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Abstract. Outsourced computations (where a client requests a server to perform some computation on
its behalf) are becoming increasingly important due to the rise of Cloud Computing and the proliferation
of mobile devices. Since cloud providers may not be trusted, a crucial problem is the verification of the
integrity and correctness of such computation, possibly in a public way, i.e., the result of a computation
can be verified by any third party, and requires no secret key – akin to a digital signature on a message.
We present new protocols for publicly verifiable secure outsourcing of Evaluation of High Degree Polyno-
mials and Matrix Multiplication. Compared to previously proposed solutions, ours improve in efficiency
and offer security in a stronger model. The paper also discusses several practical applications of our
protocols.

1 Introduction

The rise of Cloud Computing (a computational infrastructure that allows businesses to lease comput-
ing resources from a service provider) raises several new security problems that must be addressed
by the research community. In particular, a fundamental component of any secure cloud computing
approach is a mechanism that enforces the integrity and correctness of the computations done by
the provider on behalf of a client.

This problem can be modeled as following: a computationally weak client asks a powerful server
to perform some computation on its behalf. The server must provide the result of the computation
together with a “certificate” of its correctness. Crucially, the verification of such correctness proof
must be substantially “easier” than the computation that was initially outsourced, since otherwise
the client would either not be able to verify the proof, or would perform the computation on its own
to begin with. This verification mechanism should not come at the expense of increasing the server’s
overhead: in other words producing the certificate should be “almost for free” for the server, which
might provide this service to many clients, and therefore it should not become a computational
bottleneck.

Outsourced computations are also increasingly important for mobile devices, such as smart
phones and netbooks, which might resort to a network server to perform heavy computations, e.g.,
a cryptographic operation or a photo manipulation. Here too, an efficiently verifiable proof of the
correctness might be required.

An important question is whether the verification of the computation can be public: i.e., can
any third party (possibly different from the client who outsourced the computation) verify it? This
is important, for example, in contexts where the computation has to be checked by several clients
who cannot necessarily share a secret key, or if the proof of correctness must be transferable –
similarly to a digital signature on a message.
? Work done while at IBM Research



Our Contributions. The main results of this paper are two new protocols for publicly verifiable
secure outsourcing of:

– Evaluation of High Degree Polynomials. In this case the client stores a large (degree d) polyno-
mial F with the server and then requests the value y = F (x) for several inputs x.

– Matrix Multiplication. Here the client stores a large (n × d) matrix M with the server and
then provides an d-dimensional vector x and obtains y = M · x. Note that this immediately
generalizes to matrix multiplication (providing input M ′ and obtaining Y = M ·M ′ by applying
the above solution to each column of M ′).

Our schemes are in the amortized model of [8] in which the client invests a one-time expensive
computation phase (O(d) in the polynomial case, O(nd) in the matrix case) when storing the data
with the server. Then verification of each evaluation will be fast (o(d) and o(nd) respectively).

Other Contributions: As a crucial tool to establish our results, we rely on the use of pseudo-
random functions with closed-form efficiency (as defined in [4]). However for our purposes we had
to extend the definition in [4] to handle larger classes of functionalities (for example we could not
see how to use the definition in [4] to handle matrix multiplication). Moreover, we develop new such
PRFs based on the Decisional Linear Assumption, that in particular can be used in groups with
bilinear maps. Both our new definition and the new construction might be of independent interest.

Finally we discuss “multi-function” extensions of our protocols: this is the dual case in which
the client stores a large (say `) number of inputs with the server in advance, and then later queries
different functions (F or M). Here the technical challenge is that the authentication information
stored with the inputs must be ”oblivious” to any function that will be applied later.

Applications: As discussed in [4], polynomial computations have a large number of applications,
which – using our solutions – now have publicly verifiable proofs:

– Proof of Retrievability: The client stores a large file F with the server and later wants a short
proof that the entire file can be retrieved. Using our solution, the client encodes the file as a
polynomial F (x) of degree d (each block representing a coefficient), and a proof of retrievability
consists of the value F (r) together with a proof of its correctness for a random input r provided
by the client.

– Verifiable Keyword Search: Consider a text file T = {w1, . . . , w`} where wi are the words con-
tained in it. Using our solution, encode T as the polynomial F (·) of degree ` such that F (wi) = 0.

– Discrete Fourier Transform: Both our polynomial and matrix protocols can be adapted to
obtain a fast verifiable computation protocol for the DFT. The challenge here is that using
the FFT algorithm such computation is already almost linear – O(n log n) – and therefore the
verification time had to be minimal, i.e., O(n) linear in the input size.

– Linear Transformations: Consider the general problem of applying a geometric transformation
(such as the ones largely used in computer graphics) to large d-dimensional vectors. Since a
linear transformation on a vector x can be expressed by a matrix M (of size n× d) multiplying
x, a weak client can use our matrix protocol to outsource and verify this computation in the
optimal time O(n+ d), i.e., linear in the input and the output size.

1.1 Related Work

The subject of verifiable outsourced computation has a large body of prior work. In the theoretical
arena this basic question motivated the work on Interactive Proofs [2, 11], efficient arguments based
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on probabilistically checkable proofs (PCP) [13, 14], CS Proofs [17] and the muggles proofs in [10].
However, in PCP-based schemes, the client must store the large data in order to verify the result, and
therefore these solutions might not be applicable to our setting. In the past, more practical solutions,
but of limited provable security, were also proposed: e.g., solutions based on audit (e.g. [19, 3]) or
secure co-processors (e.g. [22, 23]) which ”sign” the computation as correct, under the assumption
that the adversary cannot tamper with the processor.

As mentioned above, our work follows the paradigm introduced in [8] which is also adopted in
[7, 1]. The protocols described in those papers allow a client to outsource the computation of an
arbitrary function (encoded as a Boolean circuit) and use fully homomorphic encryption (i.e. [9])
resulting in solutions of limited practical relevance.

We follow [4] by considering only a very limited class of computations in order to obtain better
efficiency. In [4] the problem of practical protocols for verifiable computation of polynomials was
first proposed, however their solution only offers private verifiability. The problem of outsourcing
linear algebra operations, such as matrix multiplications, has been recently considered by Mohassel
in [18]. The proposed solutions are in a different model, they offer only private verifiability, and
allow to hide the computation’s inputs to the server.

To the best of our knowledge, apart from the work of [21] described below, no other prior work
in the literature discusses the multi-function case.

1.2 Recent Works with Public Verification

Recently two works have considered public verification [20, 21]. Here we give a detailed comparison
of their results with our solutions.

Papamanthou, Shi and Tamassia in [20] consider the case of polynomial evaluation. Their
solutions are secure under the d-SDH assumption which asymptotically depends on the degree of
the polynomial. In contrast, an advantage of our work is to achieve security under a “constant” size
assumption, which is independent of the size of the input. Furthermore, our solutions can handle
a larger class of polynomial functions: their scheme supports polynomials in m variables and total
degree d – which we also support – but we additionally consider also polynomials of degree d
in each variable. For the case we both support, we enjoy a much faster verification protocol: a
constant amount of work (one pairing computation and one exponentiation) while they require
O(m) pairings3.

Parno, Raykova and Vaikuntanathan in [21] explore a connection between Attribute-Based
Encryption and the problem of verifiable computation, showing that for any function for which an
efficient ABE exists, we can construct an efficient publicly verifiable computation scheme. The class
of functions for which we know an efficient ABE scheme is unfortunately very limited, and therefore
the scheme in [21] does not work for any arbitrary poly-time computation. However, it does work
for computations that can be expressed as poly-size Boolean Formulas, which in particular include
polynomial evaluation and matrix multiplication. Compared to [21], our scheme has three major
advantages: (i) when evaluating a polynomial/matrix over a field with p elements, the scheme in [21]
incurs a multiplicative overhead of O(log p) in its complexity compared to ours as they must express

3 In contrast the delegation phase is basically free in their case, while our delegation step requires O(md) work –
note however that in publicly verifiable scheme, the verification algorithm might be run several times and therefore
its efficiency is more important.
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the computation as a Boolean formula (i.e. bit by bit)4; (ii) our protocol enjoys faster verification,
a constant amount of computation, whereas in [21] the verification has a O(log p) overhead; (iii)
the result published in [21] is secure only under a weaker “selective” notion of security, where the
adversary must commit in advance to the input point x on which it is going to cheat (i.e. provide
the client with an incorrect value y′ 6= F (x)). In contrast, our protocols achieve full security.

The selective security limitation in [21] is inherited from the specific ABE scheme used in
their protocol (the one in [12]). Recently, a new ABE scheme has been presented that removes
the selective security issue [15], and therefore when combined with [21] should yield a fully secure
verifiable computation solution. The efficiency of this new scheme is no better than the original one
in [21]. Moreover, the new ABE scheme in [15] also requires a “non-constant-size” computational
assumption that depends on the size of the Boolean Formula (i.e., of the polynomial or of the
matrix, when instantiated in [21]). Again our protocol only requires constant-size assumptions.

In Table 1 we summarize a “features comparison” between our scheme and these two recent
schemes (and also [4]).

Properties
Schemes Public Full Const. Const.

Verif. Secur. Assump. Verif.

BGV11 [4] × X X X
PST11 [20] X X × ×
PRV12 [21] X × X ×

+ GPSV06 [12]

PRV12 [21] X X × ×
+ LW12 [15]

This work X X X X
Table 1. Comparisons with related work.

1.3 An overview of our solutions

Polynomial Evaluation. Our starting point is the protocol of [4]: assume the client has a
polynomial F (·) of large degree d, and it wants to compute the value F (x) for arbitrary inputs x.
In [4] the client stores the polynomial in the clear with the server as a vector of coefficients ci in
Zp. The client also stores with the server a vector of group elements ti of the form gaci+ri where g
generates a cyclic group G of order p, a ∈R Zp, and ri is the ith-coefficient of a polynomial R(·) of
the same degree as F (·). When queried on input x, the server returns y = F (x) and t = gaF (x)+R(x),
and the client accepts y iff t = gay+R(x).

If R(·) was a random polynomial, then this is a secure way to authenticate y, however checking
that t = gay+R(x) would require the client to compute R(x) – the exact work that we set out
to avoid! The crucial point, therefore, is how to perform this verification fast, i.e., in o(d) time.
The fundamental tool in [4] is the introduction of pseudo-random functions (PRFs) with a special
property called closed-form efficiency: if we define the coefficients ri of R(·) as PRFK(i) (which
4 One should remark that in our scheme the field size p is the same p as the order of the underlying bilinear groups

that we use to cryptographically prove security, therefore our solution cannot handle small field sizes. In contrast,
[21] supports polynomials over any field, in particular Z2.

4



preserves the security of the scheme), then for any input x the value gR(x) can be computed very
efficiently (sub-linearly in d) by a party who knows the secret key K for the PRF.

Note, however, that this approach implies a private verification algorithm by the same client
who outsourced the polynomial in the first place, since it requires knowledge of the secret key
K. To make this verification public we extended these techniques as follows. First we use a cyclic
group G that admits a bilinear map e(·, ·) from G×G to a target group GT . Informally, (the actual
protocol is slightly more complicated), when the client sends x to the server it also computes a
public verification key for x, A = e(g, g)a and VKx = e(g, g)R(x) – note that this step will take o(d)
time thanks to the closed-form efficiency of the PRF. When the server returns y, t, anybody who
knows5 the correct A,VKx can verify it by checking that e(t, g) = Ay · VKx.

A technical complication is that the PRFs in [4] are based on the hardness of the Decisional
Diffie-Hellman problem which however is easy on groups that admit bilinear maps. The first solution
we propose to this problem is to instantiate our protocol in asymmetric bilinear groups, and assume
that these PRFs are secure based on the External Diffie-Hellman Assumption. More interestingly,
however, we also present new solutions that rely on the much weaker Decision Linear Assumption
over bilinear groups, by devising closed-form efficient variants of the Lewko-Waters PRF [16]. This
result can be of independent interest.

As in [4], we have solutions not just for single-variable polynomials of degree d, but also for
multivariate polynomials of degree d in each variable and of total degree d.

Matrix Multiplication. The client stores a n× d matrix M = (mi,j) with the server and wants
to compute the value y = M ·x for a d-dimensional vector x; the goal is to verify y in O(n+d). Our
solution also uses the concept of closed-form efficient PRFs: the client stores the matrix in the clear
together with another matrix W whose elements are group elements of the form Wi,j = gami,j+ri,j ,
where a ∈R Zp, and ri,j = PRFK(i, j) defines a n × d pseudo-random matrix R. We propose new
PRFs with closed-form efficiency for matrix-vector multiplication, i.e., such that the vector gR·x can
be computed in time O(n+d) by somebody who knows the key K. The verification then proceeds as
in the polynomial case. The server returns y = M ·x and t = W ·x (computed in the exponent) and
private verification can be obtained by having the client check the vector of equations t = gay+Rx

using the closed form efficiency for computing gRx efficiently. Public verification can be obtained
by having the client publish A = e(g, g)a and the vector VKx = e(g, g)R·x (again computed fast
using closed-form efficiency of the PRF), and then anybody can verify the following vector equation
e(t, g) = Ay · VKx (component-wise).

1.4 Paper Organization

In Section 2 we recall the security definitions and the computational assumptions needed by our
protocols. In Section 3 we present our new PRFs with closed form efficiency based on the Decision
Linear Assumption, which are the basic tools used by our protocols that are described in Section
4. We discuss multi-function extensions of our techniques in Section 5, while the DFT application
is discussed in Section 6.

5 Here we can assume that the client has a way of reliably publishing the values A, VKx. One possible way is for the
client to sign them and give them to the server together with x in the input submission state. The server then will
have to include the signed A, VKx in the “correctness proof” and the verification algorithm must also check the
validity of the client’s signature.
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2 Background and Definitions

In what follows we will denote with λ ∈ N a security parameter. We say that a function ε is
negligible if it vanishes faster than the inverse of any polynomial. If S is a set, we denote with
x

$← S the process of selecting x uniformly at random in S. Let A be a probabilistic algorithm.
We denote with x

$← A(·) the process of running A on some appropriate input and assigning its
output to x.

2.1 Computational Assumptions

The co-Computational Diffie-Hellman problem was introduced by Boneh, Lynn and Shacham as a
natural generalization of the Computational Diffie-Hellman problem in asymmetric bilinear groups
[6]. It is defined as follows.

Definition 1 (co-CDH). Let G1,G2,GT be groups of prime order p, so that e : G1×G2 → GT is
a bilinear map. Let g1 ∈ G1, g2 ∈ G2 be generators, and a, b $← Zp be chosen at random. We define
the advantage of an adversary A in solving the co-Computational Diffie-Hellman problem as

AdvcdhA (λ) = Pr[A(p, g1, g2, g
a
1 , g

b
2) = gab1 ]

We say that the co-CDH Assumption ε-holds in G1,G2 if for every PPT algorithm A we have that
AdvcdhA (λ) ≤ ε.
Notice that in symmetric bilinear groups, where G1 = G2, this problem reduces to the standard
CDH. For asymmetric groups, it is also easy to see that co-CDH reduces to the computational
Bilinear Diffie-Hellman problem [5].

As it is well known the decisional version of the CDH Assumption (where the adversary cannot
distinguish gab1 from a random value) is easy in symmetric bilinear groups where G1 = G2. However
in the case of asymmetric bilinear groups G1,G2 where G1 6= G2, then the DDH problem may still
be hard in G1. This is called External Diffie-Hellman (XDH) assumption stated below.

Definition 2 (XDH). Let g1, g2,G1,G2,GT be as in Def. [1]. We define the advantage AdvxdhA (λ)
of an adversary A in deciding the External Diffie-Hellman (XDH) problem as

|Pr[A(p, g1, g2, g
a
1 , g

b
1, g

ab
1 ) = 1]− Pr[A(p, g, ga1 , g

b
1, g

c
1) = 1]|

where a, b, c
$← Zp. We say that the XDH Assumption ε-holds over G1,G2,GT if for every PPT

algorithm A we have that AdvxdhA (λ) ≤ ε.

An assumption more general than XDH which we are going to use in our protocols is Decision
Linear.

Definition 3 (Decision Linear). Let G be a group of prime order p, g0, g1, g2
$← G, and r0, r1, r2

$←
Zp. We define the advantage of an adversary A in deciding the Linear problem in G as

AdvdlinA (λ) = |Pr[A(p, g0, g1, g2, g
r1
1 , g

r2
2 , g

r1+r2
0 ) = 1]−

Pr[A(p, g0, g1, g2, g
r1
1 , g

r2
2 , g

r0
0 ) = 1]|

We say that the Decision Linear Assumption ε-holds in G if for every PPT algorithm A we have
AdvdlinA (λ) ≤ ε.

We note that we do not know of an efficient way to solve the Linear Problem even if the group G
admits an efficiently computable bilinear map.
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2.2 Verifiable Computation

A verifiable computation scheme is a tuple of distributed algorithms that enable a client to outsource
the computation of a function f to an untrusted worker, in such a way that the client can verify
the correctness of the result returned by the worker. In order for the outsourcing to make sense, it
is crucial that the cost of verification at the client must be cheaper than computing the function
locally.

In our work we are interested in computation schemes that are publicly verifiable as defined by
Parno et al. [21]: any third party (possibly different from the delegator) can verify the correctness
of the results returned by the worker.

Let F be a family of functions. A Verifiable Computation scheme VC for F is defined by the
following algorithms:

KeyGen(1λ, f)→ (SKf ,PKf ,EKf ): on input a function f ∈ F , it produces a secret key SKf that
will be used for input delegation, a public verification key PKf , used to verify the correctness of
the delegated computation, and a public evaluation key EKf which will be handed to the server
to delegate the computation of f .

ProbGen(PKf , SKf , x)→ (σx,VKx): given x ∈ Dom(f), the problem generation algorithm is run by
the delegator to produce an encoding σx of x, together with a public verification key VKx.

Compute(EKf , σx)→ σy: given the evaluation key EKf and the encoding σx of an input x, this
algorithm is run by the worker to compute an encoded version of y = f(x).

Verify(PKf ,VKx, σy)→ y ∪ ⊥: on input the public key PKf , the verification key VKx, and an en-
coded output σy, this algorithm returns a value y or an error ⊥.

Correctness. Informally, a verifiable computation scheme VC is correct if the values generated
by the problem generation algorithm allows a honest worker to output values that will verify
correctly. More formally, for any f ∈ F , any (SKf ,PKf ,EKf ) $← KeyGen(1λ, f), any x ∈ Dom(f),
if (σx,VKx) $← ProbGen(PKf ,SKf , x) and σy←Compute(EKf , σx), then f(x)←Verify(PKf ,VKx, σy)
holds with all but negligible probability.

Security. For any verifiable computation scheme VC, let us define the following experiment:

Experiment ExpPubVer
A [VC, f, λ]

(SKf ,PKf ,EKf ) $← KeyGen(1λ, f)
For i = 1 to q:
xi←A(PKf ,EKf , σx,1,VKx,1, . . . , σx,i−1,VKx,i−1)
(σx,i,VKx,i)

$← ProbGen(SKf , xi)
x∗←A(PKf ,EKf , σx,1,VKx,1, . . . , σx,q,VKx,q)
(σx∗ ,VKx∗)

$← ProbGen(SKf , x
∗)

σ̂y←A(PKf ,EKf , σx,1,VKx,1, . . . , σx,q,VKx,q, σx∗ ,VKx∗)
ŷ←Verify(PKf ,VKx∗ , σ̂y)
If ŷ 6= ⊥ and ŷ 6= f(x∗), output 1, else output 0.

For any λ ∈ N, any function f ∈ F , we define the advantage of an adversary A making at most
q = poly(λ) queries in the above experiment against VC as

AdvPubVer
A (VC, f, q, λ) = Pr[ExpPubVer

A [VC, f, λ] = 1].
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Definition 4. A verifiable computation scheme VC is secure for F if for any f ∈ F , and any PPT
A it holds that AdvPubVer

A (VC, f, q, λ) is negligible.

Note that our definition captures full adaptive security, where the adversary decides “on the fly”
on which input x∗ it will try to cheat. The weaker selective security notion achieved in [21] requires
the adversary to commit to x∗ at the beginning of the game.

3 Closed Form Efficient PRF

The notion of closed form efficient pseudorandom functions was introduced in [4]. Their definition
however seemed geared specifically towards the application of polynomial evaluation and there-
fore proved insufficient for our matrix multiplication protocol. Here we extend it to include any
computations run on a set of pseudo-random values and a set of arbitrary inputs.

A closed form efficient PRF consists of algorithms (PRF.KG,F). The key generation PRF.KG
takes as input the security parameter 1λ, and outputs a secret key K and some public parameters
pp that specify domain X and range Y of the function. On input x ∈ X , FK(x) uses the secret
key K to compute a value y ∈ Y. It must of course satisfy the usual pseudorandomness property.
Namely, (PRF.KG,F) is ε-secure if for every PPT adversary A it holds:∣∣Pr[AFK(·)(1λ, pp) = 1]− Pr[AR(·)(1λ, pp) = 1]

∣∣ ≤ ε
where (K, pp) $← PRF.KG(1λ), and R(·) is a random function from X to Y.

In addition, it is required to satisfy the following closed-form efficiency property. Consider an
arbitrary computation Comp that takes as input ` random values R1, . . . , R` ∈ Y and a vector of m
arbitrary values x = (x1, . . . , xm), and assume that the best algorithm to compute Comp(R1, . . . , R`,
x1, . . . , xm) takes time T . Let z = (z1, . . . , z`) a `-tuple of arbitrary values in the domain X of F.
We say that a PRF (PRF.KG,F) is closed-form efficient for (Comp, z) if there exists an algorithm
PRF.CFEvalComp,z such that

PRF.CFEvalComp,z(K,x) = Comp(FK(z1), . . . , FK(z`), x1, . . . , xm)

and its running time is o(T ). For z = (1, . . . , `) we usually omit the subscript z.
Note that depending on the structure of Comp, this property may enforce some constraints on

the range Y of F. In particular in our case, Y will be an abelian group. We also remark that due to the
pseudorandomness property the output distribution of PRF.CFEvalComp,z(K,x) (over the random
choice of K) is indistinguishable from the output distribution of Comp(R1, . . . , R`, x1, . . . , xm) (over
the random choices of the Ri).

3.1 Closed-Form Efficient PRFs from Decision Linear

In this section we show constructions of pseudorandom functions that enjoy closed-form efficiency
for multivariate polynomials, and matrix multiplication. Their security is based on the Decision
Linear assumption.
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Polynomials of degree d in each variable As our first construction, we show that the PRF
of Lewko and Waters [16] has closed form efficiency for polynomials in m variables and degree at
most d in each variable.

First, we recall the construction PRFLW of this PRF.

PRF.KG(1λ, s,m). Generate a group description (p, g,G) $← G(1λ). Choose 4ms+ 2 values

y0, z0, {yi,j , zi,j , wi,j , vi,j}1≤i≤m, 1≤j≤s
$← Zp

Output K = (y0, z0, {yi,j , zi,j , wi,j , vi,j}i,j).
FK(i). The domain of the function is i = (i1, . . . , im) ∈ [0..d]m, but we interpret each ij =

(ij,1, . . . , ij,s) as a binary string of s = dlog de bits. The function is computed by the following
algorithm:

Initialize a←y0, b←z0

For j = 1 to m:
For k = 1 to s:

If ij,k = 0, then a←a, b←b.
Else, a←a · yj,k + b · zj,k, b←a · wj,k + b · vj,k

Output ga

Except for a few changes in the notation, the function above is the same as the one in [16].
Therefore, its security follows from the following theorem.

Theorem 1 ([16]). If the Decision Linear assumption holds for G, then PRFLW is a pseudorandom
function.

In what follows we show that PRFLW admits closed form efficiency for polynomials.
Consider any polynomial p(x1, . . . , xm) in m variables of degree at most d in each variable. This

polynomial has up to l = (d+1)m terms which we can index with (i1, . . . , im) with each 0 ≤ ij ≤ d.
Our goal is to compute

Poly({R(i1,...,im)}0≤i1,...,im≤d, x1, . . . , xm) =
∏

0≤i1,...,im≤d
R

(x
i1
1 ···x

im
m )

(i1,...,im) = gp(x1,...,xm)

where p(·) is the polynomial whose coefficients are the discrete logs of the R values. We now show
that if we setR(i1,...,im) = FK(i1, . . . , im), then there exists an algorithm PRF.CFEvalPoly(K,x1, . . . , xm)
that can compute

gp(x1,...,xm) =
∏

0≤i1,...,im≤d
FK(i1, . . . , im)x

i1
1 ···x

im
m

in time O(m log d), instead of the regular computation running in time O(dm ·m · log d).
For ease of exposition, we first describe an alternative equivalent algorithm for computing

FK(i1, . . . , im). Let i = (i1, . . . , im) and denote by fK(i) = (f1
K(i), f2

K(i)) the following recursive
function:

If i1 = · · · = im = 0, then f1
K(0) = y0 and f2

K(0) = z0.
Else:

let m̄ be such that im̄+1 = · · · = im = 0 and im̄ 6= 0.
let im̄ = 2jm̄ + `m̄ for jm̄ = blog im̄c, 0 ≤ `m̄ ≤ 2jm̄ − 1
f1
K(i1, . . . , im) = f1

K(i1, . . . , im̄−1, `m̄, 0, . . . , 0)ym̄,jm̄+1 + f2
K(i1, . . . , im̄−1, `m̄, 0, . . . , 0)zm̄,jm̄+1

f2
K(i1, . . . , im) = f1

K(i1, . . . , im̄−1, `m̄, 0, . . . , 0)wm̄,jm̄+1 + f2
K(i1, . . . , im̄−1, `m̄, 0, . . . , 0)vm̄,jm̄+1
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Finally, the value of the function is FK(i) = gf
1
K(i).

Using this notation, we can now write

p(x1, . . . , xm) =
∑

0≤i1,...,im≤d
f1
K(i1, . . . , im)xi11 · · ·x

im
m

PRF.CFEvalPoly(K,x1, . . . , xm).
For j = 1, . . . ,m, set sj = dlog de, and ps1,...,sm(x1, . . . , xm) = (p1

s1,...,sm
(x1, . . . , xm), p2

s1,...,sm
(x1,

. . . , xm)) be the following recursive function:

If s1 = s2 = · · · = sm = 1, then:
p1
s1,...,sm

(x1, . . . , xm) = y0, p2
s1,...,sm

(x1, . . . , xm) = z0.
Else

let m̄ be such that sm̄+1 = · · · = sm = 1 and sm̄ > 1.
p1
s1,...,sm

(x1, . . . , xm) = p1
s1,...,sm̄−1,0,...,0(x1, . . . , xm) + x2sm̄−1

m̄

(
p1
s1,...,sm̄−1,0,...,0(x1, . . . , xm)ym̄,sm̄+

p2
s1,...,sm̄−1,0,...,0(x1, . . . , xm)zm̄,sm̄

)
p2
s1,...,sm

(x1, . . . , xm) = p2
s1,...,sm̄−1,0,...,0(x1, . . . , xm) + x2sm̄−1

m̄

(
p1
s1,...,sm̄−1,0,...,0(x1, . . . , xm)wm̄,sm̄+

p2
s1,...,sm̄−1,0,...,0(x1, . . . , xm)vm̄,sm̄

)
The algorithm outputs gp(x1,...,xm) = gp

1
s1,...,sm

(x1,...,xm).
We prove correctness of PRF.CFEvalPoly(K,x1, . . . , xm) by induction on s1, . . . , sm. If s1 = · · · =

sm = 1, then it is not hard to see that the algorithm is correct. Without loss of generality, assume
that sm > 1. If the algorithm is correct for (s1, . . . , sm − 1), i.e., it holds:

p1
s1,...,sm−1(x1, . . . , xm) =

2sm−1−1∑
i1,...,im−1≤d,im=0

f1
K(i1, . . . , im)xi11 · · ·x

im
m

p2
s1,...,sm−1(x1, . . . , xm) =

2sm−1−1∑
i1,...,im−1≤d,im=0

f2
K(i1, . . . , im)xi11 · · ·x

im
m

Then we show correctness for s1, . . . , sm.
First, by definition of our algorithm we have:

p1
s1,...,sm

(x1, . . . , xm) = p1
s1,...,sm−1(x1, . . . , xm) + x2sm−1

m ·(
p1
s1,...,sm−1(x1, . . . , xm)ym,sm + p2

s1,...,sm−1(x1, . . . , xm)zm,sm

)
If we then apply our inductive assumption we obtain:

2sm−1−1∑
i1,...,im−1≤d,im=0

f1
K(i1, . . . , im)xi11 · · ·x

im
m + x2sm−1

m ·

 2sm−1−1∑
i1,...,im−1≤d,im=0

(f1
K(i1, . . . , im)ym,sm + f2

K(i1, . . . , im)zm,sm)xi11 · · ·x
im
m


10



Next, we can apply the definition of fK(i1, . . . , im):

2sm−1−1∑
i1,...,im−1≤d,im=0

f1
K(i1, . . . , im)xi11 · · ·x

im
m +

 2sm−1−1∑
i1,...,im−1≤d,im=0

f1
K(i1, . . . , im + 2sm−1)xi11 · · ·x

im+2sm−1

m


Finally, by simple rewriting this equation, we obtain:

2sm−1−1∑
i1,...,im−1≤d,im=0

f1
K(i1, . . . , im)xi11 · · ·x

im
m +

 2sm−1∑
i1,...,im−1≤d,im=2sm−1

f1
K(i1, . . . , im)xi11 · · ·x

im
m


=

2sm−1∑
i1,...,im−1≤d,im=0

f1
K(i1, . . . , im)xi11 · · ·x

im
m

Analogously, one can show correctness of p2
s1,...,sm

(x1, . . . , xm).
The algorithm makes only one recursive call at each step, and thus it runs in time O(m log d).

Polynomials of degree d in each monomial We show a variation of the PRF by Lewko and
Waters, described in the previous section, that achieves closed form efficiency for polynomials in m
variables and degree at most d in each monomial. The previous construction PRFLW is more general
as it can support any polynomials where d is an upper bound on each variable’s degree. However,
PRFLW is tailored to that type of polynomials that have (d + 1)m terms. In contrast, m-variate
polynomials of total degree d have

(
m+d
d

)
= O(md) terms. These two quantities seem incomparable

as they crucially depend on the size of m vs. d. In particular, the PRFLW construction may not be
suitable for this case. So, here we propose another variant, which offers closed form efficiency for
m-variate polynomials of total degree at most d.

Our construction PRFeLW works as follows.

PRF.KG(1λ, d,m). Generate a group description (p, g,G) $← G(1λ). Choose 4(m+ 1)d+ 2 values

y0, z0, {yi,j , zi,j , wi,j , vi,j}1≤i≤d, 0≤j≤m
$← Zp

Output K = (y0, z0, {yi,j , zi,j , wi,j , vi,j}i,j).
FK(i). The domain of the function is i = (i1, . . . , id) ∈ [0..m]d, and we interpret each ij as an

integer in [0..m]. The function FK(i1, . . . , id) is computed by the following algorithm:

Initialize a←y0, b←z0

For j = 1 to d:
a←a · yj,ij + b · zj,ij , b←a · wj,ij + b · vj,ij

Output ga

This function can be seen as an extension of PRFLW as follows. First, each ij is in [0..m] instead
of [0..1]. Second, the algorithm instead of “copying” a and b when ij = 0, it always makes a new
linear combination.

Theorem 2. If the Decision Linear assumption holds for G, then PRFeLW is a pseudorandom
function.
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Proof. The proof of this theorem can be obtained by adapting the proof of the Lewko-Waters PRF
[16]. We sketch below how to adapt that proof to our case.

Even for our PRF, it is possible to define an inefficient evaluation algorithm:

Initialize A←gy0 , B←gz0
For j = 1 to d:
A←Ayj,ij ·Bzj,ij , B←Awj,ij ·Bvj,ij

Output A

We observe that the core of our construction is the following pseudorandom generator:

G{yj ,zj ,wj ,vj}0≤j≤m
(A,B) = (Ay0 ·Bz0 , . . . , Aym ·Bzm , Aw0 ·Bv0 , . . . , Awm ·Bvm)

We define d+ 1 hybrid games Game0, . . . , Gamed as follows. In Gamek the challenger chooses
only exponents

{yk+1,j , zk+1,j , wk+1,j , vk+1,j , . . . , yd,j , zd,j , wd,j , vd,j}0≤jm
and answers queries for input i = (i1, . . . , id) as follows. A and B are output of a random function
on the first k components (i1, . . . , ik). Next, the above iterative algorithm is applied from j = k+ 1
to d.

It is possible to show that any adversary A causing a noticeable difference between Gamek
and Gamek+1, can be reduced to an adversary B against the above PRG. In particular, B receives
q different instances of the PRG, one for each of the possible q different queries on the first k
components. For each of these queries, B proceeds as follows. Let

(C0, . . . , Cm, D0, . . . , Dm)

be the output of the PRG instance for query (i1, . . . , ik), where each Cj , Dj are either pseudorandom
(Ayj ·Bzj , Awj ·Bvj ) or random. B simulates the iterative algorithm on (i1, . . . , id) by first picking
Cik+1

, Dik+1
from the appropriate PRG instance, and then it applies the natural algorithm to

A = Cik+1
, B = Dik+1

, from k + 2 to d.
The final step of the proof is to show that the above PRG is secure. This can be done by using

Lemma 1 in [16] to create many random independent instances of the Decision Linear problem.
Precisely, this requires 2m hybrid steps to slowly change the distribution of each Cj , Dj from
pseudorandom to random. ut

In what follows we show that PRFeLW admits closed form efficiency for polynomials p(x1, . . . , xm)
in m variables and total degree at most d. Such polynomials have

(
m+d
d

)
terms, but for our purposes

we use slightly more values to define the coefficients: R1, . . . , Rl, for l = (m + 1)d. We interpret
each 1 ≤ i ≤ l as (i1, . . . , id), with each 0 ≤ ij ≤ m. We want to compute

Poly({R(i1,...,id)}0≤i1,...,id≤m, x1, . . . , xm) =
∏

0≤i1,...,id≤m
R

Qd
j=1 xij

(i1,...,id) = gp(x1,...,xm)

We now show that if we set R(i1,...,id) = FK(i1, . . . , id) (and we denote x0 = 1), then there exists an
algorithm PRF.CFEvalPoly(K,x1, . . . , xm) that can compute

gp(x1,...,xm) =
∏

0≤i1,...,id≤m
FK(i1, . . . , id)

Qd
j=1 xij

12



in time O(md), instead of the regular computation running in time O(dmd).
For ease of exposition, we first describe an alternative equivalent algorithm for computing

FK(i1, . . . , im). Denote by fK(i) = (f1
K(i), f2

K(i)) the following recursive function:

Let i = (i1, . . . , id)
If i1 = · · · = id = *, then
f1
K(*, . . . , *) = y0 and f2

K(*, . . . , *) = z0.
Else:

let d̄ be such that id̄+1 = · · · = id = * and id̄ 6= *.
f1
K(i1, . . . , id̄, *, . . . , *) = f1

K(i1, . . . , id̄−1, *, . . . , *)yd̄,jd̄ + f2
K(i1, . . . , id̄−1, *, . . . , *)zd̄,jd̄

f2
K(i1, . . . , id̄, *, . . . , *) = f1

K(i1, . . . , id̄−1, *, . . . , *)wm̄,jd̄ + f2
K(i1, . . . , id̄−1, *, . . . , *)vd̄,jd̄

Finally, the function’s output is FK(i1, . . . , id) = gf
1
K(i1,...,id).

Using this notation, we can write

p(x1, . . . , xm) =
∑

0≤i1,...,id≤m
FK(i1, . . . , id)

d∏
j=1

xij

PRF.CFEvalPoly(K,x1, . . . , xm).
Let pd(x1, . . . , xm) = (p1

d(x1, . . . , xm), p2
d(x1, . . . , xm)) be the following recursive function (where −1

is denoted by *):

If d = *, then:
p1
*(x1, . . . , xm) = y0, p2

*(x1, . . . , xm) = z0.
Else:
p1
d(x1, . . . , xm) = p1

d−1(x1, . . . , xm)
∑m

k=0 xkyk,ik + p2
d−1(x1, . . . , xm)

∑m
k=0 xkzk,ik

p2
d(x1, . . . , xm) = p1

d−1(x1, . . . , xm)
∑m

k=0 xkwk,ik + p2
d−1(x1, . . . , xm)

∑m
k=0 xkvk,ik

Finally, the algorithm outputs gp(x1,...,xm) = gp
1
d(x1,...,xm).

We prove correctness of PRF.CFEvalPoly(K,x1, . . . , xm) by induction on d. If d = *, then the
algorithm is clearly correct. Without loss of generality, assume that d 6= *. If the algorithm is
correct for d− 1, i.e.,

p1
d−1(x1, . . . , xm) =

∑
0≤i1,...,id−1≤m

f1
K(i1, . . . , id−1, *)

d−1∏
j=1

xij

p2
d−1(x1, . . . , xm) =

∑
0≤i1,...,id−1≤m

f2
K(i1, . . . , id−1, *)

d−1∏
j=1

xij

Then we show its correctness for d.
First, by definition of our algorithm we have:

p1
d(x1, . . . , xm) = p1

d−1(x1, . . . , xm)
m∑
k=0

xkyk,ik + p2
d−1(x1, . . . , xm)

m∑
k=0

xkzk,ik (1)
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If we then apply our inductive assumption to (1) we obtain:

∑
0≤i1,...,id−1≤m

f1
K(i1, . . . , id−1, *)

d−1∏
j=1

xij

m∑
k=0

xkyk,ik +
∑

0≤i1,...,id−1≤m
f2
K(i1, . . . , id−1, *)

d−1∏
j=1

xij

m∑
k=0

xkzk,ik

that by rewriting becomes

∑
0≤i1,...,id−1≤m

d−1∏
j=1

xij

(
m∑
k=0

xk(f1
K(i1, . . . , id−1, *)yk,ik + f2

K(i1, . . . , id−1, *)zk,ik)

)

Next, we can apply the recursive definition of fK(i1, . . . , id):

∑
0≤i1,...,id−1≤m

d−1∏
j=1

xij

m∑
k=0

xkf
1
K(i1, . . . , id−1, k)

and for id = k we get the desired result for d:

∑
0≤i1,...,id≤m

f1
K(i1, . . . , id)

d∏
j=1

xij

Analogously, one can show correctness of p2
d(x1, . . . , xm).

At each step, the algorithm makes only one recursive call andm operations. Thus, pd(x1, . . . , xm)
can be computed in time O(dm).

Matrix-Vector Multiplication In this case we define a PRF for a “small” input domain, namely
the set [1..n] × [1..d], where both n and d are polynomial in the security parameter. The function
PRFM is defined as follows.

PRF.KG(1λ, n, d). Generate a group description (p, g,G) $← G(1λ). The key K consists of 2(n+ d)
random values: A1, B1, . . . , Ad, Bd

$← G and α1, β1, . . . , αn, βn
$← Zp.

FK(i, j). For i ∈ [1..n], j ∈ [1..d] define FK(i, j) = Aαi
j B

βi
j

Theorem 3. If the Decision Linear assumption holds for G, then PRFM is a pseudorandom func-
tion.

The proof of this theorem follows in a straightforward way from the random self-reducibility of the
Decision Linear problem (it is a simple extension of Lemma 1 in [16]).

In what follows we show that PRFM admits closed form efficiency for matrix-vector multiplica-
tion.

Let R = [Ri,j ] be an n × d matrix defined over G. And let x be a d-dimensional vector
x = [x1, . . . , xd] defined over Zp. Denote with with Matrix(R,x) the n dimensional vector ρ =
[ρ1, . . . , ρn] ∈ Gn defined by ρi =

∏
j R

xj

i,j . We now show an algorithm PRF.CFEvalMatrix(K,x)
which computes this ρ in O(n+ d) time (rather than O(nd)) when R = (FK(i, j)).
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Compute A =
∏d
j=1A

xj

j and B =
∏d
j=1B

xj

j

For i = 1 to n:
ρi = AαiBβi

Output ρ = [ρ1, . . . , ρn]

Correctness is easily seen since

ρi =
∏
j

FK(i, j)xj =
∏
j

(Aαi
j B

βj

j )xj = (
∏

A
xj

j )αi(
∏

B
xj

j )βi = AαiBβi

Remark. We note that by removing the Bj and βi values, one can obtain a more efficient version
(twice as fast) of this PRF, that is secure under the (stronger) DDH assumption.

4 Our Protocols

4.1 Polynomials of Degree d in each variable

In this section we propose the construction of a scheme, VCPoly, for delegating the computation of
multivariate polynomials. Our scheme builds upon the techniques in [4], additionally providing a
mechanism for public verifiability.

The family of functions F supported by our protocol is the set of polynomials f(x1, . . . , xm)
with coefficients in Zp (for some large prime p that we define later), m variables, and degree at most
d in each variable. These polynomials have up to l = (d+1)m terms which we index by (i1, . . . , im),
for 0 ≤ ij ≤ d. For simplicity, we define the following function h : Zmp → Zlp which expands the
input x to the vector (h1(x), . . . , hl(x)) of all the monomials as follows: for all 1 ≤ j ≤ l, write
j = (i1, . . . , im) with 0 ≤ ik ≤ d, then hj(x) = (xi11 · · ·ximm ). So, using this notation we can write
the polynomial as f(x) = 〈f , h(x)〉 =

∑l
j=1 fj · hj(x) where the fj ’s are its coefficients.

Our construction works over groups G1,G2,GT of the same prime order p, equipped with a
bilinear map e : G1×G2 → GT . Let R ∈ Gl

1 be an l-dimensional vector of random group elements.
In the previous Section we defined Poly(R,x) =

∏l
j=1R

hj(x)
j .

Our scheme VCPoly works generically for any family of functions F as described above for which
there exists a PRF that has closed form efficiency relative to Poly(R,x), and has range Y = G1.
Its security is based on the security of the PRF and on the hardness of solving co-CDH in these
groups.

For the PRF we can use the ones presented in [4], which have the required closed form efficiency,
if we instantiate them over the group G1. However those constructions are based on assumptions
(DDH, Strong-DDH) that in general may not hold in bilinear groups. Therefore, to securely adapt
them to our case, we must use asymmetric bilinear groups where the External Diffie-Hellman
assumption holds in G1. Details of this solution will appear in the final version.

A better approach is to use the PRF construction PRFLW, PRFeLW given in Section 3.1, that
are based on the Decision Linear assumption for which we know no attacks even in the presence
of bilinear maps. As we describe, these PRFs have closed form efficiency with respect to Poly.
This allows to base our scheme on a weaker assumption and to instantiate it also with symmetric
pairings, i.e., where G1 = G2.

The description of our scheme VCPoly follows.
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KeyGen(1λ, f). Generate the description of bilinear groups (p, g1, g2,G1,G2,GT , e)
$← G(1λ), and a

key of a PRF, K $← PRF.KG(1λ, dlog de,m), with range in G1. Choose a random α
$← Zp, and

compute Wi = gα·fi
1 · FK(i), ∀i = 1, . . . , l. Let W = (W1, . . . ,Wl) ∈ Gl

1.
Output EKf = (f,W ), PKf = e(g1, g2)α, SKf = K.

ProbGen(PKf , SKf ,x). Output σx = x and
VKx = e(PRF.CFEvalPoly(K,h(x)), g2).

Compute(EKf , σx). Let EKf = (f,W ) and σx = x. Compute y = f(x) =
∑l

i=1 fi · hi(x), V =∏l
i=1W

hi(x)
i , and return σy = (y, V ).

Verify(PKf ,VKx, σy). Parse σy as (y, V ). If e(V, g2) = (PKf )y ·VKx, then output y, otherwise output
⊥.

Theorem 4. If G is such that the co-CDH assumption εcdh-holds, and F is εprf -secure, then any
PPT adversary A making at most q = poly(λ) queries has advantage

AdvPubVer
A (VCPoly,F , q, λ) ≤ εcdh + εprf

To prove the theorem, we define the following games, where Gi(A) denotes the output of Game i
run with adversary A:

Game 0: this is the same as ExpPubVer
A (VCPoly,F , q, λ).

Game 1: this game is similar to Game 0, except for the following change in the evaluation of the
ProbGen algorithm. For any x asked by the adversary during the game, instead of computing
VKx using the efficient PRF.CFEval algorithm, the inefficient evaluation VKx =

∏l
i=1 FK(i)hi(x)

is used.
Game 2: this game is the same as Game 1, except that each value Fk(i) is replaced by an element

Ri
$← G1 chosen uniformly at random.

The proof of the theorem proceeds by a standard hybrid argument, and is obtained by combining
the proofs of the following claims.

Claim. Pr[G0(A) = 1] = Pr[G1(A) = 1].

Proof. The only difference between the two games is in the computation of the ProbGen algorithm.
However, by correctness of PRF.CFEval, such difference does not change the distribution of the
values VKx returned to the adversary. Thus, the probability of the adversary winning in Game 1,
i.e., Pr[G1(A) = 1], cannot change.

Claim. |Pr[G1(A) = 1]− Pr[G2(A) = 1]| ≤ εprf

Proof. The difference between Game 2 and Game 1 is that we replaced the output of the pseudo-
random function FK , with uniformly random group elements. It is easy to see that any adversary
A for which such difference is greater than εprf can be reduced to an attacker that has the same
advantage against the security of the PRF.

Claim. Pr[G2(A) = 1] ≤ εcdh.
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Proof. Assume by contradiction that there exists a PPT adversary A that has advantage greater
than εcdh of winning in Game 2, then we show that we can build an efficient algorithm B which
uses A to solve the co-CDH problem for G with the same probability εcdh.
B takes as input a group description (p, g1, g2,G1,G2, e) and random elements ga1 , g

b
2, and it

proceeds as follows. It chooses W1, . . . ,Wl
$← G1, sets EKf = (f,W ), and computes PKf = e(ga1 , g

b
2).

It is easy to check that the public and evaluation keys are perfectly distributed as in Game 2. Next,
for i = 1 to l, it computes Zi = e(Wi, g2)/PKfi

f ∈ GT . B runs A(PKf ,EKf ) and answers its queries

as follows. Let x be the queried value. B computes VKx =
∏l
i=1 Z

hi(x)
i , and returns it to A. By the

bilinear property of e(·, ·), this computation of VKx is equivalent to the one in Game 2.
Finally, let σ̂y = (ŷ, V̂ ) be the output of A at the end of the game, such that for some x∗ chosen

by A it holds Verify(PKf ,VKx∗ , σ̂y) = ŷ, ŷ 6= ⊥ and ŷ 6= f(x∗). By verification, this means that

e(V̂ , g2) = e(ga1 , g
b
2)ŷ · VKx∗ .

Let y = f(x∗) be the correct output of the computation. Then, by correctness it also holds:

e(V, g2) = e(ga1 , g
b
2)y · VKx∗

where V =
∏l
i=1W

hi(x
∗)

i . So, dividing the two verification equations, we obtain that e(V̂ /V, g2) =
e(ga1 , g

b
2)ŷ−y. B can thus compute gab1 = (V̂ /V )1/(ŷ−y). Therefore, if A wins in Game 2 with proba-

bility εcdh, then B solves co-CDH with the same probability.

Efficiency Analysis. The offline cost for running KeyGen is O((d + 1)m), whereas the client’s
online cost for outsourcing a computation on x (i.e., running ProbGen) is O(m log d). The cost at the
server for running the Compute algorithm is O((d + 1)m), specifically twice the cost of computing
f(x). Finally, the cost of verifying the result is completely independent of the size of the input
and the function, O(1). This property is interesting because it means that clients (other than the
delegator) can verify the result of the computation almost for free. To the best of our knowledge,
this property is not achieved by other protocols.

4.2 m-Variate Polynomials of Total Degree d

The protocol for this case is exactly the same as the protocol VCPoly described above, with the
following changes: (i) adjust the number of monomials to l = (m+ 1)d; (ii) use a PRF with closed-
form efficiency for polynomials of this form.

Again, we can use the PRFs in [4], provided we adapt them to work over G1 and we use
asymmetric bilinear groups where the External Diffie-Hellman assumption holds in G1. Or we can
use the variation of the Lewko-Waters PRF (PRFeLW) described in Section 3.1 that is based on the
weaker Decision Linear assumption.

The efficiency analysis of this solution is as follows: the offline cost for running KeyGen is O((m+
1)d) which is also the cost for the server’s computation. The client’s online cost for outsourcing a
computation on x (i.e., running ProbGen) is O(md). Again, verification is constant.

4.3 Matrix Multiplication

Let p be a large prime, and d ≥ 1 an integer. In this section we propose a scheme VCMatrix that
allows to verifiably delegate computation for the following family of functions F . F is the set of
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matrices M ∈ Zn×dp , for any n ≥ 1, and the inputs are vectors x ∈ Zdp. So, the function is the
multiplication M ·x. Given such a scheme, we observe that it is straightforward to extend it to the
case of matrix multiplication, i.e., M ·M ′, where M ′ ∈ Zd×mp .

KeyGen(1λ,M). LetM ∈ Zn×dp be a matrix. Generate the description of bilinear groups (p, g1, g2,G1,G2,GT , e)
$←

G(1λ). Generate a key K for an algebraic PRF with domain [1..n]× [1..d] and range G1.
For 1 ≤ i ≤ d, 1 ≤ j ≤ n, compute Wi,j = g

α·Mi,j

1 · FK(i, j), and let W = (Wi,j) ∈ Gn×d
1 .

Output SKM = K, EKM = (M,W ), and PKM = A.
ProbGen(SKM ,x). Let x = (x1, . . . , xd) ∈ Zdp be the input. Let R be the matrix defined by R =

[FK(i, j)]. Compute ρx = PRF.CFEvalMatrix(K,x) in O(n + d) using the closed form efficiency.
Recall that ρx,i =

∏d
j=1 FK(i, j)xj , and define τx,i = e(ρx,i, g2). Finally, output the encoding

σx = x, and the verification key VKx = (τx,1, . . . , τx,n).
Compute(EKM , σx). Let EKM = (M,W ) and σx = x. Compute y = M · x and V = (V1, . . . , Vn)

as follows: Vj = (
∏d
i=1W

xi
i,j ). Output σy = (y,V ).

Verify(PKM ,VKx, σy). Parse σy as (y,V ). If e(Vi, g2) = (PKM )yi · τx,i ∀i = 1, . . . , n, then output
y, otherwise output ⊥.

We prove security via the following theorem.

Theorem 5. If G is such that the co-CDH assumption εcdh-holds, and F is εprf -secure, then any
PPT adversary A making at most q = poly(λ) queries has advantage

AdvPubVer
A (VCMatrix,F , q, λ) ≤ εcdh + εprf

Let us define the following games, where Gi(A) is the output of Game i run with adversary A:

Game 0: this is the same as ExpPubVer
A (VCMatrix,F , q, λ).

Game 1: this game is similar to Game 0, except for the following change in the evaluation of the
ProbGen algorithm. For any x asked by the adversary during the game, instead of computing
VKx using the efficient PRF.CFEval algorithm, the inefficient evaluation of ρx is used ρx,i =∏d
j=1 FK(i, j)xj .

Game 2: this game is defined as Game 1, except that the matrix W is computed as Wi,j =
gαMi,j ·Ri,j where for all i, j Ri,j

$← G1 is chosen uniformly at random.

The proof of this theorem is similar to that of Theorem 4, and is obtained by proving the
following claims.

Claim. Pr[G0(A) = 1] = Pr[G1(A) = 1].

Proof. The only difference between the two games is in the computation of the ProbGen algorithm.
However, by the correctness of the closed form efficiency of our PRF, there is no change in the
distribution of the values τx,j returned to the adversary. Thus, the probability of the adversary
winning in Game 1, i.e., Pr[G1(A) = 1], remains the same.

Claim. |Pr[G1(A) = 1]− Pr[G2(A) = 1]| ≤ εprf

Proof. The difference between Game 2 and Game 1 is that we replaced each pseudorandom value
FK(i, j) with a random value Ri,j .
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Claim. Pr[G2(A) = 1] ≤ εcdh.

Proof. This proof is a simple extension of the proof of Claim 4.1. We describe it below for com-
pleteness.

Assume by contradiction that there exists a PPT adversary A such that the probability of A
winning in Game 2 is a non-negligible function ε, then we show that we can build an efficient
algorithm B which uses A to solve the co-CDH problem with probability εcdh ≥ ε. B takes as input
a group description (p, g1, g2,G1,G2, e) and two random elements ga1 , g

b
2, and proceeds as follows.

For i = 1, . . . , d and j = 1, . . . , n, B chooses Wi,j
$← G1, sets EKM = (M,W ), and computes

PKM = e(ga1 , g
b
2). It is easy to check that the public and evaluation keys are perfectly distributed

as in Game 2. Next, for i = 1, . . . , d and j = 1, . . . , n, it computes Zi,j = e(Wi,j , g2)/PK
Mi,j

M . Then
B runs A(PKM ,EKM ) and answers its queries as follows. Let x be the queried vector. B computes
τx,j =

∏d
i=0 Z

xi
i,j for j = 1 to n, and returns VKx = (τx,1, . . . , τx,n) to A. By the bilinear property of

e(·, ·), this computation of VKx is equivalent to the one done in Game 2.
Finally, let σ̂y = (ŷ, V̂ ) be the output of A at the end of the game, such that for some x∗

chosen by A it holds Verify(PKf ,VKx∗ , σ̂y) = ŷ, ŷ 6= ⊥ and ŷ 6= M · x∗. Let y = M · x∗ be the
correct output of the multiplication. Since ŷ 6= y there must exist an index j ∈ {1, . . . , n} such
that ŷj 6= yj . However, by verification, for such j it holds

e(V̂j , g2) = e(ga1 , g
b
2)ŷj · τx∗,j

Moreover, by correctness we have:

e(Vj , g2) = e(ga1 , g
b
2)yj · τx∗,j

where Vj =
∏d
i=0W

x∗i
i,j . Dividing the two verification equations, we obtain that e(V̂j/Vj , g2) =

e(ga1 , g
b
2)ŷj−yj . B can thus compute gab1 = (V̂j/Vj)1/(ŷj−yj). Therefore, if A wins in Game 2 with

probability ε, then B solves the co-CDH problem with probability εcdh ≥ ε, which completes the
proof.

Efficiency Analysis Using our protocol, a client can spend a single offline cost O(dn) (for each
matrix M – running the key generation algorithm), while keeping a secret key of size O(d+ n). It
can then outsource the computation of multiplying M ·x on many x’s with an online cost O(d+n)
per vector (running ProbGen), whereas the verification can be performed in time O(n). The cost
at the server for computing the function, i.e., running Compute, is O(nd), and more precisely it is
twice the cost of performing M ·x (once for M and once for W ). We remark that the running times
of KeyGen and Verify are optimal as they are linear in the size of their respective inputs.

Our protocol extends to the case of matrix multiplications M · M ′, where M ∈ Zn×dp and
M ′ ∈ Zd×mp by considering each column of M ′. In this case a client can outsource and verify such
computation with a total online cost O(dm+ nm), which is optimal as it is the cost of processing
the input M ′ ∈ Zd×mp and the output M ·M ′ ∈ Zn×mp .

As we pointed out the server has to perform two matrix multiplications: one (M · M ′) in
Zp and the other one (W · M ′) “in the exponent”. We note that the server can perform both
computations using one of the optimized algorithms for rectangular matrix multiplication (e.g.
Strassen’s algorithm), that require time strictly less than the trivial O(nmd). Therefore the server’s
computation is asymptotically the same as a basic matrix multiplication.
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5 Multi-Function Verifiable Computation

In this section we consider the problem of realizing multi-function verifiable computation schemes.
In the following section, we define the notion of multi-function verifiable computation, and then we
propose a new scheme.

5.1 Definition

Multi-Function verifiable computation [21] considers a setting in which a client wants to delegate
the computation of multiple functions on some a-priori fixed inputs. Technically, this means that the
ProbGen algorithm must be completely decoupled from KeyGen, in the sense that one can prepare
the input before knowing which function will be applied on it. More formally, let F be a family of
functions. A multi-function verifiable computation scheme is defined by the following algorithms:

Setup(1λ,F)→ (PK,SK): on input the security parameter λ and the description of a family of
functions F , the setup algorithm generates a pair of public and private parameters PK, SK. In
particular, we assume that F specifies the domain Dom of the functions f ∈ F .

KeyGen(PK, SK, f)→ (EKf ,VKf ): on input the security parameter λ and a function f ∈ F , this
algorithm produces a verification key VKf , used to verify the correctness of the delegated compu-
tations, and a public evaluation key EKf which is handed to the server to delegate computations
of f .

ProbGen(PK,SK, x)→ (σx,VKx): on input the public parameters, and a value x ∈ Dom, the prob-
lem generation algorithm produces an encoding σx of x together with a verification key VKx.

Compute(EKf , σx)→ σy: given the public evaluation key EKf and the encoding σx of an input x,
this algorithm is run by the worker to compute an encoded version σy of y = f(x).

Verify(VKf ,VKx, σy)→ y ∪ ⊥: on input the verification keys VKf and VKx, and an encoded output
σy, this algorithm returns a value y or an error ⊥.

According to whether VKf and VKx can be publicly revealed or kept secret, we obtain a definition
of a multi-function verifiable computation that is public verifiable or secret verifiable respectively.
Moreover, if KeyGen and ProbGen do not use the secret key SK, then the scheme is publicly dele-
gatable.

Security. For any multi-function verifiable computation scheme VC, consider the following ex-
periment:

Experiment ExpPriVerif
A [VC,F , λ]

(PK,SK) $← Setup(1λ,F)
(f, x∗, σ̂y)←AOKeyGen(·),OProbGen(·),OVerify(·,·,·)(PK)
ŷ←Verify(VKf , vkx∗ , σ̂y)
If ŷ 6= ⊥ and ŷ 6= f(x∗), output 1, else output 0.

In the above experiment, the adversary is given access to three oracles that works as follows. On
input f ∈ F , OKeyGen(f) runs (EKf ,VKf ) $← KeyGen(PK,SK, f), returns EKf and stores VKf . On
input x ∈ Dom, OProbGen(x) runs (σx,VKx) $← ProbGen(PK,SK, x), returns σx and stores VKx. On
input f ∈ F , x ∈ Dom and a purported output σy, OVerify(f, x, σy) runs y←Verify(VKf ,VKx, σy)
and returns y.
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For any λ ∈ N, any family of functions F , we define the advantage of A making at most
q = poly(λ) queries in the above experiment against VC as

AdvPriVerif
A (VC,F , q, λ) = Pr[ExpPriVerif

A [VC,F , λ] = 1].

Definition 5. Let λ ∈ N be the security parameter, and F be a family of functions. A multi-
function verifiable computation scheme VC is secure for F if for any PPT A, AdvPriVerif

A (VC,F , q, λ)
is negligible.

Our definition is in the private setting, though one in the public verifiable or public delegatable
settings can be easily obtained by slightly changing the output of the oracles.

5.2 Tools: Homomorphic weak PRFs

A homomorphic weak pseudorandom function consists of algorithms (wPRF.KG,G). The key gen-
eration wPRF.KG takes as input the security parameter 1λ and outputs a secret key k and some
public parameters pp that specify domain X and range Y of the function. On input X ∈ X , Gk(X)
uses the key k to output a value Y ∈ Y. First, we require (wPRF.KG,G) to satisfy the usual weak
pseudorandomness property, i.e., it is ε-secure if for any PPT adversary A and any polynomial
t = t(λ): ∣∣Pr[A(1λ, pp, {Xi, Yi}ti=1) = 1]− Pr[A(1λ, pp, {Xi, Zi}ti=1) = 1]

∣∣ ≤ ε
where (k, pp) $← wPRF.KG(1λ), and ∀i = 1, . . . , t, Xi

$← X , Yi = Gk(Xi), Zi
$← Y. In addition, we

ask for a homomorphic property as follows: for any inputs X1, X2 ∈ X , and any integer coefficients
c1, c2 ∈ Z, it holds:

Gk(Xc1
1 ·X

c2
2 ) = Gk(X1)c1 · Gk(X2)c2

An example based on DDH. Let G be a group of order p. The following construction is an al-
gebraic homomorphic weak PRF. The key is a random k

$← Zp, domain and range are X = Y = G,
and the function is Gk(X) = Xk. It is trivial to observe that it is homomorphic. Pseudoranom-
ness follows in a straightforward way from random self-reducibility of DDH. For the purpose of
our applications, we remark that if G1,G2 are asymmetric bilinear groups, this function can be
instantiated in G1 and proven secure under the XDH assumption in G1.

An example based on Decision Linear Let G be a group of order p. The following construction
is an algebraic homomorphic weak PRF. The key is a random pair k1, k2

$← Zp, the domain is X =
G2, and the range is Y = G. On any pair (X1, X2) ∈ X , the function is Gk1,k2(X1, X2) = Xk1

1 ·X
k2
2 .

If for every (X1, X2) ∈ X we define the operation (X1, X2)c component-wise, i.e., (X1, X2)c =
(Xc

1, X
c
2), then it is easy to verify the homomorphic property. The function is weak pseudorandom

based on the Decision Linear assumption. The proof follows in a straightforward way from the
random self-reducibility of the Decision Linear problem, (it is a simple extension of Lemma 1 in
[16]).

5.3 Our Multi-Function Scheme

Here we propose a multi-function verifiable computation scheme, VCMultiF , that is publicly dele-
gatable and private verifiable. This construction works for any family of functions F that is a vector
space of dimension d over a finite field Zp for some large prime p.
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A function f ∈ F is represented as a vector f = (f1, . . . , fd) ∈ Zdp, whereas the domain is
Dom(F) = Zdp. For any x ∈ Dom(F), we define f(x) =

∑d
i=1 fi · xi.

VCMultiF is defined by the following algorithms:

Setup(1λ,F). Generate the description of a group G of prime order p, and let g ∈ G be a generator.
Let pp be the parameters for a homomorphic weak-PRF with domain X and range Y = G. Select
R = (R1, . . . , Rd)

$← X d at random, and output SK = ⊥ and PK = (p, g,G, R).
KeyGen(PK,SK, f). Let R = (R1, . . . , Rd). Generate a key k

$← wPRF.KG(1λ) of a homomorphic
weak PRF with range Y = G. Choose random α

$← Zp, for all i = 1 to d compute Wi =
gα·fi · Gk(Ri). Let W = (W1, . . . ,Wd) ∈ Gd. Output EKf = (f,W ), VKf = (α, k).

ProbGen(PK, SK, x). Let x = (x1, . . . , xd) ∈ Zdp be the input. Its encoding σx is x itself, whereas
the verification key is VKx =

∏d
i=1R

xi
i .

Compute(PK,EKf , σx). Let EKf = (f,W ) and σx = x. Compute y = f(x) =
∑d

i=1 fi · xi, and
V =

∏d
i=1W

xi
i , and return σy = (y, V ).

Verify(VKf ,VKx, σy). Parse σy as (y, V ). If V = (gα)y · Gk(VKx), then output y, otherwise output
⊥.

Theorem 6. If the weak PRF (wPRF.KG,G) is εwprf -secure in a group G of order p, then any
PPT adversary A making at most q = poly(λ) queries has advantage

AdvPriVerif
A (VCMultiF ,F , q, λ) ≤ q · εwprf + q/p

Let us define the following games, and denote by Gi(A) the output of Game i run with adversary
A:

Game 0: this is the same as ExpPriVerif
A (VCMatrix,F , q, λ).

Game 1: this game is similar to Game 0, except for the following change in the way verifi-
cation queries are answered. Let OVerify(f, x, σy) be the query made by the adversary, and let
VKf = (α, k),VKx be the stored verification keys. Instead of computing Gk(VKx), the challenger
computes VK′x =

∏d
i=1 Gk(Ri)xi and makes the comparison by checking whether V = gαy ·VK′x.

Game 2,j: for all j = 0 to q, Game 2,j is the same as Game 0, except that the first j queries
made by the adversary to the oracle OKeyGen(·) are answered as follows. On input a function f ,
instead of generating a key k for the weak PRF, each Wi is computed as Wi = gα·fi ·Zi, where
Zi

$← G is chosen uniformly at random, and it is stored in VKf = (α,Z1, . . . , Zd). Accordingly,
all verification queries OVerify(f, x, σy) where f was asked to OKeyGen(·) in the first j queries, are
answered by checking whether V = gαy ·

∏d
i=1 Z

xi
i . Notice that Game 1 is Game 2,0.

Game 3: for ease of exposition Game 3 is only a renaming of Game 2,q.

Claim. Pr[G0(A) = 1] = Pr[G1(A) = 1].

Proof. The only difference between the two games is in the computation made when answering
verification queries. However, by the homomorphic property of the weak PRF, this computation is
equivalent, and it does not affect at all the distribution of the outcome of verification. Thus, the
probability of the adversary winning in Game 1, Pr[G1(A) = 1], remains the same.

Claim. For any j = 1 to q, we have |Pr[G2,j−1(A) = 1]− Pr[G2,j(A) = 1]| ≤ εwprf
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Proof. For any two consecutive games Game 2,j-1 and Game 2,j, their difference is basically that
in Game 2,j, we replaced with a random function, the weak pseudorandom function Gk that is
generated in the j-th query to OKeyGen. A proof of the claim can be obtained by a straightforward
reduction to the security of the weak PRF.

Claim. Pr[G3 = 1] ≤ q/p.

The proof of this claim is a simple extension of the proof of Claim 5.6 in [4]. The only difference
is that in our game the adversary may ask to generate keys for many functions f . However, the
run of the modified KeyGen for each of these queries is a completely independent process, as a new
fresh tuple α,Z1, . . . , Zd is chosen every time.

Efficiency. The Setup, KeyGen, and ProbGen algorithms run in timeO(d), whereas the complexity
of verification is independent of d, i.e., O(1). Our protocol VCMultiF achieves amortized efficiency in
a setting in which the delegator computes several functions f1, . . . , fn on some a-priori fixed inputs
x1, . . . , xm. While the cost of computing a single function on m inputs would be O(dm), using our
scheme, a client can outsource and verify the computation of f(x1), . . . , f(xm) in time O(d+m).

6 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) of an n-dimensional vector f is defined as y = [f(x1), . . . , f(xn)]
where f is the (n−1)-degree polynomial naturally defined by f evaluated over the n roots of unity.
It is well known that using the Fast Fourier Transform algorithm (FFT), the DFT can be computed
in O(n log n) time. Note that the vector y can alternatively be computed as y = X · f where X is
the n× n Vandermonde matrix defined by the xi’s.

To obtain a verifiable computation scheme for the DFT using our protocols we have three
options.

Using the Matrix Multiplication Scheme. This solution works well for the client as it incurs
O(n) delegation and verification cost. However, the computation at the server is O(n2): indeed, the
server can compute the DFT in O(n log n) but to compute the verification value V it cannot use
the FFT algorithm (as the matrix W is a pseudo-random matrix without the “special” structure
such as X). Therefore with this approach the server’s computation is asymptotically higher and
this could be unacceptable for large n.

Using the Polynomial Evaluation scheme over n inputs. To outsource the DFT of f
the client would perform the key generation part of our polynomial evaluation scheme, and the
delegation of the input xi’s all in one blow. The only way this can be done in O(n) time is to
use a closed-form PRF that allows the delegation of a single variable input in constant time.
Unfortunately, our PRFs from Decision Linear require O(log n) time to delegate a single input. We
can however use the constant time scheme from [4] adapted to be publicly verifiable. The drawback
is that we need to assume the External n-SDH Assumption over asymmetric bilinear groups, which
is a strong “non-constant size” assumption.

Using the Multi-Function Scheme. Finally, the Multi-Function Scheme described in the
previous section satisfies the efficiency constraint given by FFT, but is only privately verifiable.
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