
Fully Homomorphic Message Authenticators

Rosario Gennaro∗ Daniel Wichs†

Abstract

We define and construct a new primitive called a fully homomorphic message authenticator. With
such scheme, anybody can perform arbitrary computations over authenticated data and produce a
short tag that authenticates the result of the computation (without knowing the secret key). This tag
can be verified using the secret key to ensure that the claimed result is indeed the correct output of
the specified computation over previously authenticated data (without knowing the underlying data).
For example, Alice can upload authenticated data to “the cloud”, which then performs some specified
computations over this data and sends the output to Bob, along with a short tag that convinces Bob
of correctness. Alice and Bob only share a secret key, and Bob never needs to know Alice’s underlying
data. Our construction relies on fully homomorphic encryption to build fully homomorphic message
authenticators.

1 Introduction

The rise of the cloud computing paradigm requires that users can securely outsource their data to a remote
service provider while allowing it to reliably perform computations over the data. The recent ground-
breaking development of fully homomorphic encryption [24] allows us to maintain confidentiality/privacy
of outsourced data in this setting. In this work, we look at the analogous but orthogonal question of
providing integrity/authenticity for computations over outsourced data. In particular, if a remote server
claims that the execution of some program P over the user’s outsourced data results in an output y, how
can the user be sure that this is indeed the case?

More generally, we can consider a group of mutually-trusting users that share a secret key – each user
can authenticate various data items at various times (without keeping state) and upload the authenticated
data to an untrusted cloud. The cloud should be able to perform a joint computation over various data
of several users and convince any user in the group of the validity of the result.

Toward this goal, we define and instantiate a new primitive, called a fully homomorphic message
authenticator. This primitive can be seen as a symmetric-key version of fully homomorphic signatures,
which were defined by Boneh and Freeman [10], but whose construction remains an open problem. We
will return to survey the related work on partially homomorphic signatures and authenticators, as well
as related work on delegating memory and computation, in Section 1.3. First, we describe our notion of
fully homomorphic message authenticators, which will be the focus of this work.

1.1 What are Homomorphic Message Authenticators?

Simplified Description. In a homomorphic message-authenticator scheme, Alice can authenticate
some large data D using her secret key sk. Later, anybody can homomorphically execute an arbitrary
program P over the authenticated data to produce a short tag ψ (without knowing sk), which certifies
the value y = P(D) as the output of P. It is important that ψ does not simply authenticate y out of

∗City College, CUNY. rosario@cs.ccny.cuny.edu. Work done while at the IBM T.J.Watson Research Center.
†Northeastern University. wichs@ccs.neu.edu. Work done while at IBM T.J.Watson Research Center.

1

context; it only certifies y as the output of a specific program P. Another user Bob, who shares the secret
key sk with Alice, can verify the triple (y,P, ψ) to ensure that y is indeed the output of the program
P evaluated on Alice’s previously authenticated data D (without knowing D). The tag ψ should be
succinct, meaning that its size is independent of the size of the data D or the complexity of the program
P. In other words, homomorphic message authenticators allow anyone to certify the output of a complex
computation over a large authenticated data with only a short tag.

Labeled Data and Programs. The above high-level description considers a restricted scenario where
a single user Alice authenticates a single large data D in one shot. We actually consider a more general
setting where many users, who share a secret key, can authenticate various data-items (say, many different
files) at different times without keeping any local or joint state. In this setting, we need to establish some
syntax for specifying which data is being authenticated and which data a program P should be evaluated
on. For this purpose, we rely on the notion of labeled data and programs.

Whenever the user wants to authenticate some data-item D, she chooses a label τ for it, and the
authentication algorithm authenticates the data D with respect to the label τ . For example, the label
τ could be a file name. For the greatest level of granularity, we will assume that the user authenticates
individual bits of data separately. Each bit b is authenticated with respect to its own label τ via a
secretly-keyed authentication algorithm σ ← Authsk(b, τ). For example, to authenticate a long file named
“salaries” containing the data-bits D = (b1, . . . , bt), the user can create separate labels τi =(“salaries”, i)
to denote the ith bit of the file, and then authenticate each bit bi of the file under the label τi. Our scheme
is oblivious to how the labels for each bit are chosen and whether they have any meaningful semantics.

Correspondingly, we consider labeled programs P, where each input bit of the program has an as-
sociated label τi indicating which data it should be evaluated on. For example, a labeled-program P
meant to compute the median of the “salaries” data would have its input bits labeled by τi =(“salaries”,
i). In general, the description of the labeled program P could be as long as, or even longer than, the
input data itself. However, as in the above example, we envision the typical use-case to be one where
P has some succinct description, such as computing the “median of the salaries data”. We note that a
labeled program can compute over data authenticated by different users at different times, as long as it
was authenticated with the same shared secret key,

Homomorphic authenticators allow us to certify the output of a labeled program, given authentication
tags for correspondingly labeled input data. In particular, there is a public homomorphic evaluation
algorithm ψ = Eval(P, σ1, . . . , σt) that takes as input tags σi authenticating some data-bits bi with
respect to some labels τi, and a labeled program P with matching input labels τ1, . . . , τt. It outputs a
tag ψ that certifies the value y = P(b1, . . . , bt) as the correct output of the program P. The verification
algorithm Versk(y,P, ψ) uses the secret key sk to verify that y is indeed the output of the labeled program
P on previously authenticated labeled input-data, without needing to know the original data itself.

Composition. Our homomorphic authenticators are also composable so that we can incrementally
combine authenticated outputs of partial computations to derive an authenticated output of a larger
computation. In particular, if the tags ψ1, . . . , ψt authenticate some bits b1, . . . , bt as the outputs of
some labeled programs P1, . . . ,Pt respectively, then ψ∗ = Eval(P∗, ψ1, . . . , ψt) should authenticate the
bit b∗ = P∗(b1, . . . , bt) as the output of the composed program, which first evaluates P1, . . . ,Pt on the
appropriately labeled authenticated data, and then runs P∗ on the outputs.

Succinct Tags vs. Efficient Verification. The main requirement that makes our definition of ho-
momorphic authenticators interesting is that the tags should be succinct. Otherwise, there is a trivial
solution where we can authenticate the output of a computation P by simply providing all of its input
bits and their authentication tags. The succinctness requirement ensures that we can certify the out-
put of a computation P over authenticated data with much smaller communication than that of simply

2

transmitting the input data.1 Therefore, this primitive is especially useful when verifying computations
that read a lot of input data but have a short output (e.g., computing the median in a large database).

However, we note that the verification algorithm in a homomorphic authenticator schemes is allowed
to have a large computational complexity, proportional to the complexity of the computation P being
verified. Therefore, although homomorphic authenticators allow us to save on communication, they do
not necessarily save on the computational complexity of verifying computations over outsourced data. We
believe that communication-efficient solutions are already interesting, and may be useful, even without
the additional constraint of computational efficiency. In Section 4, we explore how to combine our
communication-efficient homomorphic authenticators with techniques from delegating computation to
also achieve computationally efficient verification.

1.2 Overview of Our Construction

Our construction of fully homomorphic authenticators relies on the use of fully homomorphic encryption

(FHE). We let n denote the security parameter and define [n]
def
= {1, . . . , n}. The secret key of the

authenticator scheme consists of: a random verification set S ⊆ [n] of size |S| = n/2, a key-pair (pk, sk)
for a fully homomorphic encryption (FHE) scheme and a pseudo-random function (PRF) fK(·).

To authenticate a bit b under a label τ , Alice creates n ciphertexts c1, . . . , cn as follows. For i ∈ [n]\S,
she chooses the ciphertexts ci ← Encpk(b) as random encryptions of the actual bit b being authenticated.
For i ∈ S, she computes ci = Encpk(0; fK((i, τ))) as pseudorandom encryptions of 0, where the random
coins are derived using the PRF. Notice that for the indices i ∈ S in the verification set, the pseudorandom
ciphertexts ci can be easily re-computed from Alice’s secret key and the label τ alone, without knowing
the data bit b. Alice outputs the authentication tag σ = (c1, . . . , cn), consisting of the n ciphertexts.

Given some program P with t input-labels and t authentication tags {σj = (c1,j , . . . , cn,j)}j∈[t] for the
correspondingly labeled data, we can homomorphically derive an authentication tag ψ = (c∗1, . . . , c

∗
n) for

the output by setting c∗i = Eval(P, ci,1, . . . , ci,t), where Eval is the homomorphic evaluation of the FHE
scheme. In other words, for each position i ∈ [n], we perform a homomorphic evaluations of the program
P over the t FHE ciphertexts that lie in position i. We assume (without loss of generality) that the
evaluation procedure for the FHE scheme is deterministic so that the results are reproducible.

Alice can verify the triple (y,P, ψ), where the tag ψ = (ĉ1, . . . , ĉn) is supposed to certify that y is the
output of the labeled program P. Let τ1, . . . , τt be the input labels of P. For the indices i ∈ S in the ver-
ification set, Alice can re-compute the pseudo-random input ciphertexts {ci,j = Encpk(0; fK((i, τj)))}j∈[t]
using the PRF, without knowing the actual input bits. She then computes c∗i = Eval(P, ci,1, . . . , ci,t) and

checks that the ciphertexts in the tag ψ were computed correctly with ĉi
?
= c∗i for indices i ∈ S. 2 If this

is the case, and all of the other ciphertexts ĉi for i ∈ [n] \ S decrypt to the claimed bit y, then Alice
accepts.

Intuitively, the only way that an attacker can lie about the output of some program P is by producing
a tag ψ = (ĉ1, . . . , ĉt) where the ciphertexts ĉi for indices in the verification set i ∈ S are computed
correctly but for i ∈ [n] \ S they are all modified so as to encrypt the wrong bit. But this is impossible
since the security of the FHE should ensure that the attacker cannot distinguish encryptions of 0 from
those of the authenticated bits, and hence cannot learn anything about the set S. In particular, the FHE
hides the difference between data-independent pseudorandom ciphertexts ci : i ∈ S, which allow Alice
to check that the computation was performed correctly, and data-containing ciphertexts ci : i ∈ [n] \ S,
which allow Alice to check that the output bit y is the correct one. Note that the authentication tags ψ
in our scheme always consist of n (= security parameter) ciphertexts, no matter how many inputs the
program P takes and what its complexity is. Therefore, we satisfy the succinctness requirement.

1Note that we do not count the cost of transmitting the labeled-program P itself. As a previous note explains, we envision
that in the typical use-case such programs should have a succinct description.

2Note that, in this step, Alice has to perform work comparable to that of computing P.

3

We remark that several recent schemes for delegating computation [21, 16, 2] (see Section 1.3 on
related work) also use FHE in a similar manner to check that a computation is performed correctly by a
remote server. In particular, the work of Chung, Kalai and Vadhan [16] relies on a similar idea, where the
output of the homomorphic evaluation for some “data-independent ciphertexts” is known in advance and
used to check that the computation was done correctly for the relevant “data-containing” ciphertexts.
However, in all these previous works, the technique is used to verify computations over a short known
input, whereas in our case we use it to verify computations over unknown authenticated data. The main
novelty in our use of the technique is to notice that the “data-independent ciphertexts” can be made
pseudorandom, so that they can be re-derived in the future given only a short secret PRF key without
needing to sacrifice any significant storage.

Security & Verification Queries. We show that our construction is secure in the setting where the
attacker can adaptively make arbitrarily many authentication queries for various labels, but cannot make
verification queries to test if a maliciously constructed tag verifies correctly. In practice, this means that
the user needs to abort and completely stop using the scheme whenever she gets the first tag that doesn’t
verify correctly. It is easy to allow for some fixed a-priori bounded number of verification queries q, just
by increasing the number of ciphertexts contained in an authentication tag from n to n+ q.

The difficulty of allowing arbitrarily many verification queries also comes up in most prior schemes
for delegating computation in the “pre-processing” model [21, 16, 2] (see Section 1.3 on related work),
and remains an important open problem in both areas.

Fast Verification. One of the limitations of our solution above is that the verification algorithm is
no more efficient than running the computation P. Therefore, although it saves tremendously on the
communication complexity of verifying computations over outsourced data, it does not save on user’s
computational complexity. In Section 4, we explore the option of using schemes for delegating computation
to also offload the computational cost of the verification procedure to the remote server. As one of our
contributions, we show how to achieve fully homomorphic MACs with fast verification using our initial
construction and succinct non-interactive arguments for polynomial-time computation: P-SNARGs. In
contrast, a simple solution that bypasses fully-homomorphic MACs would require succinct non-interactive
arguments of knowledge for all non-deterministic polynomial-time computation: NP-SNARKs.

1.3 Related work

Homomorphic Signatures and MACs. Many prior works consider the question of homomorphic
message authentication (private verification) and signatures (public verification) for restricted homomor-
phisms, and almost exclusively for linear functions. Perhaps the first work to propose this problem is
that of Johnson et al. [29]. Since then, many works have considered this notion in the context of network
coding, yielding a long line of positive results [1, 9, 23, 10, 5, 11, 15, 20]. Another line of works considered
this notion in the context of proofs of data possession and retrievability [3, 33, 18, 4].

The only work that considers a larger class of homomorphisms beyond linear functions is that of Boneh
and Freeman [10], who show how to get homomorphic signatures for bounded (constant) degree polyno-
mials. In that work, they also present a general definition along the same lines as the definition we use in
this work, and pose the question of constructing fully homomorphic signatures for arbitrary functions.3

Although the question of fully homomorphic publicly verifiable signatures under standard assumptions
still remains open, our work provides the first positive result for the case of private verification.

Succinct Arguments of Knowledge. One method that would allow us to construct fully homo-
morphic (publicly verifiable) signatures is to rely on CS-Proofs [30] or, more generally, any succinct

3See [10, 20] for an explanation of how this definition generalizes that of prior works on network coding.

4

non-interactive argument of knowledge for all of NP (NP-SNARK) [7]. This primitive allows us to
create a short “argument” π for any NP statement, to prove “knowledge” of the corresponding witness.
The length of π is independent of the statement/witness size, and the complexity of verifying π only
depends on the size size of the statement.

Using SNARKs, we can authenticate the output y of a labeled program P, by creating a short
argument π that proves the knowledge of some “labeled input data D along with valid signatures authen-
ticating D under the appropriate labels, such that P(D) = y”. Since this is an argument of knowledge, a
forged signature for the output of some program P would allow us to extract out a forged signature for
the underlying input data, breaking the security of signatures.

Unfortunately, constructing succinct non-interactive arguments for NP is known to require the use
of non-standard assumptions [25]. Current constructions either rely on the random-oracle model [30] or
on various “knowledge” assumptions (see, e.g., [28, 7, 8, 22]).

Delegating Computation. Several prior works consider the problem of delegating computation to a
remote server while maintaining the ability to efficiently verify the result [27, 21, 16, 2, 6, 31]. In this
scenario, the server needs to convince the user that P(x) = y, where the user knows the program P, the
input x and the output y, but does not want to do the work of computing P(x). In contrast, in our
scenario the verifier only knows P, y, but does not know the previously authenticated inputs that P should
have been executed on. On the other hand, we are not trying to minimize work, just communication.

Despite these differences, some of the results on delegating computation in the “pre-processing” model
[21, 16, 2], can also be (re-)interpreted for our setting. In this model, the user “pre-processes” a circuit
C and stores some value σ on the server. Later, the user can ask the server to compute C(x) for various
inputs x, and the server uses σ to derive a short and efficiently verifiable proof ψ that certifies correctness
of the computation. One caveat is that, in all these schemes, the user first needs to send some challenge
c = chall(x) to the server, and the proof ψ is computed as a response to c.

We can apply these results to our setting of outsourced data as follows. Consider outsourcing the
“universal circuit” CD(·) that has the data D “hard-coded”, gets as input a program P, and outputs
CD(P) = P(D). Then, we can think of the pre-processing of CD as creating an authentication tag σ for
the data D. Later, the user can take a program P, create a challenge c = chall(P), and get back a short
tag ψ that authenticates y = CD(P) = P(D).4 One advantage of this approach is that the tag ψ can be
verified efficiently, with less work than that of computing P(D). However, there are several important
disadvantages of this approach as compared to our notion of homomorphic authenticators:

1. Interaction: Homomorphic authenticators allow anybody to evaluate a chosen program P over
authenticated data and non-interactively authenticate the output. The above delegation-based
schemes require a round of interaction; the user first creates a challenge chall(P) for the program
P, and only then can the server authenticate the output P(D) with respect to this challenge.

2. Single Use: Homomorphic authenticators allow several users to authenticate various labeled data
“on the fly” (without any state) and verify arbitrary computations over all of the data in the future
using a fixed secret key. The above delegation-based schemes require that a single user outsources
all of the data D in one shot, and stores some small secret state associated with the data to verify
computations over only this data in the future.

3. Bounded Size: The above delegation-based schemes require that the circuit-size of the computations
P is a-priori bounded by some fixed polynomial chosen during authentication. Furthermore, the
complexity of authentication is proportional to this polynomial. Our fully homomorphic authenti-
cators have no such restriction.

4Here, we assume that P has a short uniform description so that reading /transmitting P is much more efficient than
evaluating P.

5

4. No composition: The above delegation-based schemes does not support the composition of several
partial authenticated computations.

Memory Delegation. The work of Chung et al. [17] on memory delegation explicitly considers the
problem of outsourcing a large amount of data while maintaining the ability to efficiently verify later
computations over it. The main advantages of memory delegation over our work are that: (I) the
verification is more efficient than the computation, (II) the data can be efficiently updated by the user in
the future, (III) it does not suffer from the verification problem. However, memory delegation suffers from
many of the same disadvantaged outlined above for delegation-based schemes. In particular, the general
memory delegation scheme of [17] is interactive, requiring 4 rounds of interaction during verification.
The paper also provides a non-interactive solution where the size of the tag grows with the depth of the
computation-circuit (and therefore does not satisfy our succinctness property). Furthermore, memory
delegation considers the setting where a single user outsources a single data item D in one shot, and
store some small secret state associated with the data to verify computations over it in the future. In
particular, it does not provide a method where various users can authenticate various (small) pieces
of data independently, and verify joint computations over all of the data in the future. Lastly, the
memory-delegation solutions do not support composition.

Follow-up work. Following our work, Catalano and Fiore [14] (Eurocrypt ’13) give a very efficient
and simple construction of homomorphic-message authenticators for low-depth arithmetic circuits – in
particular, the computation/verification time and the tag size depend polynomially on the degree of the
circuit, which can be exponential in the depth of the circuit. Their construction only relies on one-way
functions. In contrast, our construction here is significantly more general (works for any polynomial-size
boolean circuit) but relies on the “heavier machinery” of fully homomorphic encryption.

2 Definitions

2.1 Homomorphic Authenticators

Labeled Programs. We begin by defining the concept of a labeled program, where the labels denote
which data the program should be evaluated on. Formally, a labeled-program P = (f, τ1, . . . , τk) consists
of a circuit f : {0, 1}k → {0, 1} along with a distinct input label τi ∈ {0, 1}∗ for each input wire i ∈ [k]. 5

Given some labeled programs P1, . . . ,Pt and a circuit g : {0, 1}t → {0, 1}, we can define the composed
program, denoted by P∗ = g(P1, . . . ,Pt), which corresponds to evaluating g on the outputs of P1, . . . ,Pt.
The labeled inputs of the composed program P∗ are just all the distinct labeled inputs of P1, . . . ,Pt,
meaning that we collect all the input wires with the same label and convert them into a single input wire.

We define the identity program with label τ as Iτ := (gid, τ) where gid is the canonical identity circuit
and τ ∈ {0, 1}∗ is some label. Notice that any program P = (f, τ1, . . . , τk) can be written as a composition
of identity programs P = f(Iτ1 , . . . , Iτk).

Syntax. A homomorphic authenticator scheme consists of the probabilistic-polynomial time algorithms
(KeyGen, Auth, Ver, Eval) with the following syntax:

• KeyGen(1n)→ (evk, sk): Outputs the secret key sk and an evaluation key evk.

• Authsk(b, τ)→ σ: Creates a tag σ that authenticates the bit b ∈ {0, 1} under the label τ ∈ {0, 1}∗.
(Equivalently, we say that σ authenticates b as the output of the identity program Iτ .)

5Although the above description of P is long (proportional to its input size and complexity), in many scenarios it is
possible that P may also have an alternative succinct description. For example, P may compute the median value in a large
file called “salaries” and its input labels are simply τi = (“salaries”, i) for each bit i. Therefore, although we are concerned
with succinctness, we will ignore the cost of communicating the program P from future consideration.

6

• Evalevk(f,σ) → ψ: The deterministic evaluation procedure takes a vector of tags σ = (σ1, . . . , σk)
and a circuit f : {0, 1}k → {0, 1}. It outputs a tag ψ. If each σi authenticates a bit bi as the
output of some labeled-program Pi (possibly the identity program), then ψ should authenticate
b∗ = f(b1, . . . , bk) as the output of the composed program P∗ = f(P1, . . . ,Pk).

• Versk(e,P, ψ) → {accept, reject}: The deterministic verification procedure uses the tag ψ to
check that e ∈ {0, 1} is the output of the program P on previously authenticated labeled data.

We require that the scheme satisfies the following properties, defined below: authentication correct-
ness, evaluation correctness, succinctness and authenticator security.

Authentication Correctness. We require that for any b ∈ {0, 1} and any label τ ∈ {0, 1}∗, we have:

Pr
[
Versk(b, Iτ , σ) = accept

∣∣ (evk, sk)← KeyGen(1n), σ ← Authsk(b, τ)
]

= 1

where Iτ is the identity program with label τ . In other words, the tag σ = Authsk(b, τ) correctly
authenticates b under the label τ , which is equivalent to saying that it authenticates b as the output of
the identity program Iτ .

Evaluation Correctness. Fix any (evk, sk) in the support of KeyGen(1n). Fix any circuit g : {0, 1}t →
{0, 1} and any set of program/bit/tag triples { (Pi, bi, ψi) }ti=1 such that Versk(bi,Pi, ψi) = accept. Set:

b∗ := g(b1, . . . , bt), P∗ := g(P1, . . . ,Pt), ψ∗ := Evalevk(g, (ψ1, . . . , ψt)).

Then we require Versk(b
∗,P∗, ψ∗) = accept.

In words, assume that each tag ψi certifies that the output of the labeled program Pi is bi. Then
the tag ψ∗ certifies that b∗ is the output of the composed program P∗. If all of the programs Pi = Iτi
are identity programs, then the above says that as long as the tags ψi authenticate bits bi under the
labels τi, the tag ψ∗ authenticates b∗ as the output of P∗ = (g, τ1, . . . , τt). Therefore, the above definition
captures the basic correctness of computing over freshly authenticated data, as well as the composability
of computing over the authenticated outputs of prior computations.

Succinctness. We require that the tag-size is always bounded by some fixed polynomial in the security
parameter n, and is independent of the size of the evaluated circuit or the number of inputs it takes.
That is, there exists some polynomial p(·) such that, for any (evk, sk) in the support of KeyGen(1n), the
output-size of Authsk(·, ·) and of Evalevk(·, ·) is bounded by p(n) for any choice of their input.

Authenticator Security. Consider the following game ForgeGameA(1n) between an attacker A(1n)
and a challenger:

1. The challenger chooses (evk, sk)← KeyGen(1n) and gives evk to A. It initializes T := ∅.

2. The attacker A can adaptively submit arbitrarily many authentication queries of the form (b, τ)
to the challenger. On each such query, if there is some (τ, ·) ∈ T (i.e. the label τ is not fresh)
then the challenger ignores it. Else it updates T := T ∪ {(τ, b)}, associating the label τ with the
authenticated bit b, and replies with σ ← Authsk(b, τ).

3. Finally, the attacker outputs some forgery (e∗,P∗ = (f∗, τ∗1 , . . . , τ
∗
k), ψ∗). The output of the game

is 1 iff Versk(e
∗,P∗, ψ∗) = accept and one of the following two conditions holds:

• Type I Forgery: There is some i ∈ [k] such that the label (τ∗i , ·) does not appear in T . (i.e.,
No bit was ever authenticated under the label τ∗i involved in the forgery.)

7

• Type II Forgery: The set T contains tuples (τ∗1 , b1), . . . , (τ
∗
k , bk), for some bits b1, . . . , bk ∈ {0, 1}

such that f∗(b1, . . . , bk) 6= e∗. (i.e., The labeled program P∗ does not output e∗ when executed
on previously authenticated labeled data b1, . . . , bk .)

We say that a homomorphic authenticator scheme is secure (without verification queries) if, for any
probabilistic polynomial-time A, we have Pr[ForgeGameA(1n) = 1] ≤ negl(n). We can also define a
stronger variant, called security with verification queries, where we insist that the above probability holds
for a modified version of the game, in which the attacker can also adaptively make arbitrarily many
verification queries of the form (e,P, ψ), and the challenger replies with Versk(e,P, ψ).

2.2 Homomorphic Encryption

A fully homomorphic (public-key) encryption (FHE) scheme is a quadruple of PPT algorithms HE =
(HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) defined as follows.

• HE.KeyGen(1n) → (pk, evk, sk): Outputs a public encryption key pk, a public evaluation key evk
and a secret decryption key sk.

• HE.Encpk(b)→ c: Encrypts a bit b ∈ {0, 1} under public key pk. Outputs ciphertext c.

• HE.Decsk(c)→ b: Decrypts ciphertext c using sk to a plaintext bit b ∈ {0, 1}.

• HE.Evalevk(g, c1, . . . , ct)→ c∗: The deterministic evaluation algorithm takes the evaluation key evk,
a boolean circuit g : {0, 1}t → {0, 1}, and a set of t ciphertexts c1, . . . , ct. It outputs the result
ciphertext c∗.

An FHE should also satisfy the following properties.

Encryption Correctness. For all b ∈ {0, 1} we have:

Pr [HE.Decsk(HE.Encpk(b)) = b | (pk, evk, sk)← HE.KeyGen(1n)] = 1

Evaluation Correctness. For any (pk, evk, sk) in the support of HE.KeyGen(1n), any ciphertexts
c1, . . . , ct such that HE.Decsk(ci) = bi ∈ {0, 1}, and any circuit g : {0, 1}t → {0, 1} we have

HE.Decsk(HE.Evalevk(g, c1, . . . , ct)) = g(b1, . . . , bt).

Succinctness. We require that the ciphertext-size is always bounded by some fixed polynomial in
the security parameter, and is independent of the size of the evaluated circuit or the number of inputs
it takes. That is, there exists some polynomial p(·) such that, for any (pk, evk, sk) in the support of
HE.KeyGen(1n), the output-size of HE.Encpk(·) and of Evalevk(·) is bounded by p(n), for any choice of
their inputs.

Semantic Security. Lastly, an FHE should satisfy the standard notion of semantic security for public-
key encryption, where we consider the evaluation key evk as a part of the public key. That is, for any
PPT attacker A we have:

| Pr [A(1n, pk, evk, c0) = 1]− Pr [A(1n, pk, evk, c1) = 1] | ≤ negl(n)

where the probability is over (pk, evk, sk)← KeyGen(1n), {cb ← HE.Encpk(b)}b∈{0,1}, and the coins of A.

8

Canonical FHE. We can take any FHE scheme and make it canonical, meaning that the HE.Eval
procedure just evaluates the circuit recursively, level-by-level and gate-by-gate. In particular, for any
circuit g : {0, 1}k → {0, 1} taking input bits b1, . . . , bk, if the top gate of g is h : {0, 1}t → {0, 1} and
the inputs to h are computed by sub-circuits f1(bi1,1 , . . . bi1,k1) . . . , ft(bit,1 , . . . bit,kt) then

HE.Evalevk(g, c1, . . . , ck) = HE.Evalevk(h, c
∗
1, . . . , c

∗
t)

where c∗j = HE.Evalevk(fj , cij,1 , . . . , cij,kj) for j ∈ [t]. We also assume that, if gid is the canonical identity

circuit on one input, then HE.Evalevk(gid, c) = c. Making the FHE scheme canonical will be important
when we want to reason about composition, since it will ensure that the evaluation procedure outputs the
exact same ciphertext when we homomorphically evaluate the entire circuit in one shot as when we first
homomorphically evaluate some sub-circuits and then combine the results via additional independent
homomorphic evaluations.

See, e.g., the works of [24, 34, 13, 12] for constructions of fully homomorphic encryption.

3 Constructing Homomorphic Authenticators

We now describe our construction of homomorphic authenticators. Although it closely follows our high-
level description in the introduction, there are some differences. Most notably, the simple scheme in the
introduction does not appropriately protect against type I forgeries. For example, it is possible that for
the function g0 which always outputs 0, the FHE scheme always outputs HE.Evalevk(g0, c) = C0 where
C0 is some fixed and known ciphertext encrypting 0. In that case, the attacker can always authenticate
the output of the labeled-program P0 = (g0, τ) for any label τ , even if he never saw any previously
authenticated data under the label τ . This would qualify as a type I forgery, breaking our definition.
To fix this, we add an extra component to our tags that ensures that the attacker must have seen
authentication tags for all of the underlying input labels. We describe this component below.

Hash Tree of a Circuit. If g : {0, 1}k → {0, 1} is a circuit and H : {0, 1}∗ → {0, 1}m is some
hash function, we define the hash-tree of g, denoted gH , as a Merkle-Tree that has the same structure
as the circuit g, but replaces all internal gates with the hash function H. More precisely, the hash-tree
gH : ({0, 1}∗)k → {0, 1}m is a function which takes as input strings νi ∈ {0, 1}∗ for each input wire of
g. For every wire w in the circuit g, we define the value of gH(ν1, . . . , νk) at w inductively as:

• val(w) = H(νi) if w is the ith input wire of g.

• val(w) = H(val(w1), . . . , val(wt)) if w is the output wire of some gate with input wires w1, . . . , wt.

We define the output of the function gH(ν1, . . . , νk) to be its its value at the output wire of g.

Construction. Let HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) be a canonical fully homomorphic
encryption scheme, where the encryption algorithm uses r = r(n) = ω(log(n)) random bits. Let{
fK : {0, 1}∗ → {0, 1}r(n)

}
K∈{0,1}n

be a (variable-input-length) pseudo-random function PRF family.

Let H be a family of (variable-length) collision-resistant hash functions (CRHF) H : {0, 1}∗ →
{0, 1}m(n). We define the authenticator scheme Π = (KeyGen,Auth,Eval,Ver) as follows:

KeyGen(1n): Choose a PRF key K ← {0, 1}n and a CRHF H ← H. Choose an encryption key
(pk, evk′, sk′) ← HE.KeyGen(1n). Select a subset S ⊆ [n] by choosing whether to add each
index i ∈ [n] to the set S independently with probability 1

2 . Output evk = (evk′, H), sk =
(pk, evk′, H, sk′,K, S).

Authsk(b, τ): Given b ∈ {0, 1} and τ ∈ {0, 1}∗ do the following:

9

1. Choose random coins rand1, . . . , randn by setting randi = fK((τ, i)). Set ν := fK(τ).

2. Create n ciphertexts c1, . . . , cn as follows. For i ∈ [n] \ S, choose ci = HE.Encpk(b; randi) as
encryptions of the bit b. For i ∈ S, choose ci = HE.Encpk(0; randi) as encryption of 0.

3. Output σ = (c1, . . . , cn, ν).

Evalevk(g,σ): Given σ = (σ1, . . . , σt), parse each σj = (c1,j , . . . , cn,j , νj).

• For each i ∈ [n], compute c∗i = HE.Evalevk′(g, ci,1, . . . , ci,t).

• Compute ν∗ = gH(ν1, . . . , νt) to be the output of the hash-tree of g evaluated at ν1, . . . νt.

Output ψ = (c∗1, . . . , c
∗
n, ν
∗).

Versk(e,P, ψ): Parse P = (g, τ1, . . . , τt) and ψ = (c∗1, . . . , c
∗
n, ν
∗).

1. Compute ν1 := fK(τ1), . . . , νt = fK(τt) and ν ′ := gH(ν1, . . . , νt). If ν ′ 6= ν∗, output reject.

2. For i ∈ S, j ∈ [t], compute randi,j := fK((τj , i)) and set ci,j := HE.Encpk(0; randi,j).
For each i ∈ S, evaluate c′i := HE.Evalevk′(g, ci,1, . . . , ci,t) and if c′i 6= c∗i output reject.

3. For each i ∈ [n] \ S, decrypt ei := HE.Decsk′(c
∗
i) and if e 6= ei output reject.

If the above doesn’t reject, output accept.

Theorem 3.1. If {fK} is a PRF family, H is a CRHF family and HE is a semantically secure canonical
FHE, then the homomorphic authenticator scheme Π is secure without verification queries.

Proof. It is easy to verify that the authentication correctness of Π just follows from the encryption
correctness of HE, and the evaluation correctness of Π follows from that of HE, along with the fact that
HE is canonical.

We now prove the security of Π (without verification queries). Let A be some PPT attacker and let
µ(n) = Pr[ForgeGameA(1n) = 1]. We use a series of hybrid games modifying ForgeGame to prove that
µ(n) must be negligible.

Game1: We modify ForgeGame so as to replace the PRF outputs with truly random consistent values.
That is, the challenger replaces all calls to fK needed to answer authentication queries and to check
the winning condition Versk(e

∗,P∗, ψ∗) ?
= accept, with calls to a completely random function

F : {0, 1}∗ → {0, 1}r(n), whose outputs it chooses efficiently “on the fly”.

By the pseudo-randomness of {fK}, we must have Pr[GameA1 (n) = 1] ≥ µ(n)− negl(n).

Game2: We now define Game2 by modifying the winning condition, so that the attacker only wins (the
game outputs 1) if the attacker outputs a valid type (II) forgery (and the game outputs 0 on a type
I forgery). Let E be the event that attacker wins with a type I forgery in Game1. Then we claim
that, under the collision-resistance of H, we have Pr[E] = negl(n) and therefore:

Pr[GameA2 (n) = 1] ≥ Pr[GameA1 (n) = 1]− Pr[E] ≥ µ(n)− negl(n)

Assume otherwise that Pr[E] is non-negligible. Recall that the event E only occurs when the
attacker submits a forgery

e∗,P∗ = (g, τ∗1 , . . . , τ
∗
t), ψ∗ = (c∗1, . . . , c

∗
n, ν
∗)

such that the attacker never asked any authentication query containing one of the labels τ∗j for
some j ∈ [t], and verification accepts. During the computation of Versk(e

∗,P∗, ψ∗), when checking

that verification accepts in Game1, the challenger chooses the value νj = F (τ∗j)← {0, 1}r(n) freshly

10

at random, since the label τ∗j was never queried before. If we rewind and re-sample ν ′j ← {0, 1}
r(n)

freshly an independently at random again, then the probability that verification accepts both times,
which we denote by the event E2, is at least Pr[E2] ≥ Pr[E]2. Let C be the event that E2 occurs and
the values νj 6= ν ′j are distinct, so that Pr[C] ≥ Pr[E]2− 2−r(n) = Pr[E]2− negl(n) is non-negligible.

When the event C occurs then we must have ν∗ = gH(ν1, . . . , νj , . . . , νt) = gH(ν1, . . . , ν
′
j , . . . , νt)

which immediately gives us some collision on H at some level of the hash tree gH . Therefore, A
can be used to efficiently find collisions on H

$← H with non-negligible probability, which gives us
a contradiction.

Game3: In Game3 we modify the winning condition yet again. When answering authentication queries,
the challenger now also remembers the tag σ that it uses, storing (τ, b, σ) in T . If the attacker
outputs a type II forgery

e∗,P∗ = (g, τ∗1 , . . . , τ
∗
t), ψ∗ = (c∗1, . . . , c

∗
n, ν
∗),

we modify how the challenger checks Versk(e
∗,P∗, ψ∗) ?

= accept. Recall that for a type II forgery,
the tags τ∗i were previously used in authentication queries, so that T must contain some tuples

((τ∗1 , b1, σ1 = (c1,1, . . . , cn,1, ν1)), . . . , (τ
∗
t , bt, σt = (c1,t, . . . , cn,t, νt)).

Let ĉi := HE.Evalevk(g, ci,1, . . . , ci,t) for i ∈ [n] be the “honest ciphertexts” that would be included
in an honestly generated tag ψ for the program P∗. In Game3, we replace steps (2), (3) of the
verification procedure as follows:

2’. For each i ∈ S: if ĉi 6= c∗i then output reject.

3’. For each i ∈ [n] \ S: if ĉi = c∗i then output reject.

Notice that step (2’) is actually the same as the original step (2) used in Game2, since in both cases
we just check the forgery ciphertexts c∗i against the honest ciphertexts c′i = ĉi. The only difference
is that previously we re-computed c′i from scratch by re-encrypting ci,j , and now we compute ĉi
using the stored ciphertexts ci,j in T (but the values are equivalent).

Step (3’), in Game3 is different from the original step (3) in Game2. In the original step (3), we
decrypted the forgery ciphertexts for i ∈ [n]\S and checked that they decrypt to the claimed output

e∗
?
= Decsk′(c

∗
i). Let e = g(b1, . . . , bt) be the correct output of g on previously authenticated data.

In an accepting type II forgery, we must have e∗ 6= e but the decryption of the “honest ciphertexts”
will satisfy HE.Decsk′(ĉi) = e. So it must be the case that c∗i 6= ĉi for all i ∈ [n]\S for any accepting
type II forgery in Game2. Therefore, any type II forgery that’s accepting in Game2 is also accepting
in Game3 and hence: Pr[GameA3 (n) = 1] ≥ Pr[GameA2 (n) = 1] ≥ µ(n)− negl(n).

Game4: We modify Game3 so that, when answering authentication queries, the challenger computes all of
the ciphertexts ci (even for i ∈ S) as encryptions of the correct bit b in step (2) of the authentication
procedure. In particular, the choice of S is ignored when answering authentication queries.

We claim that:

Pr[GameA4 (n) = 1] ≥ Pr[GameA3 (n) = 1]− negl(n) ≥ µ(n)− negl(n). (1)

This simply follows by the semantic security of the encryption scheme HE. Given challenge cipher-
texts which either encrypt the attacker’s bits b or 0, we can embed these into the authentication
procedures for positions i ∈ S and either simulate Game3 or Game4. We can efficiently determine
if the output of the game is 1, since the decryption secret key sk′ is never used in these games.
Therefore, if the above didn’t hold, the attacker A would break semantic security.

11

Negligible Advantage. We now claim that, information theoretically, Pr[GameA4 (n) = 1] ≤ 2−n. To-
gether with equation (1), this shows that µ(n) ≤ 2−n + negl(n) = negl(n), as we wanted to show.

In Game4, the choice of the set S ⊆ [n] is not used at all when answering authentication queries
and so we can think of the challenger as only picking the set S during verification. For any type
II forgery e∗,P∗, ψ∗ = (c∗1, . . . , c

∗
n, ν
∗), let c′1, . . . , c

′
n be the “honest ciphertexts” that would be

included in an honestly generated tag ψ for the output of P∗ (see description of Game3). Let
S′ := {i ∈ [n] : c∗i = c′i} be the indices on which the forged and honest ciphertexts match. The
attacker only wins if steps (2’), (3’) of verification pass, which only occurs if S = S′. But this only
occurs with probability 2−n over the random choice of S.

3.1 Fully Homomorphic Authenticator-Encryption

We can also extend homomorphic message authenticators to homomorphic authenticator-encryption.
Given the secret key sk, it should be possible to decrypt the correct bit b from the tag authenticat-
ing it, but given only the evaluation key evk, the tags should not reveal any information about the
authenticated bits.

We can allow decryption generically. Take any homomorphic authenticator scheme (KeyGen, Auth,
Eval, Ver) and define VerDec(P, ψ) → {0, 1, reject} as follows: run Ver(e,P, ψ) for both choices of
e ∈ {0, 1} and, if exactly one of the runs is accepting, return the corresponding e, else return reject.

We notice that our specific construction of homomorphic authenticators already provides chosen-
plaintext-attack (CPA) security for the above authenticator-encryption scheme. Even if the attacker gets
evk and access to the authentication oracle Authsk(·, ·), if he later sees a tag σ ← Authsk(b, τ) for a fresh
label τ , he cannot distinguish between the cases b = 0 and b = 1.

3.2 Security with Verification Queries?

The scheme presented in Section 3 only provides security without verification queries, and it remains
an interesting open problem to construct fully homomorphic authenticators that allow for the stronger
notion of security with verification queries. We make several observations here.

An Efficient Attack. Firstly, we note that there is an efficient attack against our basic scheme from
Section 3, in the setting of security with verification queries.

The attacker gets evk and makes a single authentication query to get a tag σ ← Authsk(1, τ), authen-
ticating the bit b = 1 under some arbitrary label τ . We parse σ = (c1, . . . , cn, ν).

The attacker then makes several verification queries whose aim is to learn the secret set S ⊆ [n]. It
does so as follows: for each i ∈ [n] he computes c′i by adding an encryption of 0 to ci (or performing any
homomorphic operation that changes the ciphertext while preserving the plaintext) and sets the modified
tag σi to be the same as σ, but with ci replaced by c′i. Then, for each i ∈ [n], the attacker makes a
verification query Versk(1, Iτ , σi) to test if the modified tag σi is valid. If the query rejects then the
attacker guesses that i ∈ S and otherwise guesses i 6∈ S. With overwhelming probability the attacker
correctly recovers the entire set S.

Now the attacker can construct a type II forgery for the identity program Iτ , claiming that its value is
0 (recall, that we previously authenticated b = 1 under the label τ). To do so, the attacker takes the tag
σ and, for i 6∈ S, replaces the ciphertexts ci with fresh encryptions of 0. Let’s call the resulting modified
tag σ∗. Then it’s easy to see that (0, Iτ , σ∗) is a valid type II forgery, breaking the scheme.

Bounded Verification Queries. The above attack requires n verification queries to break the scheme.
It is relatively easy to show that the scheme is secure against O(log(n)) verification queries. In particular,
the attacker only gets O(log(n)) bits of information about the set S, which is not enough to break the

12

scheme. Similarly, for any a-priori bound q, we can modify our scheme so that the tags contain n + q
ciphertexts, and then we get security against q verification queries.

Computation with Long Output. Our basic scheme considers homomorphic authentication for a
program P with a 1-bit output. Of course, we can extend the scheme to authenticate a program with
longer output, by simply authenticating each bit of the output separately. However, this means that the
tag is proportional to the output size of the computation. A simple trick allows us to authenticate a
long output of some program P with only a short tag which is independent of the output size. Instead
of homomorphically authenticating the output of the program P, we just authenticate the output of a
program H(P) which first computes the output y of P and then outputs H(y) where H is a collision-
resistant hash function. Since H(P) has a short output even when P has a long output, the resulting
tag is short. Moreover, by getting the short tag ψ computed as above and the long output y, the verifier
can check Versk(H(y), H(P), ψ) = accept to ensure that y is the output of the computation P over
previously authenticated data. It is easy to check that this preserves security.

4 Improving Verification Complexity

One of the main limitations of our homomorphic authenticator scheme from the previous section is that
the complexity of the verification algorithm is no better than that of executing the program P. Therefore,
although the scheme saves on the communication complexity of transmitting the input data, it does not
save on the computation complexity of executing P. As we discussed in the introduction, works in the
area of delegating computation obtain efficient verification whose complexity is independent (or at least
much smaller than) the computation of P, but require that the user knows the entire input x. We
explore the idea of “marrying” these two techniques by delegating the computation required to verify the
authentication tag in our homomorphic authenticator scheme.

Firstly, we notice that the verification procedure Versk(e,P, ψ) of our scheme as described in Section 3
has special structure. The only “expensive” computation (proportional to the complexity of the the
program P) is independent of the tag ψ. In particular, this computation uses the secret key sk and
the program P to compute the output of the “hash-tree” ν ′ and the ciphertexts c′i for i ∈ S derived
by evaluating P over the pseudorandom encryptions of 0. We call this computation Expensive(P, sk).
Given the outputs of Expensive(P, sk), the rest of the verification procedure Versk(e,P, ψ) consists of
simple comparisons and is incredibly efficient (independent of the complexity of P). Therefore, we can
delegate the computation of Expensive(P, sk) prior to knowing the tag ψ that needs to be verified. One
issue is that the computation does depend on the secret key sk, which needs to be kept private. We
note that we can always (generically) keep the input of a delegated computation private by encrypting
it under an FHE scheme. In our context, we can encrypt the value sk under an independently chosen
FHE key, and publish this ciphertext Csk in the evaluation key. We can then delegate the computation
Expensive′(P, Csk) which takes P as an input and homomorphically executed Expensive(P, sk).

We now explore the advantages of using the above approach with some concrete delegation schemes.

Using SNARGs. We can use succinct non-interactive arguments for polynomial-time computation
(P-SNARGs). This primitive allows anyone to provide a short proof π certifying the correctness of an
arbitrary polynomial-time computation y = f(x), where f is a Turing Machine. The tuple (f, y, x, π)
can be verified in some fixed polynomial-time p(|x|, |y|, |f |), that only depends on the description-length
of the machine f , but is independent of the running time of f . Given P-SNARGs, we get a completely
non-interactive delegation of computation (assuming the computation has a short uniform description).
Therefore, using the above approach, we get homomorphic authenticators satisfying our original non-
interactive syntax and security, but also allowing efficient verification for programs P having a short
uniform description. During evaluation, we simply also have the server compute Expensive′(P, Csk) and

13

provide a SNARG proof π that it was done correctly. Recall that, in the introduction, we described a
significantly simpler solution to the problem of efficiently verifiable homomorphic authenticators (and
signatures) using succinct non-interactive argument of knowledge for all of NP, or NP-SNARKs. There-
fore, the main advantage of the above technique is that now we only require P-SNARGs, which is a much
weaker primitive. For example, if we instantiate the random-oracle CS-Proofs of Micali [30] with some
cryptographic hash function, it may be more reasonable to assume that we get a P-SNARG, than it is
to assume that we get an NP-SNARK. In particular, the former is a falsifiable assumption whereas the
latter cannot be proved under any falsifiable assumption (see [25]).

Using Delegation with Pre-Processing. Alternatively, we can use the delegation techniques in the
“pre-processing” model [21, 16, 2] to outsource the computation of Expensive′(P, Csk) where P is given
as an input. This scheme will have many of the same advantages and disadvantages as the approach
of using delegation with “pre-processing” directly to outsource the data (see a description of this latter
approach in Section 1.3). In particular, in both approaches, the verification will be efficient but the
scheme will now require one round of interaction, where the user needs to create a challenge chall(P) for
the computation P that she wants to verify. The main advantages of our approach, combining delegation
with homomorphic authenticators, over a direct delegation-based scheme is the following. When using
delegation directly, the user needs to outsource all of the data in one shot and remember some short
partial information about it; now the user can arbitrarily authenticate fresh labeled data “on the fly”
and verify computations over all of it using a single independent secret key.

5 Conclusions

In this work we give the first solution to fully homomorphic message authenticators, allowing a user to
verify computations over previously authenticated data. The authentication tag is short, independent of
the size of the authenticated input to the computation. Our work leaves many interesting open questions.
Perhaps the most ambitious one is to construct fully homomorphic signatures with public verification. Less
ambitiously, construct fully homomorphic authenticators that allow an unbounded number of verification
queries. Lastly, it would be interesting to improve the verification efficiency of our construction. One
pressing question is to make the verification complexity independent of the complexity of the program
P while maintaining all of the advantages of our scheme (standard assumptions, no interaction). But a
less ambitious, still interesting question is to just reduce the tag size from O(n) ciphertexts to something
smaller, say a single ciphertext.

6 Acknowledgement

We’d like to thank Craig Gentry for his valuable comments. In particular, a prior version of this
work included a speculative suggestion for achieving security with verification queries via “randomness-
homomorphic encryption”; Craig pointed out that this latter primitive cannot exist.

References

[1] S. Agrawal and D. Boneh. Homomorphic MACs: MAC-based integrity for network coding. In
M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors, ACNS 09, volume 5536 of
LNCS, pages 292–305. Springer, June 2009.

[2] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification via
secure computation. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and P. G.
Spirakis, editors, ICALP 2010, Part I, volume 6198 of LNCS, pages 152–163. Springer, July 2010.

14

[3] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson, and D. Song.
Provable data possession at untrusted stores. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson,
editors, ACM CCS 07, pages 598–609. ACM Press, Oct. 2007.

[4] G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic identification protocols.
In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 319–333. Springer, Dec. 2009.

[5] N. Attrapadung and B. Libert. Homomorphic network coding signatures in the standard model.
In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS,
pages 17–34. Springer, Mar. 2011.

[6] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets.
In Rogaway [32], pages 111–131.

[7] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again. In Goldwasser [26], pages 326–349.

[8] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping
for snarks and proof-carrying data. Cryptology ePrint Archive, Report 2012/095, 2012. http:

//eprint.iacr.org/.

[9] D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signature schemes for
network coding. In S. Jarecki and G. Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 68–87.
Springer, Mar. 2009.

[10] D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions. In K. G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168. Springer, May 2011.

[11] D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new tools for
lattice-based signatures. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors, PKC 2011,
volume 6571 of LNCS, pages 1–16. Springer, Mar. 2011.

[12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. In Goldwasser [26], pages 309–325.

[13] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe.
In R. Ostrovsky, editor, FOCS, pages 97–106. IEEE, 2011.

[14] D. Catalano and D. Fiore. Practical homomorphic macs for arithmetic circuits. In Eurocrypt, 2013.

[15] D. Catalano, D. Fiore, and B. Warinschi. Efficient network coding signatures in the standard model.
In Fischlin et al. [19], pages 680–696.

[16] K.-M. Chung, Y. Kalai, and S. P. Vadhan. Improved delegation of computation using fully homo-
morphic encryption. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 483–501.
Springer, Aug. 2010.

[17] K.-M. Chung, Y. T. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In Rogaway [32], pages
151–168.

[18] Y. Dodis, S. P. Vadhan, and D. Wichs. Proofs of retrievability via hardness amplification. In
O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 109–127. Springer, Mar. 2009.

[19] M. Fischlin, J. Buchmann, and M. Manulis, editors. Public Key Cryptography - PKC 2012 - 15th
International Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany,
May 21-23, 2012. Proceedings, volume 7293 of Lecture Notes in Computer Science. Springer, 2012.

15

[20] D. M. Freeman. Improved security for linearly homomorphic signatures: A generic framework. In
Fischlin et al. [19], pages 697–714.

[21] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing compu-
tation to untrusted workers. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
465–482. Springer, Aug. 2010.

[22] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct nizks
without pcps. Cryptology ePrint Archive, Report 2012/215, 2012. http://eprint.iacr.org/.

[23] R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin. Secure network coding over the integers. In P. Q.
Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 142–160. Springer,
May 2010.

[24] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, 41st
ACM STOC, pages 169–178. ACM Press, May / June 2009.

[25] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assump-
tions. In L. Fortnow and S. P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June
2011.

[26] S. Goldwasser, editor. Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA,
January 8-10, 2012. ACM, 2012.

[27] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive proofs for
muggles. In R. E. Ladner and C. Dwork, editors, 40th ACM STOC, pages 113–122. ACM Press,
May 2008.

[28] J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In M. Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Dec. 2010.

[29] R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic signature schemes. In B. Preneel,
editor, CT-RSA 2002, volume 2271 of LNCS, pages 244–262. Springer, Feb. 2002.

[30] S. Micali. CS proofs (extended abstracts). In FOCS, pages 436–453. IEEE Computer Society, 1994.

[31] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In TCC, pages
222–242, 2013.

[32] P. Rogaway, editor. Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in
Computer Science. Springer, 2011.

[33] H. Shacham and B. Waters. Compact proofs of retrievability. In J. Pieprzyk, editor, ASI-
ACRYPT 2008, volume 5350 of LNCS, pages 90–107. Springer, Dec. 2008.

[34] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the
integers. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 24–43. Springer,
May 2010.

16

