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Abstract

It is notoriously difficult to create hardware that is immune from side channel and tampering
attacks. A lot of recent literature, therefore, has instead considered algorithmic defenses from
such attacks.

In this paper, we show how to algorithmically secure any cryptographic functionality from
continual split-state leakage and tampering attacks. A split-state attack on cryptographic hard-
ware is one that targets separate parts of the hardware separately. Our construction does not
require the hardware to have access to randomness. In contrast, prior work on protecting from
continual combined leakage and tampering [28] required true randomness for each update. Our
construction is in the common reference string (CRS) model; the CRS must be hard-wired into
the device. We note that prior negative results show that it is impossible to algorithmically
secure a cryptographic functionality against a combination of arbitrary continual leakage and
tampering attacks without true randomness; therefore restricting our attention to the split-state
model is justified.

Our construction is simple and modular, and relies on a new construction, in the CRS
model, of non-malleable codes with respect to split-state tampering functions, which may be of
independent interest.

1 Introduction

Recently, the cryptographic community has been extensively studying various flavors of the follow-
ing general problem. Suppose that we have a device that implements some cryptographic func-
tionality (for example, a signature scheme or a cryptosystem). Further, suppose that an adversary
can, in addition to input/output access to the device, get some side-channel information about its
secret state, potentially on a continual basis; for example, an adversary can measure the power
consumption of the device, timing of operations, or even read part of the secret directly [31, 22].
Additionally, suppose that the adversary can, also possibly on a continual basis, somehow alter the
secret state of the device through an additional physical attack such as microwaving the device or
exposing to heat or EM radiation [4, 1]. What can be done about protecting the security of the
functionality of the device?

Unfortunately, strong negative results exist even for highly restricted versions of this general
problem. For example, if the device does not have access to randomness, but is subject to arbitrary
continual leakage, and so, in each round i, can leak to the adversary just one bit bi(si) for a
predicate bi of the adversary’s choice, eventually it will leak its entire secret state. Moreover, even
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in a very restricted leakage model where the adversary can continually learn a physical bit of the
secret state si, if the adversary is also allowed to tamper with the device and the device does not
have access to randomness, Liu and Lysyanskaya [34] showed that the adversary will eventually
learn the entire secret state. Further, even with tampering alone, Gennaro et al. [17] show that
security from arbitrary tampering cannot be achieved unless the device can overwrite its memory;
further, they show that security can only be achieved in the common reference string model.

Thus, positive results are only possible for restricted versions of this problem. If we only allow
leakage, but not tampering, and access to a source of randomness that the device can use to
update itself, devices for signatures and decryption can be secured in this model under appropriate
assumptions [5, 8, 33, 32]. Devices that don’t have access to randomness after initialization can
still be secure in the more restricted bounded-leakage model, introduced by Akavia, Goldwasser,
and Vaikuntanathan [2], where the attacker can learn arbitrary information about the secret, as
long as the total amount is bounded by some prior parameter [2, 38, 3, 29].

If only tampering is allowed, Gennaro et al. [17] gave a construction that secures a device
in the model where the manufacturer has a public key and signs the secret key of the device.
Dziembowski et al. [13] generalized their solution to the case where the contents of the device is
encoded with a non-malleable code; they consider the case where the class of tampering functions
is restricted, and construct codes that are non-malleable with respect to these restricted tampering
functions. Specifically, they have non-constructive results on existence of non-malleable codes for
broad classes of tampering functions; they construct, in the plain model, a non-malleable code with
respect to functions that tamper with individual physical bits; in the random-oracle model, they
give a construction for the so-called split-state tampering functions, which we will discuss in detail
below. Very recently, Choi, Kiayias, and Malkin [6] improved the construction (in the plain model)
of non-malleable codes that can withstand block-by-block tampering functions for blocks of small
(logarithmic) sizes.

Finally, there are positive results for signature and encryption devices when both continual
tampering and leakage are possible, and the device has access to a protected source of true ran-
domness [28]. One may be tempted to infer from this positive result that it can be “derandomized”
by replacing true randomness with the continuous output of a pseudorandom generator, but this
approach is ruled out by Liu and Lysyanskaya [34]. Yet, how does a device, while under a physical
attack, access true randomness? True randomness is a scarce resource even when a device is not
under attack; for example, the GPG implementations of public-key cryptography ask the user to
supply random keystrokes whenever true randomness is needed, which leads to non-random bits
should a device fall into the adversary’s hands.

In this paper, we investigate general techniques for protecting cryptographic devices from contin-
ual leakage and tampering attacks without requiring access to true randomness after initialization.
Since, as we explained above, this is impossible for general classes of leakage and tampering func-
tions, we can only solve this problem for restricted classes of leakage and tampering functions.
Which restrictions are reasonable? Suppose that a device is designed such that its memory M is
split into two compartments, M1 and M2, that are physically separated. For example, a laptop may
have more than one hard drive. Then it is reasonable to imagine that the adversary’s side channel
that leaks information about M1 does not have access to M2, and vice versa. Similarly, the adver-
sary’s tampering function tampers with M1 without access to M2, and vice versa. This is known
as the split-state model, and it has been considered before in the context of leakage-only [12, 9]
and tampering-only [13] attacks.
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Our main result. Let G(·, ·) be any deterministic cryptographic functionality that, on input
some secret state s and user-provided input x, outputs to the user the value y, and possibly
updates its secret state to a new value s′; formally, (y, s′) = G(s, x). For example, G can be
a stateful pseudorandom generator that, on input an integer m and a seed s, generates m + |s|
pseudorandom bits, and lets y be the first m of these bits, and updates its state to be the next
|s| bits. A signature scheme and a decryption functionality can also be modeled this way. A
participant in an interactive protocol, such as a zero-knowledge proof, or an MPC protocol, can
also be modeled as a stateful cryptographic functionality; the initial state s would represent its
input and random tape; while the supplied input x would represent a message received by this
participant. A construction that secures such a general stateful functionality G against tampering
and leakage is therefore the most general possible result. This is what we achieve: our construction
works for any efficient deterministic cryptographic functionality G and secures it against tampering
and leakage attacks in the split-state model, without access to any randomness after initialization.
Any randomized functionality G can be securely derandomized using a pseudorandom generator
whose seed is chosen in the initialization phase; our construction also applies to such a derandomized
version of G. Quantitatively, our construction tolerates continual leakage of as many as (1− o(1))n
bits of the secret memory, where n is the size of the secret memory.

Our construction works in the common reference string (CRS) model (depending on the com-
plexity assumptions, this can be weakened to the common random string model); we assume that
the adversary cannot alter the CRS. Trusted access to a CRS is not a strong additional assump-
tion. A manufacturer of the device is already trusted to produce a correct device; it is therefore
reasonable to also trust the manufacturer to hard-wire a CRS into the device. The CRS itself
can potentially be generated in collaboration with other manufacturers, using a secure multi-party
protocol.

Our construction makes the following complexity assumptions:
(1) The existence of a public-key cryptosystem that remains semantically secure even when an

adversary is given g(sk) for an arbitrary poly-time computable g : {0, 1}|sk| 7→ {0, 1}|sk|Θ(1)
; for

example, the decisional Diffie-Hellman (DDH) assumption is sufficient: the cryptosystem due to
Naor and Segev [38] relies on DDH and is good enough for our purposes; in fact it gives more
security than we require.

(2) The existence of robust non-interactive zero-knowledge proof systems for an appropriate NP
language. For example, de Santis et al.’s [7] construction of robust NIZK for all languages in NP
suffices; although a construction for a more specialized language suffices as well.

In Section 5 we discuss the complexity assumptions needed here in more detail; we also analyze
the efficiency of our construction and show that when instantiated with the NIZK due to Groth [20]
and a technique due to Meiklejohn [36], we get efficiency that is compatible with practical use (as
opposed to instantiating with NIZK due to de Santis et al., which is only of theoretical interest).

Additional result. Dziembowski et al. [13] only give a random-oracle-based construction of non-
malleable codes for the split-state tampering functions; a central open problem from that paper
was to construct these codes without relying on the random oracle. We give such a non-malleable
code in the CRS model, under the assumptions above. We then use this result as a building block
for our main result; but it is of independent interest.
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Prior work. Here we give a table summarizing the state of the art in tolerating continual leakage
and tampering attacks; specific attacks we consider are split-state attacks (abbreviated as “SS”),
attacks on physical bits (abbreviated as “bits”), attacks on small blocks (abbreviated as “blocks”),
and attacks by any polynomial-sized circuits (abbreviated as “any”).

Type of Type of Local Known results about
leakage tampering coins continual attacks

None Any No Signature and decryption in the CRS model [17]

Any None No Trivially impossible

Bits Any No Impossible [34]

Any None Yes Signature and encryption in the plain model [5, 8, 33, 32]

None Bits Yes All functionalities in the plain model [13]

None SS Yes All functionalities in the RO model [13]

None Blocks Yes All functionalities in the plain model [6]

Any Any Yes Signature and encryption in the CRS model [28]

SS SS No All functionalities in the CRS model [This work]

We remark that all the results referenced above apply to attacks on the memory of the device,
rather than its computation (with one exception). The exception [32] is the work that constructed
the first encryption and signature schemes that can leak more than logarithmic number of bits
during their update procedure (but cannot be tampered with). Thus, all these works assume
computation to be somewhat secure. In this work, for simplicity, we also assume that computation
is secure, and remark that there is a line of work on protecting computation from leakage or
tampering [26, 37, 25, 12, 40, 10, 15, 19, 27, 14]. This is orthogonal to the study of protecting
memory leakage and tampering. In particular, we can combine our work with that of Goldwasser
and Rothblum [19], or Juma and Vahlis [27] to obtain a construction where computation is protected
as well; however, this comes at a cost of needing fresh local randomness. All known cryptographic
constructions that allow an adversary to issue leakage queries while the computation is going on
rely on fresh local randomness.

We must also stress that the previous positive results on leakage resilient (LR) encryption are
weaker than ours. This is because the definition of LR encryption is, of necessity, rather unnatural:
once a challenge ciphertext has been created, the adversary can no longer issue leakage queries. Of
course, without this restriction, security is unattainable: if the adversary were still allowed to issue
a leakage query, it can get leakage of the challenge ciphertext. This means the security can only
be guaranteed only when the device stops leaking, which is unnatural in the setting of continual
leakage. This important problem was first addressed by Halevi and Lin [23] who defined and
realized the notion of after-the-fact leakage resilience for encryption in the bounded (i.e. one-time)
split-state leakage model. Our results are much more general: we secure general functionalities
(not just encryption) from tampering as well as leakage, and we attain security under continuous
rather than one-time attacks, solving several problems left explicitly open by Halevi and Lin.

Since we consider the split-state model, we can allow the adversary to keep issuing leakage and
tampering queries after the challenge ciphertext is generated: we just make sure that any ciphertext
cannot be decrypted via split-state leakage functions. In this sense, our results provide stronger
guarantees (for LR encryption) than prior work [5, 33, 32, 28], even if one does not care about
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trusted local randomness and tamper-resilience.

Our building block: non-malleable codes We use non-malleable codes, defined by Dziem-
bowski et al. [13], as our building block.

Let Enc be an encoding procedure and Dec be the corresponding decoding procedure. Consider
the following tampering experiment [13]: (1) A string s is encoded yielding a codeword c = Enc(s).
(2) The codeword c is mauled by some function f to some c∗ = f(c). (3) The resulting codeword is
decoded, resulting in s∗ = Dec(c∗). (Enc,Dec) constitutes a non-malleable code if tampering with
c can produce only two possible outcomes: (1) f leaves c unchanged; (2) the decoded string s∗ is
unrelated to the original string s. Intuitively, this means that one cannot learn anything about the
original string s by tampering with the codeword c.

It is clear [13] that, without any restrictions on f , this notion of security is unattainable. For
example, f could, on input c, decode it to s, and then compute s∗ = s+1 and then output Enc(s∗).
Such an f demonstrates that no (Enc,Dec) can satisfy this definition. However, for restricted
classes of functions, this definition can be instantiated.

Dziembowski et al. constructed non-malleable codes with respect to bit-wise tampering func-
tions in the plain model, and with respect to split-state tampering functions in the random oracle
model. They also show a compiler that uses non-malleable codes to secure any functionality against
tampering attacks. In this paper, we improve their result in four ways: first, we construct a non-
malleable code with respect to split-state tampering, in the CRS model (which is a significant
improvement over the RO model). Second, our code has an additional property: it is leakage
resilient. That is to say, for any constant ε ∈ (0, 1), any efficient shrinking split-state function
g : {0, 1}n × {0, 1}n → {0, 1}(1−ε)n × {0, 1}(1−ε)n, g(c) reveals no information about the s (where c
is a codeword encoding s). Third, we prove that plugging in a leakage-resilient non-malleable code
in the Dziembowski et al. compiler secures any functionality against tampering and leakage attacks
at the same time. This gives a randomized secure implementation of any functionality. Fourth, we
give another compiler that gives a deterministic secure implementation of any functionality where
after initialization, the device (implementation) does not need access to a source of randomness.

Our continual tampering and leakage model. We consider the same tampering and leakage
attacks as those of Liu and Lysyanskaya[34] and Kalai et al. [28], which generalized the model of
tampering-only [17, 13] and leakage-only [5, 8, 33, 32] attacks. (However, in this attack model we
achieve stronger security, as discussed above.)

Let M be the memory of the device under attack. We view time as divided into discrete time
periods, or rounds. In each round, the adversary A makes a leakage query g or a tampering query
f ; as a result, A obtains g(M) or modifies the memory: M := f(M). In this work, we consider
both g, f to be split-state functions.

In this paper, we consider the simulation based security that generalized the Dziembowski
et al. definition [13]. On a high level, let the memory M be an encoded version of some secret
s. Security means there exists a simulator who does not know s and only gets oracle access to
the functionality G(s, x), but can still respond to the adversary’s attack queries in a way that is
indistinguishable from the real game. This means that tampering and leakage attacks do not give
the adversary more information than black box access to the functionality G(s, x). This is captured
formally in Definition 5.
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Our approach. Let G(s, x) be the functionality we want to secure, where s is some secret state
and x is the user input. Our compiler takes the leakage-resilient non-malleable code and G as input,
outputs G′(Enc(s), x), where G′ gets an encoded version of the state s, emulates G(s, x) and re-
encodes the new state at the end of each round. Then we will argue that even if the adversary can
get partial information or tamper with the encoded state in every round, the compiled construction
is still secure.

2 Our Model

In this section, we define the function classes for split-state leakage and tampering attacks, Ghalf
and Fhalf , respectively. Then we define an adversary’s interaction with a device that is vulnerable
to such attacks. Finally, we give the definition of a compiler that transforms any cryptographic
functionality G(s, x) to a functionality G′(s′, x) that withstands these attacks.

Definition 1 Define the following three function classes Gt,Fhalf ,Ghalft1,t2:

• Let t ∈ N, and by Gt we denote the set of all polynomial-sized circuits that have output length
t, i.e. g : {0, 1}∗ → {0, 1}t.

• Let Fhalf denote the set of length-preserving and polynomial-sized functions/circuits f that
operate independently on each half of their inputs. I.e. f : {0, 1}2m → {0, 1}2m ∈ Fhalf if there
exist two polynomial-sized functions/circuits f1 : {0, 1}m → {0, 1}m, f2 : {0, 1}m → {0, 1}m
such that for all x, y ∈ {0, 1}m, f(x, y) = f1(x) ◦ f2(y).

• Let t1, t2 ∈ N, and we denote Ghalft1,t2 as the set of all polynomial-sized leakage functions that

leak independently on each half of their inputs, i.e. g : {0, 1}2m → {0, 1}t1+t2 ∈ Ghalft1,t2 if there
exist two polynomial-sized functions/circuits g1 : {0, 1}m → {0, 1}t1, g2 : {0, 1}m → {0, 1}t2
such that for all x, y ∈ {0, 1}m, g(x, y) = g1(x) ◦ g2(y).

We further denote Ghalft1,all
as the case where g1(x) leaks t1 bits, and g2(y) can leak all its input

y.

We remark that the security parameter k with respect to which efficiency is measured is implicit in
the definitions.

Next, let us define an adversary’s access to a functionality under tampering and leakage attacks.
In addition to queries to the functionality itself (called Execute queries) an attacker has two more
operations: he can cause the memory of the device to get tampered according to some function f ,
or he can learn some function g of the memory. Formally:

Definition 2 (Interactive Functionality Subject to Tampering and Leakage Attacks) Let
〈G, s〉 be an interactive stateful system consisting of a public (perhaps randomized) functionality
G : {0, 1}u × {0, 1}k → {0, 1}v × {0, 1}k and a secret initial state s ∈ {0, 1}k. We consider the
following ways of interacting with the system:

• Execute(x): A user can provide the system with some query Execute(x) for x ∈ {0, 1}u. The
system will compute (y, snew) ← G(s, x), send the user y, and privately update its state to
snew.
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• Tamper(f): the adversary can operate tampering attacks against the system, where the state
s is replaced by f(s) for some function f : {0, 1}k → {0, 1}k.

• Leak(g): the adversary can obtain the information g(s) of the state by querying Leak(g).

Next, we define a compiler that compiles a functionality 〈G, s〉 into a hardware implementation
〈G′, s′〉 that can withstand leakage and tampering attacks. A compiler will consist of two algorithms,
one for compiling the circuit for G into another circuit, G′; the other algorithm is for compiling the
memory, s, into s′. This compiler will be correct, that is to say, the resulting circuit and memory
will provide input/output functionality identical to the original circuit; it will also be tamper- and
leakage-resilient in the following strong sense: there exists a simulator that, with oracle access to
the original 〈G, s〉, will simulate the behavior of 〈G′, s′〉 under tampering and leakage attacks. The
following definitions formalize this:

Definition 3 Let CRS be an algorithm that generates a common reference string, on input the secu-
rity parameter 1k. The algorithms (CircuitCompile,MemCompile) constitute a correct and efficiency-
preserving compiler in the CRS(1k) model if for all Σ ∈ CRS(1k), for any Execute query x,
〈G′, s′〉’s answer is distributed identically to 〈G, s〉’s answer, where G′ = CircuitCompile(Σ, G) and
s′ ∈ MemCompile(Σ, s); moreover, CircuitCompile and MemCompile run in polynomial time and
output G′ and s′ of size polynomial in the original circuit G and secret s.

Note that this definition of the compiler ensures that the compiled functionality G′ inherits all
the security properties of the original functionality G. Also note that the compiler, as defined here,
works separately on the functionality G and on the secret s, which means that it can be combined
with another compiler that strengthens G′ is some other way (for example, it can be combined
with the compiler of Goldwasser and Rothblum [19]). This definition allows for both randomized
and deterministic G′; as we discussed in the introduction, in general a deterministic circuit is more
desirable.

Remark 4 Recall that G, and therefore G′, are modeled as stateful functionalities. By convention,
running Execute(ε) will cause them to update their states.

As defined above, in the face of the adversary’s Execute queries, the compiled G′ behaves
identically to the original G. Next, we want to formalize the important property that whatever the
adversary can learn from the compiled functionality G′ using Execute, Tamper and Leak queries,
can be learned just from the Execute queries of the original functionality G.

We want the real experiment where the adversary interacts with the compiled functionality
〈G′, s′〉 and issues Execute, Tamper and Leak queries, to be indistinguishable from an experiment
in which a simulator Sim only has black-box access to the original functionality G with the secret
state s (i.e. 〈G, s〉). More precisely, in every round, Sim will get some tampering function f or
leakage function g from A and then respond to them. In the end, the adversary halts and outputs
its view. The simulator then may (potentially) output this view. Whatever view Sim outputs
needs to be indistinguishable from the view A obtained in the real experiment. This captures the
fact that the adversary’s tampering and leakage attacks in the real experiment can be simulated
by only accessing the functionality in a black-box way. Thus, these additional physical attacks do
not give the adversary any additional power.
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Definition 5 (Security Against F Tampering and G Leakage) A compiler (CircuitCompile,
MemCompile) yields an F-G resilient hardened functionality in the CRS model if there exists a
simulator Sim such that for every efficient functionality G ∈ PPT with k-bit state, and non-
uniform PPT adversary A, and any state s ∈ {0, 1}k, the output of the following real experiment
is indistinguishable from that of the following ideal experiment:

Real Experiment Real(A, s): Let Σ ← CRS(1k) be a common reference string given to all
parties. Let G′ ← CircuitCompile(Σ, G), s′ ← MemCompile(Σ, s). The adversary A(Σ) interacts
with the compiled functionality 〈G′, s′〉 for arbitrarily many rounds where in each round:

• A runs Execute(x) for some x ∈ {0, 1}u, and receives the output y.

• A runs Tamper(f) for some f ∈ F , and then the encoded state is replaced with f(s′).

• A runs Leak(g), and receives some ` = g(s′) for some g ∈ G, where s′ is the current state.
Then the system updates its memory by running Execute(ε), which will update the memory
with a re-encoded version of the current state.

Let viewA = (stateA, x1, y1, `1, x2, y2, `2, . . . , ) denote the adversary’s view where xi’s are the
execute input queries, yi’s are their corresponding outputs, `i’s are the leakage at each round i. In
the end, the experiment outputs (Σ, viewA).

Ideal Experiment Ideal(Sim,A, s): Sim first sets up a common reference string Σ, and SimA(Σ),〈G,s〉

outputs (Σ, viewSim) = (Σ, (stateSim, x1, y1, `1, x2, y2, `2, . . . )), where (xi, yi, `i) is the input/output/leakage
tuple simulated by Sim with oracle access to A, 〈G, s〉.

Note that we require that, in the real experiment, after each leakage query the device updates
its memory. This is necessary, because otherwise the adversary could just keep issuing Leak query
on the same memory content and, over time, could learn the memory bit by bit.

Also, note that, following Dziembowski et al. [13] we require that each experiment faithfully
record all the Execute queries. This is a way to capture the idea that the simulator cannot make
more queries than the adversary; as a result, an adversary in the real experiment (where he can
tamper with the secret and get side information about it) learns the same amount about the secret
as the simulator who makes the same queries (but does NOT get the additional tampering and
leakage ability) in the ideal experiment.

3 Leakage Resilient Non-malleable Codes

In this section, we present the definition of leakage resilient non-malleable codes (LR-NM codes),
and our construction. We also extend the definition of Dziembowski et al. [13] in two directions:
we define a coding scheme in the CRS model, and we consider leakage resilience of a scheme. Also,
our construction achieves the stronger version of non-malleability, so we present this version. For
the normal non-malleability and the comparison, we refer curious readers to the paper [13]. First
we define a coding scheme in the plain model and in the CRS model.
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3.1 Definition

Definition 6 (Coding Scheme [13]) A (k, n) coding scheme consists of two algorithms: an en-
coding algorithm Enc : {0, 1}k → {0, 1}n, and decoding algorithm Dec : {0, 1}n → {0, 1}k∪{⊥} such
that, for each s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1, over the randomness of the encoding/decoding
algorithms.

Definition 7 (Coding Scheme in the Common Reference String Model) Let k be the se-
curity parameter, and Init(1k) be an efficient randomized algorithm that publishes a common ref-
erence string (CRS) Σ ∈ {0, 1}poly(k). We say C = (Init, Enc,Dec) is a coding scheme in the CRS
model if for every k, (Enc(1k,Σ, ·),Dec(1k,Σ, ·)) is a (k, n(k)) coding scheme for some polynomial
n(k).

For simplicity, we will omit the security parameter and write Enc(Σ, ·),Dec(Σ, ·) for the case
in the CRS model.

Now we define the two properties of coding schemes: non-malleability and leakage resilience.

Definition 8 (Strong Non-malleability [13]) Let F be some family of functions. For each
function f ∈ F , and s ∈ {0, 1}k, define the tampering experiment

Tamperfs
def
=

{
c← Enc(s), c̃ = f(c), s̃ = Dec(c̃)

Output : same* if c̃ = c, and s̃ otherwise.

}
The randomness of this experiment comes from the randomness of the encoding and decoding

algorithms. We say that a coding scheme (Enc,Dec) is strong non-malleable with respect to the
function family F if for any s0, s1 ∈ {0, 1}k and for each f ∈ F , we have:

{Tamperfs0}k∈N ≈ {Tamperfs1}k∈N
where ≈ can refer to statistical or computational indistinguishability.

When we refer to non-malleable codes in the common reference string model, for any CRS Σ
we define

Tamperf,Σs
def
=

{
c← Enc(Σ, s), c̃ = fΣ(c), s̃ = Dec(Σ, c̃)

Output : same∗ if c̃ = c, and s̃ otherwise.

}
.

We say the coding scheme (Init, Enc,Dec) is strong non-malleable if we have {(Σ,Tamperf,Σs0 )}k∈N ≈
{(Σ,Tamperf,Σs1 )}k∈N where Σ← Init(1k), any s0, s1 ∈ {0, 1}k, and f ∈ F .

Definition 9 (Leakage Resilience) Let G be some family of functions. We say a coding scheme
(Init, Enc,Dec) is leakage resilient with respect to G if for every function g ∈ G, every two states
s0, s1 ∈ {0, 1}k, and every efficient adversary A, we have Pr[A(Σ, g(Σ, Enc(Σ, sb)) = b] ≤ 1/2 +
ngl(k), where b is a random bit, and Σ← Init(1k).

3.2 Construction Overview

In this section, we describe our construction of an LR-NM code. Before presenting our construction,
we first consider two bad candidates.

Consider the following idea, inspired by Gennaro et al. [17]: a seemingly natural way to prevent
malleability is to add a signature to the code; an attacker (it would seem) would have to forge a
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signature in order to tamper with the codeword. Thus, to encode a string s, we sample a signing
and verification key pair (sk, vk) and set M1 = sk and M2 = (vk, Signsk(s)). Intuitively, M1 has
no information about s, and M2 cannot be tampered with by the unforgeability of the signature
scheme. However, the problem is that the latter is true only as long as M1 is not tampered with.
An adversary can easily defeat this construction: first he resamples another key pair (sk′, vk′) and
then sets M1 = sk′, and M2 = (vk′, Signsk′(s)). This creates a valid codeword whose underlying
message is highly correlated to the original one, and thus it cannot satisfy the definition.

Another possible approach (inspired by the work on non-malleable cryptography [11]) is to use
a non-malleable encryption scheme. To encode a string s, we sample a key pair (pk, sk) and set
M1 = sk and M2 = (pk,Encryptpk(s)). If the adversary tampers with the ciphertext Encryptpk(s)
only, then by the definition of non-malleable encryption, the tampered message cannot be related
to s, which is what we need. However, if the adversary tampers with the keys as well, it is unclear
how non-malleability can be guaranteed. In fact, we are not aware of any encryption scheme that
has this type of non-malleability in the face of key tampering.

Although we just saw that non-malleable encryption does not work directly, the techniques
of how to achieve non-malleability, due to Naor and Yung [39] and Dolev et al. [11] give us a
good starting point. In particular, both works used a non-interactive zero-knowledge (NIZK) proof
to enforce consistency such that the adversary cannot generate valid ciphertexts by mauling the
challenger’s ciphtertext. Here we consider a similar technique that uses an encryption scheme and
an NIZK proof, and sets M1 = sk, M2 = (pk, ŝ = Encryptpk(s), π) where π is a proof of consistency
(i.e. it proves that there exists a secret key corresponding to pk and that ŝ can be decrypted using
this secret key).

Does this work yet? If the attacker modifies ŝ, then the proof π has to be modified as well.
If the underlying proof system is malleable, then it could be possible to modify both at the same
time, so that the attacker could obtain an encoding of a string that is related to the original s. So
we require that the proof system be non-malleable; specifically we use the notion of robust NIZK
given by de Santis et al. [7], in which, informally, the adversary can only output new proofs for
which he knows the corresponding witnesses, even when given black-box access to a simulator that
produces simulated proofs on demand; there exists an extractor that can extract these witnesses.

Now let us try to give a high-level proof of security. Recall that we need to show: for any poly-
time adversary A that breaks the non-malleability with some split-state tampering function f =
(f1, f2), there exists an efficient reduction that breaks the semantic security of the encryption. Given
a public key pk, and a ciphertext c, it is the reduction’s job to determine whether c is an encryption
of s0 or s1, with the help of the adversary that distinguishes Tamperfs0 and Tamperfs1 . A natural way
for the reduction is to pretend that M1 = sk, and put the public key pk and the ciphertext ŝ = c with
a simulated proof into M2, setting M2 = (pk, ŝ, πSim). Then the reduction simulates the tampering
experiment Tamperfs . Clearly, irrespective of f1 the reduction can compute f2(M2) = (pk′, ŝ′, πSim),
and intuitively, the non-malleability of the proof assures that the adversary can only generate valid
(pk′, ŝ′) if he knows sk′ and s′. So at first glance, the outcome of the tampering experiment (i.e. the
decoding of the tampered codeword) should be s′, which can be simulated by the reduction. Thus,
the reduction can use A to distinguish the two different experiments.

However, there are several subtle missing links in the above argument. The reduction above
does not use any property of f1, which might cause a problem. Suppose f1(sk) = sk′, then the
decoding of the tampered codeword is really s′, so the reduction above simulates the tampering
experiment faithfully. However, if not, then the decoding should be ⊥ instead. Thus, the reduction
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crucially needs one bit of information: sk′
?
= f1(sk). If the reduction could get leakage f1(sk)

directly, then it could compute this bit. However, the length of f1(sk) is the same as that of
sk itself, and therefore no leakage-resilient cryptosystem can tolerate this much leakage. If the
reduction, instead, tried to guess this bit, then A will be able to tell that it is dealing with the
reduction rather than with the correct experiment, and may cancel out its advantage. (This is a
common pitfall in indistinguishability reductions: they often don’t go through if the adversary can
tell that he is not operating “in the wild.”)

Our novel observation here is that actually a small amount of leaked information about the secret
key sk is sufficient for the reduction to tell the two cases apart. Let h be a hash function that maps
input strings to strings of length `. Then, in order to check whether f1(sk) = sk′, it is very likely
(assuming appropriate collision-resistance properties of h) sufficient to check if h(f1(sk)) = h(sk′).
So if we are given a cryptosystem that can tolerate ` bits of leakage, we can build a reduction that
asks that h(f1(sk)) be leaked, and this (in addition to a few other technicalities that we do not
highlight here) enables us to show that the above construction is non-malleable.

Besides non-malleability, the above code is also leakage-resilient in the sense that getting partial
information about a codeword does not reveal any information about the encoded string. Intuitively,
this is because the NIZK proof hides the witness, i.e. the message, and partial leakage of the secret
key does not reveal anything about the message, either. Thus, this construction achieves non-
malleability and leakage resilience at the same time.

3.3 The Construction

Recall Gt is the function class that includes all poly-sized circuits with t-bit output. Now we are
ready to describe our tools and coding scheme.

Our tools: Let t be a polynomial, E = (KeyGen,Encrypt,Decrypt) be an encryption scheme
that is semantically secure against one-time leakage Gt, and Π = (`,P,V,S) be a robust NIZK
proof system (see Definitions 26 and 23 in Appendix A). The encryption scheme and robust NIZK
needs to have some additional properties, and we briefly summarize them here: (1) given a secret
key sk, one can efficiently derive it corresponding public key pk; (2) given a key pair (pk, sk), it is
infeasible to find another valid (pk, sk′) where sk 6= sk′; (3) different statements of the proof system
must have different proofs.

In Appendix A we give formal definitions of these additional properties and show that simple
modifications of leakage-resilient crypto systems and robust NIZK proof systems satisfy them. Now,
we define a coding scheme (Init, Enc,Dec) as follows:

The coding scheme:

• Init(1k): sample a common reference string at random, i.e. Σ← {0, 1}`(k).

• Enc(Σ, s): on input message s ∈ {0, 1}k, sample (pk, sk) ← KeyGen(1k). Then consider the
language L with the witness relation W defined as following:

L =

{
(pk, m̂) : ∃w = (sk,m) such that

(pk, sk) forms a public-key secret-key pairs for E and
m = Decryptsk(m̂).

}
,

and W is the natural witness relation defined in the above language L.
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Let π ← P((pk, ŝ), (sk, s, r),Σ) be an NIZK proof computed by the prover’s strategy of the
proof system Π with CRS Σ of the statement that (pk, ŝ) ∈ L. Then output the encoding
c = (sk; pk, ŝ = Encryptpk(s), π).

• Dec(Σ, c): If (1) V((pk, ŝ), π,Σ) accepts and (2) (pk, sk) form a valid key pair, output Decryptsk(ŝ).
Otherwise, output ⊥.

Let n = n(k) be the polynomial that is equal to the length of sk ◦ pk ◦ ŝ ◦ π. Without loss of
generality, we assume that n is even, and |sk| = n/2, and |pk ◦ ŝ ◦π| = n/2 (these properties can be
easily guaranteed by padding the shorter side with 0’s). Thus, a split-state device where n(k)-bit
memory M is partitioned into M1 and M2 could store sk in M1 and (pk, ŝ, π) in M2.

Remark 10 Note that the decoding algorithm Dec is deterministic if the verifier V and the de-
cryption algorithm Decrypt are both deterministic; as almost all known instantiations are. In the
rest of the paper, we will assume that the decoding algorithm is deterministic.

Theorem 11 Let t : N → N be some non-decreasing polynomial, and Gt,Fhalf ,Ghalft,all be as defined
above. Suppose the encryption scheme E is semantically secure against one-time leakage Gt; the
system Π is a robust NIZK as stated above; and Hk : {hz : {0, 1}poly(k) → {0, 1}k}z∈{0,1}k is a
family of universal one-way hash functions.

Then the coding scheme is strong non-malleable (Def 8) with respect to Fhalf , and leakage
resilient (Def 9) with respect to Ghalft,all.

Proof. The proof contains two parts: showing that the code is non-malleable and that it is leakage
resilient. The second part is easy so we only give the intuition. First let us look at M2 = (pk, ŝ, π).
Since π is a NIZK proof, it reveals no information about the witness (sk, s). For the memory
M1 = sk, since the encryption scheme is leakage resilient, getting partial information about sk does
not hurt the semantic security. Thus, for any g ∈ Ghalft,all, g(M1,M2) hides the original input string.
We omit the formal details of the reduction, since they are straightforward.

Now we focus on the proof of non-malleability. In particular, we need to argue that for any
s0, s1 ∈ {0, 1}k, and f ∈ Fhalf , we have (Σ,Tamperf,Σs0 ) ≈c (Σ,Tamperf,Σs1 ) where Σ← Init(1k). We
show this by contradiction: suppose there exist f = (f1, f2) ∈ Fhalf , s0, s1, some ε = 1/poly(k),
and a distinguisher D such that Pr[D(Σ,Tamperf,Σs0 ) = 1]− Pr[D(Σ,Tamperf,Σs1 ) = 1] > ε, then we
can construct a reduction that breaks the encryption scheme E .

The reduction will work as discussed in the overview. Before describing it, we first make an
observation: D still distinguishes the two cases of the Tamper experiments even if we change all
the real proofs to the simulated ones. More formally, let (Σ, τ) ← S1(1k), and define Tamperf,Σ,τs

be the same game as Tamperf,Σs except proofs in the encoding algorithm Enc(Σ, ·) are computed by
the simulator S2(·,Σ, τ) instead of the real prover. We denote this distribution as Tamperf∗s . We
claim that D also distinguishes Tamperf∗s0 from Tamperf∗s1 .

Suppose not, i.e. D, who distinguishes Tamperf,Σs0 from Tamperf,Σs1 does not distinguish Tamperf∗s0
from Tamperf∗s1 . Then one can use D, f, s0, s1 to distinguish real proofs and simulated ones using
standard proof techniques. This violates the multi-theorem zero-knowledge property of the NIZK
system Π. Thus, we have Pr[D(Σ,Tamperf∗s0 ) = 1]− Pr[D(Σ,Tamperf∗s1 ) = 1] > ε/2.

In the following, we are going to define a reduction Red to break the leakage resilient encryption
scheme E . The reduction Red consists of an adversary A = (A1, A2, A3) and a distinguisher D′

defined below.
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The reduction (with the part A) plays the game LEb(E , A, k,F) with the challenger defined in
Definition 26, and with the help of the distinguisher D and the tampering function f = (f1, f2).

• First A1 samples z ∈ {0, 1}t−1 (this means A1 samples a universal one-way hash function
hz ← Ht−1), and sets up a simulated CRS with a corresponding trapdoor (Σ, τ)← S1(1k).

• A1 sets g : {0, 1}n/2 → {0, 1}t to be the following function, and sends this leakage query to
the challenger.

g(sk) =

{
0t if f1(sk) = sk,

1 ◦ hz(f1(sk)) otherwise.

This leakage value tells A1 if the tampering function f1 alters sk.

• A2 chooses m0,m1 to be s0, and s1 respectively. Then the challenger samples (pk, sk) and
sets m̂ = Encryptpk(mb) to be the ciphertext, and sends pk, g(sk), m̂ to the adversary.

• ThenA3 computes the simulated proof π = S2(pk, m̂,Σ, τ), and sets (pk′, m̂′, π′) = f2(pk, m̂, π).
Then A3 does the following:

1. If g(sk) = 0t, then consider the following cases:

(a) pk′ 6= pk, set d = ⊥.

(b) Else (pk′ = pk),

i. if (m̂′, π′) = (m̂, π), set d = same∗.

ii. if m̂′ 6= m̂, π′ = π, set d = ⊥.

iii. else (π′ 6= π), check whether V((pk′, m̂′), π′,Σ) accepts.

A. If no, set d = ⊥.

B. If yes, use the extractor Ext to compute (sk′′,m′′)← Ext(Σ, τ, x′ = (pk′, m̂′), π′),
where the list Q = ((pk, m̂), π). If the extraction fails, then set d = ⊥; other-
wise d = m′′.

2. Else if g(sk) = 1 ◦ hz(f1(sk))
def
= 1 ◦ hint , then consider the following case:

(a) if π′ = π, then set d = ⊥.

(b) else, check if V(pk′, π′, crs) verifies, if not set d = ⊥. Else, compute (sk′′,m′′) ←
Ext(Σ, τ, x′ = (pk′, m̂′), π′), where the list Q = ((pk, m̂), π). If the extraction fails,
then set d = ⊥; otherwise consider the following two cases:

i. If hz(sk
′′) 6= hint , then set d = ⊥.

ii. Else, set d = m′′.

• Finally, A3 outputs d, which is the output of the game LEb(E , A, k,Fhalf).

Define the distinguisher D′ on input d outputs D(Σ, d). Then we need to show that A,D′ break
the scheme E by the following lemma. In particular, we will show that the above A’s strategy
simulates the distributions Tamperf∗sb , so that the distinguisher D’s advantage can be used by D′

to break E .
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Claim 12 Given the above A and D′, we have

Pr[D′(LE0(E , A, k,Fhalf)) = 1]− Pr[D′(LE1(E , A, k,Fhalf)) = 1] > ε/2− ngl(k).

To prove this claim, we argue that the output d does simulate the decoding of the tampered
codeword c̃ = (f1(sk), f2(pk, m̂, π)) = (sk′, pk′, m̂′, π′). Here A does not know f1(sk) so he cannot
decode c̃ directly. Although A can get the help from leakage functions, however, f1(sk), as sk itself,
has n/2 bits of output, which is too long so A cannot learn all of them. Our main observation is
that getting a hash value of f1(sk) is sufficient for A to simulate the decoding. In particular, we
will show that with the leakage g(sk), A can simulate the decoding with at most a negligible error.

Proof of claim: First we make the following observations. Consider the case where

sk = sk′
def
= f1(sk) (the tampering function did not modify the secret key).

• If pk′ 6= pk, since pk can be derived from sk deterministically as pointed out in
Definition 26 and its remark, the correct decoding will be ⊥ by the consistency
check, which is that A3 outputs. (case 1a).

• If f2 does not modify its input either, the correct decoding equals d = same∗, as
A3 says (case 1(b)i).

• if pk′ = pk, m̂′ 6= m̂ but π′ = π, then the correct decoding will agree with A3

and outputs ⊥. This is because V(pk′, m̂′, π,Σ) will output a rejection since the
statement has changed and the old proof to another statement cannot be accepted,
by the robustness of NIZK (case 1(b)ii).

• if pk′ = pk, π′ 6= π, the correct decoding algorithm will first check V(pk′, m̂′, π′). If
it verifies, by the extractability of the proof system, the extractor Ext will output
a witness w = (sk′′,m′′) of the relation W. Then A will use m′′ as the outcome of
the decoding. The only difference between the decoding simulated by A and the
correct decoding algorithm (that knows sk and can therefore decrypt m̂′) is the
case when the extraction fails. By the property of the proof system, we know this
event happens with at most ν(k), which is a negligible quantity. (case 1(b)iii).

Then we consider the case where sk′ 6= sk (the tampering adversary modified the
secret key).

• If π′ = π, then the correct decoding will be ⊥ with probability 1− ngl(k). This is
by the two additional properties: (1) the property of the encryption scheme stated
in Lemma 27 that no efficient adversary can get a valid key pair (pk, sk′) from
(pk, sk) with non-negligible probability. (2) the proof of statement x cannot be
used to prove other statements x′ 6= x.

Thus, in this case A3 agrees with the correct decoding algorithm with overwhelming
probability (1− ngl(k)). (case 2a).

• If π′ 6= π, and V(pk′, m̂′, π′,Σ) accepts, then with probability 1 − ν(k) the ex-
tractor will output a witness (sk′′,m′′). The correct decoding algorithm checks
whether (pk′, sk′) forms a key pair. Here A emulates this check by checking
whether hz(sk

′′) = hz(sk
′). Since hz is a universal one-way hash function, the

probability that hz(sk
′′) = hz(sk

′)∧ sk′′ 6= sk′ is at most ngl(k). Otherwise, we can
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construct another reduction B who simulates these games to break the universal
one-wayness. B simulates both the adversary and the challenger of the interaction
LEb(E , A, k,Fhalf), and when A queries the leakage g that contains a description
of f1, B sets its x to be sk′ = f1(sk). Then B receives a index z, and then B
continue to simulate the game. Then B can find out another x′ = sk′′ where
hz(x) = hz(x

′) ∧ x′ 6= x′ from in the game with non-negligible probability. This is
a contradiction.

Thus by a union bound, with probability 1−ν(k)−ngl(k), A emulates the decoding
algorithm faithfully. (case 2b).

Let event E1 be the one where Ext extracts a valid witness w = (sk′′,m′′) in cases
1(b)iii and 2b, . Let event E2 be the one where in case 2b, h(sk′′) = h(sk′) ∧ sk′′ = sk′.

By the above observations, we have

Pr
[
(Σ, LEb(E , A, k,Fhalf)) = Tamperf∗sb

∣∣∣E1 ∧ E2

]
= 1, and Pr[¬E1]+Pr[¬E2] < ngl(k).

Thus we have Pr
[
(Σ, LEb(E , A, k,Fhalf)) = Tamperf∗sb

]
> 1 − ngl(k), which implies

the claim directly.
2

This completes the proof of the Theorem.

4 Our Compilers

In this section, we present two compilers that use our LR-NM code to secure any functionality
G from split-state tampering and leakage attacks. The first compiler, as an intermediate result,
outputs a compiled functionality G′ that has access to fresh random coins. The second one outputs
a deterministic functionality by derandomizing G′ using a pseudorandom generator.

4.1 Randomized Implementation

Let G(s, x) be an interactive functionality with a k-bit state s that we want to protect, and let C =
(Init, Enc,Dec) be the LR-NM coding scheme we constructed in the previous section. Our compiler
works as follows: first it generates the common parameters Σ← Init(1k). Then MemCompile(Σ, s)
outputs an encoding of s, (M1,M2)← Enc(Σ, s); and CircuitCompile(G, C,Σ) outputs a randomized
functionality G′ such that 〈G′, Enc(Σ, s)〉 works in the following way: on user input x, first G′

decodes the memory using the decoding algorithm Dec. If the outcome is ⊥, then G′ will always
output ⊥ (equivalently, self-destruct); otherwise it obtains s. Then G′ computes (snew, y)← G(s, x)
and outputs y. Finally G′ re-encodes its memory: (M1,M2)← Enc(Σ, snew). There are two places
where G′ uses fresh randomness: the functionality G itself and the re-encoding step.

We denote this randomized hardware implementation of the compiler as Hardwarerand(C, G)
def
=

〈G′, Enc(s)〉. Obviously the compiler is correct, i.e. the implementation’s input/output behavior is
the same as that of the original functionality. Next, we will show it is also secure against leakage
and tampering attacks.
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Theorem 13 Let t : N → N be some non-decreasing polynomial, and Gt,Fhalf ,Ghalft,all be as defined
above.

Suppose we are given a cryptosystem E = (KeyGen,Encrypt,Decrypt) that is semantically
secure against one-time leakage Gt; a robust NIZK Π = (`,P,V,S); and Hk : {hz : {0, 1}poly(k) →
{0, 1}k}z∈{0,1}k , a family of universal one-way hash functions. Then the randomized hardware

implementation presented above is secure against Fhalf tampering and Ghalft,all leakage.

Let us explain our proof approach. In the previous section, we have shown that the coding
scheme is leakage-resilient and non-malleable. This intuitively means that one-time attacks on the
hardware implementation Hardwarerand(C, G) are useless. Therefore, what we need to show is that
these two types of attacks are still useless even when the adversary has launched a continuous
attack.

Recall that, by definition, to prove tamper and leakage resilience, we need to exhibit a simulator
that simulates the adversary’s view of interaction with Hardwarerand(C, G) based solely on black-
box access to 〈G, s〉. The simulator computes M1 and M2 almost correctly, except it uses s0 = 0k

instead of the correct s (which, of course, it cannot know). The technically involved part of the
proof is to show that the resulting simulation is indistinguishable from the real view; this is done
via a hybrid argument in which an adversary that detects that, in round i, the secret changed from
s0 to the real secret s, can be used to break the LR-NM code, since this adversary will be able
to distinguish Tamperf,Σs0 from Tamperf,Σs or break the leakage resilience of the code. In doing this
hybrid argument, care must be taken: by the time we even get to round i, the adversary may have
overwritten the state of the device; also, there are several different ways in which the security may
be broken and our reduction relies on a careful case analysis to rule out each way.
Proof. [Theorem 13] To prove the theorem, we need to construct a simulator Sim that gets black-
box access to any adversary A who issues Execute, Tamper, and Leak queries, and functionality
〈G, s〉 that only answers Execute queries, and outputs an indistinguishable view from that of the
real experiment, in which A talks directly to the harden functionality for 〈G, s〉. Define Sim as the
following procedure:

On input 1k, Sim first samples a common reference string Σ ← {0, 1}`(k). (Recall ` is the
parameter in the NIZK Π = (`,P,V,S)). In the first round, the simulator starts with the normal
mode defined below:

• Normal mode, while the adversary keeps issuing queries, respond as follows:

– When the adversary queries Execute(x), the simulator queries the input x to 〈G, s〉 and
forwards its reply y back to A.

– When the adversary queries Tamper(f) for some f ∈ Fhalf , the simulator samples t from

the distribution Tamperf,Σ
0k

. If t = same∗, then Sim does nothing. Otherwise, go to the
overwritten mode defined below with the state t.

– When the adversary queries Leak(g) for some g ∈ Ghalft,all, the simulator samples a (random)

encoding of 0k, Enc(0k), and sends g(Enc(0k)) to the adversary.

• Overwritten mode with state t, while the adversary keeps issuing queries, respond as follows:

– The simulator simulates the hardened functionality with state t, i.e. 〈G′, Enc(t)〉, and
answers execute, tampering and leakage queries accordingly.
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• Suppose A halts and outputs viewA = (stateA, x1, `1, . . . ) where xi denotes the query, and
`i is the leakage in the i-th round. Then the simulator sets viewSim = viewA, and outputs
(Σ, viewSim) at the end. We remark that if in the i-th round, A did not make an Execute
query, then xi = φ; similarly if he did not query Leak, then `i = φ.

Intuitively, the normal mode simulates the adversary’s queries before he mauls the secret state,
and the overwritten mode simulates those after he mauls it. Intuitively, the coding scheme is non-
malleable, so the adversary can either keep the secret state unchanged or change it to something
he knows. This is captured by the above two modes. On the other hand, the (one-time) leakage
resilient encryption protects the secret against leakage attacks.

In the end of each round, the secret state is re-encoded with fresh randomness. Thus we can use
a hybrid argument to show that the hardened functionality is secure for many rounds. We remark
that since there are three possible queries and two different modes in each round, in our hybrid
argument, a case study of many options should be expected.

In the rest of the proof, we are going to formalize this intuition and show that this simulated
view is indistinguishable from that of the real experiment. In particular, we will establish the
following lemma:

Lemma 14 Let Sim be the simulator defined above. Then for any adversary A and any state
s ∈ {0, 1}k, Real(A, s) = (Σ, viewA) is computationally indistinguishable from Ideal(Sim,A, s) =
(Σ, viewSim).

Proof. Suppose there exists an adversary A running the experiment for at most L = poly(k)
rounds, a state s, and a distinguisher D such that Pr[D(Σ, viewReal) = 1]−Pr[D(Σ, viewSim) = 1] >
ε for some non-negligible ε, then we will construct a reduction that will find a function f ∈ Fhalf ,
two states s0, s1, and a distinguisher D′ that distinguishes (Σ,Tamperf,Σs0 ) from (Σ,Tamperf,Σs1 ).
This breaks non-malleability of the coding scheme, which contradicts to Theorem 11.

To show this, we define the following hybrid experiments for i ∈ [L]:

Experiment Sim(i)(A, s):

• Sim(i) setups the common reference string to be Σ← {0, 1}`(k).

• In the first i rounds, Sim(i) does exactly the same as Sim.

• From the i+1-th round, if Sim(i) has already entered the overwritten mode, then do the sim-
ulation as the overwritten mode. Otherwise, let scurr be the current state of the functionality,
and the simulation does the following modified normal mode:

– When the adversary queries Execute(x), the simulator queries the functionality (y, snew)←
G(x, scurr). Then it forwards y, and set scurr = snew.

– When the adversary queries Tamper(f) for some f ∈ F , the simulator samples t from
the distribution Tamperf,Σscurr . If t = same∗, then the simulator does nothing. Otherwise,
go to the overwritten mode with the state t.

– When the adversary queries Leak(g) for some g ∈ G, the simulator samples a (random)
encoding of scurr, Enc(scurr), and replies g(Enc(scurr)) to the adversary.
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We remark that Sim(i) behaves like Sim in the first i rounds, and in the later rounds, it behaves
exactly the same as 〈GΣ,Enc,Dec, Enc(Σ, scurr)〉 if the simulation does not enter the overwritten mode.
Then we observe that Sim(0)(A, s) is the output of the real experiment (Σ, viewA), and Sim(L)(A, s)
is that of the ideal experiment (Σ, viewSim). By an averaging argument, there exists some j ∈ [L]
such that

Pr[D(Σ,Simj(A, s)) = 1]− Pr[D(Σ,Simj+1(A, s)) = 1] > ε/L.

Since Sim(j) and Sim(j+1) only differ at round j+ 1 and D can distinguish one from the other,
our reduction will take the advantage of D on this round. First we define the following four possible
events that can happen in round j + 1:

• E1: the simulation has entered the overwritten mode by the j + 1-st round.

• E2: the simulation is in the normal mode and the adversary queries Execute in the j + 1-st
round.

• E3: the simulation is in the normal mode and the adversary queries Leak in the j+1-st round.

• E4: the simulation is in the normal mode and the adversary queries Tamper in the j + 1-st
round.

Claim 15 The probability of E3 ∨ E4 is non-negligible.

Proof of claim: We can easily see that conditioning on the events E1, E2, Sim(j) and
Sim(j+1) are identical. Thus if E3∨E4 happens with negligible probability, then Sim(j)

and Sim(j+1) are statistically close up to negligible probability, which is a contradiction
to the fact that D distinguishes them with non-negligible probability. 2

Then we are going to show the following claim:

Claim 16 Pr[E4] > α for some non-negligible α.

Proof of claim: We will show this by contradiction. Suppose Pr[E4] = ngl(k). Then
we are going to construct a reduction B that breaks the encryption scheme E . First we
observe an easy fact that Pr[E3] is non-negligible. This follows from the previous claim,
and our premise that Pr[E4] = ngl(k).

Let LEb
def
= LEb(E , B, k,Gt) be the game and B does the following:

• First B receives pk, and then B sets up a common reference string along with a
trapdoor from the NIZK simulator, i.e. (Σ, τ)← S1(1k).

• Then B simulates the interaction of Sim(j)(A, s) for the first j rounds except
whenever the simulation requires a proof, B uses S2(·, ·,Σ, τ) to generate it. We
remark that to simulate this experiment, B needs to run the adversary A and the
functionality G(·, ·). In particular, B keeps tracks of the current state of 〈G, s〉 at
each round, and let let scurr be the current state at the end of the j-th round.
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• In the j + 1-st round, if the event E3 does not happen, then B gives up: B simply
sends any dummy messages m0,m1 to the challenger, but then guesses a bit at
random on input challenge ciphertexts.

• Otherwise if the adversary queries Leak(g) for some g = (g1, g2) ∈ Ghalft,all, B chooses

m0 = 0k and m1 = scurr and then asks for the leakage g1(sk).

• Then B receives pk, m̂b = Encryptpk(mb), g1(sk), and then B computes a simulated
proof π. Then B sends to A g1(sk), g2(pk, m̂b, π) as the response to Leak(g) and
simulates the rest of Simj+1. Once A halts, A outputs a view, and B set view′Sim
to be that view.

• In the end, B outputs D(Σ, view′Sim): if D thinks that his view came from S(j)

then B outputs m0, else m1.

Then we are going to show that |Pr[LE0 = 1] − Pr[LE1 = 1]| > ε′ for some non-
negligible ε′. First we observe that

Pr[LE0 = 1]− Pr[LE1 = 1]

=
∑
i∈[4]

(
Pr
[
LE0 = 1

∣∣∣Ei] · Pr[Ei]− Pr
[
LE1 = 1

∣∣∣Ei] · Pr[Ei]
)

=
(

Pr
[
LE0 = 1

∣∣∣E3

]
− Pr

[
LE1 = 1

∣∣∣E3

])
· Pr[E3].

This follows from the fact that conditioning on ¬E3, the output of LEb is uniformly at
random from the construction of the adversary B. In the following, we are going to
show this is a noticeable quantity.

Let Sim(j)′ denote the experiment identical with Sim(j) except that the common
reference string and all the proofs are set up by the NIZK simulator S. Similarly we
have Sim(j+1)′ . By the zero knowledge property, we have,∣∣∣∣ Pr

Σ←{0,1}`(k)
[D(Σ,Sim(j)) = 1]− Pr

Σ←S(1k)
[D(Σ,Sim(j)′) = 1]

∣∣∣∣ < ngl(k),

∣∣∣∣ Pr
Σ←{0,1}`(k)

[D(Σ,Sim(j+1)) = 1]− Pr
Σ←S(1k)

[D(Σ,Sim(j+1)′) = 1]

∣∣∣∣ < ngl(k).

From the assumption we know∣∣∣∣ Pr
Σ←{0,1}`(k)

[D(Σ,Sim(j)) = 1]− Pr
Σ←{0,1}`(k)

[D(Σ,Sim(j+1)) = 1]

∣∣∣∣ > ε/L.

Thus we have∣∣∣∣ Pr
Σ←S(1k)

[D(Σ,Sim(j)′) = 1]− Pr
Σ←S(1k)

[D(Σ,Sim(j+1)′) = 1]

∣∣∣∣ > ε/L− ngl(k).

Then we express this equation with the four conditioning probabilities:
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Pr
Σ←S(1k)

[D(Σ,Sim(j)′) = 1]− Pr
Σ←S(1k)

[D(Σ,Sim(j+1)′) = 1]

=
∑
i∈[4]

(
Pr

Σ←S(1k)

[
D(Σ,Sim(j)′) = 1

∣∣∣Ei] · Pr[Ei]− Pr
Σ←S(1k)

[
D(Σ,Sim(j+1)′) = 1

∣∣∣Ei] · Pr[Ei]

)
= ∆3 · Pr[E3] + ∆4 · Pr[E4]

≥ ε/L− ngl(k),

where ∆3 = PrΣ←S(1k)

[
D(Σ,Sim(j)′) = 1

∣∣∣E3

]
− PrΣ←S(1k)

[
D(Σ,Sim(j+1)′) = 1

∣∣∣E3

]
,

and ∆4 = PrΣ←S(1k)

[
D(Σ,Sim(j)′) = 1

∣∣∣E4

]
− PrΣ←S(1k)

[
D(Σ,Sim(j+1)′) = 1

∣∣∣E4

]
.

The first equality follows from the Bayes’ equation. The second equality follows from
the fact that conditioning on E1 or E2, Sim(j)′ and Sim(j+1)′ are identically distributed.
Recall that the two distributions become identical once the simulation has entered the
overwritten mode before round j + 1. If the adversary queries Execute with the normal
mode in the j+ 1-th round, the two experiments are the same also. The last inequality
just follows from the above equation.

Then from the premise, we have Pr[E4] = ngl(k), we have ∆4 · Pr[E4] = ngl(k), and
thus: ∆3 · Pr[E3] ≥ ε/L− ngl(k).

Then we observe that for B’s strategy, conditioning on the event E3, if b = 0, B
will simulate according to Sim(j)′ , and if b = 1, Sim(j+1)′ . This means Pr[LE0 =
1|E3]− Pr[LE1 = 1|E3] = ∆3, and thus from the previous calculations, we have

Pr[LE0 = 1]− Pr[LE1 = 1]

=
(

Pr
[
LE0 = 1

∣∣∣E3

]
− Pr

[
LE1 = 1

∣∣∣E3

])
· Pr[E3]

= ∆3 · Pr[E3]

≥ ε/L− ngl(k).

This means B breaks the scheme E with non-negligible probability.
2

We wish to show that the simulator Sim we give satisfies Definition 5. So far we have shown
that if it does not provide a good simulation, then there exists some state s, index j such that
Pr[E4] happens with non-negligible probability. We must now construct a reduction that with s
and j as advice, and with access to the adversary A, breaks non-malleability of the coding scheme.
The idea is to use A’s tampering query in round j + 1, which we know A makes such query with
non-negligible probability.

The reduction we will construct needs to find with advice s, j, two strings s0, s1, and a tampering
function fΣ = (fΣ

1 , f
Σ
2 ) ∈ Fhalf , and distinguishes (Σ,Tamperf,Σs0 ) from (Σ,Tamperf,Σs1 ).

Both the reduction and the function fΣ will run Sim(j) as a subroutine, and will have oracle
access to Σ. A subtlety in this approach is that Sim(j) is a randomized algorithm while fΣ

is deterministic (a polynomial-sized circuit). To overcome this, our reduction will simply fix the
randomness of Sim. Let R be a random tape. By Sim(j)[R] we denote that Sim(j) uses randomness
R; similarly Sim(j+1)[R].
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Now we describe the reduction. First it picks R uniformly at random as the randomness for
the simulator. It runs Sim(j)[R](A, s) for j rounds, to obtain the current state scurr. Then it sets
s0 = 0k, s1 = scurr. Next the reduction computes a description of the polynomial-sized circuits
for fΣ = (fΣ

1 , f
Σ
2 ) ∈ Fhalf . This fΣ is the tampering function that A outputs when running

Sim(j)[R](A, s) at round j + 1. If A does not query Tamper or the simulation has entered the
overwritten mode at this round (the event E4 does not happen), then let fΣ be a constant function
that always outputs ⊥. We call this event Bad (i.e. Bad = ¬E4). We remark that there is an
efficient algorithm that on input circuits A, 〈G, s〉, Sim(j)[R], outputs the function f .

Next let us argue that with s0, s1, fΣ = (fΣ
1 , f

Σ
2 ) as above, one can distinguish (Σ,Tamperf,Σs0 )

from (Σ,Tamperf,Σs1 ). We construct a distinguisher D′ as follows.

On input (Σ,Tamperf,Σsb ), D′ first usesR to do the simulation of the first j rounds of Sim(j)[R](A, s).
Then if the event Bad happens, D outputs 0 or 1 uniformly at random. Otherwise, D′ uses the
outcome of Tamperf,Σsb and continues to simulate the remaining rounds from round j + 2 to L. Let
viewb be the view of this simulation in the end. Then D′ runs D(Σ, viewb); if D thinks that he was
interacting with Sim(j), D′ outputs 1; else D′ outputs 0.

From the above arguments, we know that (1) conditioning on the event ¬Bad, view0 is exactly
the view of Sim(j+1), and view1 is exactly that of Sim(j); (2) conditioning on Bad, the output of
D′ is randomly over 0/1; (3) Pr[¬Bad] > α for some non-negligible α by the above claim. Thus we
have

Pr
[
D′(Σ,Tamperf,Σs0 ) = 1

]
− Pr

[
D′(Σ,Tamperf,Σs1 ) = 1

]
=

(
Pr
[
D′(Σ,Tamperf,Σs0 ) = 1

∣∣∣¬Bad] · Pr [¬Bad] + Pr
[
D′(Σ,Tamperf,Σs0 ) = 1

∣∣∣Bad] · Pr [Bad]
)
−(

Pr
[
D′(Σ,Tamperf,Σs1 ) = 1

∣∣∣¬Bad] · Pr [¬Bad] + Pr
[
D′(Σ,Tamperf,Σs0 ) = 1

∣∣∣Bad] · Pr [Bad]
)

= (Pr [D(Σ, view0) = 1]− Pr [D(Σ, view1) = 1]) · Pr [¬Bad]

=
(

Pr
[
D(Σ,Sim(j)) = 1

]
− Pr

[
D(Σ,Sim(j+1)) = 1

])
· Pr [¬Bad]

≥ ε/L · α, a non-negligible quantity.

This completes the proof of the lemma.

This proof of the theorem follows directly from the construction of Sim and the lemma.

4.2 Deterministic Implementation

In the previous section, we showed that the hardware implementation Hardwarerand with the LR-
NM code is leakage- tampering-resilient. In this section, we show how to construct a deterministic
implementation by derandomizing the construction. Our main observation is that, since the coding
scheme also hides its input string (like an encryption scheme), we can store an encoding of a
random seed, and then use a pseudorandom generator to obtain more (pseudo) random bits. Since
this seed is protected, the output of the PRG will be pseudorandom, and can be used to update
the encoding and the seed. Thus, we have pseudorandom strings for an arbitrary (polynomially
bounded) number of rounds. The intuition is straitforward yet the reduction is subtle: we need to
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be careful to avoid a circular argument in which we rely on the fact that the seed is hidden in order
to show that it is hidden.

To get a deterministic implementation for any given functionality G(·, ·), we use the coding
scheme C = (Init, Enc,Dec) defined in the previous section, and a pseudorandom generator
g : {0, 1}k → {0, 1}k+2`, where ` will be defined later. Let s ∈ {0, 1}k be the secret state of
G(·, ·), and seed ∈ {0, 1}k be a random k-bit string that will serve as a seed for the PRG. Now we
define the compiler. The compiler first generates the common parameters Σ ← Init(1k). Then
on input s ∈ {0, 1}k, MemCompile(s) first samples a random seed seed ∈ {0, 1}k and outputs
(M1,M2) ← Enc(Σ, s ◦ seed) where ◦ denotes concatenation. CircuitCompile(G) outputs a deter-

ministic implementation Hardwaredet(C, G)
def
= 〈G∗,Σ,Enc,Dec, Enc(Σ, s ◦ r)〉 that works as follows:

On input x:

• G∗ first decodes Enc(Σ, s ◦ seed) to obtain s ◦ seed. Recall that the decoding scheme Dec is
deterministic.

• Then G∗ computes seed′ ◦ r1 ◦ r2 ← g(seed), where seed′ ∈ {0, 1}k, and r1, r2 ∈ {0, 1}`.

• G∗ calculates (snew, y) ← G(s, x) (using the string r1 as a random tape if G is randomized),
then outputs y, and updates the state to be snew.

• G∗ calculates the encoding of s′ ◦ seed′ using the string r2 as a random tape. Then it stores
the new encoding Enc(Σ, snew ◦ seed′).

In this implementation Hardwaredet, we only use truly random coins when initializing the de-
vice, and then we update it deterministically afterwards. Let us show that the implementation
Hardwaredet(C, G) is also secure against Fhalf tampering and Ghalft,all leakage. We prove the following
theorem.

Theorem 17 Let t : N → N be some non-decreasing polynomial, and Gt,Fhalf ,Ghalft,all be as defined
in the previous section.

Suppose we are given a crypto system E = (KeyGen,Encrypt,Decrypt) that is semantically
secure against one-time leakage Gt; a robust NIZK Π = (`,P,V,S); and Hk : {hz : {0, 1}poly(k) →
{0, 1}k}z∈{0,1}k , a family of universal one-way hash functions. Then the deterministic hardware

implementation presented above is secure against Fhalf tampering and Ghalft,all leakage.

Combining the above theorem and Theorem 28, we are obtain the following corollary.

Corollary 18 Under the decisional Diffie-Hellman assumption and the existence of robust NIZK,
for any polynomial t(·), there exists a coding scheme with the deterministic hardware implementation
presented above that is secure against Fhalf tampering and Ghalft,all leakage.

To show this theorem, we need to construct a simulator Sim such that for any non-uniform PPT
adversary A, any efficient interactive stateful functionality G, any state s we have the experiment
Real(A, s) ≈c Ideal(Sim,A, s). Recall that Real(A, s) is the view of the adversary when interacting
with Hardwaredet(C, G). We will show that the simulator constructed in the proof of Theorem 13
provides a good simulation for this case as well.
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First, we define a related modification of the implementation. For any interactive stateful
system 〈G, s〉, define 〈G̃, s◦ s′〉 as the system that takes the state s◦ s′ and outputs G(s, x), for any
state s ∈ {0, 1}k, s′ ∈ {0, 1}k, and input x. I.e. G̃ simply ignores the second part of the state, and
does what G does on the first half of its input.

Claim 19 For any efficient interactive stateful functionality G, any state s, any non-uniform PPT
adversary A, the following two distributions are computationally indistinguishable: (1) A’s view

when interacting with Hardwarerand(C, G̃)
def
= 〈G̃Σ,Enc,Dec, Enc(Σ, s ◦ 0k)〉 (running Execute, Tamper,

and Leak queries), and (2) A’s view when interacting with Hardwaredet(C, G)
def
= 〈G∗,Σ,Enc,Dec, Enc(Σ, s◦

r)〉.

Let us see why this claim is sufficient to prove Theorem 17. From Theorem 13, we know
that there exists a simulator Sim such that for any adversary A, Ideal(Sim,A, s ◦ 0k) is indistin-
guishable from the real experiment when A is interacting with Hardwarerand(C, G̃). Also since
G̃ ignores the second half of the input, we can easily see from the construction of Sim that
Ideal(Sim,A, s ◦ 0k) who gets oracle access to 〈G̃, s ◦ 0k〉 is identical to Ideal(Sim,A, s) who gets
oracle access to 〈G, s〉. Therefore, A’s view when interacting with Hardwarerand(C, G̃) is indistin-
guishable from Ideal(Sim,A, s). Once we have established the claim that A cannot distinguish
from Hardwarerand(C, G̃) from Hardwaredet(C, G), it will follow that A’s view when interacting with
Hardwaredet(C, G) is indistinguishable from Ideal(Sim,A, s). This completes the proof of the theo-
rem.

Let us prove Claim 19. Denote by ~r the set of strings {(seedi, r(i)
1 , r

(i)
2 )}i∈[L]. Let R(i) be

the distribution over ~r where for j ≤ i, (seedj , r
(j)
1 , r

(j)
2 ) are truly random; for j > i, we have

(seedj , r
(j)
1 , r

(j)
2 ) = g(seedj−1) where g is the pseudorandom generator.

Given an adversary A, for every i ∈ [L], define new experiments Reali(A, s)[R(i)] where the
adversary is interacting with the following hybrid variant of implementation of 〈G, s〉 with the
random tape R(i):

• For every round j, the implementation computes (sj+1, y)← G(sj , x) using r
(j)
1 as its random

tape, where sj denotes the state at round j and similarly sj+1.

• For rounds j ≤ i, the implementation computes and stores Enc(Σ, sj ◦ 0k) using r
(j)
2 as its

random tape.

• For round j > i, it computes and stores Enc(Σ, sj ◦ seedj) using r
(j)
2 as its random tape.

• In the end, A outputs his view.

We define experiments Real′i(A, s)[R(i)] to be the same as Reali(A, s)[R(i)] except in the i-th
round, the implementation computes and stores Enc(Σ, si ◦ seedi). In the following sometimes we
will omit the A, s,R(i) and only write Real′i and Reali for the experiments if it is clear from the
context.

We observe that Real0 is the view of A when interacting with Hardwaredet(C, G) and RealL is
the view when interacting with Hardwarerand(C, G̃). Thus we need to show that Real0 ≈c RealL.
We do this by showing the following neighboring hybrid experiments are indistinguishable by the
following two claims:
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Claim 20 For any non-uniform PPT adversary A, state s, and every i ∈ [L], Reali−1 ≈c Real′i.

Proof of claim: This follows directly from the fact that g is a PRG. Suppose there
exist A, s such that D can distinguish Reali−1 ≈ Real′i. Then there is a reduction that

can distinguish X = (seedi, r
(i)
1 , r

(i)
2 ) from Y = g(seedi−1) where X is truly random.

The reduction first simulates the first i− 1 rounds of the experiment Reali−1 using
truly random strings as the random tape, and then embeds the input as the random
tape for round i, and then simulate the remaining rounds. By this way X will produce
exactly the distribution Real′i and Y will produce Reali−1. Thus the reduction can use
D to distinguish the two distributions.

2

Claim 21 For any non-uniform PPT adversary A, state s, and every i ∈ [L], Real′i ≈c Reali.

Proof of claim: Before proving the claim, first we make the following observa-
tions. Given any adversary A, let viewA

0k
denote A’s view when interacting with

Hardwarerand,0k
def
= 〈G̃Σ,Enc,Dec, Enc(s ◦ 0k)〉; let viewA

seed denote A’s view when inter-

acting with Hardwarerand,seed
def
= 〈G̃Σ,Enc,Dec, Enc(s ◦ seed)〉. Let Sim be the simulator

defined in the proof of Theorem 13, and viewSim
0k

be the output of Sim when interacting

with A and 〈G̃, s ◦ 0k〉; let viewSimseed be the output of Sim when interacting with A and
〈G̃, s◦ seed〉. From the construction of the simulator and the fact that G̃ simply ignores
the second half of the input and acts as G does, we know that the in both viewSim

0k

and viewSimseed , the simulator gets exactly the same distribution of input/output behavior
from G̃. Thus, viewSim

0k
and viewSimseed are identical. Putting it together, we know that

viewA
seed ≈c viewSimseed = viewSim

0k
≈c viewA

0k
.

Now we are ready to prove the claim. Suppose there exist a adversary A, a state s,
and a distinguisher DA that distinguishes Real′i(A, s)[R(i)] from Reali(A, s)[R(i)]. Then
we can construct a reduction B such that viewB

0k
and viewB

seed are distinguishable. The
reduction gets as input a random seed, a state s, and interacts with either Hardwarerand,0k

or Hardwarerand,seed for a random seed. The goal of the reduction is to output a view
such that a distinguisher can tell Hardwarerand,0k from Hardwarerand,seed.

B will do the following:

• B first simulates i − 1 rounds of the interaction of A with Hardwarerand,0k
def
=

〈G̃Σ,Enc,Dec, Enc(Σ, s ◦ 0k)〉. This simulation is exactly the same distribution as
the first i rounds of the interaction of Reali(A, s)[R(i)], which is identical to
Real′i(A, s)[R(i)].

• In the i-th round, B routes A’s query to the challenge device.

• Then B sets seedi = seed.

• From the remaining rounds j > i, B simulates the interaction of A with the

deterministic implementation Hardwaredet(C, G̃)
def
= 〈G∗,Σ,Enc,Dec, Enc(Σ, s ◦ seedj)〉.

• In the end, B simply outputs viewB as the output view of A.
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Now we construct a distinguisher DB as follows: on input B’s output view, DB

runs DA(viewB). If DA thinks it is Reali, then DB outputs Hardwarerand,0k , otherwise
Hardwarerand,seed.

To analyze the reduction, observe that if B’s challenge device is Hardwarerand,0k ,
then viewB will be identical to Reali(A, s); if it is Hardwarerand,seed, then viewB will be
identical to Real′i(A, s). Therefore, DA can distinguish one from the other, so the reduc-
tion B produces a distinguishable view. This contradicts to the previous observation
we have made.

2

Claim 19 follows from Claims 20 and 21 by a standard hybrid argument. Thus, we complete
the proof to the theorem.

We remark that in the proof above, we only rely on the security of the PRG and the randomized
hardware implementation. Thus, we can prove a more general statement:

Corollary 22 Suppose a coding scheme C with the randomized implementation Hardwarerand is
secure against F tampering and G leakage where F and G are subclasses of efficient functions.
Then C is also secure against F tampering and G-leakage with the deterministic implementation
Hardwaredet presented in this section.

5 Discussion of Complexity Assumptions and Efficiency

We just showed a leakage and tampering resilient construction for any stateful functionality in the
split-state model. Our construction relied on the existence of (1) a semantically secure one-time
(bounded) leakage resilient encryption scheme (LRE), (2) a robust NIZK, (3) a universal one-way
hash family (UOWHF), and (4) a pseudorandom generator (PRG). In terms of the complexity
assumptions that we need to make for these four building blocks to exist, we note that UOWFHs
and PRGs exist if and only if one-way functions (OWFs). (Rompel [41] showed that (OWFs)
imply UOWHFs and H̊astad et al. [24] showed OWFs imply PRGs; and both UOWFGs and PRGs
imply OWFs); thus both UOWHFs and PRGs are implied by the existence of a semantically secure
cryptosystem. So we are left with assumptions (1) and (2).

It is not known how LRE relates to robust NIZK. No construction of LRE is known from general
assumptions such as the existence of trapdoor permutations (TDPs). LRE has been proposed based
on specific assumptions such as the decisional Diffie-Hellman assumption (DDH) and its variants, or
the learning with error assumption (LWE) and its variants [2, 38, 3, 29]. Robust NIZK [7] has been
shown based on the existence of dense cryptosystems (i.e. almost every string can be interpreted
as a public key for this system), and a multi-theorem NIZK, which in turn has been shown from
TDPs [30, 16] or verifiable unpredictable functions [18, 35].

Note that using general NIZK for all NP from TDPs may not be desirable in practice because
those constructions rely on the Cook-Levin reduction. Therefore, finding a more efficient NIZK
for the specific language we use is desirable. Note that, if we use the DDH-based Naor-Segev
cryptosystem, then the statement that needs to be proved using the robust NIZK scheme is just a
statement about relations between group elements and their discrete logarithms. Groth [20] gives a
robust NIZK for proving relations among group elements (based on the XDH assumption which is
stronger than DDH), and in combination with a technique due to Meiklejohn [36] it can be used as
a robust NIZK for also proving knowledge of discrete logarithms of these group elements. Groth’s
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proof system’s efficiency is a low-degree polynomial in the security parameter, unlike the general
NIZK constructions. Therefore, we get a construction that is more suitable for practical use.
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A Definitions

In this section, we formally define the tools we need for the construction. Recall that we need
robust NIZK, one-time leakage-resilient encryption scheme, and universal one-way hash functions.
Moreover, our construction needs these tools to have some additional properties. We describe these
properties here and will show that they are without loss of generality.

Definition 23 (Robust NIZK [7]) Π = (`,P,V,S = (S1,S2)) is a robust NIZK proof/argument
for the language L ∈ NP with witness relation W if ` is a polynomial, and P,V,S ∈ PPT, there
exists a negligible function ngl(·) such that:

• (Completeness): For all x ∈ L of length k and all w such that W(x,w) = 1, for all strings
Σ ∈ {0, 1}`(k), we have V(x,P(x,w,Σ),Σ) = 1.

• (Extractability): For all non-uniform PPT adversary A, we have

Pr

 (Σ, τ)← S1(1k); (x, π)← AS2(·,·,Σ,τ)(Σ);
w ← Ext(Σ, τ, x, π) :

(x,w) ∈W ∨ (x, π) ∈ Q ∨ V(x, π,Σ) = 0

 = 1− ngl(k)

where Q denotes the successful statement-query pairs (xi, pi)’s that S2 has answered A.
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• (Multi-theorem Zero-Knowledge): For all non-uniform PPT adversary A, we have
|Pr[X(k) = 1] − Pr[Y (k) = 1]| < ngl(k) where X,Y are binary random variables defined
in the experiment below:

X(k) =
{

Σ← {0, 1}`(k);X ← AP(·,·,Σ)(Σ) : X
}

;

Y (k) =
{

(Σ, τ)← S1(1k);Y ← AS2(·,·,Σ,τ)(Σ) : Y
}
.

Remark 24 We remark that in this paper, we assume a robust NIZK system that has an additional
property that different statements must have different proofs. That is, suppose V(Σ, x, π) accepts,
then V(Σ, x′, π) must reject for all x′ 6= x.

This property is not required by standard NIZK definitions, but can be achieved easily by
appending the statement to its proof. In the construction of robust NIZK [7], if the underlying
NIZK system has this property, then the transformed one has this property as well. Thus, we can
assume this property without loss of generality.

Definition 25 (Universal One-way Hash Functions - UOWHF [21]) A family of functions
Hk = {hz : {0, 1}n(k) → {0, 1}k}z∈{0,1}k is a universal one-way hash family if:

• (Efficient): given z ∈ {0, 1}k, and x ∈ {0, 1}n(k), the value hz(x) can be computed in time
poly(k, n(k)).

• (Compressing): For all k, k ≤ n(k).

• (Universal One-way): For any non-uniform PPT adversary A, there exists a negligible
function ngl(·):

Pr

[
x← A(1k); z ← {0, 1}k;x′ ← A(1k, z, x) :

x, x′ ∈ {0, 1}n(k) ∧ x′ 6= x ∧ hz(x) = hz(x
′)

]
< ngl(k).

Definition 26 (One-time Leakage Resilient Encryption [2]) Let E = (KeyGen,Encrypt,Decrypt)
be an encryption scheme, and G be a set of functions. Let the random variable LEb(E , A, k,G) where
b ∈ {0, 1}, A = (A1, A2, A3) and k ∈ N denote the result of the following probabilistic experiment:

LEb(E , A, k,G) :

• (pk, sk)← KeyGen(1k).

• g ← A1(1k, pk) such that g is a leakage function in the class G.

• (m0,m1, stateA)← A2(pk, g(sk)) s.t. |m0| = |m1|.

• c = Encryptpk(mb).

• Output b′ = A3(c, stateA).

We say E is semantically secure against one-time leakage G if ∀ PPT adversary A, the following
two ensembles are computationally indistinguishable:{

LE0(E , A, k,G)
}
k∈N
≈c
{
LE1(E , A, k,G)

}
k∈N
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Additional Properties. Our construction of LR-NM codes in Section 3 needs additional prop-
erties of the encryption scheme:

• Given a secret key sk, one can derive its corresponding public key pk deterministically and
efficiently. This property is easy to achieve since we can just append public keys to secret
keys.

• It is infeasible for non-uniform PPT adversaries that receive a random key pair (pk, sk) to
output another valid key pair (pk, sk′) for some sk′ 6= sk. This property is not guaranteed by
standard definitions, but for leakage resilient encryption schemes, this is easy to achieve. We
formalize this claim in the following lemma.

Lemma 27 Let E = (KeyGen,Encrypt,Decrypt) be a leakage resilient encryption scheme that
allows t(k)-bit leakage for t(k) > k, and Hk : {hz : {0, 1}poly(k) → {0, 1}k}s∈{0,1}k be a family of
universal one-way hash functions.

Then there exists an encryption scheme E ′ = (KeyGen′,Encrypt′,Decrypt′) that is leakage
resilient that allows (t − k)-bit leakage and has the following property: for all non-uniform PPT
adversary A,

Pr
(pk,sk)←KeyGen′(1k)

[(sk′, pk)← A(sk, pk) : (sk′, pk) is a key pair and sk′ 6= sk] < ngl(k).

Proof. [Sketch] The construction is as follows: KeyGen′(1k): sample z ← {0, 1}k, and (pk0, sk0)←
KeyGen(1k). Set pk = pk0 ◦ z ◦ hs(sk0), and sk = sk0.

The Encrypt′ and Decrypt′ follow directly from Encrypt,Decrypt. It is easy to see that, since
it is safe to leak t bits of sk as the original cryptosystem, after publishing h(sk) in the public key,
it is still safe to leak (t− k) bits. On the other hand, this additional property holds simply by the
security of the universal one-way hash function and can be proved using a standard reduction.

In the rest of the paper, we will assume the encryption scheme has this property. Now we give
an instantiation of one-time leakage resilient encryption scheme due to Naor-Segev1:

Theorem 28 ([38]) Under the Decisional Diffie-Hellman assumption, for any polynomial `(k),
there exists an encryption scheme E that uses `(k) + ω(log k) bits to represent its secret key and is
semantically secure against one-time leakage G` = {all efficient functions that have `-bit output}.

1Actually the Naor-Segev scheme can tolerate more leakage up to (1 − o(1)) · |sk|, and the leakage function can
even be computationally unbounded. In this work, this weaker version suffices for our purposes.
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