
1 
 

Algebraic Countermeasure to Enhance the Improved Summation Generator with 2 Bit 

Memory 

Md. Iftekhar Salam 
a
, Hoon-Jae Lee 

b 

a
 Dept. of Ubiquitous IT, Graduate School of Design and IT, 

Dongseo University, San 69-1 Jurye-2-dong, Sasang-gu, Busan 617-716, Korea 

b 
Div. of Information Network Eng., School of Internet Engineering, 

Dongseo University, San 69-1 Jurye-2-dong, Sasang-gu, Busan 617-716, Korea 

E-mail:
 
iftekharsalam@gmail.com, hjlee@dongseo.ac.kr 

Corresponding Author: Hoon-Jae Lee 

 

Abstract  

Recently proposed algebraic attack has been shown to be very effective on several stream 

ciphers. In this paper, we have investigated the resistance of PingPong family of stream 

ciphers against algebraic attacks. This stream cipher was proposed in 2008 to enhance the 

security of the improved summation generator against the algebraic attack. In particular, we 

focus on the PingPong-128 stream cipher’s resistance against algebraic attack in this paper. In 

our analysis, it is found that an algebraic attack on PingPong family of stream ciphers require 

much more operations compare to the exhaustive key search on the internal state of the 

LFSRs. It will be shown that due to the irregular and mutual clock controlling in PingPong 

stream cipher the degree of the generated equation tends to grow up with each successive 

clock which in turn increases the overall complexity of an algebraic attack. Along with the 

PingPong 128 stream cipher the other instances of PingPong family stream ciphers are also 

investigated against the algebraic attack. Our analysis shows that, PingPong family stream 

ciphers are highly resistant against the algebraic attack due to their mutual and irregular 

clocking function.  
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1. Introduction 

Cryptography deals with the secrecy of transmitted data in a communication system. A secret 

key cryptosystem encrypts the original message into a ciphertext depending on the value of 

secret key. Linear feedback shift register (LFSR) based stream ciphers are one such secret 

key cryptosystem where the output from several LFSRs are combined by a nonlinear Boolean 

function to generate the keystream bits. The original message is encrypted by performing bit 

by bit XOR operation of the keystream and original message. The secret key is used to 

determine the initial state of most of the LFSR based stream cipher. According to the 

principle of kerckhoff, the secrecy of a cryptosystem depends on the secrecy of the key. A 

cryptosystem should build in such way so that an adversary (who has the knowledge about 

the cryptosystem) should not be able to determine the secret key faster than trying all possible 

keys (exhaustive search/ brute-force attack). Several analysing/ attacking methods exist in 

literature to recover the secret key of a cipher. Recently, a new type of structure dependent 

attack known as algebraic attack has been proposed which attempts to recover the initial 

internal state of a cryptographic system. The algebraic attack exploits a number of observed 

keystream bits to solve an over-defined system of multivariate equations to recover the secret 
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key of the cipher [1]. It is currently the fastest attack against many well-known LFSR based 

stream ciphers [2, 3].  Algebraic attack on stream cipher includes attacks on nonlinear filter 

generator [2], attacks on summation generator [4], attacks on combiners with memory [2], 

attacks on mutually clocked shift register [5], attacks on improved summation generator [6]. 

The idea of the algebraic attack is to recover the secret key bits by solving a system of 

nonlinear equation which relates the output keystream bits with the secret key of the cipher. 

Algebraic attack on LFSR based stream ciphers build up a valid relationship between the 

output keystream bits and the internal state. Based on the nonlinear combining function the 

attacker generates a system of nonlinear equation relating the internal states and the output 

keystream bits; and these nonlinear equations are then solved in an efficient way to determine 

the internal state of the LFSR. Generally, solving such a system of nonlinear equation is 

considered to be NP-complete even if all the equations are of degree 2. Therefore; it is 

difficult to find an efficient solver for solving these systems of equations. However, the 

circumstances will change dramatically if the system is over-defined. An over-defined system 

is one where there are more equations then the number of variables and such a system can be 

solved by method called linearization [7]. In the linearization method, the over-defined 

system of equation can be solved in polynomial time. However, this method requires 

knowledge about large number of keystream bits. Another method for solving the nonlinear 

equation is Gröbner Bases. There exist several other methods to solve such system of 

nonlinear equation, however; to date the complexity of the solution can be computed only for 

the linearization approach. The complexity of an algebraic attack can be reduced significantly 

if the degree of the generated system of equation is low. Therefore, it is necessary to find low 

degree equation for feasible algebraic attack. The fast algebraic attack was proposed for this 

which works in a similar way as the standard algebraic attack but with a reduced degree of 

system of equation [8]. There exist several algorithms to reduce the degree of the equation [2, 

9].  The steps of an efficient algebraic attack is summed up below  

- Set up a valid relationship between the internal state of the cipher and the output 

keystream bits for all time instances.  

- The system of equations generated should be of low degree for a successful algebraic 

attack. Attacker should try to reduce the degree of the generated equations as far as 

possible. The reduction of degree will significantly reduce the complexity of solving the 

system of equation and hence makes it easier to recover the internal state of the cipher.  

- Solve the generated system of equation efficiently. For solving the system of equation 

method like linearization can be used.  

The objective of this paper is to analyse the resistance strength of PingPong family of stream 

ciphers against algebraic attack. In 2000 Lee et al. proposed an improved summation 

generator with 2 bit memory [10] to provide resistance against the correlation attack. 

However, it was found that the improved summation generator was still susceptible to several 

attacks including the algebraic attack [6, 11]. PingPong keystream generator [12] was 

proposed to overcome these security weaknesses of the improved summation generator.  This 

is an irregularly and mutually clocked stream cipher which exploits two LFSR output bits and 

two memory output bits with a nonlinear combiner to produce the keystream bits.  It will be 

shown that, due to the irregular and mutual clocking of the LFSR’s the degree of generated 

algebraic equations tend to increase which increases the complexity of solving such system of 

equations and makes it infeasible to make an attack based on the algebraic analysis.  

The rest of the paper is organized as follows. Section 2 provides an overview of PingPong 

family of stream ciphers. Section 3 provides the algebraic analysis of PingPong 128. 

Resistance analysis of other instances of PingPong stream cipher is discussed in section 4. 
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Section 5 discusses the approach of direct recovery of the key bits based on algebraic 

analysis. Finally, section 6 concludes this paper. 

 

2. Background of PingPong Family of Stream Ciphers 

PingPong family of keystream generator is based on two mutually clock controlled linear 

feedback shift registers LFSR A (La) and LFSR B (Lb), and two memory bits. The output key 

stream is generated by combining the output of the two LFSR sequences and the memory 

sequences with a nonlinear combining function. The two LFSRs used in the PingPong 

generator are of length l bits and m bits respectively. Along with the memory bits, PingPong 

family of stream cipher has an internal state of l + m bits.  It uses two primitive polynomials, 

Pa(x) and Pb(x) which defines the tap connection of LFSR A (La) and LFSR B (Lb).  

 

Figure 1: Key generation in PingPong family of stream ciphers 

The working principle of PingPong keystream generator is shown in figure 1. At time instant 

t, the output of the LFSR A (La) and LFSR B (Lb) are denoted by at and bt respectively while 

ct and dt represents the memory bit. The memory bits are defined by the function fc and fd 

respectively and at time t these functions are defined as 

11 )(),,(   ttttttttct cbabacbafc                                                                                      (1) 

11 )(),,(   tttttttdt dbabdbafd                                                                                   (2) 
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The output of the keystream generator is obtained by combining the output of the LFSR 

sequences and the memory bit sequences. The output sequence at time t is denoted by tz , and 

defined as 

11   ttttt dcbaz                                                                                                          (3) 

In PingPong family of stream ciphers, two linear feedback shift register LFSR A (La) and 

LFSR B (Lb) are mutually clock controlled by the functions fb(Lb) and fa(La) respectively.  

The mutual clock controlled structure is used to provide irregular clocking of the LFSRs 

which increases the nonlinearity of the output key stream. The clock controlling mechanism 

of LFSR A (La) is defined by a function fb(Lb) which takes input from two random register’s 

value of LFSR B (Lb) at time instant t. Clock controlling of LFSR B (Lb) is also performed in 

a similar manner where the function fa(La) takes input from two random register’s value of 

LFSR A (La). Depending on the value of the registers at time instant t, the LFSR’s are 

clocked between 1 to 4 times. 

For the initial key loading process k bit key and k bit initial vector (IV) are used to determine 

the initial state of the LFSRs. The generator is used twice to determine the initial internal 

state of the LFSRs. The starting state of the l bits for LFSR A is obtained by simply XOR-ing 

the k bit binary string with the k bit IV. The starting state of the m bits LFSR B is obtained by 

embedding the k bit key in a (k+1) bit word and shifting 1 bit left, and then XOR-ing that 

with the IV embedded in a (k+1) bit word with a leading zero. The generator is then run to 

produce an output string of length l+m bits. For the second iteration, the first l bits of the 

output is used to fill up the contents of LFSR A and the rest m bits are used to fill up the 

contents of LFSR B. The cipher is then run again for second time to produce an output string 

of length l+m bits. Similar, to the first iteration, the first l bits of the output is used to fill up 

the internal initial state of LFSR A and the rest m bits are used to fill up the internal initial 

state of LFSR B. The generator then can be used to produce keystream bits. 

 

2.1 PingPong-128 Keystream Generator 

PingPong-128 [12] is a member of the PingPong family keystream generator which uses 

LFSR A (La) and LFSR B (Lb) of size 127 and 129 bits respectively and has a key size of 128 

bits. These 128 bits of key and an initial vector of 128 bits are combined to fill up the 256 bits 

internal state. PingPong-128 uses two primitive polynomials, Pa(x) and Pb(x) which are given 

below 
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 The feedback connection of LFSR A (La) and LFSR B (Lb) is determined by the primitive 

polynomials, Pa(x) and Pb(x) respectively. Since primitive polynomial is used for the 

feedback connection, both of the LFSRs generate maximal length sequence. LFSR A (La) has 

a period of 12127   and LFSR B (Lb) has a period of 2
129 

- 1. The two clock controlled 

functions of PingPong 128 are defined as follows 

1)()(2)( 8542  tLtLLf aaaa                                                                                                  (6) 

1)()(2)( 8643  tLtLLf bbbb                                                                                                 (7) 
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As can be seen from equation (6), the clock controlling function fa(La) takes input from the 

42
nd

  and 85
th

 register of LFSR A (La) at time instant t. Similarly, equation (7) describes that 

the clock controlling function fb(Lb) takes input from the 43
rd

 and 86
th

 register of LFSR B (Lb) 

at time instant t. 

 

2.2 PingPong-192 Keystream Generator 

PingPong-192 keystream generator uses two LFSRs defined as LFSR A (La) and LFSR B 

(Lb) of size 191 and 193 bits respectively and has a key size of 192bits. These 192 bits of key 

are combined with the initial vector to fill up the internal states of the LFSR. Two primitive 

polynomials are used for the feedback connection which generates maximal length sequence 

for both LFSRs. LFSR A (La) has a period of 2
191 

- 1 and LFSR B (Lb) has a period of 2
193 

- 1. 

The two clock controlled functions of PingPong-192 are defined as follows 

1)()(2)( 12764  tLtLLf aaaa                                                                                               (8) 

1)()(2)( 12865  tLtLLf bbbb                                                                                                (9) 

As can be seen from equation (8), the clock controlling function fa(La) takes input from the 

64
th

  and 127
th

 register of LFSR A (La) at time instant t. Similarly, equation (9) describes that 

the clock controlling function fb(Lb) takes input from the 65
th

 and 128
th

 register of LFSR B 

(Lb) at time instant t. 

 

2.3 PingPong 256 Keystream Generator 

The two LFSRs used for PingPong-256 keystream generator are defined as LFSR A (La) and 

LFSR B (Lb) and has a size of 255 bits and 257 bits respectively. A key size of 256 bits is 

combined with the initial vector to fill up the internal state of these two LFSR. Two primitive 

polynomials are defined for the feedback connection which generates maximal length 

sequence for both of the LFSRs. LFSR A (La) has a period of 12255   and LFSR B (Lb) has a 

period of 12257  . The two clock controlled functions of PingPong-256 are defined as follows 

1)()(2)( 17185  tLtLLf aaaa                                                                                              (10) 

1)()(2)( 17386  tLtLLf bbbb                                                                                              (11) 

As can be seen from equation (10), the clock controlling function fa(La) takes input from the 

85
th

  and 171
st
 register of LFSR A (La) at time instant t. Similarly, equation (11) describes 

that the clock controlling function fb(Lb) takes input from the 86
th

 and 173
rd

 register of LFSR 

B (Lb) at time instant t. 

 

3. Algebraic Analysis of PingPong-128 

In PingPong 128, the output of the two mutually clock controlled LFSR’s are combined with 

two memory bits to compute the keystream bit. In order to provide an analysis based on 

algebraic attack we need to get rid of the memory bits. By using equation (1) and (2) the 

update functions of the two memory bits ct and dt can be represented as 

11   ttttttt cbcabac                                                                                                          (12) 

11   tttttt dbdabd                                                                                                         (13) 
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In the following steps, we will show how to get rid of the memory bits and generate a 

relationship between the internal states and the output keystream bits. Adding equation (12) 

and (13) we get, 

))(( 11   ttttttttt dcbabbadc                                                                           (14) 

By using equation (3), the memory bits at time instant t-1 can be written in terms of the 

output bits of the two LFSR and the keystream bit at time instant t. 

ttttt zbadc   11                                                                                                       (15) 

Substituting equation (15) into equation (14) we get, 

))(( tttttttttt zbababbadc                                                                        (16) 

At time instant t+1, the output of the keystream bits can be written as follows by using 

equation (3) 

ttttt dcbaz   111                                                                                                      (17) 

Then substituting equation (16) into equation (17) we get 

))((111 ttttttttttt zbababbabaz  
                                                            (18) 

It can be seen from equation (18), that a relationship has been formed between the keystream 

bits and the internal state of the LFSR without involving the memory bits. The equation has a 

degree of 2 and in this case, the total number of monomials expected to appear in the system 

is
152

1
2

256









 i i

M . According to Strassen’s algorithm [13] it requires at most 2
45

 

operations to solve these system of equations. However, the irregular clocking of the system 

has not been taken into account in the above equation. The number of generated equations 

and the overall degree of the system increases drastically due to the mutual irregular clocking 

in PingPong-128. The following steps describe how to incorporate the clocking mechanism 

used in the PingPong into one equation.  

As stated earlier, the clock controlling in PingPong is mutual and irregular. The two clock 

controlling functions of LFSR A (La) and LFSR B (Lb) is defined by equation (6) and (7) 

respectively. Both of these LFSRs are clocked between 1 to 4 times depending on the 

contents of the clock controlling bits at time instant t. A relationship can be obtained between 

the internal state of LFSR B (Lb) and the output of PingPong-128 by incorporating the clock 

controlling bits from LFSR A (La) as variables into LFSR B (Lb). Similarly, we need to 

incorporate the clock controlling bits from LFSR B (Lb) as variables into LFSR A (La). Based 

on equation (6) and (7), table 1 illustrates the clocking scheme by a binary truth table of all 

the clocking possibilities  

Table 1: Clock control description of PingPong 128 

LFSR B (Lb) LFSR A (La) 
ta42  ta85  Number of clocking tb43  tb86  Number of clocking 

0 0 1 0 0 1 

0 1 2 0 1 2 

1 0 3 1 0 3 

1 1 4 1 1 4 
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Incorporating the relationship between the clock controlling bits ( ta42 , ta85 ) as shown in table 

1, the relationship between the number of clocking and the state of i
th

 register in LFSR B (Lb) 

can be represented in an algebraic expression as follows  


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In this case, the internal state of the i
th

 register in LFSR B (Lb) can be represented as 

t

i

ttt

i

ttt

i

ttt

i

ttt

i BaaBaaBaaBaaB 48542385422854218542

1 )1()1()1)(1( 

                        (19) 

Similarly, the clock controlling bits ( tb43 , tb86 ) are incorporated to build a relationship between 

the number of clocking and the state of i
th

 register in LFSR A (La). 
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In this case, the internal state of the i
th

 register in LFSR A (La) can be represented as 

t

i

ttt

i

ttt

i

ttt
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ttt

i AbbAbbAbbAbbA 48643386432864318643

1 )1()1()1)(1( 

                           (20) 

It can be seen from equation (19) and (20) that the degree of the equation increases with each 

successive clock. Substituting the new representation of the outputs of LFSR A (La) and 

LFSR B (Lb) into equation (18) will result an equation of degree 6 for the first output bit. 

However, the degree keeps increasing with each successive clock because of the mutual 

clocking function of the LFSR. For a standard algebraic attack on mutually clock controlled 

linear feedback shift register [5] with size of l and m, the degree of the generated equation 

will be ml  with a maximum of 


 






 ml

i i

ml

1
 monomials. 

According to Strassen’s algorithm, the complexity of solving such a system of equation with 

the linearization approach is at most


















 






ml

i i

ml

1
, where 3807.2  . 

Following the above mentioned property, maximum possible degree of the generated system 

of equations for PingPong 128 is d = l+m = 256. In such case the maximum number of 

monomial expected to appear in the generated equation is 
256

1
2

256















mld

i i
M and 

according to Strassen’s algorithm the attack complexity of solving such system of equation 

can be computed as approximately 7683 2M . Clearly, the attack complexity is much worse 

than the exhaustive key search and is an infeasible solution for practical scenario.  

In the following we will discuss about the effectiveness of an attack by guessing the contents 

of one LFSR. It is worth to note that if the content of one LFSR is guessed in the current 

clocking mechanism, then the degree of the initially generated equation will be 3. However, 

this degree also tends to increase because of the nonlinear update of the clock control 
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function and can have a maximum degree of size equal to the length of the other LFSR size. 

In the guessing approach, the internal state of one LFSR is guessed and the internal state of 

the other LFSR is recovered by solving the low degree equation. For a mutually clock 

controlled stream cipher, guessing k bits of the internal state will reduce the overall degree of 

equations by k and the complexity of such algebraic attacks using guessing approach will be 

















 
 





)(

1
)12(

kml

i

k

i

kml
,where 3807.2  . Following this, the attack complexity of 

PingPong 128 for such divide and conquer style attack is listed down in table 2.  

Table 2: Attack complexity with the guessing approach 

Guessed 

LFSR 

Maximum degree of 

equations 

Required 

keystream 

Total attack complexity 

(approx.) 

LFSR A (La) d=129 1292  514387127 222   

LFSR B (Lb) d=127 1272  510381129 222   

 

Since, both of the LFSRs are almost equal size, guessing either LFSR will therefore result in 

similar attack complexity. As illustrated in table 2, guessing the contents of LFSR A (La) will 

require solving equations with 2
129

 unknowns, while guessing LFSR B (Lb) ends up with 

equations having 2
127  

unknowns. Solving such system of equations requires a huge number 

of operations and moreover we need to consider the number of operations required for the 

guessing approach as well. In total, 2
514

 operations are required to recover the internal initial 

state when the contents of LFSR A (La) are guessed, whereas guessing LFSR B (Lb) requires 

2
510

 operations. The guessing approach reduces the total attack complexity significantly 

compared to the standard algebraic attack; however still the attack complexity is much worse 

than the exhaustive key search attack. As well as it requires a huge amount of keystream bits. 

There, might exist some low degree multiples or annihilators to reduce the overall degree of 

the generated equations. However, the degree of these multiples also increases with time due 

to the nonlinear clock controlling function. Moreover, currently there exist no suitable 

algorithm to find low degree multiples for a system of equation having large number of 

variables. 

Another alternative attack can proceed for the mutual clock controlling LFSR by preventing 

the degree accumulation as illustrated in [5]. In such case, the degree accumulation is 

prevented by introducing new variables for the register state at every clock. Since PingPong 

128 is a mutually clock controlled generator the same method can be applied for the 

prevention of degree accumulation. For PingPong 128 it is required to introduce 

655362562  number of variables and the same number of equation in the system. The degree 

of the monomials in such a system of equation will be 6. These equations can be solved by 

Gröbner based methods; however the complexity of solving such system of equation is 

unknown. 

 

4. Resistance Analysis to Algebraic Attack for Other Instances of PingPong Family 

Stream Cipher 

The basic structure and working principle for all of the PingPong family stream cipher is 

same. The main difference between the members of the PingPong family stream cipher is the 

length of the LFSR size. In this section, we analyze the resistance of other instances (e.g. 

PingPong 192, PingPong 256) of PingPong family stream cipher against algebraic attack. 
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Since the internal mechanism of all PingPong family stream cipher is same, therefore; we can 

use similar method described in section 3 to incorporate the algebraic representation for 

PingPong 192 and PingPong 256. For PingPong 192 the internal state of the i
th

 register for 

LFSR B (Lb) and LFSR A (La) can be represented by the following equations. Here, 

( ta64 , ta127) represents the clock controlling bits for LFSR B (Lb) and ( tb `65 , tb128) represents the 

clock controlling bits for LFSR A (La) in PingPong 192. 

t

i

ttt

i

ttt

i

ttt

i

ttt

i BaaBaaBaaBaaB 412764312764212764112764

1 )1()1()1)(1( 

                    (21) 

t

i

ttt

i

ttt

i

ttt

i

ttt

i AbbAbbAbbAbbA 412865312865212865112865

1 )1()1()1)(1( 

                       (22) 

Similarly, for PingPong 256 the internal state of the i
th

 register for LFSR B (Lb) and LFSR A 

(La) can be represented by incorporating the corresponding clock controlling registers 

( ta85 , ta171) and ( tb `86 , tb173).  The algebraic representation of the internal state of the LFSRs for 

PingPong 256 is shown in the following equations.   

t

i

ttt

i

ttt

i

ttt

i

ttt

i BaaBaaBaaBaaB 417185317185217185117185

1 )1()1()1)(1( 

                     (23) 

t

i

ttt

i

ttt

i

ttt

i

ttt

i AbbAbbAbbAbbA 417386317386217386117386

1 )1()1()1)(1( 

                       (24) 

As seen from the above equations, the degree of the generated equations increases by one or 

two for each successive clock. For the first output bit, the degree of the overall generated 

equation is 6. However, this degree tends to increase due to the mutual irregular clock 

controlling function. Table 3 illustrates the attack complexity for mounting an attack on 

PingPong 192 and PingPong 256 based on the algebraic attack with guessing approach. 

Table 3: Attack complexity with the guessing approach for different instances of PingPong 

stream ciphers 

 

As shown in table 3, the complexity of a divide and conquer style attack increases with the 

increase of the LFSR length. For both PingPong 192 and PingPong 256, the complexity of 

the attack is too high and infeasible in a practical scenario. To recover the internal state of the 

LFSR with such an attack will require thousands of years. It is also found that the complexity 

of the attack with guessing approach is much higher compare to the exhaustive key search 

attack and as the length of the LFSRs are increased the complexity also increases. 

 

5. Direct Recovery of the Key Bits  

In most of the modern stream ciphers the initial secret key is expanded (possibly 

incorporating with an initial vector (IV)) to fill up a comparatively large size of internal state. 

For instance, in PingPong 128 a key size of 128 bits are used with an IV of 128 bits to fill up 

the internal state of 256 bits. If the variables represented in the abovementioned algebraic 

attack represent the key bits instead of the initial internal state bits then there will be fewer 

 Guessed 

LFSR 

Maximum degree 

of equations 

Required 

keystream 

Total attack complexity 

(approx.) 

PingPong 

192 

LFSR A (La) d=193 1932  770579191 222   
LFSR B (Lb) d=191 1912  766573193 222   

PingPong 

256 

LFSR A (La) d=257 2572  1026771255 222   
LFSR B (Lb) d=255 2552  1022765257 222   
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number of variables required to be considered. Following equation (19) and (20) it can be 

seen that if the variables in the equation represents the key bits rather than the initial internal 

state of the cipher, then the generated system of equations will have k numbers of variable 

(where k is the size of the key) with a maximum degree of k and a maximum number of 

  






k

i i

k

1
 monomials. In order to recover the key directly, the attacker needs to compute the 

initial internal state in a pre-computation step where the internal state of the cipher will be 

represented in terms of the key k. Since, the degree of the output equation increases with each 

clock, therefore the internal contents of the register will be high degree functions of all the 

key bits. In the following, we first describe the procedure for algebraic attack against 

PingPong keystream generator to recover the key, k directly and then discuss about the attack 

complexity for such an attack. 

 

Pre-computation Steps 

 

Goal: To find the initial contents of the LFSRs in terms of the key bit variables 

Input to the starting state of LFSR A: XOR [k, IV] 

Input to the starting state of LFSR B: XOR [(0|k)<<1, (0|IV)] 

 

 

Step 1: Run the generator to produce l+m bits of output string. Input the first l bits 

of the obtained output into LFSR A and the rest m bits into LFSR B. 

Step 2: Run the generator second time to produce l+m bits of output string which 

defines the initial internal state of the cipher. Input the first l bits of the obtained 

output as the initial contents of the registers in LFSR A and the rest m bits as the 

initial contents of the LFSR B. 

 

After Computation Steps 

 

Goal: Recover the secret key of the cipher 

 

 

Step 1: Generate   






k

i i

k

1
number of equations in terms of the initial state 

obtained in the pre-computation step. 

Step 2: Insert the observed keystream bits into the corresponding identifier of each 

equation. 

Step 3: Solve the generated system of equations using linearization approach to 

recover the secret key. 

Step 4: Output the secret key bits 

 

As illustrated in the above procedure, in the pre-computation phase the initial contents of the 

registers will be computed which generally are high degree function of the input key bit 

variable. Once the internal initial states of the LFSRs are defined, then the after-computation 

steps are similar to the procedure as discussed in the previous sections. It is noted that in the 

pre-computation stage the information for the IV are used which is known publicly. Since, 

the use of the information for IV and the key bits reduces the total number of variable in the 
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system of equations; therefore it will reduce the attack complexity for this approach as well. 

In the following, table 4 lists down the required attack complexity to recover the secret key 

bits directly for different instances of PingPong family stream cipher. 

Table 4: Attack complexity for the direct recovery of the key bits of PingPong keystream 

generator 

 
Maximum 

degree 

Required 

Keystream 

Required 

Memory 

Attack 

Complexity 

PingPong 128 128 2
128

 2
256

 2
384

 

PingPong 192 192 2
192

 2
384

 2
576

 

PingPong 256 256 2
256

 2
512

 2
768

 

From table 4 it can be seen that the attack complexity has been significantly reduced 

compared to the algebraic attack mentioned in the previous sections. This is because in this 

scenario the generated system of equations can have a maximum degree of k whereas for the 

attack mentioned in the previous section can have a maximum degree of l+m. However, for 

this scenario as well the attack complexity is much worse than the exhaustive key search 

attack. 

 

6. Conclusion 

In this paper, we have analyzed the PingPong family of stream ciphers against algebraic 

attack. It is shown that, PingPong stream cipher is highly resistant to algebraic attack because 

of the mutual and irregular clock controlling. For PingPong stream ciphers, a standard 

algebraic attack with the linearization approach requires much more operations compare to 

the exhaustive key search attack. This is because the degree of the generated equations 

increases with each clocking due to the irregular mutual clock control function of the cipher. 

There might exist some low degree multiples to reduce the degree of the equations; however 

degree of such multiples also tends to increase. Moreover, currently there is no suitable 

algorithm to find low degree multiples for a system having large number of variables.   

Guessing some of the content of the LFSR is an approach which has been successfully used 

to attack on some of the stream ciphers. The feasibility of such an attack with the guessing 

approach is also examined for the PingPong stream cipher. The guessing approach reduces 

the complexity compare to the standard algebraic attack. On the other hand, if the algebraic 

attack uses the information of the initial vector to recover the secret key bits directly, then the 

complexity of the attack procedure can be further reduced; however it is still much worse 

than the exhaustive key search attack. Overall, we have shown that PingPong family of 

stream ciphers have enhanced the security of improved summation generator and provide 

high resistance against the algebraic attack due to their mutual irregular clock controlling 

function. 
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