy to determine the value in the next round, and we do not give the details.   

The overall attacks need 10 times of 8-bit exhaustive search, a 32-bit exhaustive 

search, and a 16-bit exhaustive search. So the time complexity is 8 32 16(2 10 2 +2 )  .   

It should be noted that, since our attacking point is the outputs of the S-box in the 

nonlinear function F, which can only be implemented by looking up tables and cannot 

be implemented by logics, our DPA strategy actually do not rely on the specific ZUC 

hardware implementations, such as the three optimized implementations proposed in 

[21]. 

4 The Probably Secure Hardware Implementations of ZUC Algorithm 

The DPA strategydescribed in Section 3 is towards on unprotected ZUC 



implementations. However, in real applications, countermeasures are usually added to 

the hardware implementations of the algorithm to guarantee its security. So, studying 

the effectiveness of different common countermeasures is of great value for it can 

provide some imperative guidance for the hardware implementations of ZUC 

algorithm in applications.   

 In this section, three kinds of popular countermeasures, the insertion of random 

delays, WDDL, masking respectively, are discussed as different countermeasures in 

hardware implementations of ZUC algorithm.DPAs results on protected circuits are 

given in Section 5. 

4.1The Insertion of Random Delays 

One of the most classic countermeasures against DPA in the real world applications is 

the insertion of random delays. With the insertion of random delays, instead of 

executing all the operations sequentially, the CPU interleaves the code’s execution 

with that of dummy instructions so that the corresponding operation cycles do not 

match because of time shifts[15]. 

Such countermeasures are effective because all the intermediate results are no 

longer computed at a fixed instance. It rather occurs at a set of different time instants 

with probability distribution, thus we cannot use DPA to attack a fixed point. This 

kind of countermeasure is simple, and very convenient to implement with limited 

hardware resource increase.  

So far, several strategies for this kind of countermeasure have already been 

proposed [22, 23, 24]. From [23] and [24], it is clear that the complexity of a DPA 

attack grows quadratically or linearly with the standard deviation of the trace 

displacement in the attacking point. Among theexisting methods based on this idea, 

the method proposed in [24]gets the best performance for achieving a relatively 

higher standard deviation of the trace displacement with reasonable resource. In our 

corresponding experiment, we implement the strategy for random delaygeneration 

proposed in [22] for its best performance in hardware implementation.And we 



generally study the ability of the protected circuits to resist DPA. 

4.2Wave Dynamic Differential Logic 

Using logic styles with data-independent power consumption in hardware 

implementations is a rather common hardware countermeasure. Such technologies 

have been proposed trying to keep the power of the whole circuits at a constant value 

to prevent DPA attacks, andwave dynamic differential logic (WDDL for short)first 

proposed in [25]is a typical logic of this kind of countermeasures.The circuits using 

WDDL [25, 26, 27] have the following characteristics: whenever an operation is 

performed in hardware, a complementary operation should be performed on a 

dummyelement to assure that the total power consumption of the unit remains 

balanced. The WDDL logics have shown almost the constant power value, thus it 

canresist DPA fundamentally. While at the same time, this kind of countermeasure 

will definitely increase hardware resources at least three times[17]. 

In the experiments, based on WDDL principles, the original ZUC circuits are 

disintegrated. More precisely, the design uses input signals to replace NOT gates and 

logic inverters, and replaces the complicated logics (i.e. NOR gates and NAND gates) 

with simple logics (i.e. AND gates and OR gates). And then, built in complementary 

principle, the AND gates are added with OR gates while the OR gates are added with 

AND gates. After these operations, the overall circuits would be capable to resist 

DPA for the power of each operation keeps balanced. Experiment results are shown in 

Section 5 to confirm the analysis. 

4.3Masking 

The masking technique [12, 13, 14] is the most widely used countermeasure against 

power analysis. In a masking design, for every execution of the algorithm a new mask 

is randomly generated and applied to the input data and to the secret key. All internal 

computations are masked from then on and the final resultsare unmasked after the last 

round. In this case, the attacker cannot extract any correlation between the secret key 



in running and the actual power curves. If the masking scheme is implemented 

properly, it has shown that this kind of countermeasure can render DPA rather 

complicated or even impossible [13, 14].    

However, the existing masking strategies almost allconcentrate on block ciphers 

and each cipher usually needs a specific masking scheme.We find it hard to propose a 

proper masking strategy for the steam cipher ZUC.There are several distinct reasons: 

Firstly,in a masking scheme, the nonlinear operations are generally the most 

resource-consuming parts. Particularly for the implementation of ZUC algorithm, 

thenonlinear operations - thetwo 8 8 LUTs (LUT is short for look up table) are just 

too large to implement in a rather limited hardware resource;More importantly,the 

worst cases for a specific masking scheme are the algorithms that repeatedly require 

switching between different masking types, such as additive masking to multiplicative 

masking or arithmetic masking. Taking the AES masking schemes for example, 

Mehdi-Laurent Akkar et al.proposed a masking implementation in [12] and Johannes 

Blomeret al. introduced a probably secure masking strategy in [28], both of which 

require switching between different kinds of masking types. They were believed to be 

secure for a period. However, it was shown in later research that both of these two 

strategies are not secure enough to resist DPA for the existence of zero-value attacks 

caused by the switching [13, 29].Unfortunately, ZUC algorithm is this kind of 

algorithm for it involves several different kinds of operations which needs frequent 

switching. 

So, we do not apply this kind of countermeasure to the implementations of ZUC 

algorithm. 

5 Experiments 

In this section, two kinds of experiments are conducted to verify our 

conclusions:the attacks on the original ZUC hardware implementation, and the attacks 

on the protected hardware implementations of ZUC algorithm, respectively. The test 

environments as follows: 



- CPU: Pentium(R)Dual-Core 2.60GHz 

- Memory: 2.0GB RAM 

- OS: Windows 7 

- Simulation database: TSMC 0.18 μm database 

- EDA compiler: Synopsys Design Compiler 2008.9 

- Wave simulator: Modelsim SE 6.5b  

- Power simulator: Synopsys PrimePower 2004.12 

- Program Language: Visual C#  

 

The flow of the whole experimentis illustrated asFig 5-1: 

 

Fig 5-1the flow of our experiment 

 Asimplified descriptionof the process of our experiment is as follows: 

 Step1:In data collection phase, power measurements are performed for 

N(typically 10000)samplings,each encryptedwith a randomly selected initial valueIV 

and the same secret key.Then, use EDA simulation tools (i.e. Modersim, PrimePower) 

to collect the power data; 

Step2:Our attacking point is set at the first bit of outputs of the leftmost S-boxin 

the first round of ZUC algorithm in the initialization stage.  

Note: Since the DPAfor each round are virtually the same and just differs at the 

target bits of the secret key, it makes sensefor ustoonly attack the first round of the 

initialization stage for simplicity. Here, in all the experiments, we only try to recover 



9k in the first roundas we described in Section 3. 

Step3: Use power analyzerto collect certain information such as initial values 

IVsand power [ ]iT j on line; 

Step4: To put theguess
sk into D  function and compute value ofb .  

Step5: To compute the differential power traces based on the power model 

proposed by Kocher [5],and judge whether the guessed
sk is correct by comparing all 

the spikes for each hypothesis
sk . 

The details for each experiment are presented in the following parts. 

5.1 Attacks on Original ZUC Hardware Implementation  

In the experiment,the correctkey is set “C15CB7421B980FD5438D2972F86BE0E4”, 

and the guess key is randomly selected.In our hardware implementation, the clock 

cycle is 20ns, and we collect the power each 1 ns.We use about 10 clock periods to 

implement the first two rounds of the initialization stage of ZUC algorithm, so we 

collect about 240 power points in each sampling. The power tracescollected 

inPrimePowerare illustrated asFig 5-2, and the analysis results in thepower analyzer 

are shown inFig 5-3. 

 

 Fig 5-2 power trace collected in PrimePower in about 12 clock cycles 



Fig 

5-3thedifferential power traces to recover
9k  

 As shown inFig 5-3 b), the spike generated by the correct key is clearly visible 

when the sampling number is 5000, while in Fig 5-3a), the spike is not so obvious for 

the sampling number is not enough.Furthermore, we can see that the spike shows at 

about time point of 130ns, which is exactly the point when the targeted S-box is 

operated. Thus, we can successfully recover the secret
9k . Just at the same way, we are 

capable to recover the other bits of the secret key. 

5.2 Attacks on Protected ZUC Hardware Implementations  

Experiment 1:In the ZUC hardware Implementation of the first experiment, we 

implement the strategy for random delaygeneration proposed in [ ]. 

The core idea of this strategy is to use a configurable switch matrix to control the 

position of registers in between functional blocks of an algorithm. Since each register 

causes a delay of one clock cycle, these randomly poisoning registers shift the code’s 

executions and desynchronize attackers’ observations. And the number of possible 

configurations depends on the number m  of registers and n  of functional blocks. 

In our implementation, there are five functional blocks, and we use two registers: one 

is between the bit-reorganization operation and the F function, and the other register 

is ahead of the nonlinear operation S-box. The clock cycle is set 15ns, and we collect 

power point each 1ns. As there are at most two registers in each round, it would take 

120ns (i.e. 8 clock cycles, 6 among which implements the original ZUC circuits, and 

2 among which implements the delays at most) to implement the first round of the 

initialization stage at most. In the statistical analyzing phase,the partition bit is set at 



the first bit of the outputs of 1S . The analysis results in thepower analyzer are shown 

inFig 5-4. 

 

Fig 5-4differential power traces to recover 9k  

 As we can see in both Fig 5-4 a) and b), there is no obvious spikes in all the 

differential traces, and the spikes generated by the random key traces even cover the 

spikes generated by the correct key traces. When the sampling number increases from 

5000 (which is actually the number of samplings needed to break the original ZUC 

hardware implementation in our design) to 10000, the trend is still not clear. The DPA 

attacks failed when we use this kind of countermeasure. 

Experiment 2:In this experiment, WDDL is used to protect ZUC hardware 

implementation from DPA.  

WDDL is a rather resource-consuming countermeasure.It has been proved that 

the nonlinear operations in an algorithm are the most crucial parts to resist DPA [], for 

simplicity, it makes sense for us to only apply this kind of countermeasure to one of 

the S-boxes of ZUC algorithm, and we choose
1S . As mentioned above, in our 

implementation of WDDL, the original netlist of 
1S generated in Design Compiler is 

disintegrated into simple circuit units,and each circuit unit is added with a 

complementary unit to keep the total power balanced. The clock period is set 20ns, 

and we collect the power each 0.1ms in the data collection phase.In the statistical 

analyzing phase, we set the first bit of the outputs of 
1S as the partition bit and use 



our power analyzer to attack the design. The analysis results in thepower analyzer are 

shown inFig 5-4. 

 

Fig 5-4 differential power traces to attack the S-boxes 

 As is shown in Fig 5-4 a), when the sampling number is 5000, the original S-box 

generates an obvious spike while the S-box added WDDL does not. It means DPA is 

successfully implemented on the original S-box, but the attack on the S-box added 

WDDL failed. When we increase the sampling number to 10000, as is shown in Fig 

5-4 b),thespike generated by the original S-box is more clearly visible, while DPA on 

the S-box added WDDL is still unsuccessful for the corresponding trace does not 

produce a visible spike yet. The results confirmed our analysis.  

6 Conclusions 

 This is the first paper trying to perform DPA on the new proposed standardized 

algorithm ZUC.Almost all the present DPA research is towards on block ciphers, 

however, based on the frequentresynchronization of stream ciphers in real 

applications, we showed that the stream cipher ZUC is still potentially vulnerable to 

DPA. Kinds of effective countermeasures are also discussed trying to render the attack 

more complicated,and we mounted stimulated DPA attacks to prove the effectiveness 

of these countermeasures in our experiments. Our work would undoubtedly provide 

some guidance to the hardware implementation designers of ZUC algorithm in real 

applications. 

 Our DPA strategy is built in the standard DPA proposed by Kocher, and the attack 



complexity is in a reasonable level. However, we believe that some other techniques 

might be used to reduce the DPA complexity to an even lower level. Additionally, as 

hardware design techniques develop, more work could be done on the 

countermeasures of ZUC algorithm to against DPA, especially masking. If properly 

implemented, masking is undoubtedly one of the most efficient countermeasures 

against DPA. 
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