
Improved “Partial Sums”-based Square Attack on AES

Michael Tunstall

Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol BS8 1UB, United Kingdom
tunstall@cs.bris.ac.uk

Abstract. The Square attack as a means of attacking reduced round variants of AES was
described in the initial description of the Rijndael block cipher. This attack can be applied to
AES, with a relatively small number of chosen plaintext-ciphertext pairs, reduced to less than
six rounds in the case of AES-128 and seven rounds otherwise and several extensions to this
attack have been described in the literature. In this paper we describe new variants of these
attacks that have a smaller time complexity than those present in the literature. Specifically, we
demonstrate that the quantity of chosen plaintext-ciphertext pairs can be halved producing the
same reduction in the time complexity. We also demonstrate that the time complexity can be
halved again for attacks applied to AES-128 and reduced by a smaller factor for attacks applied
to AES-192. This is achieved by eliminating hypotheses on-the-fly when bytes in consecutive
subkeys are related because of the key schedule.

Keywords: Cryptanalysis, Square Attack, Advanced Encryption Standard.

1 Introduction

The Advanced Encryption Standard (AES) [8] was standardized in 2001 from a proposal by Daemen
and Rijmen [5]. It has since been analyzed with regard to numerous attacks ranging from purely the-
oretical cryptanalysis to attacks that require some extra information, e.g from some side channel [11],
to succeed.

In Daemen and Rijmen’s AES proposal an attack is described that is referred to as the Square
attack [5]. This attack was so-called since it was first presented in the description of the block cipher
Square [4]. The Square attack is based on a particular property arising from the structure of AES.
That is, for a set of 256 plaintexts where each byte at an arbitrary index is a distinct value and all the
other bytes are equal, the XOR sum of the 256 intermediate states after three rounds of AES will be
zero.

Some optimizations to this attack have been proposed in the literature. Ferguson et al. proposed
a way of conducting the Square attack referred to as the “partial sums” method [7]. This allowed
the Square attack to be conducted with a relatively low time complexity for reduced round variants
of AES. The time complexity of these attacks was further reduced following an observation made by
Lucks. He noted that given a known last subkey in AES-192 then information on previous subkeys can
be derived.

Recent cryptanalytical attacks have predominantly been focused on other properties, such as im-
possible differentials [1, 9, 12]. The use of impossible differentials is related to the Square attack but
allows an attacker to overcome variants of AES with more rounds. Recently, a marginal attack on AES
has also been proposed that is based on the use of bicliques [3]. However, for suitably reduced round
variants of AES the “partial sums” method proposed by Ferguson et al. is currently the most efficient
chosen plaintext attack.

In this paper we describe how the attacks proposed by Ferguson et al. and Lucks can be improved.
Specifically, we show that the number of chosen plaintext-ciphertext pairs required to conduct the
Square attack can be halved and therefore halve the time complexity of the attack. Moreover, we
demonstrate that the time complexity of the Square attack can be halved again when applied to AES-
128, and reduced to a lesser extent for AES-192, by exploiting relationships between key bytes as they
are derived. In this paper we restrict ourselves to attacks that require a relatively small number of
chosen plaintext-ciphertext pairs. The attacks proposed by Ferguson et al., based on the Square attack,
that require around 2128 chosen plaintext-ciphertext pairs are beyond the cope of this paper [7].

This paper is organized as follows. In Section 2 we define the notation we use to describe AES. In
Section 3 we describe the property that the Square attack is based on. In Section 4 we describe how
the Square attack can be applied to AES-128, and in Section 5 we describe how the Square can be
applied to AES-192 and AES-256. We summarize our contribution and conclude in Section 6.

2 Preliminaries

In this paper, multiplications in F28 are considered to be polynomial multiplications modulo the irre-
ducible polynomial x8 + x4 + x3 + x + 1. It should be clear from the context when a mathematical
expression contains integer multiplication.

2.1 The Advanced Encryption Standard

Algorithm 1: The AES encryption function.

Input: The 128-bit plaintext block P and 128, 192 or 256-bit secret key K, with N set to 10, 12, 14
respectively.

Output: The 128-bit ciphertext block C.

X ← AddRoundKey(P,K) ;
for i← 1 to N do

X ← SubBytes(X) ;
X ← ShiftRows(X) ;
if i 6= N then

X ← MixColumns(X) ;
end
X ← AddRoundKey(X,K) ;

end
C ← X ;

return C

The structure of the Advanced Encryption Standard (AES) , as used to perform encryption, is il-
lustrated in Algorithm 1. In discussing the AES we consider that all intermediate variables of the
encryption operation variables are arranged in a 4× 4 array of bytes, referred to as the state matrix.
For example, the 128-bit plaintext P = (p1, p2, . . . , p16), where each pi ∈ {1, . . . , 16} is one byte, is
arranged in the following fashion

p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15
p4 p8 p12 p16

 .

The encryption itself is conducted by the repeated use of a round function that comprises the following
operations executed in sequence:

The AddRoundKey operation XORs each byte of the array with a byte from a corresponding subkey.
In each instance of the AddRoundKey a fresh 16-byte subkey is used from the subkey bytes generated
by the key schedule. We describe how this is done in more detail for the different variants of AES in
Section 2.2.

The SubBytes operation is the only nonlinear step of the block cipher, consisting of a substitution
table applied to each byte of the state. This replaces each byte of the state matrix by its multiplicative
inverse, followed by an affine mapping. In the remainder of this paper we will refer to the function S
as this substitution table and S−1 as its inverse.

The ShiftRows operation is a byte-wise permutation of the state that operates on each row.

The MixColumns operation operates on the state column by column. Each column of the state matrix is
considered as a vector where each of its four elements belong to F28 . A 4×4 matrix M whose elements
are also in F28 is used to map this column into a new vector. This operation is applied to the four
columns of the state matrix. Here M and its inverse M−1 are defined as

M =

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 andM−1 =

14 11 13 9

9 14 11 13

13 9 14 11

11 13 9 14

All the elements in M and M−1 are elements of F28 expressed in decimal.

In Algorithm 1 we can see that the last round does not include the execution of a MixColumns

operation. In all the attacks considered in this paper we will assume that the last round does not
include a MixColumns operation. This is important to note since it has been shown that the presence
of a MixColumns operation in the last round would affect the security of AES [6].

2.2 The Key Schedule

The key schedule generates a series of subkeys from the secret key. There are three variants of the
AES corresponding to the three possible bit lengths of the secret key used, i.e. 128, 192 or 256 bits. In
Algorithm 2 we show how the subkey bytes are generated from an initial secret key K. The function S
is the substitution function used in the SubBytes operation described above. The function f is, for the
most part, the identity function. However, when K is a 256-bit key and j = 4 then f is the substitution
function S. RCON is a round constant that changes for each loop. We refer the reader to the AES
specification for a more detailed description of the key schedule [8].

For AES-128, knowing one subkey will allow the original key to be derived. For AES-192 and
AES-256 there will still be some ambiguity and two subkeys are required to derive the original key.

3 The Square Attack

If we consider two plaintexts that have a XOR difference that is non-zero in one byte, then this difference
will expand in a known manner. After one round the XOR difference between the intermediate states
would show that one column of the state matrix has a non-zero difference. This property will then
propagate to all the bytes in the state matrix after the second round by the same reasoning. An
example where the difference in two plaintexts is at index one is shown in Figure 1.

Algorithm 2: The AES key schedule function.

Input: X-bit secret key K, with X set to 128, 192 or 256 and N set to 10, 12, 14 respectively, RCON.
Output: W a stream of subkey bytes.

for i← 0 to X/8− 1 do W [i]← K[i] ;

for i← 1 to d(N + 1) · (X/128)2e do
for j ← 0 to 3 do

W [i ·X + j]← S(W [i · (X − 1) + j]) ;
end

W [i ·X]←W [i ·X]⊕ RCON ;

for j ← 1 to 3 do
for k ← 0 to X/4 do

W [i ·X + 4 j + k]←W [i (X − 1) + 4 j + k]⊕ f(W [i ·X + 4 (j − 1) + k]) ;
end

end

end

return W

Plaintext
ζ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

→

First Round
2 θ 0 0 0
3 θ 0 0 0
θ 0 0 0
θ 0 0 0

→

Second Round
2α β γ 3 δ
3α 2β γ δ
α 3β 2 γ δ
α β 3 γ 2 δ

Fig. 1. Propagation of a one-byte difference across two rounds of AES. A structure in this difference is imposed
by the MixColumns operation (see Section 2.1).

It is therefore impossible that the XOR difference between two such plaintexts will be zero in any
byte after two rounds. This property will persist until the next MixColumns operation, and is used for
impossible differential cryptanalysis since the XOR difference after two rounds cannot be zero [2].

This property is also used to construct an attack referred to as the Square attack (so-called since
it was first presented in the description of the block cipher Square [4]) and was first presented in the
original description of AES [5]. We consider 256 distinct plaintexts that are equal in fifteen bytes. After
computing two rounds of AES the property described above will be valid between all possible pairs,
i.e. across all 256 intermediate states the bytes at each index will contain one of each possible value.
The XOR sum of the 256 bytes at each index will therefore be equal to zero. There will not be one
instance of each possible value across the 256 bytes at each index after the next MixColumns operation.
However, the XOR sum of the bytes at each index will still be zero after the MixColumns operation,
and this property will remain true until the next SubBytes operation. In the remainder of this paper
we will refer to a set of 256 chosen plaintext-ciphertext pairs where the 256 distinct plaintexts that are
equal in fifteen bytes as a δ-set.

4 Applying the Square Attack to AES-128

Attacks based on the Square attack applicable to AES-128 are presented in this section.

4.1 Analyzing Four-Round AES

An attack based on the property described in Section 3 was originally detailed by Daemen and Rijmen
in their AES proposal [5]. If we consider one δ-set, the XOR sum of the intermediate states at the end
of the third round is equal to zero. For a four-round variant of AES an attacker can use this observation
to validate hypotheses on the last subkey byte-by-byte, where an attacker checks that the XOR sum
of the input to the final round is equal to zero. For each byte this will return the correct subkey byte
and one additional incorrect hypothesis per byte with a probability of 255/256. That is, any random
sequence of byte will have an XOR sum equal to zero with a probability of 1/256 and there are 255
such sequences. This will result in an expected total number of key hypotheses for the last subkey

of
(
1 + 255

256

)16 ≈ 216, since the length of the lists of hypotheses are mutually independent. One can
determine the key if one repeats the analysis, i.e. one takes 29 chosen plaintexts and conducts the
above analysis twice. This would have a time complexity of 29 one-round decryptions (27 encryptions
of a four-round AES).

Biham and Keller observed the sum of a sequence of random bytes can be computed by only
considering one example of values that occur with an odd-numbered frequency. Since values that occur
with an even-numbered frequency will have no effect on the XOR sum across all 256 intermediate
values [2]. Given 256 bytes taken from the same index from a δ-set, one can remove all values that occur
with an even-numbered frequency and keep one example of those that occur with an odd-numbered
frequency.

We define Z as the number of instances of a given value that occur in a sequence of 256 bytes. The
probability of observing a given value n times is

Pr(Z = n) =

(
256

n

)
256−n

(
1− 1

256

)256−n

(1)

for 1 ≤ n ≤ 256. The probability of observing an odd number of a given value is therefore Pr(X =
1)+Pr(X = 3)+ . . .+Pr(X = 255) = 0.43, and therefore the number of values that need to be treated
decreases to 256 × 0.43 = 110. The analysis given by Biham and Keller stops here and we provide a
more precise analysis below.

We define Y as the number of distinct values that occur in a sequence of 256 bytes. The probability
of observing m distinct values is

Pr(Y = m) =
256(m)

{
256
m

}
256256

, (2)

for 1 ≤ m ≤ 256. We define r(m) = r (r − 1) . . . (r −m + 1) and
{
n
i

}
as a function that returns the

Stirling numbers of the second kind. That is, the number of ways of partitioning n elements into i
non-empty sets. The expectation of x is simply

∑256
i=1 i Pr(Y = i) = 162 .

For a sequence of 256 bytes that consist of m distinct values, the probability distribution will be
somewhat similar to that defined by Biham and Keller. Again we define Z as the number of instances
of a given value that occur in a sequence of 256 bytes. The probability of observing observing a given
value n times given that there are m distinct values is

Pr(Z = n |Y = m) =

(
256

n

)
m−n

(
1− 1

m

)256−n

(3)

for 1 ≤ m,n ≤ 256. Again, the probability of observing an odd number of a given value is therefore
Pr(X = 1 |Y = m) + Pr(X = 3 |Y = m) + . . . + Pr(X = 255 |Y = m) for a given m. We define A as
the number of distinct values that occur with an odd-numbered frequency. Then the expectation of A

will be:

E(A) =

256∑
i=1

i Pr(Y = i)

127∑
j=0

Pr(Z = (2 j + 1) |Y = i) ≈ 78 (4)

That is, the sum of the number of distinct values occurring with an odd-numbered frequency
(
i
∑127
j=0 Pr(X = (2 j + 1) |Y = i)

)
multiplied by the probability of it occurring. This would reduce the time complexity of an attack re-
quiring two δ-sets to 156 one-round decryptions (approximately 25 encryptions of a four-round AES).

4.2 Analyzing Five-Round AES

An extension to the above attack was also first presented in the original description of AES [5]. This
attack allowed an extra round to be analyzed with an increase in the time complexity. Rather than
analyzing the final subkey byte-by-byte, one analyzes the penultimate subkey.

In order to do this one is obliged to guess 32 bits of the final subkey to determine one column of
the state matrix before the XOR with the penultimate subkey. One can then compute the MixColumns

operation on this column, and validate hypotheses on a byte of a subkey equivalent to the penulti-
mate subkey (one could compute the MixColumns operation on the derived subkey to determine the
penultimate subkey). A valid byte would allow the property described in Section 3 to be observed.
Each evaluation reduces the potential key space of five bytes being analyzed by a factor of 256, and
one would need to conduct this analysis five times to determine 32 bits of the final subkey [5].

If we define each of the 232 partial decryptions as having a time complexity equivalent to a quarter
of a round, analyzing five sets of 256 ciphertexts to determine 32 bits of the last subkey and eight
bits of the “penultimate” subkey, can be computed with an effort equivalent to 240/4 one-round AES
decryptions for one δ-set. Given this is a quarter of the work required for one set of 256 acquisitions,
the total complexity to determine a key using five δ-sets would be 5 · 240 one-round AES decryptions,
or equivalent to 240 five-round AES encryption operations.

The cryptanalysis cannot be significantly improved by following the reasoning given in Section 4.1.
That is, if one partially decrypts a δ-set using hypotheses on 32 bits of the last subkey, one can then
form hypotheses on individual bytes of the penultimate subkey using one example of distinct values
that occur with an odd-numbered frequency. One could follow this reasoning with the 32-bit values
taken from the ciphertexts. However, over 256 acquisitions the probability of observing a value that
occurs with an even-numbered frequency will be too low to have any significant impact on the time
complexity of an attack.

Ferguson et al. present a way of conducting this attack that is referred to as the “partial sums”
method [7]. They observe that conducting the attack involves computing∑

i

S−1(S0 (ci,0 ⊕ k0)⊕ S1 (ci,1 ⊕ k1)⊕

S2 (ci,2 ⊕ k2)⊕ S3 (ci,3 ⊕ k3)⊕ k4) ,

(5)

where Sλ, for λ ∈ {0, . . . , 3}, are bijective look-up tables that consist of the function S and a multipli-
cation by a field element from F28 . These are evaluated efficiently by associating a “partial sum” xk
to each ciphertext where xk is defined as

xk ←
k∑
j=0

Sj (cj ⊕ kj) . (6)

This gives a map from (c0, c1, c2, c3) 7→ (xk, xk+1, . . . , c3). In order to conduct an attack one can
compute (x1, c2, c3), i.e. ((S0(c0 ⊕ k0)⊕ S1(c1 ⊕ k1)) , c2, c3), for all the ciphertexts in a δ-set for all

possible values of k0 and k1. This will take 224 executions of the function S resulting in 224 values
for (x1, c2, c3). This continues by computing (x2, c3) for all possible values of k2 that also requires a
224 executions of the function S resulting in 232 values for (x2, c3). Computing the 240 values for x3
for all values of k3 will require a further 240 executions of the function S. The last step will require
248 executions of the function S−1. Using the estimate provided by Ferguson et al., that the time
complexity of one AES encryption is equivalent to 28 executions of the function S [7], implementing
the attack described above will have a time complexity equivalent to approximately 240 five-round AES
encryption operations. This has the same time complexity as the straightforward approach described
previously. The method reported by Ferguson et al. can only be applied when groups of δ-sets are
treated together (see Section 4.3).

The above analyses assume that one only considers one byte of the subkey that is equivalent to
the penultimate subkey. However, if we consider more bytes of the penultimate subkey then fewer
δ-sets are required. An attacker guesses 32 bits of the last subkey which allows an attacker to validate
hypotheses on four bytes of a subkey that is equivalent to the penultimate subkey. For one guess of 32
bits of the final subkey one would expect a hypothesis for any byte of the subkey that is equivalent
to the penultimate subkey to produce an XOR sum equal to zero with a probability equal to 1/28.
Given that there are four such bytes the probability that four bytes of this subkey will produce four
sequences with XOR sums equal to zero is 1/232. Therefore, in order to determine 32 bits of the last
subkey and 32 bits of a subkey equivalent to the penultimate subkey one would expect to need two
δ-sets. This would reduce the time complexity of the attack detailed by Daemen and Rijmen [5] to
approximately 239 five-round AES encryption operations.

The analysis of the hypotheses can be further optimized if the relationship between the last and
penultimate subkey are verified as the attack progresses. If we consider one δ-set, one can analyze
two columns of the penultimate subkey by guessing eight bytes of the last subkey (in two sets of four
bytes). This will produce two sets of 232 hypotheses with a time complexity equivalent to 236 five-round
AES encryption operations (using the estimations given above). One can then eliminate hypotheses
in each set that are inconsistent, given that we have hypotheses on eight bytes of the penultimate key
and eight bytes of the last subkey. However, we note that extra computation is required to change the
hypotheses on the derived values to hypotheses for the penultimate subkey. That is, the four bytes
corresponding to the penultimate subkey are multiplied by M as described in Section 2.1. This can be
efficiently computed by considering the input vector as a 32-bit word and the matrix multiplication
conducted using 32-bit operations. We estimate the complexity of this to be approximately equivalent
to (5), which is equivalent to 1/26 five-round AES encryption operations. Operating on these 232 values
will require the equivalent of 226 five-round AES encryption operations, which is negligible compared
to the generation of the hypotheses.

From the AES key schedule we can see that any subkey byte can be computed from two specific
bytes in either the previous or following subkey. From the two sets of hypotheses generated, as described
above, there will be three cases where known relationships between these sets of hypotheses can be
verified. Given that the probability that all three bytes of a given hypotheses can be verified will be
1/224, one would expect that the two sets of 232 hypotheses can be reduced to one set of 240 hypotheses.
A third set of 232 hypotheses can then be generated for one of the remaining columns of the penultimate
subkey and four bytes of the last subkey. There will be a further four bytes of the last subkey that
are generated by bytes for which there are already hypotheses, and an element from the set of of 240

hypotheses will validate a hypothesis from the new set of 232 hypotheses with a probability of 1/232.
One would therefore expect to combine these two sets to produce a set of 240 hypotheses for 96 bits
of the penultimate and 96 bits of the last subkey. A set of 232 hypotheses can then be generated for
the final column of the penultimate subkey and four bytes of the final subkey. At this point on can
verify whether an entire subkey can be generated from the penultimate subkey. For each of the 232

hypotheses generated, hypotheses in the set of 240 hypotheses for 96 bits of the penultimate and 96

Plaintext
• 0 0 0
0 • 0 0
0 0 • 0
0 0 0 •

→

AddRoundKey
• 0 0 0
0 • 0 0
0 0 • 0
0 0 0 •

→

SubBytes
• 0 0 0
0 • 0 0
0 0 • 0
0 0 0 •

→

ShiftRow
• 0 0 0
• 0 0 0
• 0 0 0
• 0 0 0

→

MixColumn
• 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Fig. 2. Propagation of a four-byte difference across one round of AES, where • represents a non-zero difference.

bits of the last subkey will produce valid keys with a probability of 1/(28)9 = 1/272 (since there will
be nine bytes in the last subkey that will not have been verified previously). One would, therefore,
expect to generate two hypotheses from the two sets of hypotheses. One that is correct and one that
fulfills the criteria by chance. A detailed example of how an instance of this attack would be conducted
is given in Appendix A.

The time complexity of the entire attack will be 238 five-round AES encryption operations and
require 240 hypotheses to be stored in memory. If a second δ-set is included the time complexity
will increase, but the memory requirements will become negligible. The time complexity does not
double since an attacker only requires sufficient information to determine which of the two remaining
hypotheses are false. This should be possible with work equivalent to 236 five-round AES encryptions,
i.e. the generation of hypotheses of 32-bits of the final and 32 bits of the penultimate subkeys. These
attack are summarized in Table 1.

Table 1. Summary of the Square Attack on Five-Round AES-128.

Number Memory Time Remaining
of δ-sets Complexity Hypotheses

1 240 238 2
2 1 238 1

4.3 Analyzing an Extra Round

The attack described above applied to a five-round AES can be extended to attack a six-round AES.
In order to permit an extra round to be analyzed a set of 232 plaintexts are chosen that give all the
possible ciphertexts that differ at indexes 1, 6, 11, and 16. An attacker will then seek to choose the
256 plaintext-ciphertext pairs that produce intermediate states that differ in only one byte after one
round, i.e. the input required to attack a five-round AES, as shown in Figure 2.

The simplest way of achieving this would be to choose 256 32-bit values for the first column of the
intermediate state that differ in one byte. These 32-bit values can be deciphered for a given hypothesis
for four bytes of the first subkey (specifically the bytes at indexes 1, 6, 11, and 16). This will produce
256 plaintexts that produce a δ-set after one round that can be analyzed using the attack described in
Section 4.2, each of which will provide one hypothesis for the secret key given the hypotheses for 32
bits of the first subkey. This would increase the time complexity of an attack by a factor of 232, but
allow an extra round to be analyzed.

Ferguson et al. observed that all 232 can be used as a set of acquisitions to conduct the Square
attack [7]. That is, a set of 232 distinct plaintexts differing at, for example, indexes 1, 6, 11, and 16
described above can be viewed as 224 δ-sets. This remains true after the first round but an attacker
cannot distinguish individual δ-sets after the first round without knowing four bytes of the first subkey.
However, an attacker can treat all 232 acquisitions together, i.e. the attack described in the previous

section work in the same manner but with a set of 232, rather than 28, acquisitions. We refer to a set
of 232 plaintext-ciphertext pairs that are equivalent to 224 δ-sets as a ∆-set.

An attack would proceed in the same manner as described in Section 4.2. Using the same notation
the computation of the sets of (x1, c2, c3) will require 248 executions of the function S. This would result
in 232 triples (x1, c2, c3). However, a maximum of 224 values distinct values are possible. As described
in Section 4.1, one only needs to keep one example of the triplets that occur with an odd-numbered
frequency. Likewise, this will produce at most 216 values for (x2, c3) per key hypothesis, and at most
28 values for x3 per key hypothesis. The time complexity of the entire analysis requires 250 executions
of the function S for all four 32-bit sets for the final subkey, which given our estimate given above
corresponds to 242 AES encryptions operations. This is increased to 244 where five ∆-sets are required
to determine the key.

Given that only two ∆-sets are required to determine the key, see Section 4.2, one the complexity
using the “partial sums” method can be reduced to 243. This is not immediately apparent since
evaluating (5) will reduce the number of key hypotheses for {k0, k1, k2, k3, k4} by a factor of 256.
Intuitively, one would expect that the same effort would be required to analyze one ∆-set four times,
resulting in an attack with the same time complexity as that proposed by Ferguson et al. We note
that evaluating (5) once for a given ∆-set will requires 248 executions of the function S. A second
evaluation of an instance of (5) with k4 replaced with a different key byte from the penultimate subkey
will require 240 executions of the function S. This is because Sλ(ci,λ ⊕ kλ), for one λ ∈ {0, . . . , 3},
will already have been computed for all i (we note that this will involve carefully choosing the order
in which the first instance of (5) is evaluated). This same reasoning applies for a third and fourth
evaluation of (5) that will result in an 8-tuple consisting of four bytes of the last subkey and four
bytes of the penultimate subkey. The overall complexity of evaluating (5) four times for one ∆-set is,
therefore, approximately 248 executions of the function S. The time complexity of the repeating this
for all four 32-bit sets for the final subkey requires 250 executions of the function S, which given our
estimate given above corresponds to 242 AES encryptions operations. This is increased to 243 where
two ∆-sets are required to determine the key.

We can reduce the time complexity further if we exploit the relationships between key bytes in
adjacent subkeys. That is, one can generate 8-tuples of key byte values using the “partial sums”
sums technique proposed by Ferguson et al. and use the attack described in in Section 4.2 to reduce
the number of key hypotheses. Given one set of 232 plaintext-ciphertext pairs an attack with a time
complexity equivalent to 242 six-round AES encryption operations and require that 240 key hypotheses
are stored in memory. Again, more acquisitions can be used to reduce the memory requirements at the
cost of an increased time complexity. This is summarized in Table 2.

Table 2. Summary of the Square Attack on Five-Round AES-128.

Number Memory Time Remaining
of δ-sets Complexity Hypotheses

1 240 242 2
2 1 242 1

5 Applying the Square Attack to AES-192 and AES-256

In this section we describe how the attacks described in Section 4 are applicable to AES-192 and
AES-256.

5.1 Analyzing Five-Round AES

Attacking a five-round AES-192 will function using a time complexity equivalent to 239 AES encryption
operations using the attack described in Section 4.2 based on the attack proposed by Ferguson et al. [7].
That is, two δ-sets would be sufficient to determine the last two subkeys of a five-round instance of
AES-192 or AES-256.

An attack on an instance of AES-256 cannot be made more efficient by analyzing two consecutive
subkeys since there are no direct relationships. However, one can exploit the relationships between
two consecutive subkeys when attacking an AES-192. This would follow a similar technique to that
presented in Section 4.2. If one acquires a δ-set, one can analyze two columns of the penultimate subkey
by guessing eight bytes of the last subkey (in two sets of four bytes). This will produce two sets of 232

hypotheses with a time complexity equivalent to 236 five-round AES encryption operations. One can
then eliminate hypotheses in each set that are inconsistent, since we would have hypotheses on eight
bytes of the penultimate key and eight bytes of the last subkey. Given the key schedule, one would
expect that the two sets of 232 hypotheses can be reduced to one set of 248 hypotheses. A third set
of 232 hypotheses can then be generated for one of the remaining columns of the penultimate subkey
and four bytes of the last subkey. One would expect that this would produce 264 hypotheses with the
relevant subkeys. This is because, in each case, there are two key bytes in the penultimate key that can
each be derived from bytes the last subkey. A detailed example of how this attack would be conducted
is given in Appendix B.

As previously, the memory requirements of the above attack can be reduced by acquiring more
δ-sets at the cost of an increase in the time complexity. However, one would only need to analyse half
the information present in a second δ-set to reduce the hypotheses to a trivial amount. The details of
the square attack applied to five-round AES-192 and AES-256 are shown in Table 3 and 4 respectively.

Table 3. Summary of the Square Attack on Five-Round AES-192.

Number Memory Time Remaining
of δ-sets Complexity Hypotheses

1 264 238 264

2 1 238.5 216

Table 4. Summary of the Square Attack on Five-Round AES-256.

Number Memory Time Remaining
of δ-sets Complexity Hypotheses

1 2128 238 2128

2 1 239 1

5.2 Analyzing Six-Round AES

The attacks on five rounds of AES-192 and AES-256 can be extended by assuming that an attacker
knows the last subkey. The time complexity of the five-round attack does increases by a factor of 2128

when it is applied to a six round variants of AES-256. However, Lucks observed that knowledge of

7-th Subkey
• • • •
• • • •
• • • •
• • • •

→

6-th Subkey
◦ ◦ 0 0
◦ ◦ 0 0
◦ ◦ 0 0
◦ ◦ 0 0

→

5-th Subkey
0 0 0 ◦
0 0 0 ◦
0 0 0 ◦
0 0 0 ◦

Fig. 3. The known information from the last subkey, where • represents a known value and ◦ represents a
derived value.

the last subkey would allow an attacker to directly derive bytes in previous subkeys when attacking
AES-192 [10]. That is, 64 bits of the penultimate subkey and 32 bits of the antepenultimate subkey,
as shown in Figure 3.

Following the reasoning in Section 4.2, a computational effort equivalent to 222 (i.e. a factor of
216 less than the standard attack) six-round AES-192 encryption operations to treat each δ-set. As
previously, two δ-sets would be sufficient to determine the penultimate and antepenultimate subkeys.

One can reduce this to one set if one uses the relationships between two consecutive subkey as
described in Section 5.1. Since much of the subkeys are already known the memory requirements are
much reduced. The details of the square attack applied to five-round AES-192 and AES-256 are shown
in Table 5 and 6 respectively.

Table 5. Summary of the Square Attack on Six-Round AES-192 using δ-sets..

Number Memory Time Remaining
of δ-sets Complexity Hypotheses

1 216 2150 28

2 1 2151 1

Table 6. Summary of the Square Attack on Six-Round AES-256 using δ-sets..

Number Memory Time Remaining
of δ-sets Complexity Hypotheses

1 2128 2166 2128

2 1 2167 1

We can also note that introducing an extra round before, and acquiring ∆-sets will lead to a more
efficient attack. This involves conducting the five-round attack described in Section 5.1 on a six-round
AES using ∆-sets rather than δ-sets. The details of the square attack applied to six-round AES-192
and AES-256 using ∆-sets are shown in Table 7 and 8 respectively.

5.3 Analyzing an Extra Round

As described in Section 4.3, an extra round can be added where an attacker uses ∆-sets [7]. Given
that a large amount of the penultimate subkey is known the “partial sums” method of conducting the
Square attack can be further optimized. We recall that the attack requires that (5) is evaluated as
described in Section 4.2. Note that the attack does not proceed exactly as the six-round attack given
in Section 5.2 as the relationships between the bytes of the subkeys will be different.

Table 7. Summary of the Square Attack on Six-Round AES-192 using ∆-sets.

Number Memory Time Remaining
of δ-sets Complexity Hypotheses

1 264 242 264

2 1 242.5 216

Table 8. Summary of the Square Attack on Five-Round AES-256 using ∆-sets.

Number Memory Time Remaining
of δ-sets Complexity Hypotheses

1 2128 242 2128

2 1 243 1

If, for example, an attacker wishes to evaluate (5) and knows (k0, k1) these values can be evaluated
before the unknown (k2, k3). Generating 224 values for (x1, c2, c3) will require 233 executions of the
function S. Then 216 values for (x2, c3) per hypotheses for k2 can be generated with 232 executions of
the function S, and continue as per the attack described in Section 4.3. The time complexity of the
entire analysis will be 234 evaluations of the function S. That is, 236 executions of the function S for
all four 32-bit sets for the final subkey, which corresponds to 228 AES encryptions operations.

Table 9. Summary of the Square Attack on Seven-Round AES-192.

Number Memory Time Remaining
of δ-sets Complexity Hypotheses

1 216 2153 28

2 1 2154 1

6 Conclusion

In this paper we have demonstrated that the “partial sums” method of conducting the Square attack
can be improved by analyzing more information per δ-set (or ∆-set). This allows the time complexity
of attacks to be halved. For AES-128 the time complexity can be halved again, and reduced by a
smaller amount for AES-192, by eliminating key hypotheses on-the-fly.

In Table 11 we present a summary of the attacks presented in this paper alongside similar attacks
in the literature. The memory requirements are the number of state matrices, or equivalent, that need
to be stored in memory. The number of acquisitions are the number of chosen plaintexts enciphered
with an unknown key, where the number is given in multiples of 28 or 232 so that it is clear how many
δ or ∆-sets are required to conduct the attack. The time complexity is expressed as the computational
effort required to compute that many AES encryption operations.

In this paper we have focused on attacks that require relatively few chosen plaintext-ciphertext
pairs. Ferguson et al. also proposed a Square attack applicable to seven rounds of a AES-128 and eight
rounds for AES-192 and AES-256. However, this attack requires approximately 2128 chosen plaintext-
ciphertext pairs and is beyond the scope of this paper although one would expect the proposed strategy
to aid in the analysis.

Table 10. Summary of the Square Attack on Seven-Round AES-256.

Number Memory Time Remaining
of δ-sets Complexity Hypotheses

1 2128 2170 2128

2 1 2171 1

Table 11. Summary of attacks presented in this paper.

Rounds Key Length Memory Acquisitions Complexity

[5] 4 128 – 29 26

[2] (corrected) 4 128 – 29 25

[5] 5 generic – 211 240

This paper 5 128 – 28 238

This paper 5 192 – 2 · 28 238.5

This paper 5 256 – 2 · 28 239

[5] 6 generic – 5 · 232 272

[7] 6 generic 232 6 · 232 244

This paper 6 128 240 232 242

This paper 6 192 – 2 · 232 242.5

This paper 6 256 – 2 · 232 243

[10] 7 192 232 232 2176

Ferguson et al. [7] 7 192 232 19 · 232 2155

This paper 7 192 – 2 · 232 2154

[10] 7 256 232 232 2192

[7] 7 256 232 21 · 232 2172

This paper 7 256 – 2 · 232 2171

References

1. B. Bahrak and M. R. Aref. Impossible differential attack on seven-round AES-128. IET Information
Security Journal, 2(2):28–32, 2008.

2. E. Biham and N. Keller. Cryptanalysis of reduced variants of Rijndael. unpublished, 1999. http://www.

madchat.fr/crypto/codebreakers/35-ebiham.pdf.
3. A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique cryptanalysis of the full AES. In D. H. Lee

and X. Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 344–371. Springer, 2011.
4. J. Daemen, L. Knudsen, and V. Rijmen. The block cipher Square. In E. Biham, editor, FSE ’97, volume

1267 of LNCS, pages 149–165. Springer, 1997.
5. J. Daemen and V. Rijmen. AES proposal: Rijndael. In AES Round 1 Technical Evaluation CD-1: Docu-

mentation. NIST, August 1998. http://www.nist.gov/aes.
6. O. Dunkelman and N. Keller. The effects of the omission of last round’s MixColumns on AES. Information

Processing Letters, 110(8–9):304–308, 2010.
7. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting. Improved cryptanalysis

of Rijndael. In B. Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 213–230. Springer, 2001.
8. FIPS PUB 197. Advanced encryption standard (AES). Federal Information Processing Standards Publi-

cation 197, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, November
2001.

9. J. Lu, O. Dunkelman, N. Keller, and J. Kim. New impossible differential attacks on AES. In D. R.
Chowdhury, V. Rijmen, and A. Das, editors, INDOCRYPT 2008, volume 5365 of LNCS, pages 279–293.
Springer, 2008.

10. Stefan Lucks. Attacking seven rounds of Rijndael under 196-bit and 256-bit keys. In AES Candidate
Conference 2000, 2000. http://csrc.nist.gov/encryption/aes/round2/conf3/aes3conf.htm.

11. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of Smart Cards.
Springer-Verlag, 2007.

12. W. Zhang, W. Wu, and D. Feng. New results on impossible differential cryptanalysis of reduced AES. In
K.-H. Nam and G. Rhee, editors, ICISC 2007, volume 4817 of LNCS, pages 239–250. Springer, 2007.

A Using the Key Schedule to Complement the Square Attack on
Five-Round AES-128

In this section we describe an example of the attack presented in Section 4.2. We assume the worst
case where an attacker only has one δ-set. Other versions should be possible (i.e. where one chooses to
examine the columns of the penultimate subkey in a different order).

We define the last two subkeys as

K4 =

k4,1 k4,5 k4,9 k4,13
k4,2 k4,6 k4,10 k4,14
k4,3 k4,7 k4,11 k4,15
k4,4 k4,8 k4,12 k4,16

 and

K5 =

k5,1 k5,5 k5,9 k5,13
k5,2 k5,6 k5,10 k5,14
k5,3 k5,7 k5,11 k5,15
k5,4 k5,8 k5,12 k5,16

 .

If an attacker has a δ-set, one can conduct an analysis as described in Section 4.2. That is, one can
guess, for example, the key bytes {k5,1, k5,14, k5,11, k5,8} which will allow hypotheses to be formed on
each element of {k4,1, k4,2, k4,3, k4,4} independently. Note that while the attack derives information on
a transformed version of {k4,1, k4,2, k4,3, k4,4} this can be easily inverted for each hypotheses for the
whole set. With a time complexity equivalent to 218 five-round AES encryptions one would expect to
obtain 232 hypotheses for

γ1 = {k5,1, k5,14, k5,11, k5,8, k4,1, k4,2, k4,3, k4,4} ,

which can be stored in a hash table.
One can then conduct the same analysis by making hypotheses on {k5,13, k5,10, k5,7, k5,4} which will

allow hypotheses to be derived on the elements of {k4,13, k4,14, k4,15, k4,16}. Likewise, this will provide
232 hypotheses for

γ2 = {k5,13, k5,10, k5,7, k5,4, k4,13, k4,14, k4,15, k4,16} .

However, as each element in γ2 is generated the following relationships between the elements in γ2 and
γ1 can be verified:

k5,1 = S(k4,14)⊕ k4,1 ⊕ RCON, k5,4 = S(k4,13)⊕ k4,13
and k5,14 = k5,11 ⊕ k4,14

A given element of γ2 will therefore have 28 elements in γ1 that will satisfy these constraints, given that
a incorrect key value will fulfill these relationships with probability 1/224. The resulting 240 hypotheses
for {γ1, γ2} can also be stored in a hash table.

One can continue in a straightforward manner to derive 232 hypotheses for

γ3 = {k5,5, k5,2, k5,15, k5,12, k4,5, k4,6, k4,7, k4,8} .

For each element in γ3 an attacker can verify the following relationships with {γ1, γ2}:

k5,2 = S(k4,15)⊕k4,2, k5,5 = k5,1 ⊕ k4,5 k5,8 = k5,4 ⊕ k4,8
and k5,14 = k5,10 ⊕ k4,14

Again the resulting 240 hypotheses for {γ1, γ2, γ3} can be stored in a hash table.
Lastly, one can perform the same analysis on

γ4 = {k5,9, k5,6, k5,3, k5,16, k4,9, k4,10, k4,11, k4,12} .

Each element from γ4 can be used to see if a valid pair {K4,K5} has been found by searching in
{γ1, γ2, γ3} for values that satisfy the remaining relationships between the two subkeys:

k5,4 = S(k4,13) ⊕ k4,4, k5,6 = k5,2 ⊕ k4,6, k5,7 = k5,3 ⊕ k4,7, k5,9 = k5,5 ⊕ k4,9, k5,10 = k5,6 ⊕ k4,10,
k5,11 = k5,7 ⊕ k4,11, k5,12 = k5,8 ⊕ k4,12, k5,13 = k5,9 ⊕ k4,13, and k5,16 = k5,12 ⊕ k4,16

Given that an incorrect hypothesis for {K4,K5} will validate these equations with a probability of(
1/28

)9
= 1/272, one would expect to have two hypotheses for {K4,K5} (i.e. the correct key and one

incorrect one that fulfills the criteria by chance) and therefore two hypotheses for the AES key.

B Using the Key Schedule to Complement the Square Attack on
Five-Round AES-192

In this section we describe an example of the attack presented in Section 5.1. We assume the worst
case where an attacker only has one δ-set. Other versions should be possible (i.e. where one chooses to
examine the columns of the penultimate subkey in a different order).

We define the last two subkeys as

K4 =

k4,1 k4,5 k4,9 k4,13
k4,2 k4,6 k4,10 k4,14
k4,3 k4,7 k4,11 k4,15
k4,4 k4,8 k4,12 k4,16

 and

K5 =

k5,1 k5,5 k5,9 k5,13
k5,2 k5,6 k5,10 k5,14
k5,3 k5,7 k5,11 k5,15
k5,4 k5,8 k5,12 k5,16

If an attacker has a δ-set, one can conduct an analysis as described in Section 4.2. As previously, one
can guess, for example, the key bytes {k5,1, k5,14, k5,11, k5,8} which will allow hypotheses to be formed
on each element of {k4,1, k4,2, k4,3, k4,4} independently. Note that while the attack derives information
on a transformed version of {k4,1, k4,2, k4,3, k4,4} this can be easily inverted for each hypotheses for the
whole set. With a time complexity equivalent to 218 five-round AES encryptions one would expect to
obtain 232 hypotheses for

γ1 = {k5,1, k5,14, k5,11, k5,8, k4,1, k4,2, k4,3, k4,4} ,

which can be stored in a hash table.
One can then conduct the same analysis by making hypotheses on {k5,13, k5,10, k5,7, k5,4} which will

allow hypotheses to be derived on the elements of {k4,13, k4,14, k4,15, k4,16}. Likewise, this will provide
232 hypotheses for

γ2 = {k5,5, k5,2, k5,15, k5,12, k4,5, k4,6, k4,7, k4,8} .

However, as each element in γ2 is generated the following relationships between the elements in γ2 and
γ1 can be verified:

k5,15 = k4,7 ⊕ k5,11 and k5,12 = k4,4 ⊕ k5,8 .

A given element of γ2 will therefore have 216 elements in γ1 that will satisfy these constraints, given
that a incorrect key value will fulfill these relationships with probability 1/216. This will result in 248

hypotheses for {γ1, γ2}. Continuing in a straightforward manner to derive 232 hypotheses for

γ3 = {k5,13, k5,10, k5,7, k5,4, k4,13, k4,14, k4,15, k4,16} .

For each element in γ3 an attacker can verify the following relationships with {γ1, γ2}:

k5,14 = k4,6 ⊕ k5,10 and k5,11 = k4,3 ⊕ k5,7

This will result in 264 hypotheses for {γ1, γ2, γ3} and the set

γ4 = {k5,9, k5,6, k5,3, k5,16, k4,9, k4,10, k4,11, k4,12} ,

can be used to check each element from γ4 can be used to see if a valid pair {K4,K5} has been found
by searching in {γ1, γ2, γ3} for values that satisfy the remaining relationships between the two subkeys
using

k5,13 = k4,5 ⊕ k5,9, k5,9 = k4,1 ⊕ k5,5, k5,10 = k4,2 ⊕ k5,6,
and k5,16 = k4,8 ⊕ k5,12 .

Given that an incorrect hypothesis for {K4,K5} will validate these equations with a probability of(
1/28

)4
= 1/232, one would expect to have 264 hypotheses for {K4,K5}.

