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Abstract. In this paper we propose a new differential fault analysis
(DFA) on CLEFIA of 128-bit key. The proposed attack requires to in-
duce byte faults at the fourteenth round of CLEFIA encryption. The at-
tack uses only two pairs of fault-free and faulty ciphertexts and uniquely
determines the 128-bit secret key. The attacker does not need to know
the plaintext. The most efficient reported fault attack on CLEFIA, needs
fault induction at the fifteenth round of encryption and can be performed
with two pairs of fault-free and faulty ciphertexts and brute-force search
of around 20 bits. Therefore, the proposed attack can evade the coun-
termeasures against the existing DFAs which only protect the last four
rounds of encryption. Extensive simulation results have been presented
to validate the proposed attack. The simulation results show that the
attack can retrieve the 128-bit secret key in around one minute of execu-
tion time. To the best of authors’ knowledge the proposed attack is the
most efficient attack in terms of both the input requirements as well as
the complexity.
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1 Introduction

Modern day’s cryptographic primitives are secured against classical cryptanal-
ysis techniques. However, when these primitives are implemented in hardware
could leak the secret informations in the form of side-channels. The attack which
exploits the implementation based weakness of ciphers are known as side-channel
attack [1]. There are different side-channel attacks depending on the properties of
the hardware implementations they used. Differential fault analysis is one of the
most lethal form of side-channel cryptanalysis technique [2]. In this technique the
attacker induces faults into the hardware running a cryptographic algorithm by
some external stimulus like electromagnetic radiation, thermal variation, glitch
in the input lines etc. Then analyzing the fault-free and faulty output she re-
trieves the secret key.

Fault based attack was originally proposed by Boneh et al. [3]. They have
shown that faults in the hardware implementation of a RSA crypto-system can



leak the entire secret key. The differential fault analysis which uses both the
concept of differential cryptanalysis and fault analysis, was introduced by Bi-
ham et al. [4]. The first DFA was mounted against Data Encryption Standard
(DES) implementation. The attack required to analyze around 50 to 1500 faulty
ciphertexts to retrieve the entire secret key. Later on many DFA attacks were
implemented on different ciphers like Triple-DES [5], RSA [6–8], ECC [9–11],
IDEA [12]. Among these ciphers, the most extensive research was done on Ad-
vanced Encryption Standard (AES) [13–20]. The recent attacks on AES show
that only a single byte fault induction can reveal upto 120 out of 128-bit secret
key.

There were some contributions [21–24], where the authors have shown simple
techniques to practically induce faults into the crypto-systems using less expen-
sive devices. These results show that fault based attacks poses a potent threat to
the modern day cipher implementations. Therefore, the crypto-systems need to
be protected against this kind of attacks. However, the amount of protection re-
quired by the implementation is dependent on the potential of the threat posed
by the attack. From, the designer’s perspective, protecting the crypto-system
against attacks cause functional and area overhead. Therefore, she would want a
countermeasure with less over-head but with full protection against the existing
DFAs. For example, the recent attacks on AES required to induce fault in be-
tween seventh and eighth round of the cipher. Therefore, the designer only needs
to protect the last four rounds of the encryption. On the other hand the attacker
would like to develop an attack which can evade the existing countermeasures.

In 2007, the Sony Corporation introduced a new 128-bit block cipher named
CLEFIA [25]. It is a generalized Feistel structure consist of four 32-bit data
lines. The cipher is suitable for small and high speed implementations. The first
DFA against CLEFIA was proposed by Chen et al. [26]. The attack repeatedly
induce byte-faults from seventeenth round to fifteenth round of CLEFIA. Using
18 pairs of fault-free and faulty ciphertexts the attack retrieves the secret key.
The attack does not require any brute-force search. Fukunaga et al. proposed
an improved attack on CLEFIA which required only two pairs of fault-free and
faulty ciphertexts [27]. They induced two byte-faults at the two F-functions of
fifteenth round of encryption to get two faulty ciphertexts. It was observed that
a single fault corrupts both input and output of three F-functions. Therefore,
a single fault induction not only gives the final round key but also gives the
informations of previous round key. However, the attack required to do brute-
force search on around 20 bits. This implies that the attacker need to known the
plaintext. The existing two attacks shows that to secure CLEFIA against DFA,
the designer needs to protect the last four rounds of encryption.

In this paper we propose a new DFA on CLEFIA by inducing byte-faults at
the F-functions of fourteenth round of encryption. The proposed attack required
two pairs of fault-free and faulty ciphertexts and uniquely determines the 128-bit
key. Our attack can also be applied to the CLEFIA implementation where the
last four round of the encryption is protected against DFA. Extensive simulation
results have been provided which show that the attack takes on an average



around one minute of execution time on a Intel CoreTM2 Duo desktop machine
of 3 GHz speed to retrieve the entire secret key.

2 The CLEFIA Block Cipher

In this section we briefly describe CLEFIA. Its is a 128-bit block cipher comes
in three different security level with three different key lengths 128, 192 and 256
bits. It follows a generalized Feistel structure with four data line each of width
32 bits. In this section we briefly describe CLEFIA with 128 bits key. For more
details one can refer to the CLEFIA specification [25].
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Fig. 1. CLEFIA block diagram

The block diagram of CLEFIA-128 is shown in Figure 1. It follows four
way generalized Feistel structure GFN4,18, for encryption and decryption. The
16 byte plaintext and Ciphertext are divided into four quartets P0, P1, P2,P3 and
C0, C1, C2, C3 respectively. The encryption takes four whitening keysWK0,WK1,
WK2,WK3 and 36 round keys RK0−35. The encryption using GFN4,18 is shown
in Figure 1. Each round of the encryption consists of two F-functions, F0 and
F1. Both the F-functions uses two non-linear eight bit S-boxes, S0 and S1 but in
different order. The non-linear operations are followed by a diffusion layer. The
diffusion layer is provided by one of the two diffusion matrices M0 and M1.



M0 =









1 2 4 6
2 1 6 4
4 6 1 2
6 4 2 1









M1 =









1 8 2 A

8 1 A 2
2 A 1 8
A 2 8 1









So, the F-functions take the 32-bit input and ex-ored it with the round key
and which then followed by confusion (S-box) and diffusion operations. The
out put of F0 and F1 are ex-ored with the previous round input of F1 and F0

respectively. Then the result is passed to subsequent rounds.
The four whitening keys WK0−3 is the copy of 128-bit initial key K. The

round keys are generated in two steps, first the intermediate key L is generated
from K and then using L the 36 round keys are generated. L is generated by
applying the 12 rounds of the four way Feistel structure GFN4,12 using K as the
input and 24 constant values of 32 bits each as the round keys. The key schedule
operation is as follows:

Step 1: WK0|WK1|WK2|WK3 ← K

Step 2: For i← 0 to 8
T ← L⊕(CON24+4i |CON24+4i+1|CON24+4i+2 |CON24+4i+3)
L← Σ(L)
if i is odd: T ← T ⊕K

RK4i|RK4i+ 1|RK4i+ 2|RK4i+ 3← T

where the Σ is known as DoubleSwap function which is expressed as

Σ(L)← L(7···63)|L(121···127)|L(0···6)|L(64···120) (1)

3 Related Works

In this section we briefly explain the existing two DFAs on CLEFIA. The at-
tack proposed by Chen et al. [26], required repeated induction of byte faults in

(r − 1)
th

round so that the fault infect 32-bit input of one of the F-functions of
rth round. Then using the fault-free and faulty input and out of the correspond-
ing F-function, differential equations are generated. Solving those equations,
corresponding round keys are recovered.

Initially the attacker induce a byte fault in F0 of the penultimate round
(Figure 2(a)). Therefore, the attacker can get the fault-free and faulty inputs
(C0, C

′

0) of F0 of final round. She can also get the output difference of F0 as
δ1 = C1 ⊕C′

1. Using the value of δ1, the attacker retrieves the M−1
0 . Say ∆y1 =

M−1(δ1). So, now she can deduce following four differential equations:

S0(C0(0) ⊕K34(0))⊕ S0(C
′

0(0) ⊕K34(0)) = ∆y1(0)

S1(C0(1) ⊕K34(1))⊕ S1(C
′

0(1) ⊕K34(1)) = ∆y1(0)

S0(C0(2) ⊕K34(2))⊕ S0(C
′

0(2) ⊕K34(2)) = ∆y1(0)

S1(C0(3) ⊕K34(3))⊕ S1(C
′

0(3) ⊕K34(3)) = ∆y1(0)

(2)
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Fig. 2. Fault induction at seventeenth round

As the input and output differences in the above equations are known therefore
the attacker can retrieve the key using S-box difference table. However, due to
the differential properties of S-boxes the attacker need on an average three faulty
ciphertexts to uniquely determine the four key bytes of RK34.

The attacker follows the same technique to get the value of RK35 by in-
ducing fault at F1 of seventeenth round (Figure 2(b). In the same way the at-
tacker induce faults in the fifteenth and sixteenth rounds and get the values of
RK32⊕WK3, RK33⊕WK2, RK30 and RK31. Then using inverse of Σ function
the attack retrieves RK32 and RK33. Subsequently, she performs inverse key
scheduling operation on the last four round-keys RK32−35 and get the master
key. So, the attack can retrieve the 128-bit secret key using 18 faulty ciphertexts.

The improved attack on CLEFIA uses only two faulty ciphertexts [27]. In this
attack the byte-faults are induced only at the F-functions of fifteenth round.
The attacker first retrieves the possible choices of RK34 and RK35 using the
two faulty ciphertexts and then using these values she retrieves the values of
RK32⊕WK3 and RK33⊕WK2. Then again the values of RK30 and RK31. Then
she follows the existing technique to get the possible choices of the master key.
The authors have theoretically shown that the expected size of possible master
key is 219.02. So, the attack needs to do brute-force search on the possible keys
using the known plaintexts.

Both the two existing attacks exposed the potent threat to CLEFIA imple-
mentation when there is a fault. In order to defend CLEFIA implementation
against these DFAs, the designer need to protect the last four rounds of encryp-
tions.

In the next section we propose a DFA on CLEFIA which can retrieve the
secret key even if the last four rounds are protected. We also show that the key is
uniquely determined using two faults, thus requiring no knowledge of plaintexts.



4 Proposed DFA on CLEFIA

In this section we proposed a new DFA on CLEFIA where we assume that the
last four rounds of encryption is protected against DFA. Therefore, the attacker
can not induce fault in the last four rounds. So she induces faults at the F-
functions of the fourteenth round of encryption. The proposed attack is based
on the usual single byte fault model and requires two byte-fault induction in the
two F-functions. Figure 3 shows the location where the faults are induced. As
the faults are induced before the diffusion operation of the F-functions therefore
after the diffusion function the fault spread to all the four bytes.

However, the spread of fault follows a pattern. Say the byte faults are in-
duced at x0 of F0 and F1, and the corresponding fault values are p and p′.
Due to diffusion matrices, the out put fault pattern becomes {p, 2p, 4p, 6p} and
{p′, 8p′, 2p′, ap′}, where 2, 4, 6, 8, a are the 4-bit hexadecimal values and p,p′

are the non-zero bytes.
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Fig. 3. Fault induction in F-function

The flow of fault in the last five rounds is shown in Figure 4(a) and Fig-
ure 4(b). The attacker does not know the value of p and p′. Therefore, she
guesses the possible values of (p, p′) and for each value she will try to get the
round keys in step by step fashion. The attack is divided into two phases. In
the first phase, the attacker retrieves the round-keys corresponding to last three
rounds and deduce the possible 128-bit master keys. In the second phase the
master key is uniquely determined.

4.1 First Phase of the Attack

In this section we first determine the values of RK32 RK33 RK34 RK35 cor-
responding to one choice of (p, p′). Then using these values we determine the
possible choices of the master key. We first start with the technique to deter-
mine RK34 and RK35.
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Determining RK34 and RK35 The value of fault-free ciphertext C and the
two faulty ciphertexts C̄, ¯̄C are known. Following Figure 4(a) and Figure 4(b),
we can directly get the inputs to the last round F-functions. However, getting
the output difference is not so obvious. For F0, the 32-bit input difference is
∆Ī180 = C0⊕ C̄0 (Figure 4). The corresponding 32-bit output difference ∆Ȳ 18

0 is
given as:

∆Ȳ 18
0(0) = C1(0) ⊕ ¯C1(0) ⊕ p

∆Ȳ 18
0(1) = C1(1) ⊕ ¯C1(1) ⊕ 2p

∆Ȳ 18
0(2) = C1(2) ⊕ ¯C1(2) ⊕ 4p

∆Ȳ 18
0(3) = C1(3) ⊕ ¯C1(3) ⊕ 6p

(3)

For one choice of (p, p′) we get one choice ∆Ȳ 18
0 . Using the value ∆Ȳ 18

0 we can
get the corresponding value of inverse of M0 as ∆Ȳ 18 = M−1

0 (∆Ȳ 18
0 ). So, now

we have the input and output difference of the four S-boxes of F0 using which
we can deduce following four differential equations.



S0(C0(0) ⊕K34(0))⊕ S0(C0(0) ⊕K34(0) ⊕∆Ī180(0)) = ∆Ȳ 18
0(0)

S1(C0(1) ⊕K34(1))⊕ S1(C0(1) ⊕K34(1) ⊕∆Ī180(1)) = ∆Ȳ 18
0(1)

S0(C0(2) ⊕K34(2))⊕ S0(C0(2) ⊕K34(2) ⊕∆Ī180(2)) = ∆Ȳ 18
0(2)

S1(C0(3) ⊕K34(3))⊕ S1(C0(3) ⊕K34(3) ⊕∆Ī180(3)) = ∆Ȳ 18
0(3)

(4)

In order to solve the above four equations we use the difference table of S0

and S1. The above equations can be generalized to ∆Y = S(K⊕∆I)⊕S(K). In
order to get the S-box difference table, we store all the values K corresponding
to one choice of the input-output difference pair (∆Y,∆I). In the above four
equations ∆Ī corresponds to ∆I and ∆Ȳ 18

0 corresponds to ∆Y . Therefore, using
the input-output deference pair we can get value C0 ⊕K34 from the difference
table. To get the actual key we need to ex-or the result with C0.

However, the number of solutions of K given the input-output difference pair
(∆Y,∆I), is depend on the S-box table we choose. For S0, we can get 0, 2, 4, 6,
8, or 10 solutions of K. The expected number of nonzero solutions is 2.257 [27].
For S1, the number of solutions could be 0, 2, or 4, and the expected number of
non-zero solutions is 2.024.

Therefore, from the above four equations, for one choice of p we get an
expected 2.2572 × 2.0242 = 24.76 choices of the 32-bit key K34. We follow the
same technique for getting the round key RK35 using the faulty ciphertext ¯̄C
where the input-output differences are given as follows:

¯̄I181 = C2 ⊕
¯̄C2

¯̄Y 18
1 = M−1

0

(

C3(0) ⊕
¯̄C3(0) ⊕ p′ |

C3(1) ⊕
¯̄C3(1) ⊕ 8p′|

C3(2) ⊕
¯̄C3(2) ⊕ 2p′|

C3(3) ⊕
¯̄C3(3) ⊕ ap′

)

(5)

Determining RK32 ⊕ WK3 and RK33 ⊕ WK2 Once we have the value
of RK34 and RK35, we can get the outputs of both the F-functions in the last
round. We use the first faulty ciphertext C̄ to get the values of RK32 ⊕WK3.
The input output differences of F0 of seventeenth round is given as follows:

∆Ī170 = F1(C2, RK35)⊕ F1(C̄1, RK35)⊕ C3 ⊕ C̄3

∆Ȳ 17
0 = M−1

0 (C0 ⊕ C̄0)
(6)

It may be noted that the above input and output differences correspond to
RK32 ⊕WK3, not the actual round key RK32. Therefore, using the S-box dif-
ference table we will get the value of RK32 ⊕WK3.

Similarly, using the faulty ciphertext ¯̄C we can get the following input and
output differences of seventeenth round F1.



∆ ¯̄I171 = F0(C0, RK34)⊕ F0(
¯̄C1, RK34)⊕ C1 ⊕

¯̄C1

∆ ¯̄Y 17
1 = M−1

1 (C2 ⊕
¯̄C2)

(7)

Using the above differences we retrieve RK33 ⊕WK2.

Determining RK30 and RK31 In order to get RK30 we again use first faulty
ciphertext C̄ and the already determined round keys. The input and output
differences to the sixteenth round F0 is determined as follows:

∆Ī160 =F1(F0(C0, RK34)⊕ C1, RK33 ⊕WK2)⊕

F1(F0(C̄0, RK34)⊕ C̄1, RK33 ⊕WK2)⊕ C2 ⊕ C̄2

∆Ȳ 16
0 =M−1

0 (F1(C2, RK35)⊕ F1(C̄2, RK35)⊕ C3 ⊕ C̄3)

(8)

It may be observed that the value WK2 cancels in the above differences. There-
fore, from S-box difference table we only get the value of RK31.

In case of F1 of sixteenth round, the input and output differences are deter-
mined from the second faulty ciphertext ¯̄C. The differences are as follows:

∆ ¯̄I161 =F0

(

F1(C2, RK35)⊕ C3, RK32 ⊕WK3

)

⊕

F0

(

F1(
¯̄C2, RK35)⊕

¯̄C3, RK32 ⊕WK3

)

⊕ C3 ⊕
¯̄C3

∆ ¯̄Y 16
1 =M−1

1

(

F0(C0, RK34)⊕ F0(
¯̄C0, RK34)⊕ C1 ⊕

¯̄C1

)

(9)

So, using above differences we get RK31.

Determining the Possible final Round Keys At this point we have the
values of RK34, RK35, RK33 ⊕WK2, RK32 ⊕WK3, RK30 and RK31. In order
to extract the values RK34 and RK35, from RK33 ⊕WK2, and RK32 ⊕WK3

we use the key scheduling algorithm of CLEFIA. From RK34 and RK35, we can
get the right half of the final round intermediate key L (Σ8(L)) from the key
expansion part of the CLEFIA key schedule. When i = 8 we have,

(L2|L3) = (RK34 ⊕ CON128
58 |RK35 ⊕ CON128

59 ) (10)

We do inverse DoubleSwap on L to get the first 57 bits of (WK2|WK3). This
implies we get the value of WK2 and 25 bits of WK3. Using the value of WK2

we get the value of RK33 from RK33 ⊕WK2. Again using the value of RK33

we get the last seven bits of WK3. So, finally we get the value of entire last two
round keys. We follow the inverse key scheduling algorithm and get the initial
key K.

4.2 Second Phase of the Attack

In order to determine the actual key from the possible choices first master keys,
we deduce the values of RK28 and RK29 from the values of RK34, RK35, RK33⊕



WK2, and RK32⊕WK3. Using the key expansion phase of CLEFIA we can again
deduce the value of RK28 and RK29 from the master keys generated in the first
phase of the attack. The intersection of these two lists will uniquely determine
the master key.

In Figure 4(a), we can see that the input difference of fifteenth round F0 is

∆Ī150 = (p, 2p, 4p, 6p) (11)

The output difference ∆Ȳ 15
0 can be written as:

∆Ȳ 15
0 = M−1

0 (F1(F0(C0, RK34)⊕ C1, RK33 ⊕WK2)⊕

F1(F0(C̄0, RK34)C̄1, RK33 ⊕WK2)⊕ C2 ⊕ C̄2)
(12)

Therefore, using these input and output differences we can retrieve the value of
RK28.

In Figure 4(a), the input differences of fifteenth round F1 is

∆Ī151 = (p′, 8p′, 2p′, ap′) (13)

The output difference can be given as,

∆Ȳ 15
1 = M−1

1

(

F0(F1(C2, RK35)⊕ C3, RK32 ⊕WK3)⊕

F0(F1 (̄̄C0, RK34)⊕
¯̄C3, RK33 ⊕WK2)⊕ C0 ⊕

¯̄C0

)
(14)

This input output difference will retrieve the value of RK29.
From the first phase, we already know the value of L when i = 7 ( i.e. Σ7(L)),

and the value of WK0 and WK1, which corresponds to master key. Therefore,
from the CLEFIA key expansion phase we can get the values of RK28 and RK29

using the value of L and WK0 and WK1.

(RK28|RK29) = (L0 ⊕WK0 ⊕ CON128
52 |L1 ⊕WK1 ⊕ CON128

53 ) (15)

So, now we have the values of (RK28|RK29) from the first phase as well as
deduced in this phase. We make the inter-section of these two lists of values.
Only one value will come out of the inter-section. The key corresponding the
that value of (RK28|RK29) will be the actual master key. The summary of the
two phase attack is given in Algorithm 1

4.3 Analysis of the Attack

It is obvious from the existing analysis in [27] that for one choice of (p, p′) the
expected number of choices of final key from the first phase is 219.02. However, for
all possible choices 28 of p only 28×0.037 = 9.472 will produce RK34 (〈RK34〉 6=
ø) [28, §5.3]. Similarly, for p′ only 9.472 choices will produce the value of RK35.
Therefore, the expected number of master keys from the first phase is 9.472 ×
9.472× 219.02 = 225.507.



Algorithm 1: DFA on CLEFIA

Input: C, C̄, ¯̄C
Output: K

for Each candidates of {p, q} do1

Get {RK34, RK35}.2

for Each candidates of {RK34, RK35} do3

Get RK32 ⊕WK3 and RK33 ⊕WK24

for Each candidates of{RK32 ⊕WK3, RK33 ⊕WK2} do5

Get RK30, and RK31.6

Get RK28, and RK29.7

Get RK32, and RK33 from RK34, RK35, RK32 ⊕WK3, and8

RK33 ⊕WK2.
for Each candidates of {RK32, RK33} do9

Get L and K from {RK32, RK33, RK34, RK35}.10

Do L← Σ−1(L)11

if12

((RK28|RK29) == (L0⊕WK0⊕CON128
52 |L1⊕WK1⊕CON128

53 ))
then

Save K.13

In the second phase, we deduce the values of RK28 and RK29 from {RK34,
RK33⊕ WK2} and {RK35, RK32 ⊕WK3} respectively. The expected value of
|〈RK34, RK33⊕WK2〉| or |〈RK32, RK32⊕WK3〉| is 2

4.76×9.472 = 28. Therefore,
the expected value of |〈RK28〉| or |〈RK29〉| is 2

8 × 0.037× 24.76 = 28 [28, §6.4].
This implies that there are total 28×28 = 216 choices of {RK28, RK29}. We also
deduce the values of {RK28, RK29} from the master keys generated in the first
phase of the attack which has the expected size of 225.507. The intersection of
these two list uniquely determines the value of {RK28, RK29}, which corresponds
to the actual master key.

5 Experimental Results

We have performed extensive simulation of the proposed attack. The attack
simulation code was written in C programming language and compiled using
gcc-4.4.3 with O3 flag on. The code was executed in Ubuntu-10.4 operating
system running on a Intel CoreTM2 Duo desktop machine of 3 GHz speed.
In each experiment we used an arbitrary 128-bit key and induced two random
single byte faults in the two F-functions of fourteenth round to get the two faulty
ciphertexts. Each experiment on a random key was repeated for 256 times. The
simulation was performed over a 100 random key-plaintext pairs.

Table 1 shows the results of five such experiments on five random keys. Each
row represents the average results of 256 simulations corresponding to a random
key. The first column represents the 128-bit random key that has been attacked.



Table 1. Experimental Results

Random 128-bit Number of Number of Running

CLEFIA key Keys in Keys in Time

First Phase Second Phase (Seconds)

71b344b86320d3716f566c915bfaa5c2 16162164.46 = 223.946 1 82.630

7a052bfbf63a246c838f09766d53aee8 12483201.97 = 223.573 1 63.688

b0e8e24e38b682e46abf4767368bcd6b 13403507.87 = 223.676 1 69.489

3702237433bd2f12542f4bec01734e64 9547074.13 = 223.186 1 52.711

d5659a20b8a945a9566dd7f9f0f886ae 11671681.65 = 223.476 1 58.819

Second column shows the average number of possible keys generated in the first
phase of the attack. The third column shows the number final key deduced
from the second phase. The third column shows the average time to perform a
successful attack. It is obvious from the above table that the simulated attack
on a random key takes around one minute of time to uniquely determine the
128-bit secret key.

6 Comparison

In this section we compare our attack with the existing attacks on CLEFIA. We
compare with the help of table 2. The DFA proposed by Chen et al. [26] required
eighteen pairs of fault-free and faulty ciphertexts to uniquely determine the key.
However, the attack need to induce faults at three of the last four rounds. This
implies that if only two of the last four rounds of the encryption is protected
then the attack will not work. The proposed improved attack [27] required only
two pairs of fault-free and faulty ciphertexts. However, the improved attack does
not uniquely determine the master key. It needs to do brute-force search on a
around 219.02 possible keys. Therefore, the attack also needs to know the input
plaintexts. The improved DFA present more challenge to the designer as she
need to protect last four rounds of encryption against the DFA.

Compared to the existing two attacks our attack requires to induce fault at
the fourteenth round of encryption. Therefore, even if the last four round is pro-
tected, our attack still can retrieve the secret key. The proposed attack requires
only two pairs of fault-free and faulty ciphertexts and uniquely determine the
key, thus not require any knowledge of the plaintext.



Table 2. Comparison with existing attacks on CLEFIA

Reference Fault Model Fault Location Number Exhaustive

of Faults Search

[26] Single byte fault Fifteenth Round 18 1

[27] Single byte fault Fifteenth Round 2 219.02

Our Attack Single byte fault Fourteenth Round 2 1

7 Conclusions

In this paper we proposed a new differential fault attack using two pairs of fault-
free and faulty ciphertexts where the byte-faults are induced at the fourteenth
round of CLEFIA encryption. We retrieved the entire 128-bit secret key with-
out doing any brute-force search. The proposed attack can evade the existing
countermeasures which protects the last four round of encryption. The attack
will also work in the situation when the attacker only has the access to the ci-
phertexts and does not have so to the plaintext. The simulation results show
that the average time for a successful attack is around one minute on a standard
desktop machine, which is indeed practical. To the best of our knowledge this is
the most efficient DFA on CLEFIA reported in the literature.
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