
Anonymous Credentials Light

Foteini Baldimtsi, Anna Lysyanskaya
foteini,anna@cs.brown.edu

Computer Science Department, Brown University

Abstract. We define and propose an efficient and provably secure construction of blind signatures with
attributes. Prior notions of blind signatures did not yield themselves to the construction of anonymous
credential systems, not even if we drop the unlinkability requirement of anonymous credentials. Our new
notion in contrast is a convenient building block for anonymous credential systems. The construction we
propose is efficient: it requires just a few exponentiations in a prime-order group in which the decisional
Diffie-Hellman problem is hard. Thus, for the first time, we give a provably secure construction of
anonymous credentials that can work in the elliptic group setting without bilinear pairings and is
based on the DDH assumption. In contrast, prior provably secure constructions were based on the
RSA group or on groups with pairings, which made them prohibitively inefficient for mobile devices,
RFIDs and smartcards. The only prior efficient construction that could work in such elliptic curve
groups, due to Brands, does not have a proof of security.

Keywords: Anonymous credentials, attributes, blind signatures, lightweight devices, private iden-
tity management.

1 Introduction

Anonymous credentials, envisioned by David Chaum [16], and first fully realized by Camenisch
and Lysyanskaya [12], have proved to be a centrally important building block in privacy-minded
identity management systems currently under development [42, 35, 15]. They allow users to prove
possession of credentials without revealing any other information about themselves; when such a
proof is carried out, it cannot be linked to previous uses of the same credential, or to any other
identifying information about the user. Additionally, they give the users the ability to privately
obtain credentials. The reason that they have become so popular is that they strictly adhere to data
minimization principles [31]: no electronic transaction should require its participants to needlessly
reveal private information. These principles are at the core of European privacy standards [37, 36]
and also the National Strategy for Trusted Identities in Cyberspace (NSTIC) published by the
U.S. government [18].

Efficiency considerations are important when deploying these algorithms in practice. While
on a PC, the Camenisch-Lysyanskaya credentials [12] and follow-up work [4, 9, 10, 13] take only a
fraction of a second of CPU time, in mobile devices, smartcards and RFID cards, they are not
yet as practical as we may wish for certain applications. The issue is that all existing anonymous
credential systems use either the RSA group, or groups that admit bilinear pairings, and the security
parameter choice needed to provide security under the required assumptions in these groups makes
these systems too expensive for smartcards and mobile devices (i.e. original CL credentials require
an RSA group with bitlength 2048 or a pairing with 128 bits of security). Bichsel et. al. [5] show
an efficient implementation of CL credentials on a standard Java card, where they achieve an
execution time for an RSA exponentiation for a base of 1984 bits and an exponent of 1024 bits of
1.3 seconds by using the hardware accelerator for RSA of the chosen card. As a result, more than
16 seconds are required in order to show one credential which is not practical for most applications.
Moreover, hardware implementations have high development cost (compared to software) and are
not easy to update.

From the efficiency point of view, therefore, the UProve credential system [35] (based on Brands’
work [7, 8], acquired and implemented by Microsoft) seems attractive. UProve does not allow
unlinkable reuse of credentials: in order to unlinkably use a credential again, a user must get it
reissued. Yet, these “linkable” credentials can serve as the basis for e-cash, where a user is not

supposed to use a coin more than once, anyway. The UProve credential issuing protocol, as well as
the algorithm for verifying a credential, are practical enough for the more advanced end of RFID
technology, since they can work in any group where the discrete logarithm problem is hard (thus can
be based on ECC), and require just a few exponentiations in this group. Software implementations
of ECC multiplication are much faster than the equivalent RSA exponentiation [28] (hardware
accelerators could also speed up both ECC and RSA implementations by an order of magnitude
or more; today there exist RFID chips that perform ECC multiplication in 0.4 seconds [43]).

So perhaps one could use these “linkable” anonymous credentials and just have them reissued
as many times as needed. However, UProve is not provably secure! No proof of security has been
given under any reasonable assumption; and in fact, recently, Baldimtsi and Lysyanskaya [3] showed
that all known approaches for proving security in the random oracle model will fail for the Brands
blind signature scheme on which UProve is based, under essentially any assumption.

One might ask what happens if, instead of the Brands blind signature, one tries to construct
linkable anonymous credentials from a provably secure blind signature scheme. Unfortunately, blind
signatures as traditionally defined [40, 39, 30, 1] do not give any consideration to users’ attributes.
In a blind signature, a user is free to choose whichever message he wants signed. In a credential
scheme, a user should be able to get his particular attribute set signed by the signer. The signers
can verify that what they are signing is the correct attribute set, even though they cannot see
exactly what they are signing. For example, a signer might want to sign a user’s secret key, his
age, and his citizenship information, and wants to be able to verify that this is indeed what she
is signing. Attributes are, in fact, essential: without them, it is impossible to tie a credential to a
particular user’s identity, and so users would be able to just pool each others’ credentials as desired,
instead of tying them to a particular secret key. Moreover, giving the user the ability to choose any
message means that the content of the signed messages has not been vetted by the signer at all.

Thus, a better question is: how do we extend the notion of a blind signature so that it can
efficiently accommodate anonymous credentials — if not full anonymous credentials a-la Camenisch
and Lysyanskaya, then at least linkable lightweight anonymous credentials a-la Brands?

Blind Signature with Attributes. In this paper, for the first time, we define blind signatures
with attributes. In such a blind signature scheme, the signer and the user both get as input a crypto-
graphic commitment C to the user’s attributes; this way, the user can prove that the commitment
contains the correct attributes via a separate zero-knowledge proof. As output, the user obtains
another, unlinkable, commitment C̃ to the same attributes, and a signature on this commitment
and a message of the user’s choice. Blindness ensures that, even upon seeing two signatures ob-
tained this way on commitments of his own choice, the signer cannot link a signature to its issuing.
Unforgeability ensures that a user cannot produce more signatures than he was issued, and also
that the multiset of openings to the input commitments is the same as the multiset of openings to
the output commitments.

From Blind Signatures with Attributes to Anonymous Credentials. It is easy to see that
this is the right building block for linkable anonymous credentials: a user with a particular set
of attributes can form a commitment C to these attributes, prove in zero-knowledge that he has
committed to the correct attributes, and then obtain a credential by running a blind signature
with attributes on input this commitment. He can then prove that he has a credential with the
desired attributes by revealing his signature and the output commitment C̃, and proving in zero
knowledge that C̃ corresponds to the needed attributes.

For example, suppose that we allow users to obtain and anonymously show age credentials.
Then Alice will form a commitment C to her secret key sk and her age age, prove to the signer,
who serves as an identity validator, that she has committed to sk that corresponds to her pk and to
the correct age, and run a blind signature with attributes protocol to obtain a fresh commitment
C̃ on the same sk and age, and a signature σ. Then, when she needs to prove her age, she can
reveal (C̃, σ) and prove that the age inside commitment C̃ allows her entry to some age-restricted
resource, for example a video store that requires viewers to be over 13. If she wants to do it again,

2

she needs to run the blind signature with attributes protocol with the signer again. She can further
anonymously obtain credentials that are connected to her identity: let’s say that the video store
wants to give her a credential for a free movie; she can obtain it by running a blind signature
with attributes with the video store. She will form her input commitment C ′ by committing to the
same sk and age as in C̃ and proving to the video store that she did so (by proving equality of
committed values); once she runs the protocol with the video store, she receives an output (C̃ ′, σ),
which is a credential from the video store (and not from the original signer) on her (sk , age) —
even though the video store never saw the public key at all. More interestingly, we can require the
free movie to be a single-use credential, by additional clever use of attributes (see Section 4), so
that Alice can be traced if she tries to get two free movies using the same single-use credential
more than once. Thus we see that blind signatures with attributes are the right building block for
linkable anonymous credentials.

Construction. In addition to the definition, we solve the open problem of constructing anonymous
credentials based on the DDH assumption. We give a lightweight construction of blind signatures
with attributes; because of the connection to single use anonymous credentials we call our construc-
tion “anonymous credentials light” (ACL). In the random-oracle model, our construction is unlink-
able under the decisional Diffie-Hellman assumption, and unforgeable under the discrete-logarithm
assumption for sequential composition (we leave extending it to concurrent self-composition as an
open problem). Our construction is inspired by the Abe blind signature [1] in which, unlike other
provably secure blind signatures [6, 11, 34, 40, 22], blinding still preserves some structural elements
into which attributes can be embedded. Unfortunately Abe’s construction, as it was first presented,
had a faulty proof of security as it was later found by Abe and Ohkubo [33]. The original proof was
in the RO model for concurrent composition but it turned out to only be valid for an adversary with
overwhelming success probability so they ended up presenting a new proof in the generic model.
In the other hand, we manage to proof our scheme in the RO model by limiting our attention to
sequential composition only. Although not shown, one could adjust our technique to also prove
Abe’s blind signature secure in the RO model under sequential composition.

Related Work and Comparisons. A related work is due to Guajardo et al. [26] where they
proposed “encrypted anonymous credentials”. The idea is that an issuer can certify encrypted
attributes in such a way that none of the involved parties, including the user, can learn the value
of the attributes. This is quite different from our proposal of blind signatures with attributes as
a general building block. We consider users who know the values of their own attributes and use
them to form commitments that the issuer signs. Our scheme can easily be adapted to capture the
case where the issuer may learn a a subset of the attributes he is signing but still the user knows
his attributes. Moreover, their construction [26] is based on Brands scheme which as mentioned
above cannot proven one-more unforgeable [3].

Let’s now take a closer look in our ACL construction and compare it with other well known
blind signature and credential schemes. For our comparisons we focus on the efficiency of signing
(which is analogous to the credential issuing), the cost of verification of the signature/credential,
the size of the signature/credential, the security of the schemes i.e. blindness and unforgeability
and whether the schemes supports attributes which is obviously not going to be the case for a
“traditional” blind signature scheme.

The ACL construction consists of three phases: registration, preparation and validation. Reg-
istration is the most expensive phase, but it need not be repeated for the same user/signer pair
should the user need his credential reissued (as long as his attribute set is the same). Prepara-
tion and validation require the signer to perform 7 exponentiations, while the user performs 13;
verification requires 8 exponentiations. These numbers are essentially the same as Abe’s blind
signature; Brands’ blind signature at the heart of UProve requires essentially the same number
of exponentiations for signature issue, and 4 exponentiations fewer for verification. Thus, we get
comparable efficiency to the most efficient examples of protocols that either lack essential features
(such as previously provable secure blind signatures) or provable security (such as UProve). We

3

also compare ourselves to the Camenisch-Lysyanskaya [12] which is significantly less efficient dur-
ing issuing due to the use of pairings or RSA group but is a multi-use credential, thus we denote
the signature/credential size to be close to zero since it can be used multiple times. See Table 1
for a comparison of the above mentioned schemes.

Brands Abe ACL CL credentials [?]

[7] [1] Scheme Rsa Pairings

Efficiency S1 U2 S U S U S U S U

Signing3 2 12 6 12 7 13 10 8 15 14p

Verification 7 0 11 1 11 1 NC4 5+6p 9+6p

Sign. size 6 elem. 9 elem. 9 elem. ∼ 05 ∼ 05

Blindness 3 3 3 3 3

Prov. Unforg. 7 GM6 3 3 3

Attributes 3 7 3 3 3

1 Signer, 2 User, 3 In number of exponentiations
4 Non-comparable, 5 It can be used multiple times

6 Generic group model
Table 1. Comparison of anonymous credentials schemes

Implementation. In an independent to this work [29] our ACL scheme has been implemented
using an NFC smartphone: the BlackBerry Bold 9900. The implementation has been tailored
for payments in transportation systems where our ACL construction is being used as an e-cash
scheme (which as we mentioned above is a direct application of “single-use” credentials). The
implementation has been based on eliptic curves and the results are very promising. Briefly, the
signing/issuing takes a total of 300 milliseconds including terminal, communication and smartphone
execution time, while spending (i.e. verification of the signature) takes about 380 milliseconds when
2 attributes are revealed which would be less if not attributes where revealed.

2 Preliminaries

2.1 Witness Relations and Interactive Proofs

A witness relation for a language L ∈ NP is defined as:

Definition 1. (Witness relation [23]) A witness relation for a language L ∈ NP is a binary
relation RL that is polynomially bounded (i.e., (h, x) ∈ RL implies |x| ≤ poly(|h|)), is polynomial-
time-recognizable and characterizes L by

L = {h : ∃x s.t. (h, x) ∈ RL}.

For h ∈ L, any x satisfying (h, x) ∈ RL is called a witness (for the membership h ∈ L). By RL(h)
we denote the set of witnesses for the membership h ∈ L; that is, RL(h) = {x : (h, x) ∈ RL}.

A relation RL is said to be “hard”, if one can efficiently generate (h, x)’s such that, when given
h it is hard to find the witness x.

Definition 2. (Interactive Proof System [24]) An interactive proof system with soundness error
s ∈ [0, 1] for a language L with witness relation RL is a pair of algorithms (P, V) where v is
probabilistic polynomial time and the following properties hold:

[noitemsep]

1. Completeness. For every h ∈ L and every x ∈ RL(h),

Pr[〈P (x), VL〉(h) = 1] = 1.

4

2. s-Soundness. For every h 6∈ L, every z ∈ {0, 1}∗ and every interactive algorithm P ∗

Pr[〈P ∗(z), V 〉(h) = 0] ≥ 1− s.

A useful property in the above setting would be if the verifier V wouldn’t learn anything useful
from P about the witness x besides the fact that P knows x. This property is called zero knowledge.
If soundness error s is negligible, then this interactive proof system has strong soundness.

Definition 3. (Honest Verifiable Zero Knowledge (HVZK)) An interactive proof system (P, V) for
a language L is said to be honest verifiable zero knowledge if there exists a probabilistic polynomial
time algorithm S (the Simulator) such that for all h ∈ L:

viewV [P (h)↔ V (h)] ≈ S(h),

where viewV is the view of the honest verifier V of the interaction between V and P on input h.

2.2 Σ-Protocols

Σ-protocols are a class of interactive proofs where the Prover and the Verifier (P, V) have a common
input h and P proves in zero-knowledge that he knows a value x such that (h, x) ∈ RL. Their main
characteristic is that they have exactly 3 rounds of the following type: (1) P sends a message a
to V , (2) V responds with a random challenge c chosen from a domain of size Θ(k) and (3) P
resents a reply r. V decides whether to accept or not given the information he has seen: (h, a, c, r).
Formally:

Definition 4. (Σ-Protocol) A protocol P is said to be a Σ-protocol for a relation RL if:
[noitemsep]

– P is of the above three rounds form, and if (P, V) follow the protocol, the verifier always accepts.
– From any h and any pair of accepting conversations on input h, (a, c, r), (a, c′, r′) where c 6= c′,

one can efficiently compute x such that (h, x) ∈ RL (special soundness).
– There exists a polynomial-time simulator S, which on input h and a random c outputs an ac-

cepting conversation of the form (a, c, r), with the same probability distribution as conversations
between the honest P, V on input h (special honest-verifier zero-knowledge).

An example of a Σ-protocol is the Schnorr Identification scheme [41]. Let G be a group of prime
order q with generator g, and let Zq denote the field of integers modulo q. Schnorr’s identification
scheme works as follows:

Prover(q, g, h = gx) Verifier(q, g, h)

y ← Zq, a = gy a−−−→
c←−−− c← Zq

r = y + cx mod q r−−−→ gr
?
= ahc

Σ-protocols are an essential building block for blind signatures and anonymous credentials. For
example Brands’ [7] and Abe’s [1] schemes are based on a Σ-protocol, while CL anonymous cre-
dentials [12] uses ZK proofs which are based on Σ-protocols.

2.3 Fiat-Shamir Heuristic

Fiat and Shamir [21] proposed a method to transform any three-round interactive proof system
with negligible soundness error, such as Σ-protocols, into a digital signature scheme using a hash
function, modeled as a random oracle.

To transform a three-round proof system into a signature scheme, one could, instead of a
random c, compute c = H(a,m), where H → {0, 1}∗ is a hash function. Then, the Fiat-Shamir
transformation uses c to create a signature σ(m) = (a, r). Specifically:

5

– Gen(1k) : (h, x)← RL, SK = x,PK = (h,H).

– Sig(m): produce a honestly using x, set c = H(m, a), produce r honestly for this c, output
σ(m) = (a, r).

– Ver(m, (a, r)): c = H(a,m) and check if (a, c, r) is valid.

Famous digital signatures that have been constructed from Σ-protocols using the Fiat-Shamir
heuristic include Schnorr’s [41] and GQ signatures [27] and they have been proven secure in the
RO model [39]. Note that, it has also been shown that the digital signatures produced by the
Fiat-Shamir heuristic are not secure in the standard model [25].

2.4 OR-proof

Let P be a Σ-protocol for a relation RL, (h0, h1) be a common input to (P, V) and P knows a x
such that hb, x ∈ RL for b ∈ {0, 1}. An OR-proof protocol POR is a Σ-protocol for proving that
either (h0, x) ∈ RL or (h1, x) ∈ RL [20]1.

The main idea of an OR-proof is that P will complete two Σ protocols Σ0, Σ1, one for h0 and
one for h1 in such a way that the verifier will not be able to tell for which of the two P knows the
corresponding witness. For hb the prover can actually follow the real Σ protocol while for h1−b he
will have to use a simulator M to create his answers. A POR protocol works as follows:

1. P computes the first message of Σb, ab, using (hb, x) as input. P randomly chooses c1−b and
runs the simulator M on input (h1−b, c1−b) and receives (a1−b, c1−b, r1−b) as an output. Then,
P sends a0, a1 to V .

2. V chooses a random string e and sends it to P .

3. P sets cb = e⊕ cb−1 and computes the answer rb to challenge cb using hb, ab, cb, x as input. He
sends c0, c1, r0, r1 to V .

4. V checks that e = c0⊕ c1 and that both (a0, c0, r0) and (a1, c1, r1) are accepting conversations.

Let ROR = {((h0, h1), x)|(h0, x) ∈ RL or (h1, x) ∈ RL}. Then:

Theorem 1 ([20]). The POR protocol is a Σ-protocol for ROR. Moreover, for any verifier V ∗,
the probability distribution of conversations between P and V ∗, where x is such that (hb, x) ∈ RL,
is independent of b.

2.5 Generalized Pedersen Commitment

A non-interactive commitment takes as input a message (or set of messages) m and randomness R
and outputs a value that, on the one hand, reveals no information about the message but, on the
other hand, it is hard to find a (m′, R′) such that Commit(m;R) = Commit(m′, R′) but m 6= m′

(see [32] for a standard definition and treatment). The Pedersen commitment is a commitment
scheme based on the discrete logarithm assumption [38]. Here we give a generalized version that
allows a commitment to a set of messages (L1, . . . , Ln). The scheme is defined as follows:

1. Setup: On input the security parameter 1k and the maximum number of messages n, pick a
group G of prime order q = Θ(2k) with generators h, h1, . . . , hn.

2. Commit(L1, . . . , Ln;R) = hR
∏n
i=1 h

Li
i ; note that Li ∈ Zq.

The Pedersen commitment scheme (constructed from a corresponding Σ-protocol) is information
theoretically hiding and computationally binding. It is also important to note that there are efficient
zero-knowledge proof protocols for proving that a commitment C is to a particular set of values;
or to a set of values that satisfy a rich class of relations [7, 14, 19].

1 This is based on a more general result due to Cramer et. al. [17] where they present a protocol in which the prover
demonstrates knowledge of the solution to some subset of n problem instances out of a collection of subsets.

6

2.6 Combined Commitment Scheme

Let Commit1 be a commitment scheme that takes as input its parameters params1, n messages
(L1, . . . , Ln) to which we will refer to as attributes from now on and randomness R1 and outputs
a commitment C1. Let Commit2 be a commitment scheme that takes as input its parameters
params2, an attribute L0 and randomness R2 and outputs a commitment C2. Suppose that an-
other commitment scheme, Commit , is a combination of these two commitments; i.e., on input C1

and C2 it produces a commitment C to the combined attributes (L0, L1, . . . , Ln) with combined
randomness R = R1 +R2.

For example, this can be instantiated by a generalized Pedersen commitment scheme: the
parameters for the combined scheme are generators (h, h0, . . . , hn), Commit1(L1, . . . , Ln;R1) =
(
∏n
i=1 h

Li
i)hR1 , Commit2(L0;R2) = hL0

0 hR2 , and a combined commitment can be obtained either
by multiplying together the two component commitments, or by computing it from scratch as
Commit(L0, L1, . . . , Ln;R) = (

∏n
i=0 h

Li
i)hR.

2.7 Blinded Pedersen Commitment Scheme

Here, we note that the Pedersen commitment scheme can be further extended. Let (h, h1, . . . , hn)
be the parameters of the Pedersen commitment. Consider an additional parameter z ∈ G, where
z 6= 1. Let C = Commit(L1, . . . , Ln;R). Then the values (zγ , Cγ) can also be viewed as a
commitment to the same (L1, . . . , Ln) with randomness (R, γ). Let us define a new commit-
ment scheme, which we will call the blinded Pedersen commitment scheme: CommitB(L1, . . . ,
Ln;R, γ) = (zγ ,Commit(L1, . . . , Ln;R)γ), where Commit is the Pedersen commitment. It is easy
to see that this commitment is unconditionally hiding, same as Pedersen. It is also easy to see that
it is binding: given (zγ , Cγ), γ is uniquely defined, and therefore so is C, which is binding. Finally,
using well-known Σ-protocols, it is easy to see that the same set of relations that can be proven
about values inside a Pedersen commitment can be proven about values inside a blinded Pedersen
commitment.

3 Definition of Secure Blind Signatures with Attributes

In this section, for the first time, we define what a blind signature scheme with attributes is and its
security properties. For definitions of standard (without attributes) blind signatures please refer
to [30].

Definition 5. (Blind Signatures with attributes)
Let Commit(x; r) be a non-interactive commitment scheme whose parameters params are generated
by a trusted party TP and let n be the maximum number of messages the scheme can support . A
blind signature scheme with n attributes, for this commitment scheme, consists of three algorithms:
KeyGen,BlindSign, Verify where BlindSign is a protocol between the Signer(S) and the User(U).

– KeyGen(1 k , params): is a probabilistic polynomial time key generation algorithm. It takes as
input the security parameter k and the public parameters of the commitment scheme and outputs
(pk , sk) where pk is the signer’s public key and sk is his secret key.

– BlindSign: is an interactive, probabilistic polynomial time protocol between S and U . The public
parameters are the Signer’s public key pk, the parameters of the commitment scheme params
and C = Commit(L1, . . . , Ln;R) where (L1, . . . , Ln) is the set of attributes and R is some
randomness. The Signer’s private input is sk and User’s private input is (L1, . . . , Ln, R) and
the message, m, that he wishes to have signed. The User’s output in the protocol is a pair (R̃, σ),
where σ = σ(m, C̃) is the Signer’s signature on (m, C̃), and C̃ = Commit(L1, . . . , Ln; R̃) ; the
Signer’s output is “completed”.

– Verify(PK,m, C̃, σ): is the signature verification algorithm; i.e. a deterministic polynomial time
algorithm that gets as input the public key, the message, a commitment to the attributes and
the blind signature on the message and attributes and checks the validity of the signature σ. If
it is valid the algorithm outputs “1”, otherwise outputs “0”.

7

A blind signature scheme with attributes is secure if it is both blind and unforgeable. Blindness
is defined in a similar way as in blind signature schemes without attributes: the Signer is unable
to view the messages and the attributes he signs (protection for the User). A malicious Signer,
A, cannot link a (m, C̃, σ) tuple to any particular execution of the protocol, even if A chooses
m,L1, . . . , Ln.

Definition 6. (Blindness for blind signatures with attributes) Let A be a malicious Signer and
b ∈ {0, 1} be a randomly chosen bit which is kept secret from A. A will try to guess the value b by
performing the following steps:

[noitemsep]

1. (pk, sk)← KeyGen(1k)

2. {m0,m1,
−→
L0,
−→
L1, R0, R1} ← A(1k, pk, sk) (i.e. A produces two messages {m0,m1}, polynomial

in 1k, and two attribute vectors
−→
L0,
−→
L1 with the corresponding randomness).

3. A(1k, pk, sk,m0,m1,
−→
L0,
−→
L1, R0, R1) engages in two parallel (and arbitrarily interleaved as de-

sired by A) interactive protocols, the first with U(pk, {mb,
−→
L0, R0}) and the second with U(pk,

{m1−b,
−→
L1, R1}).

4. A only gets signatures and the corresponding blinded commitments for the instances that didn’t
fail; for the ones that failed A gets nothing. If neither of the User instances failed, then A gets
two signatures and the corresponding blinded commitments: σ(m0, C̃b), C̃b and σ(m1, C̃1−b), C̃1−b.

5. A outputs a bit b′.

Then the probability, taken over the choice of b, over coin-flips of the key-generation algorithm, the
coin-flips of A, and (private) coin-flips of both users (from step 3), that b′ = b is at most 1

2 + ν(k),
where ν(k) is a negligible function.

We give the definition of one-more unforgeability for the sequential composition case.

Definition 7. (Sequential one-more unforgeability for blind signatures with attributes) (KeyGen,
BlindSign, Verify) is a one-more unforgeable blind signature scheme with respect to Commit if ∀
ppt A, the probability that A wins in the following game is negligible:

[noitemsep]

1. (pk, sk)← KeyGen(1k)

2. A(pk , params) engages in polynomially many (in k) adaptive, sequential interactive protocols
with polynomially many copies of the signer, where A decides in an adaptive fashion when to
stop. For every execution, A forms a commitment Ci and picks a message mi and invokes
S(pk, sk, Ci). Let ` be the number of executions, where the Signer output “completed” in the
end of the protocol.

3. A outputs a collection {(C̃1,m1, σ1), . . . , (C̃j ,mj , σj)} where (C̃i,mi, σi) for 1 ≤ i ≤ j are all
accepted by V erify(pk, C̃i,mi, σi), and all (C̃i,mi)’s are distinct.

We say that A wins the game if either:

1. j > ` (i.e. A outputs more (C̃,m, σ) tuples than he received).

2. A opens the sets of commitments {Ci} and {C̃i} and the resulting multisets do not match.

4 From Blind Signatures with Attributes to Single-Use Credentials

Single-use anonymous credentials ensure that a credential cannot be used more than once: if used
more than once, the user’s identity can be discovered, and the user can be penalized. This is a
generalization of off-line electronic cash [16], in that such a credential can also contain attributes,
while e-cash does not necessarily have any connection to a user’s identity. Here we construct single-
use anonymous credentials from blind signatures with attributes using standard techniques [16, 7,
10].

8

Recall our definition of combined commitment schemes (Commit1,Commit2,Commit) from
Section 2.6. Consider the following construction of a single-use credential with n attributes from
a blind signature scheme with n + 1 attributes. The common inputs to the User and Signer are
the Signer’s public key for verifying signatures, and a commitment C1 to the User’s attributes
(L1, . . . , Ln). We assume that the attribute L1 contains the user’s identity, so that learning that
attribute will allow one to trace the user. The Signer’s private input is its signing key, while the
User’s private input is the message m that the user wants signed (m will serve as the serial number
for this credential, so the user needs to have chosen it at random during the signing protocol) and
the opening to C1, (L1, . . . , Ln;R1). The commitment C1 corresponds to this user’s identity and
never changes; each time this user obtains a signature, they input the same C1.

First, the User forms a commitment C2 = Commit2(L0;R2) for random (L0, R2); this commit-
ment is specific to this credential, and the value L0 will be used in the double-spending equation,
below. Next, the user submits C2 to the signer and provides a zero-knowledge proof of knowledge
of its opening.

Next, the User and the Signer carry out the blind signature protocol relative to the combined
commitment scheme Commit , whereby the User’s output is a fresh commitment C̃ to the values
(L0, . . . , Ln) and randomness R̃, and the signature σ on (m, C̃).

To use this credential to a verifier V , the User reveals (m, C̃, σ), obtains from V a challenge c,
and reveals the double-spending equation cL1 +L0 (the multiplication and addition is in whatever
ring the committed values belong to) and whatever other attributes are needed for the transaction;
the User then provides a zero-knowledge proof that these values were revealed correctly, relative
to commitment C̃.

To trace a user who spent a single-use credential twice, it is sufficient to examine two double-
spending equations for the same credential. If double spending occurred, then the attribute L1,
which encodes the User’s identity, will be revealed.

The following theorem is stated informally because we omitted a formal definition of single-use
anonymous credentials.

Theorem 2. (Informal) Let KeyGen,BlindSign,Verify be a blind signature scheme with n + 1
attributes, associated with the commitment scheme Commit which is a combination of Commit1

and Commit2 as explained above. Then the above construction is a single-use credential scheme
with n attributes.

5 Our Construction: ACL

Let’s now describe our proposed construction of a blind signature scheme with attributes, called
“Anonymous Credentials Light” (ACL). ACL is based on Abe’s blind signature scheme [1] which
has been modified appropriately so that it will also allow the users to encode attributes in the
signatures they get in a provably secure way. Abe’s scheme is a witness indistinguishable variant
of the Schnorr signature scheme where the Signer owns a real public key y = gx and a tag public
key z = gw. The idea is that the signature can be issued only with the real secret key x but no
one can distinguish which of the two (real or tag) secret keys was used (remember the OR-proof
technique presented above).

Although the modification seems straightforward, proving the security of the resulting scheme
turns out to be challenging as we will see later in the next section.

5.1 Setup

Let G be a group of order q and g is a generator of this group. Let H : {0, 1}∗ → Zq be a
hash function. We assume the existence of a trusted party, TP , which chooses G, g and outputs
params = (q,G, g, z, h, h0, . . . , hn) where z, h, h0, . . . , hn ∈ G and n is the maximum number of at-
tributes a User can possibly have. We will use (h0, . . . , hn) as parameters of the combined Pedersen

9

commitment scheme Commit ; we will use (z, h0, . . . , hn) as parameters for the blinded Pedersen
commitment scheme CommitB.

The Signer picks his secret key x ∈R Zq and computes his real public key to be y = gx mod q.
The TP given (G, q, g, h, y) outputs z which is the tag public key of the Signer. The public key of
the Signer is (G, q, g, h, y, z), and the private key is x.

5.2 Signature/ Credential Issuing

The signature issuing protocol will be described in three phases: registration, preparation and
validation. The registration phase actually only needs to happen once for each user/set of attributes
and also, preparation and validation phases can happen simultaneously (we choose to present them
separately in order to describe the construction in a more modular way).

The signature issuing protocol is basically a POR-protocol for proving knowledge of one of the
following:

– y-side: proof of knowledge x of y = gx

– z-side: proof of knowledge (w1, w2) of z1 = gw1 , z2 = hw2 (where z1, z2 are the so called
“one-time” tag keys that the signer creates).

Notice that the z-side witness in not known to the Signer, so the z-side proof will be done by
simulation following the OR-proof technique paradigm described in Appendix 2.4.

Registration The User’s input includes the system parameters params, the signer’s real public
key y, the message m to be signed and (L1, . . . , Ln;R) where L1, . . . , Ln is a set of attributes and R
is some randomness. The Signer also gets as input the system parameters params, a commitment
C = Commit(L1, . . . , Ln;R) and his secret key x. During registration the User and the Signer carry
out a standard interactive zero-knowledge proof of knowledge protocol where the User creates a
proof π1 to convince the Signer that he knows an opening of the commitment C.2

Preparation The Signer prepares z1 and z2 (the z-side proof). He first picks rnd ∈ Zq and
creates the “one-time” tag keys: z1 = Cgrnd and z2 = z/z1. The Signer sends rnd to the User
in order to convince him that logg z1 is not known to him. The User first checks that rnd 6= 0

and then computes himself z1 = Cgrnd and then picks γ ∈ Z∗q and blinds z, z1, z2 into ζ = zγ ,
ζ1 = zγ1 , ζ2 = ζ/ζ1 so that logz z1 = logζ ζ1 holds.

Finally, the User picks τ ∈ Zq and computes η = zτ (this will serve as an element of an
additional Schnorr signature that proves knowledge of γ such that ζ = zγ).

Validation In this phase two Σ protocols are going to take place and combined according to the
OR-proof. By (a, c, r) we are going to denote the transcript of Σy and by (a′, c′, r′) we will denote
the transcript of Σz. The Signer will compute Σz himself and Σy in interaction with the user.

1. The Signer begins by creating a for Σy by picking a random u ∈ Zq and computing a = gu.
Then, for Σz, following the OR-proof he picks random c′ ∈ Zq and r′ = {r′1, r′2 ∈ Zq}. and sets
a′1 = gr

′
1zc

′
1 and a′2 = hr

′
2zc

′
2 . Finally he sends to the User a, a′ = {a′1, a′2}.

2. The User checks whether a, a′1, a
′
2 ∈ G and then picks blinding factors t1, t2, t3, t4, t5 ∈R Zq

and blinds a into α = agt1yt2 and a′1, a′2 into α′1 = a
′γ
1 g

t3ζt41 and α′2 = a
′γ
2 h

t5ζt42 . We denote
α′ = {α′1, α′2}. Then, computes ε = H(ζ, ζ1, α, α

′, η,m) where m is the message to be signed.
The User sends to the Signer e = (ε− t2 − t4) mod q.

3. The Signer, according to the OR-proof technique, computes c = e − c′ mod q and r = u −
cx mod q. Then, sends (c, r, c′, r′) to the User.

2 Our scheme could be easily modified so that the issuer knows some of the user attributes. In that case the user
would just send those attributes in clear to the issuer.

10

4. Finally, the User “unblinds” the received values and gets: ρ = r+ t1 mod q, ω = c+ t2 mod q,
ρ′1 = γr′1 + t3 mod q, ρ′2 = γr′2 + t5 mod q, ω′ = c′ + t4 mod q, µ = τ − ω′γ mod q.

A signature is a 8-tuple σ = (m, (ζ, ζ1, ρ, ω, ρ
′ = {ρ′1, ρ′2}, ω′, µ)) where ζ1 encodes the attributes

of the User ((ζ, ζ1) corresponds to C̃, which is a blinded Pedersen commitment to (L1, . . . , Ln) with
randomness (R, γ)).

In Figure 1 we describe all the phases of our ACL construction.

Fig. 1. Proposed ACL Construction

Verification A signature tuple (m, ζ1, σ) (where ζ1 corresponds to C̃) verifies if ζ 6= 1 and

ω + ω′ = H(ζ, ζ1, g
ρyω, gρ

′
1ζω

′
1 , hρ

′
2ζω

′
2 , zµζω

′
,m) mod q.

5.3 Discussion

As briefly mentioned in the description of our construction there are certain “tricks” we can do to
improve its efficiency. First of all notice that the Registration phase only needs to happen once for

11

each User and a corresponding set of attributes. The Signer stores the attribute commitment C
together with some identification information asked from the User (e.g. passport, ID).Then, it is
sufficient if every time in the beginning of the Signature Issuing protocol the User identifies himself
to the Signer in order to prove ownership of his account. Moreover, notice that Preparation and
Validation phases can be combined and executed simultaneously. As a result, the whole signing
protocol consists of three rounds.

Let’s now discuss the differences between our ACL construction and the blind signature protocol
described by Abe [1]. The basic advantage of ACL is that allows for the encoding of users’ attributes
in the signatures they receive from the Signer. In order for this to happen we need the Registration
phase during which the User commits to his set of attributes. Those attributes are then encoded
in the signature in ζ1. The crucial difference from Abe’s approach is that z1 can no longer be
computed as the result of some hash function given a random input rnd. In ACL, z1 needs to
include the attribute commitment C so z1 = Cgrnd (we need the grnd factor so that two different
signature issuings with the same user cannot be linked to each other). This is the step where the
blinded signature inherits some structure from the values the signer can see in the signing step,
and allows the encoding of attributes. The fact that z1 is not the result of a hash function H′
makes our security analysis different from Abe’s. We can no longer define H′ so that it will return
the output we need, instead we will have to make use of ZK extractors. Unfortunately, we cannot
take advantage of Abe’s analysis because it only applied to special types of adversaries [33]. Of
independent interest, our analysis indicates that, for sequential composition, Abe’s blind signature
may still be provably secure under DDH in the RO model. The formal analysis follows in the next
section.

6 Proof of Security

The correctness of the scheme is straightforward, see Appendix B.

Theorem 3 (Blindness). The proposed scheme satisfies blindness under the Decisional Diffie-
Hellman assumption in the random oracle model.

Proof. We wish to show that, when interacting with a challenger as described in the definition of
blindness, the adversary cannot guess which signature is which (i.e. the adversary should not be able
to tell which signature corresponds to each instance and each attribute set). We distinguish between
two types of signatures that a challenger might output: a signature σ = (m, (ζ, ζ1, ρ, ω, ρ

′
1, ρ
′
2, ω
′, µ))

is correct for a particular interaction with the signer if there exists a value γ such that ζ = zγ

and ζ1 = zγ1 where z1 is the value corresponding to this interaction with the signer, and the
signature verifies. A signature is fake if no such γ exists. Note that it is easy for a challenger
to generate both kinds of signatures: a correct signature can simply be output by correctly fol-
lowing the user’s side of the protocol. With control of the random oracle, a fake signature is
computed as follows: first, the challenger picks ζ and ζ1 at random from G, and let ζ2 = ζ/ζ1.
Next, it picks random ρ, ω, ρ′1, ρ

′
2, ω
′, µ from Zq and sets the random oracle such that ω + ω′ =

H(ζ, ζ1, g
ρyω, gρ

′
1ζω

′
1 , hρ

′
2ζω

′
2 , zµζω

′
,m), which ensures that the fake signature verifies.

We will prove the theorem by a hybrid argument. Consider the following three games in which
the adversarial signer engages in two signature issuing instances with a challenger who outputs two
signatures:

1. Real: The challenger outputs two correct signatures, σ1, σ2, in random order by honestly
following the protocol. A correct signature is one that is honestly generated by interacting
with the signer. Thus, in a correct signature the user blinds z, z1 by the same γ so that
logz(z1) = logζ(ζ1).

2. Hybrid: The challenger’s output consists of a randomly picked correct signature and a fake
signature, in random order. In a fake signature the challenger doesn’t use the same random
γ to blind z and z1 so that logz(z1) 6= logζ(ζ1) except for negligible probability. Above, we

12

explained how a fake signature can be generated, assuming that the challenger controls the
random oracle.

3. Fake: The challenger outputs two fake signatures.

What we need to prove is that Real≈Hybrid and then that Hybrid≈Fake (shown in Appendix C).
Then, it holds that Real ≈ Fake. This proves the blindness of the ACL scheme since the view of
the adversary is indistinguishable no matter if he receives two correct or two fake signatures.

Theorem 4 (One-More Unforgeability). The signature issuing protocol is (`, `+1)−unforgeable
for polynomially bounded ` if the discrete logarithm problem is intractable and H is a random oracle.

Outline of the proof We first discuss the witness indistinguishability of the protocol (Lemma 1),
which allows us to to simulate the Signer with either y-side or z-side witness(es) to extract the
witness of the other side. Then, in Lemma 2 we prove that in order for the User to get a valid
signature, he has to blind (z, z1) into (ζ, ζ1) only in such a way that logz ζ = logz1 ζ1. In Lemma 3
we prove that is infeasible to create a valid signature without engaging in the issuing protocol with
the legitimate Signer. From Lemmas 2 and 3 we see that if a User engages in the signature issuing
protocol ` times and outputs `+ 1 signatures, then, there exist at least two valid signatures linked
to a particular run of the issuing protocol. Finally, it needs to be proven that a forger who manages
to produce two signatures from a single protocol run can be used to solve the discrete logarithm
problem.

We will denote the i-th execution of the issuing protocol by runi. Recall that a transcript of
runi of the issuing protocol contains values (z1,i, z2,i); by the z-side witness of runi we denote
(w1,i, w2,i) such that z1,i = gw1,i and z2,i = hw2,i .

Consider an alternative signing algorithm that, instead of using the y-side witness in the issuing
protocol, uses the z-side witness. Let params = (q,G, h, z, {hj}) be the public parameters, and y
be the public key of the Signer. Suppose that the registration and the preparation phases of the
signing protocol for runi resulted in the signer and the user setting up the values z1,i = gw1,i ,
z2,i = hw2,i . The alternative signing algorithm takes as input the public parameters params, the
public key y, the preparation phase output (z1, z2) and the values (w1,i, w2,i) instead of the secret
key x, and works as follows:

1. Generate ci, ri ∈U Zq and set ai := griyci .
2. Compute a′1,i := gu1,i and a′2,i := hu2,i with u1,i, u2,i ∈U Zq.
3. Sends ai, a

′
1,i, a

′
2,i to the user.

4. Given ei from user, compute c′i := ei − ci mod q, r′1,i := u1,i − c′iw1,i mod q and r′2,i := u2,i −
c′iw2,i mod q.

5. Send ri, ci, r
′
1,i, r

′
2,i, c

′
i to the user.

Definition 8. The signing protocol described above is called the z-side signer.

Lemma 1. The signer’s output is perfectly indistinguishable from the output of a z-side signer.

Proof. Lemma 1 follows from the result of Cramer [17].

Note that, in order to run the z-side signer, it is necessary to somehow get the corresponding
witness. We will see later that, with black-box access to an adversarial user in the registration phase,
a reduction can use standard Σ-protocol extraction techniques in order to learn the representations
of C; if the reduction is, in addition, given the discrete logarithms of all the public parameters
to the base g, it will be able to compute the z-side witness, and so, inside a reduction, the z-side
signer can be invoked.

Lemma 2. (Restrictive Blinding) Let A be a User that engages in the signature issuing protocol
` times, and outputs a valid signature σ = (m, (ζ, ζ1, ρ, ω, ρ

′
1, ρ
′
2, ω
′, µ)). Let runi denote the i-th

execution of the protocol and z1,i denote z1 used by the signer S in runi. For polynomially bounded
` and for all polynomial-time A, the probability that logz ζ 6= logz1,i ζ1 holds for all i, is negligible
if the discrete logarithm problem is intractable and H is a random oracle.

13

Proof. Let A have at most qh accesses to H and ask at most ` signatures to B. Let σ = (m, (ζ, ζ1, ρ,
ω, ρ′1, ρ

′
2, ω
′, µ)) be a signature that A outputs and satisfies logz ζ 6= logz1,i ζ1 for all i with probabil-

ity ε0 which is not negligible in n (qh and ` are bounded by a polynomial in the security parameter
n). We randomly fix an index I ∈ {1, . . . , `} and regard A as successful only if the RO query for
the resulting signature was during the I-th run. (If the resulting signature does not correspond to
any query, then A is successful only with negligible probability due to the randomness of H.) Let
(p; q; g; Y) be an instance of the DL problem.

Reduction Algorithm: B first sets (p, q, g) := (p,q,g). Then, it flips a coin χ ∈U {0, 1} to either
select y := Y (case χ = 0), or h := Y (case χ = 1) and also guesses a random index I ∈ {1, . . . , `}.

Case y = Y: (extracting y-side witness)

1. Key Generation: B selects k, k′, {kj} ∈U Zq, for 0 ≤ j ≤ n, and sets h := gk and hj := gkj ,
z = gk

′
. As a result of setting the parameters this way, B will always be able to compute z-side

witnesses, as long as B can successfully extract the user’s attributes and randomness in the
registration phase.

2. Registration: B extracts values (L1, . . . , Ln;R) using a knowledge extractor for proof π1 (since
we only worry about sequential composition the extractor may rewind) and defines K = k0R+∑n

ij1 kjLj (so that C = gK).
3. Preparation: B selects w1,i ∈ Zq and sets rnd = w1,i − K. Then, computes w2,i = (k′ −
w1,i)/k mod q (so we have z1,i = gw1,i , z2,i = hw2,i). B sends rnd to A.

4. Validation B runs A using the z-side signer described above. At the end of each runi the z-side
signer sends: ri, ci, r

′
1,i, r

′
2,i, c

′
i to A. B simulates H by returning ε ∈U Zq to the random oracle

queries issued by A. A outputs a signature σ = (ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, µ), that corresponds to

some ε.
5. If the RO query for the resulting signature σ happened in runI then move to the next step,

otherwise the reduction fails.
6. Rewinding : Reset and restart A with the same setting. For runI and after, B simulates H with
ε̃ ∈U Zq. A outputs a signature, say σ̃ = (ζ, ζ1, ρ̃, ω̃, ρ̃′1, ρ̃

′
2, ω̃
′, µ̃).

If ω 6= ω̃, B outputs x := (ρ− ρ̃)/(ω̃ − ω) mod q. The simulation fails, otherwise.

Case h = Y: (extracting z-side witness)

1. Key generation: B selects x, {kj} ∈U Zq and sets y := gx and hj := gkj . It also selects w1, w2 ∈U
Zq and sets z := gw1hw2 .

2. Signature Issuing : B runs A simulating the signer as follows.
(a) For i 6= I, B follows the protocol with y-side witness, x.
(b) For i = I, B engages in the issuing protocol using the z-side witness (w1, w2) as follows.

i. Registration Extract values (L1, . . . , Ln;R) using a ZK extractor and define K = k0R+∑n
i=1 kiLi (so that C = gK).

ii. Preparation Set rnd = w1 −K (so we have z1,J = gw1 , z2,J = hw2). B sends rnd to A.
iii. Validation B runsA using the z-side signer and at the end of runI sends (rI , cI , r

′
1I , r

′
2I , c

′
I)

to A.
B simulates H by returning ε ∈U Zq to the RO queries made by A.

3. A outputs a signature, say σ = (ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, µ), that corresponds to some ε. If the RO

query for the forged signature didn’t happen in runI then fail, else move to the next step.
4. Rewinding : Rewind and restart A∗ with the same setting. For runI and forward, B simulates
H by returning ε̃ ∈U Zq.

5. A outputs a signature, say σ̃ = (ζ, ζ1, ρ̃, ω̃, ρ̃′1, ρ̃
′
2, ω̃
′, µ̃), that corresponds to some ε̃. If ω′ 6= ω̃′,

B computes w′1 = (ρ′1 − ρ̃′1)/(µ − µ̃) mod q, w′2 = (ρ′2 − ρ̃′2)/(µ − µ̃) mod q, and outputs
w = (w1 − w′1)/(w′2 − w2) mod q (where w = logg h). Simulation fails otherwise.

Evaluation of success probability The reduction is successful when it gets ω 6= ω̃ for χ = 0 or
when it gets ω′ 6= ω̃′ for χ = 1. What we need to argue about is that, independently of the choice of

14

χ, the above will happen with non negligible probability. Note that we construct the reduction by
giving different responses after the Ith run (for a randomly chosen I ∈ {1, . . . , `}) when rewinding
and we let the reduction fail if the forgery didn’t happen in runI .

Let us now fix the adversary’s view and his RO tape. Once everything is fixed, we notice that
A’s forgery, is uniquely determined by c′ and ε. We now consider two cases: (1) ω′ = ω with non
negligible probability even if ε and c′ change (after rewinding). In this case ω′ = ω̃′ and thus ω 6= ω̃:
ω + ω′ = ε 6= ε̃ = ω̃ + ω̃′, so the y-side witness can be extracted. (2) ω′ 6= ω with non negligible
probability if ε and c′ change. So, when we run the adversary again with access to z-side witness
and with different ε̃ we get two signatures from him where ω = ω̃ and thus ω′ 6= ω̃′ and thus we
can extract the z-side witness. Since we fail if the forgery didn’t happen in runI we do not need
to consider what happens when we run A with y-side witness for χ = 1 and i 6= I.

What is left to show is that for χ = 1, the z-side witness, (w′1, w
′
2), extracted is not the one that

B already knows Remember that the reduction in the beginning, selects w1, w2 ∈U Zq and sets
z := gw1hw2) and in runI sets rnd so that z1,I = gw1 , z2,I = hw2 . The signature that A produces
contains proofs that ζ = zγ , ζ1 = gw

′
1 and ζ2 = hw

′
2 , so w′1 = γw1 and w′2 = γw2 and we can extract

those w′1, w
′
2 by rewinding. For the forgery that A outputs it holds logz ζ 6= logz1,I ζ1 (by definition

of Lemma 2) which guarantees that we will obtain two different representations of z.

Lemma 3. Any poly-time adversary A outputs a valid signature without interacting with the
Signer only with negligible probability if the discrete logarithm problem is intractable and H is
a random oracle.

The proof is straightforward and given in Appendix D.

Proof. (Theorem 4). Suppose that there exists adversary A that outputs `+1 valid signatures with
probability ε not negligible after interacting with the Signer at most ` times. The case ` = 0 has
been ruled out by Lemma 3. We consider ` ≥ 1.

By Lemmas 2 and 3, among the `+1 signatures, there exist at least two signature-message pairs
which contain (ζ, ζ1) and (ζ̄, ζ̄1) such that logζ ζ1 = logζ̄ ζ̄1 = logz z1I holds for z1I used in runI
for some I in {1, . . . , `}. Now, there exist two queries to H that correspond to those signatures.
In a similar way as in the proof of Lemma 2, we guess the indices of these queries and regard A
as being successful only when the guess is correct. We consider an equivalent adversary A∗ that
asks H only twice and succeeds with probability ε∗ = ε/

(
qh
2

)
in producing two signatures in the

expected relation.
We construct a reduction B that, given (p,q,g,Y), solves logg Y in Zq by using A∗.

Reduction Algorithm: B sets (p, q, g) := (p,q,g). It then flips a coin, χ ∈U {0, 1}, to select
either y := Y (case χ = 0), or y := gx with randomly chosen x (case χ = 1).

1. Setup If χ = 0, set up and use the z-side signer. Set h, h0, . . . , hn such that their discrete
logarithm base g is known. Else, set up the y-side signer by letting y = gx for a randomly
chosen x; set up h, h0, . . . , hn such that their discrete logarithm base Y is known.

2. Registration If χ = 0, extract (R,L0, . . . , Ln). Else follow the protocol.
3. Preparation Follow the protocol.
4. Validation If χ = 0, use the z-side signer, else follow the protocol.
5. Responding to the RO queries B simulates H by returning random values, say ε1 and ε2, to the

two RO queries.

6. Rewinding When A∗ outputs two signatures (σ(1) = (ζ(1), ζ
(1)
1 , ρ(1), ω(1), ρ′

(1)
1 , ρ′

(1)
2 , ω′(1), µ(1)))

and (σ(2) = (ζ(2), ζ
(2)
1 , ρ(2), ω(2), ρ′

(2)
1 , ρ′

(2)
2 , ω′(2), µ(2))) corresponding to ε1 and ε2, B resets the

adversary and this time responds to the two RO queries with ε̃1 and ε̃2.
7. Interacting with A∗ after rewinding is the same as before, according to the value of χ.

8. Extracting WhenA∗ again outputs two signatures (σ̃(1) = (ζ(1), ζ
(1)
1 , ρ̃(1), ω̃(1), ρ̃′

(1)
1 , ρ̃′

(1)
2 , ω̃′

(1)
, µ̃(1))

and (σ̃(2) = (ζ(2), ζ
(2)
1 , ρ̃(2), ω̃(2), ρ̃′

(2)
1 , ρ̃′

(2)
2 , ω̃′

(2)
, µ̃(2)) corresponding to ε̃1 and ε̃2, do: if χ = 0

and ω(1) 6= ω̃(1) or ω(2) 6= ω̃(2), then extract the y-side witness as described in the proof of

15

Lemma 2; else if χ = 1 and ω′(1) 6= ω̃′
(1)

or ω′(2) 6= ω̃′
(2)

, then extract the z-side witness as
described in Lemma 2.

Evaluation of Success probability Here we need to show that B will extract the witness that it
doesn’t already know with non-negligible probability (otherwise, χ is revealed). Consider all the q2

possible (ε1, ε2) pairs that can be given as responses to A∗’s two RO queries. Let succ be the set of
pairs (ε1, ε2) for which A∗ succeeds: succ = {(ε1, ε2)| A breaks the seq. one-more unforgeability}.
What we want to show is that for a random pair (ε1, ε2) ∈ succ there exists (ε̃1, ε̃2) ∈ succ such
that A∗ produces the same e with non-negligible probability in the run where the first RO query
happened. Notice that the transcript (i.e. the messages exchanged between the Signer and A∗) of
these two runs has to be the same. We call such a pair (ε̃1, ε̃2) good for (ε1, ε2).

Consider A∗ is run twice: once with (ε1, ε2) and once with (ε̃1, ε̃2), both times producing two
message-signature pairs corresponding to z1I . Taken together, (ε1, ε2), (ε̃1, ε̃2), the transcript of
the runs and the four message-signature pairs allow the reduction to compute either a y side or a z
side witness. However, we need to argue that, with non-negligible probability, this will be a witness
the reduction doesn’t already know. Since the transcripts are identical, the joint distribution of
the two views (A∗’s view in the first run and its view, after the rewinding, in the second run) is
independent of χ.

First, note that there are only q possible e’s but q2 possible (ε̃1, ε̃2), and so there can only be
a negligible fraction of (ε1, ε2) for which no good (ε̃1, ε̃2) exists. Suppose that (ε̃1, ε̃2) is good for
(ε1, ε2) but (ε∗1, ε

∗
2) is not; moreover, the reduction that gives (ε1, ε2) before rewinding, and (ε∗1, ε

∗
2)

after rewinding, can only compute the witness it already knows (i.e. if χ = 0, it can compute the
z-side witness, and for χ = 1 the y-side). Then for the same choice of χ, the reduction would
be computing the witness it does not already know if, instead, it used (ε̃1, ε̃2) and (ε∗1, ε

∗
2). For

example, if χ = 0 we would have ω 6= ω̃ and ω = ω̃∗ respectively, which implies that ω̃ 6= ω̃∗ and
thus by choosing (ε1, ε2) and (ε∗1, ε

∗
2) the y side witness could be extracted. Since it is just as likely

to pick (ε1, ε2) or (ε̃1, ε̃2) for the values before rewinding, it is just as likely to succeed as to fail,
independently of χ (this analysis was first given by Abe and Okamoto [2]).

Finally, the only thing left to prove is that an adversary cannot open the sets of commitments

{C(i)} and {ζ(i), ζ
(i)
1 } to two different multisets. Note that ζ(i) uniquely determines γ(i), and by

Lemma 2, it follows that for every i, there exists some z
(i′)
1 such that ζ

(i)
1 = (z

(i′)
1)γ

(i)
. Thus, an

alternative opening of the commitment {ζ(i), ζ
(i)
1 } gives rise to an alternative representation of

z
(i′)
1 in bases h, h1, . . . , hn, g. In turn, by standard techniques, this breaks the discrete logarithm

assumption. (The reduction will just honestly emulate the signer, and embed the DL instance into
the parameters h, h1, . . . , hn, g.)

References

1. Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures. In EUROCRYPT,
pages 136–151, 2001.

2. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In CRYPTO, pages 271–286.
Springer-Verlag, 2000.

3. Foteini Baldimtsi and Anna Lysyanskaya. On the security of one-witness blind signature schemes. In Cryptology
ePrint Archive, Report 2012/197, 2012.

4. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact e-cash and simulatable vrfs
revisited. In Pairing ’09, pages 114–131, 2009.

5. Patrik Bichsel, Jan Camenisch, Thomas Groß, and Victor Shoup. Anonymous credentials on a standard java
card. CCS ’09, pages 600–610. ACM, 2009.

6. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-diffie-
hellman-group signature scheme. PKC ’03, pages 31–46, London, UK, UK, 2003. Springer-Verlag.

7. Stefan Brands. Untraceable off-line cash in wallets with observers. In CRYPTO, pages 302–318. Springer-Verlag,
1993.

8. Stefan A. Brands. Rethinking public key infrastructures and digital certificates: Building in privacy. MIT Press,
Cambridge-London, August 2000.

16

9. Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In Proceedings of the 15th
ACM conference on Computer and communications security, CCS ’08, 2008.

10. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In EUROCRYPT ’05, volume
3494 of LNCS, pages 302–321. Springer-Verlag, 2005.

11. Jan Camenisch, Maciej Koprowski, and Bodgan Warinschi. Efficient blind signatures without random oracles.
SCN’04, pages 134–148, Berlin, Heidelberg, 2005. Springer-Verlag.

12. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials with
optional anonymity revocation. EUROCRYPT ’01, pages 93–118, London, UK, 2001. Springer-Verlag.

13. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. In
Crypto 2004, LNCS 3152, pages 56 – 72, 2004.

14. Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is the product of two safe primes.
EUROCRYPT’99. Springer-Verlag, 1999.

15. Jan Camenisch, Fischer-Habner Simone, and Kai (eds.) Rannenberg. Privacy and identity management for life.
In ISBN 978-3-642-20316-9. Springer, 2012.

16. David Chaum. Blind signatures for untraceable payment. In Crypto’82, pages 199–203, 1982.
17. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and simplified design of

witness hiding protocols. In CRYPTO ’94, pages 174–187. Springer-Verlag, 1994.
18. Howard A. Schmidt (National cybersecurity coordinator). National strategy for trusted identities in cyberspace.

In Cyberwar Resources Guide, Item 163, http: // www. projectcyw-d. org/ resources/ items/ show/ 163 , 2010.
19. Ivan Damg̊ard. Commitment schemes and zero-knowledge protocols. In Lectures on Data Security, Modern

Cryptology in Theory and Practice, Summer School, Aarhus, Denmark, July 1998. Springer-Verlag, 1999.
20. Ivan Damg̊ard. On σ- protocols. In Course Notes, http: // www. daimi. au. dk/ ~ ivan/ Sigma. ps , 2002.
21. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems.

In CRYPTO ’86, pages 186–194. Springer-Verlag, 1986.
22. Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique Unruh. Round optimal blind

signatures. In CRYPTO, pages 630–648, 2011.
23. O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University Press, 2001.
24. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM J.

Comput., 18:186–208, February 1989.
25. Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir paradigm. In FOCS, pages

102–113, 2003.
26. Jorge Guajardo, Bart Mennink, and Berry Schoenmakers. Anonymous credential schemes with encrypted at-

tributes. In Cryptology and Network Security, pages 314–333. Springer, 2010.
27. Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge protocol fitted to security micropro-

cessor minimizing both transmission and memory. In EUROCRYPT ’88, pages 123–128, 1988.
28. Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang Shantz. Comparing elliptic

curve cryptography and rsa on 8-bit cpus. In CHES, pages 119–132, 2004.
29. Gesine Hinterwalder, Christian T. Zenger, Foteini Baldimtsi, Anna Lysyanskaya, Christof Paar, and Wayne

Burleson. Efficient e-cash in practice: Nfc-based payments for public transportation systems. In PETS, 2013.
30. Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended abstract). In

CRYPTO, pages 150–164. Springer-Verlag, 1997.
31. Marc Langheinrich. Privacy by design principles of privacy-aware ubiquitous systems. In Ubicomp 2001:

Ubiquitous Computing, volume 2201, pages 273–291. Springer Berlin, Heidelberg, 2001.
32. Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of applied cryptography, 1997.
33. Miyako Ohkubo and Masayuki Abe. Security of three-move blind signature schemes reconsidered. In SCIS’03,

Symposium on Cryptography and Information Security, Japan, 2003.
34. Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In TCC, volume 3876

of Lecture Notes in Computer Science, pages 80–99. Springer, 2006.
35. Christian Paquin. U-prove cryptographic specification v1.1. In Microsoft Technical Report,

http://connect.microsoft.com/site1188, February 2011.
36. European Parliament and Council of the European Union. Regulation (ec) 45/2001. In Official Journal of the

European Union, 2001.
37. European Parliament and Council of the European Union. Directive 2009/136/ec. In Official Journal of the

European Union, 2009.
38. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. CRYPTO ’91.

Springer-Verlag.
39. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures. In Journal

Of Cryptology, volume 13, pages 361–396, 2000.
40. David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In Asiacrypt ’96, LNCS 1163,

pages 252–265. Springer-Verlag, Feb 2011.
41. Claus P. Schnorr. Efficient identification and signatures for smart cards. CRYPTO ’89, pages 239–252. Springer-

Verlag New York, Inc., 1989.
42. IBM Security Team. Specification of the identity mixer cryptographic library, version 2.3.0. In IBM Research

Report, 2010.
43. Gummeson J. Ransford B. Zhang, H. and K. Fu. Moo: A batteryless computational rfid and sensing platform.

In Tech. Rep. UM-CS-2011-020, UMass Amherst Department of Computer Science, 2011.

17

A Basic Assumptions

The following two standard cryptographic assumptions are useful in the paper.

Definition 9. (Discrete Logarithm Assumption) Let k be the security parameter. Let Gk be a set of
groups such that Gk is a group of order q (k-bit prime) and generator g. Then, for every polynomial
time algorithm A it holds that:

Pr[h← G;x← A(h) : x = logg h] ≤ ν(k)

where ν(k) is a negligible function.

Definition 10. (Decisional Diffie-Hellman Assumption) Let DH be an instance generator that, on
input the security parameter 1k outputs (G, q, g, A,B,C) where G is a cyclic group of order q (k-bit
prime) with generator g, and, for randomly chosen a, b ∈ Zq, A = ga, B = gb and C = gab. Let
Rand be an instance generator that, on input 1k outputs (G, q, g, A,B,C) where G,q,g,A and B are
as above, while C = gc for a random c ∈ Zq. We assume that DH and Rand are computationally
indistinguishable.

B Correctness

The correctness of the new scheme is easily verified:

ω + ω′ = c+ t2 + c′ + t4 = e+ t2 + t4 = ε mod q

gρyω = gr+t1yc+t2 = gr+cxgt1yt2 = α

gρ
′
1ζω

′
1 = gγr

′
1+t3ζc

′+t4
1 = (a′1z

−ω′

1)γgt3ζc
′+t4

1

= a
′γ
1 g

t3ζt41 = α′1

gρ
′
2ζω

′
2 = hγr

′
2+t5ζc

′+t4
2 = (a′2z

−ω′

2)γht5ζc
′+t4

2

= a
′γ
2 h

t5ζt42 = α′2

zµζω
′
= zτ−ω

′γζω
′

= ζγ = η.

C Blindness

In order to conclude the proof of Theorem 3 we will first show that Real≈Hybrid and then that
Hybrid≈Fake.

Proof. (contin.) Case 1: Real≈Hybrid

Suppose that there exists a poly-time adversary A who is successful in distinguishing between Real

and Hybrid with probability 1/2 + ε, where the advantage ε is not negligible. We then show that
there exists a poly-time algorithm B that solves the DDH problem with non-negligible advantage.

The reduction B gets as input an instance (g,A,B,D) where (g,A,B,D) is a DDH instance.
B first fixes z = A and then sets h0 = ge0 , and h1, . . . , hn to Ae0 , . . . , Aen for randomly chosen
ei ∈ Zq. B sends the parameters to A. The adversary A creates his public key y and sends y to B
along with messages m0,m1, commitments C0, C1 and openings (

−→
L0,
−→
L1) which are two attributes

vectors of size n. A and B engage in two interleaving registration and signature issuing instances.

During the registration phase we have: C(j) = Ak
(j)
1 , (k

(j)
1 = e0R + e1Lj,1 + · · ·+ enLj,n) honestly

created, for j ∈ {0, 1}. Note that the value k
(j)
1 is known to the reduction B.

Then, during the two signature issuing instances, A computes z
(j)
1 = Ak

(j)
1 grnd

(j)
where rnd(j)

was sent to B. B responds with random e(j) and then computes two signatures σ1, σ2 in the following
way:

18

B flips two random coins: coin, b ∈ {0, 1}. Then, lets σ2−coin be the correct signature on
(m0, C̃b) (where C̃ is denoted as ζ1 in our ACL scheme) for the corresponding instance, and
σcoin+1 be a signature on (m1, C̃1−b) generated from the input to B, as follows: set ζ(j) = D and

ζ
(j)
1 = Dk

(j)
1 Brnd(j) ; let ζ

(j)
2 = ζ(j)/ζ

(j)
1 , randomly choose ρ, ω, ρ′1, ρ

′
2, ω
′, µ, and then define H so

that the signature verifies.
After receiving the signatures, A outputs Real or Hybrid. If A outputs Real then B outputs

“DH” or B outputs “random” otherwise.
Let us analyze the success of B in distinguishing Diffie-Hellman tuples from random tuples. If

the input (g,A,B,D) is a DH tuple, then: ζ(j) = D = gab = Ab = zb and ζ
(j)
1 = Dk

(j)
1 Brnd(j) =

gabk
(j)
1 gbrnd

(j)
= (gak

(j)
1 grnd

(j)
)b = (Ak

(j)
1 grnd

(j)
)b = zb1 so, the signature σcoin+1 is distributed iden-

tically to a correct signature, and this is precisely the Real game. Similarly, if the input is not
a DH tuple then it is the Hybrid game. Therefore, B will be correct exactly when A is and will
distinguish a DH tuple with probability 1/2 + ε, which contradicts to the DDH assumption.

Case 2: Hybrid≈Fake
Similarly, we build a reduction B which given an adversary A, who distinguishes between Hybrid

and Fake with probability 1/2 + ε, solves the DDH problem.
Working in a similar way we did before, B will now create a fake signature and one using the

input tuple. If A outputs Hybrid then B will output “DH” or “not DH” otherwise. If the input
is a DH instance then the output will correspond to the Hybrid game and to the Fake otherwise.
So, B will be successful whenever A is and will break the DDH assumption with non-negligible
advantage ε which is a contradiction.

Finally, since Real≈Hybrid and Hybrid≈Fake it follows that Real≈Fake.

D Proof of Lemma 3

Proof. (sketch) In order to prove this we are going to use the oracle replay attack suggested by
Pointcheval and Stern to prove unforgeability of blind signatures [40]. Similar to the proof of
Lemma 2 we randomly fix an index I ∈ {1, . . . , `} and regard A as successful only if the RO query
for the resulting signature was during the I-th run. Accordingly, it is equivalent to assuming an
adversary, we will call it A∗, that asks H only once and succeeds with probability ε1 ≥ ε0/qh.
Given this modified A∗ we construct the reduction B that solves the discrete logarithm problem
by simulating the interaction. Given Y ∈ G, we construct a reduction B that finds logg Y in Zq.
During key generation, B first selects ω, ξ, {ki} randomly and sets y = Y, h = gw, hi = gkiz = Ygξ.
(B does not need to simulate the signer, so it can put Y in both y and z.) Then, B invokes A∗
twice with the same initial settings and different ε and ε̃ as answers of H. The resulting signatures
are σ = (ζ, ζ1, ρ, ω, ρ

′
1, ρ
′
2, ω
′, µ) and σ̃ = (ζ, ζ1, ρ̃, ω̃, ρ̃′1, ρ̃

′
2, ω̃
′, µ̃). Since ω + ω′ = ε 6= ε̃ = ω̃ + ω̃′, at

least one of ω 6= ω̃ or ω′ 6= ω̃′ happens.
In the case that ω 6= ω̃, B computes logg Y = (ρ − ρ̃)/(ω̃ − ω) mod q. For the case ω′ 6= ω̃′,

B computes γ = logz ζ = (µ − µ̃)/(ω′ − ω̃′) mod q, w1 = logg ζ1 = (ρ′1 − ρ̃′1)/(ω′ − ω̃′) mod q,

w2 = logg ζ2 = (ρ′2 − ρ̃′2)/(ω′ − ω̃′) mod q, and logg Y = logg z − ξ = (w1 + w2/w)/γ − ξ mod q.

19

