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ABSTRACT Il. PRELIMINARIES

This work fall within the cadre of Cryptanalysis. Because, undék. Elliptic Curves
certain condition, we would give a fairly simple method to solve |4 general the equation of an elliptic curve E over a finite field k,
the CDHP (the Problem Computational of Diffie and Hellman) angd o the form:
others problems associated to it. Since, solving this problem, willheyp> |, ¥y | .y = X3 + 42 X2 + au X + as *)
us to provide a solution to the BDH (Problem Bilinear of Diffie andrpe elliptic curve over a field k, is defined as follows:
Hellman). The CDHP and BDHP are the heart of many cryptosyster@*@k):{ (X,Y) € K?/(X,Y) verifies (*)}

in the point of view security, so solving it may be a threat to this hoint P of coordinated (x, y) in an ellitpic curve E is singular, if

cryptosystem's. To elucidate this, we use a concept of geOMeWE) — and %) — (. The curve is called singular if it has at least
algebraic named Tate Pairing. () v)

This work is purely theoretical, we give firstly an overview on thQn¢ POt singular.
s work 1S purély theoretical, we give Tirstly an overview on thg,qo elliptic curve admits an element neutral noted universally by O,
idea and we illustrate it by an examples to see its efficiency.

which has the form: (0,1,0) in the projective coordinates.
1) Group law for elliptic curve:An elliptic curve is fitted with

|. INTRODUCTION an internal law of composition additive:

In modern cryptography, a lot of protocols and cryptosysem's aﬁLgeErPO__(gp ’OYJ}:)PG_E](Dk) and@ = (Xo,Yo) € E(k) 0 :

based on the Problem of Diffie Hellman. Our aim in this work is t oy S5
. . %’+(—P):O,—P:(Xp —Yp—alXp—ag)

attack many of this problem: CDHP and BDHP, by using what is ’

called Pairing. :

Under certain condition, solving the problem Computational of DiffigxpIICIt formula

and Hellman (CDHP) using Tate pairing, may help us to break all Let P = (Xp,Yr) and@Q = (Xq, Yq). The coordinates of P +

cryptosystems based on this problem. And as the BDHP is relat@dare defined as:

to CDHP, then, all the protocols related to it, can be easily attacker+o = A* +a1X — a2 — Xp — Xq,

Which imply a real threat to the exchange tripartite of Joux [2] antip+q@ = —(A+a1)Xpig — v — a3

to the cryptography based on the identity of Boneh and Frankhith, \ = Y@ if P £ Q and \ = 3Xp+2a2Xpras—ai¥p ¢

[1], as well as, others protocols. After this work we will be carefuoy . Xe=Xr HorarXptaes

to select the parameters linked to these cryptosystems. And SO p{igeneral, for a field k of characteristic different to 2 and 3, the
contribution is to fix a condition to make into consideration to seleghordinates will be as follows:

such parameters. If X Xo, P+Q is the point of coordinat , Y such
Among the reasons that pushed us to address this problem, it istﬁ@t;}fxf+Q2)\2 — Xp— XZ BXp10: Yr4a)

open question in the article of Bonneh and Franklin [1] which sta@d Yrro = AXp — Xpig) — Yp With A = Yo-Yp

that there isn't equivalence between the problems CDHP and BDHP. . _ . o Xo—Xp
With the fact that, between these two problem we have only thg tY'f' )EPY* X W'.t“h {P # Yo, vtvedwntl)l haZS P:Q—O.d_An? q
implication CDHP— BDHP. Is it possible to obtain the reverse?', *# = Yo, W€ Will have a point double of coordinate

. i - “
The issue is almost solved theoretically but under certain conditio&?ﬁp’yﬂ’)’ such thatX,p = A QXP,fmd Yop = MXp
That's we will show in this article. p+Q) — Yp, With A = (3Xp + a)(2Yp)~". Taking into account

that the equation of the elliptic curve for a field of characteristic
o different from 2 and 3 is in the fornk? = X3+ aX +b after using
Organisation a suitable change of variable.

preliminary mathematics. In the third section we detail our ide¥gveral algorithm can be considered (NAF algorithm, Montemogry
in order to solve these problems. We give a conclusion in the end- But we cite for example the following methods [3] which makes

section. the calculations fast enough:
Input:a=m,B=0,C=P;
Key Words: CDHP, BDHP, Tate Pairing, Function Rational, - if ais even a— 3, B=B, C=2C;

Order of Point, Divisor and algorithm of Miller. - if ais odd,a«— a-1, B=B+C, C=C;



- if a # 0, go to step 2. 2. Twist of Large Degreefor any curve EF,) it is possible

- Output B to have different twist from the quadratic one.

3) Order of E (k), with k =F,: . The order of the field is In this case we have: B> = 2% + o’z + b’ with o/ = via and
given by the famous theorem of Hasse: b =wib, v is the root of degree exactly d (not less) on F
q+1-2Y¢<|E(F,)|<q+1+2q All these twists are isomorphic to B(a)

In general, we can use the algorithm of Schouf [4] published in 198%he twists possible (either quadratic or with higher degree) are
to determine the order of the group. grouped in the following table.

The order of the point is the smallest integer m such that But we can say that for both cases: q = 1(mod d) is a necessary
mP = O, but if this parameters m doesn't exist the point P admits aBndition for these twists

infinite order. We includes in the following table the isomorphisms

4) Point of r-torsion: We say that P is a point of r-torsion (r,: E' — E, with d is the degree of the twists
is a positive integer) if r P = O

Definition 1: Let r be a positive integer, the ensemble TABLE |
E[r] = { P € E(Fy)/rP = O} is called an ensemble of point of r KIND OF TwiIST
torsion.
F, is an an algebraically closed. The integer r is not necessarily the
order of point P it may be its multiple d T PeE PCE E =
S 2 _ .3 2 _ .3 2 3
Definition 2: Let G be an extension of k then we havet 2 | &) | (wv2y) |y = J;az +toly - J”; oz +v7b
E(G)[M=ElNG={PcE(G)/rP=C 3| () | (viz,v2y) y? =23 +b y2 = a3 + b
The Degree MOV [5]: Let E be an elliptic curve iy, and letrbe | 4 | (xy) | (v2z,viy) | y? =2®+ax y? = 2 +vazx
a positive integer. The smallest integer k such gt = E(F,x)[r] 6| (xy) | (v3z,v2y) y?=x3+b y? =22 +vb
is called the MOV degree relatively to r
5) Curves Supersingular Let E be an elliptic curve defined %

over F(q), with g is a power of p. R z,; )
The curve E isupersingular, if it satisfies one of the tree equivalentg  *_ | ™ f/
conditions (V7 gm0 =2 y)
1- E(F,) = 1mod p, orE(F,) = ¢+ 1 —t, with p|t (t is the (v-2z,0-1y)

trace) (v—3z,0—-27)

2 . E has a point nontrivial of order p afy, i.e, E[p] = cc.
3 . The endomorphism of the ring E dr, is hon-commutative, or
more specifically, it is an order on the quaternion algebra
A no-supersingular curve is calledrdinary
Distortions : The distortions have been found by Verheul
[6]. Originally, they were used to provide an effective computablg, 5 field of characteristic different from 2 and 3, we can

isomorphisms between elliptic curve ovéf of orderp® —p+1. The Jransform all the curves in twists, we just find a suitable v
distortions has the advantage that they send points to independent

form. However, finding independent points is an important proble®. Rational function

for the pairings. Lets E(k) be an elliptic curve of equation f(X,Y) = 0. The function
g is zero of E(k), if g is a multiple of f, and we can define an

Example of distortion equivalence relation on the ring k[E] as: k[X,XT). The field k(E)
Field Curve Distortion is the field of rational functions on E.
I =7 taz #(@,y) = (—z,) The function is rational over k(X,Y), if it set at least one point of
P — el ’ E(k) in the form rational. For example, E(.) can be written as
Fy y2 =240 é(z, y)=(¢ XY) a((X),Y) P E&)

Propriety 1 (Merheul)[7] : Let E /F, be a curve supersingular »(X;Y) with g(.X’ Y) and h(X,Y) are two function onB[F,].
such that PEE(F,) [n]. And we can write g(X,Y)3.(X)+Ygy(Y) with g.,g, € Fx[X], as

> s : : = Tak
If n is relatively prime with the characteristic of,. Then there Y = X"+ aX + b (equation of field of characteristic different to

exists a distortion relatively related to p. 2 and 3) XY
For a rational functlo% the zeros ofg(X,Y") are called the
Propriety 2 (Verheul)[7] : Let E(F,) be an ordinary elliptic zeros of the rational function, and the zeroswi’, Y) are its poles.
curve , and let Re E(Fy ) [n]. The rational functions defined on an elliptic curve E, admit the
If n is relatively prime to the characteristic d,. And E[n] is not number of zero equals to the number of pole (for more details see
in E(F, ), then there is no distortion relatively related to p. [8])

The distortion in supersingular curve is related to the form df- Divisors
the curve. But in general, for supersingular or ordinary curve, we A divisor is a universal concept that relate the zeros and poles with
must only know if they have a form equal to that of a Twist Curvehere order of multiplicities. For example, we can write a divisor D

Then we can use diffeomorfism linked to these curves as follows: '
o ) D=a1[P1]+ a2 [P2]+as[Ps]+aa[Pa]+as[Ps], with a1, as, as, as, as
Some preliminary on Twisted Curves: € Z are zeros or poles of point®:, P, Ps, Py, Ps, for an elliptic

1. Twist of degree quadrature:et E(F,) : y*> = 2® +az+b curve E.
be an elliptic curve and ¥ F; a quadratic non residue if;. So For exampleD = [2P] — 3[Q] — 2[P]. But in this divisor [2P] and
E'/F: y? = 2® + v2azx + v®b is named a quadratic twist of E. 2[P] are different. We called the first a zero of order 1 and the second
E’ is isomorphic to E in an extension of degree 2 Bp a zero of order -2
A divisor is so a set generated by symbols [P]. We noted all divisors



by Div(E) Let: Dp and Dg be two divisors of degree 0 with disjoint support,
The degree of D is an integer that has the following valugp, a function such thatdiv(fp,) = rDp

deg(_, ai[P:])=>" ai, and its sum is: sum(, a:[Pi])=>_ a: F;. The Tate pairing is the application :

We note all the set of divisors of degree 0 Byv° t- B[] X E(R)/IFE(K) — k*/(k*)"

We say that a divisor D¥., a; P; is principal, if it is a divisor of (P,Q)=t.(P,Q)=fp,(Dgq) modulo (k¥*)"

degree 0 and ibum(}_, a;[P;]) = O If we take Dp = [P] — [O], Dg = [Q + T] — [T] (T is of our
The set of divisors principal is noted Prin(E). choice). So,.Dp and Dq have disjoint supports, then:

Two divisors D and D’ are equivalent if their difference is an element. (P, Q)=f’}i‘;z;f). But for this pairing to have an exact value, it
of Prin(E).

: . k_1y/r
The divisor of the rational function f is defined as follows: must be defined as follows; (P, Q) = (fo, (Do) ="/
div(f) = 3= e ordp(f)[P] with ordp(f), is the order of fat  3) Weil Pairing: Let: P, Qe E[r] andDp, Dq two divisors of
point P (zeros or poles). And we know that any rational functiordegree O with different support. So we can tdRe to be equivalent
has degree 0 by [8] to [P] — [O] and D¢ equivalent
For the divisor D3, a;P; and the function rationale f we have:to [Q + S]-[S], with S is chosen such that P, O, Q+S, S are points
f(D)=]1 f(P:)*¢, we only requires that we should have the suppotifferent to each others.
of D and div(f) to be disjoint As P and Qe E[r], thenrDp andrDg are two principals divisors.
Example of divisors for a known rational function So, there are two principal functiofir and fg such thatdivfp =
To find a divisor for an equation of the rational functiem+ by +c¢ rDp anddivfqg = rDq
(equation of a line which pass through the poifts P» of an elliptic The Weil pairing is defended as follows:
curve E, withP, # £P5). This line intersects the curve in a thirde,:E[r] x E[r] — u. (u- is the set of the-"" root of the unity)
point Ps;. So the function f(x,y)az + by + ¢ has tree zeros at the?uch thate, (P, Q) — Ipg (DP)

oints P1, P>, P; and a pole of order 3 in point O. Because “) JppDo) . . . .
Eas treel’zerQO,s efnd sincepit is a rational funth)ion (degree 0) it’ H Iculate the pairing is ineffective until the invention of the algorithm

necessarily a pole of order 3 in (Q), then, dive+ P>+ P; —30 9 Miller in 1986, but until present we haven't a practical method to
e (ax + by +c) = P+ Py + Py _’30 ' implement easily the pairing.

For the equation of the vertical linex(— z¢ = 0) that passe  4) Algorithm of Miller: This algorithm computefp, (Q)
through Q and -Q. By the same reasoning as above we hawuging the following method:

div(z — zq) = [Q] + [-Q] — 20 For a divisorDp = [P + R] — [R] and an integer positive i, we
D. Pairi define the following divisor:
- Fainng D; =i[P + R] —i[R] — [¢P] + [O] which is principal, so there is a

A pairing is a bilinear map that takes two points on an elliptigational functiony; such thatdiv(f;) = D;.
curve and output an element of the group multiplicative of n-thor i=r we haveD, = r[P + R] — r[R] — [rP] + [O] = rDp.
roots of unity. The pairing satisfies the following properties: bilineagecause, rP=0 s¢. = fp, the problem is summarized so in the
alternative and non-degenerate. calculation of £,.(Q)
Considering E(K)[r] (points of r-torsion on elliptic curve E) To elucidate this: givery,, (Q) and f.,(Q) for an integer positive
Bilinear:: V P1,%,Q1, Q2 € Elr], ¢v(P1 + P, Q1) = (P, r, and ra, and the pointsr P, roP, (r1 + r2)P. We want to
Q1) - e (P2, Q1) ander (Pr, Q1 + Q2) = er(Pr, Q1) - er(P1,Q2)  calculatef,, 1,

Identity: VP € Er] ¢.(P,P) =1 By definition we have:D,, = ri[P + R] — r[R] — [r1 P] + [O]
Altemate: ¢ (P, Q) = ¢ (Q, P)™" andD,, = r2[P + R] — r2[R] — [r2P] + (O],

Non-degenerate:lf VP € E[r] c.(P,Q) = 1thenQ = O and if D, .. = (r1 +72)[P + R] — (r1 + r2)[R] = [(r1 4+ r2) P] + [O]

V@ € Elr] ¢, (P,Q) =1thenP =0 Defining the following equationstX + bY +c = 0 as a line passed

It is clear from these properties that we havec p, (set of ther”  through two points1 P andr2 P (if 1 = r» we obtain an equation
roots of unity), since:(P, Q)" = ¢ (1P, Q) = ¢-(0,Q) =1 of the tangent). And posind.., p,,p(X,Y) = aX + bY + c
Among the pairing we cited: Weil, Tate, Atg, But in the imple- et X + d = 0 be the vertical line that passes through the point
mentations cryptographic we often use Weil and Tate. r1 + r2) P and defining the functio{,, 1.,)(X,Y) = X +d.

The Tate pairing is two times faster than Weil [9]. Although, thié}sing what we have mentioned previously we have:

latter is more desirable for the security and as in cryptography Wey(L,, p,,p) = [r1P] + [r2P] + [~ (r1 + r2) P] — 30

are more interested to the security. Then, it is better to use nglu(V(TH_m) = [(r1 +72)P] + [=(r1 + r2) P] — 20

pairing. In this study we will see and we will be convinced that thgo, D, 4, = Dy, + Dy, + div(Ly, pryp) — div(Vir, 41y))-

Tate pairing is less secure than Weil. P _ Ly PrapPQ
1) pEXpI?Cit formula for the pairing:Before giving the explicit Which imply f<T1+T2)(Q) N f(’“”(PQ) ' f(TQ)(DQ) " V4@

formulas for each pairing, we demonstrate firstly the following'S We havedivfr,+r,(Q) = divfr (Q) + div fr,(Q) + div

equivalence: %

. . T1TT2 . . -
[P] = [O] and [P + R] — [R] are equivalent [7] for any point R on Remembered that our aim is to calculafe = fr using the
an elliptic curve. following algorithm that takes as output

However according to what we see above we have: div(U):[P]+[R]+J,—(f(T1)(Q)7 Fo) (@), 71 P, 72 Py (11 + 72)P) = fry 400y (Q)
(P+R)]-3[0] and

div(V)=[-(P+R)]+[P+R]-2[O], with U is the line that passes throughagorithm of Miller

the points P, R, -(P+R). And V is the line that passes through the

points P+R and -(P+R). e Let k be an integer, the algorithm works in an iterative manner.
And then:[P] — [O] = [P + R| — [R] + div(y;) . O It takes in its output the rational function (recursivg) which is
Thus, we can write the divisdP» by one of the expressidi] — [O] generated from the following divisor:

or [P+ R] — [R] fe = LR 110] (since Dy, = k[P + R] — k[R)] — [kP] + [0)). For

2) Tate Pairing: Let r be an integer which is prime with the RF(kP)

characteristic off. k=r, f» = fp. Theses iterations can be calculated from the relation
P . i

Let k=F « be a field that contains all roots of unity of order r, and'ven above i.e

Pe E‘(k:%[r], Q € E(K). ferrp = (Fanp - faap

L(riP,ryP)

7 ), from which we deduce:
(ri+r2)P



for = (fr)?*- fﬂ with T and V are respectively the tangent and

the vertical to the point kP. So according to [11] if we have these equivalence we can
Before expressing the algorithm of Miller, we express the integeplve the CDHP. With the fact that

r which is the order of the points, in the basic binary soDefinition 3 of RPI (Right Pairing Inversion problem ): Given P
r= Y20 (2%, with the fact that(fo) = 1 and (f1) = (Y2£2) € G1 and(¢ € Gr, find Q € G, satisfying e(P,Q) <.

1=0 L .. .. B .
It is clear that (fo) = 1 and for (f) we “have: Definition 4 of LPI (Left Pairing Inversion problem ): Given @

. Z ipl _ « Gz and¢ € Gr, find P€ G, satisfying e(P,Q) <.
dw(qX oY+ ) 7] + [Q] f L] _ 30 (a)_(+bY_+C 1S Definition 5 of GPI (General Pairing Inversion problem ): Given
the line passing by P,Q,R), antlv(X — Xq) = [Q] + [-Q] — 20. .
Then: div(aX+bY 1) _ [P]+ [R] - [~Q] — [O] but P+ R = —Q ¢ € Gr, find (P,Q)€ G1 x G4 such that e(P,Q) <.
" div(X—XR) v ) '’ But if we examine very well such idea we can see that its hard
SO [P + R] — [P] — [R] + [O] = (£=£) = (f1). Which proves very (we refer the interest to [14], to more examen the difficulty of such

well the relationship and the recu};’rgnce fori=1. methods).
[1l. OUR IDEA
i Before exploding our idea we need to show firstly the linearity of
Miller(P, Q. 1) some diffeomorphism.
Input: r = ( ry...rp)(binary representation ), ; ;
P e E[r)(C E(Fy)) and Qe G1(C E(F)) A. Lm_eamy ) ) ) i . )
output: f,. p(Q) € G3 (C F*%,) 1) First case: Linearity of some distortions Firstly ¢ is
Tep ? linear if (aP) = ap(P) for all a> 0.
fie—1 The distortiong(z, y) = (—=z,iy) and ¢(x,y) = (Cz,y) are linear,
fori=n-1to0do since:
LT« [2]T Using the recursion we can show this propriety. For example for
fi— f12 x % é(x,y) = (—x,iy), we have:
I, is the tangeht to the curve in T. Firstly, the linearity is true for a = 1. We would to show it for all a
V1 is the vertical to the curve in [2]T. >0
2:if ;=1 then Suppose that it is true for a-1 i.ep((a — 1)P) = (a — 1)¢(P) and
f1 e f1 x 2 we would to show thaty(aP) = a¢p(P)
. S w2(Q) . i .
l5 is the line passing through the point TP But to demonstrate this we must prove that:
Vs is the vertical to the point P + T. (P + (a—1)P) = p(P)+ ¢((a—1)P)
Output: Return f; We have:P + (a — 1)P = (zp,yp) + (Z(a—1)P+ Y(a—1)P) = aP

1 _ Y@-1nP~YP - 2 o -
With (Aap = T(a_1)p TP ' zap = (Aapr) Tp — T(a—1)P) YaP

AaP (TP — Tap) — YpP)
On the other hand we havep(P) + ¢((a — 1)P) =

E. Problem Bilinear of Diffie Hellman (=zp,iyp) + (=Z(a—1)P, WY(a—1)P) _

Before presenting the equivalence between the problem CDM®th  As(p)ig((a—1)P) = % = —iXep, SO
and the problem BHD, we remember the following problems: To(Prro(anyp) = (—idap)? + Tp + T(a_yp = -Tap and
Problem of Discreet Logarithm: DLP Ys(P) to((a1)P) = —idap(—2p + Tap) — iYp =1Yap
Given P and aP, can we find a? S0: ¢(P) + ¢((a — 1)P) = (-Tap,iyar)

. And since¢(P + (a — 1)P) = ¢(aP)= (—xapr, iYaPr)
Problem calculator of Difiie Hellman: CDHP We have very wely(P + (a — 1)P) = ¢(P) + ¢((a — 1)P)
It is the problem that interests us in this study: Given P, aP, bRad as we have assumed by induction that(a — 1)P) =
can we find or rather calculate abP? (a—1)¢(P)
So: ¢(aP) = ¢(P + (a — YP) = ¢(P) + ¢((a — YP) =

Problem Decisional of Difie Hellman: DDHP _ #(P) + (a — 1)¢(P) = ap(P). This clearly shows the linearity of
Given P, aP, bP, cP, can we say that abP = cP?. But this problem g88 distortion

be solved in polynomial time after using the pairing, for example iy the same method as above, we shows the linearity of the other

we prove that e(P,cP) = e(aP,bP) so abP = cP. distortion ¢(x, ) = (Cz,y)

. ", Observation:
Problem Bilinear of Diffie Helleman: BDHbe 1. There are distortions which are not linear, for example the
Given P, aP, bP, cP can we calculate®, P)**? distortion o (z, y)=(w (2””#;',1), —¥Z.) which is suitable to the curve

F. Overview on some technique proposed to cryptanalysis suéh= z° + az defined on the fields,., r? = a, re F,2, w® =,
problem w € Fe, is not linear

. ) 2. The distortions declared above are not the only ones that are

According to [11], Verheul, Galbraith , Hess and Vercauterefinear, it may exist others.

Satoh, have make their search in this area. We can summarize theiQ) Second case: Linearity b For all the isomorphisms
result in the following theorem .. declared above [Table 1] we have checked their linearity. We can
Theorem [11]: Let € : (1 x G — G be a non-degenerate pairingchoose one among them to know how it works, for example
between groups of prime order r. Then the following statements &g still ruse the demonstration of recursion. But we give only its big

equivalent. ] o lines and afterwards, it is simple to extract it

(a) One can solve LPI and RPI in polynomial time. __The parameters, z(p1q), , Tr,, Tq, are reserved to the points of
(b) One can solve LPI in polynomial time and any homomorphisipe twists ¢

G1 — G2 can be computed in polynomial time. We must show tha%gp +Q) = pa2(P)+ 02(Q)

(c) One can solve RPI in polynomial time and any homomorphism —(3) 1
i ial ti As we have:\, = - A=v~ (@) )
G2 — G, can be computed in polynomial time. S We haveA: = =y A=v



So,z(p1q), = (1)7(%“)2 — v @ gp — 1)7(%)37@ = vf(%)mijQ

: Y
And Y(P+Q), = v_(%))\(fu_(i)xp — fu_(%)xp_‘_Q) — v_(%)yP: fP — M (2)
U_(%)yp_'..Q o . decX +Yfpdey
The relationship is therefore very simple to extract. With fp,, . andfp,, arein k[X] (k is the chosen field) and of
degree less than or equal to r.
B. Compute of CDHP Returning to (1) we associate t@(abP) the coordinate of

Our idea to solve CDHP is to use the pairing, since the fir§fieo(avr); Yo(avr)). After the algorithm of Miller, we calculate

use of the pairing is in cryptanalysis. However in 1993 MenezegPar bp) after having replaceds p by its expression, for example
Okamoto-Vanstone used the Weil pairing to reduce the discréf@? = (0P + E] — [R] with R is of our choice.

logarithm problem in finite field to elliptic curve. One year afte Uis easy to apply the algorithm of Miller tngtf (Dop), as aP, bP
Frey Ruck proposed a similar attack using Tate. Also in this wof€ diven. After then, we calculat¢p, , (Do) 7. _
we use this later to solve the CDHP. But Dayp = [abP] — [O] replacing this expression in (1) we find
The security of several cryptosystem is based on Computatioﬁf&@t: -

Diffie Helman Problem for very large integer (greater than 256 bitor (9(abP)) = (fp.r(Dor)™)(fDp(0))

for an elliptic curve). Can we solve this problem? the answer mﬁzo according to the algorithm of Miller, we calculafe , (O). We

be yes. The idea is very simple using Tate pairing (or rather tiHeen find that
rational function associated to this pairing). Given P, aP and bP, fpp(#(abP)) = ctey ®3)
g;s/l?cﬂléc\:vg_alculate abP. We choose the Tate pairing and we procgﬁg replace¢(abP) by its coordinates in the expression ¢f,

which is (2) to find : Y py in function of X, .,py using (3).
Then we replace this expression¥it = X> 4 eX + f which gives
us an equation of degree less than or equal to r and its solution is
the X4, p) that we seek.

Substituting this solution in the equation of elliptic curve, this gives
us the expression df (. p)-

These coordinates are exactly the coordinateg(@bP) which we
want. Then we can easily calculate abP

But since for r greater than>( 12), we can not get to solve an
equation of degree r. We can then use the following method:

We discuss this method according to the case:

1°t case: Assuming that r is even ie 2% and if we return

to t.(aP,¢(bP)) = t.(P,¢(abP)). Exposing byr”, we find:

Propriety 4 (Veurheul)[7] A o N .
Let r be a prime,P € E(F,)[r] and Q € E(F) linearly géT/(aP,¢(bP))) (8-(P, ¢(abP)))™, which is still equivalent

independent to P, k- 0. Sot,.(P, P) is non-degenerate ig to 1

Firstly, we compute the order of the point P, aP, bP.

Then we havet,,,(aP,bP)=(fb,,(Dep)) @~/ But this
expression may be trivial, according to the following properties:
Propriety 3 (Galbraith) [7]

Let P € E(F,)[r], with r is relatively prime to q so:
t(P,P)#1ifk=1

And ¢,.(P, P) = 1, for k > 1.

So: t,, ,(aP,bP) = t.(P,P)*® = 1, for any integers a and
b. Then this calculation is trivial.
But to remedy this problem we have the following property:

(t”(al@(?(i?f))’"” = (t:(r" P, §(abP))). SO (b, (Der))"" =
. . 1 a

To equ_dated th_ls result to our case, we choose SO one of Rﬁ%pﬁoceed as above, therefore we find:

linear diffeomorfismes reported earlier (most convenient to the

elliptic curve chosen) and we will have: _ o _
tr,p(aP,6(bP)) = trp(P,ad(bP)) = t,,(P,¢(abP)) (by the I, ($(abP)) = (fp.r (Dep))” (f0p(0)) = clea (4)

bilinear of the pairing and the linear of the diffeomormism). Thi _ ("' P)("P) "D
equality can not be trivial, since aB(bP), and also Pgp(abP) are But a8fp,np= "y - (because 2rP=0), so
linearly independent. = forn =Y — Mrr o — B 5
S0 t,(aP, $(bP)) = t.(P,¢(abP)) is not trivial (r and r are IDrup = Jrrp =y = Mrp® = frop ®)
respectively the order of aP and P). Since Vs, p = 1 (2r'P=0).
Which implies that With the fact that 8,»p = wy,»p — mup - z»p and
F—1 PLY 3zz,,P+1
(fur(Dowr))) ™ = (fDp(Dpavp))) * Myrp = =5
Then: ) We replaces in the expression (5) the poiftabP) with there
(fDar (D)) = fDp(Dy(avr)) (1) coordinateyapp) aNdzy(asp) o .
In the end we substitute the founded expression in (4) to find
Exploitation of the idea for example y4qop)y N function of x4p) (Or reverse). After
having substitute the founded expression in the expression
As we havef, = “(32);’)’) (P)EZP) BUCZDD) — fp, = fr Y2 = X% 4 eX + f (equation of the chosen elliptic curve ). We

We must simplify only th?gpéxpressiox. In the numerator figure tHénd very well the equation (linked t@, ., p)) Of tree degree which
lines that link to two points different, such thatpy 2py = (P)(2P) is resolved, may be by hand or with a software. After calculating
which is a line that links the two points P and 2P. And we havessp) We replacing it in the equation of the elliptic curve to
in the denominator the vertical line that passes through one po@xtractys.sp)-
(tangent). For examplézp = (2P) is a vertical line that passes So the coordinateas(asp),ys(abr)) are exactly the coordinate of
through 2P. By Maple or by another software (logiciel), we calculatg(abP), after it is easy to extract abP .
P, 2P ..., rP. And after it is easy to find the corresponding equatid®’ case: If r is odd which is a case always meted, so we do as
of lines for each numerator, and that of denominator. By a suitalflellows:
programming (or by hand ... if r is small), we simplify the expressioVe discuss also this case according to the case
of fp taking into account that’?> = X® + eX + f for example ( First case: r is factorial ie it is not prime, so we have: r#='r""’.
equation of a chosen elliptic curve). We simplify each degree of With one of the factors is very large, assuming thatfs(so r"”
that exceeds 2, in the end we get a formula of the form: should be small) .

Then exponent by r” we have: (t.(aP,¢(bP)))” =



(tr(P, ¢(abP)))T” which imply that Thenzsp =0

For (Doavpy) = (s (aP, ¢(bP)))" And y>p = 10 so[ 4P = (0,10)
So, if we can simplify 5P=4P+P=(0,10)+(2,3)
for = DRI UPIE) PG CDP) e can TAPP T Gy Tg = i =

(2r’" P) 3r"pP)y v (r’'r!"" P) ) o
arrived at the result, but this is linked td” T5p =2 —0—-2=2

If not, we can do otherwise (pursued for example the l‘ollowin@nOI ysp = 2(0) — 3 = 8 so| 5P = (2,8)
method) or 6P = 5P+P we havesp = zp = 2

Second caser is not factorial ie r is prime, it is the most worseANd ysp # yp therefore necessarily6P = O) |then P have ordr 6
case and the most hard to break. We have, 6 doesn't divide 11, but\611“ — 1. So we can grouping

We search for a point Q in E(k) this point is not in E [r], withthe calculate in the field",> _ _
condition that P-Q and Q have an order even. If we have this vi&Ur goal in this exercise is to find a point 20P from the points 4P

can resolve the problem, since: and 5P ) L
Supposing for example that the order of P-Q is 2k and that of Q ¥sing the diffeomorphisng(z,y) = (¢z,y) which is suitable to the
2k’. In addition assuming for example that> k&’ so k=k'k". curve used, so we have:

Returning now to the equatiot;, (aP, ¢(bP)) = t,.(P, ¢(abP)) t3(4P, ¢(5P)) = t6(P,49(5P)) = ts(P, $(20P)) (according to the
Sot, (aP, $(bP)) = t,(P—Q+Q, $(abP)) = tar (P —Q, ¢(abP))  Propriety: bilinear of the pairing and the linear of distortion)

tow (Q, ¢(abP)) As P has an order even 6=2.3 so exposing by 3 we find:
Exposing by k imply that (t.(aP,¢(bP)))*=(toan(P — t3(4P,¢(5P))° = te(P, $(20P))° s
Q, H(abP)))F (top (Q, p(abP)))* Firstly, according to [7] we have, = =2(1 + 30737)) =

The term (tax (P — @, ¢(abP)))* = tan(k(P — Q),#(abP)) =  5(1+5i)=5+3i

Trp-q)(Despy) is simplificative ( it is an equation of two variable So : ¢(5P) = (Czsp, ysp) = ((5 + 38)2,8) = (10 + 6i,8)

with degree 1). And for the second term (& (Q, ¢(abP)))* we Without passing by the algorithm of Miller we can calcu-
have: Ifk” is divisible by 2 then we haveta, (Q, ¢(abP)))* =1, late ts(4P, $(5P))°, because it is equal tde(12P,$(5P)) =

if not, it depends ork” we can find the desired expression (morés(O, ¢(5P)) = 1, sincefo =1

simplificative), but if not we should change the Q. And then fsp(Dy(20p)) = 1
The third term(t, (aP, ¢(bP)))* = cte, since we know aP and bP. SdBut 3P has order 2

ding as above we can extract the coordi S0 fsp = fo = BRGH) = Lsp
persuading B&se.s Py, Yg(abP)) 6P Ver

As 6P = O,Vgp =1 andTs3p = Vzp = 2 — 23p = X-10 = x+1
Existence of P-Q and Q with the desired orderet E be In addition we havefsp(Dg20p)) = % =1

an elliptic curve defined ovef,, then E{,) is a commutated group Since f3p(O) = 1 S0 f3p(¢(20P)) =1
of rank equal to 1 or 2. So [12] BY) ~ Zn, © Zn, With n1 \ n2 Thenzygop) + 1 = 1 imply zg20p) =0
andn; \ g-1. Which implies thatysoop = 1 OF ys20p = —1 = 10 because
The following algorithm [12] is summarize to calculate andna. 2 = 2% 41
Algorithm (Miller): Then$(20P) = (0,1) or $(20P) = (0,10)
1. Calculate N = card(E(K)) (using Schoof’s algorithm or one of it$020P = (0, 1) or 20P = (0, 10) since(20P) = (¢ x20p, y20P)
variants). then20P = (¢3¢ x20p , Y2or) = (T20p ,y20p) @SE> =1
2. Take U, V at random from E. We have ther20P = (0,1) or 20P = (0,10) =4P
3. Calculate s = ord(U); t = ord(V) (to do this we must know theThe case (0.10) is excluded, because we can not find from aP and
factorization of N). bP an abP = aP or to bP
4. Calculate m = ppcm(s,t) an¢l= e, (U, V') a root of unity. So 20P = (0,1) = 2P which is true, since 20P = 18P+ 2P= O+2P =
5. Calculate d = ord]), verified if md = N. 2p

6. If it is true thenn;= d, no = m. Otherwise return to 2.
C. From BDH to CDHP

Always with Tate, we can answer the question posed in the article
of Bonneh Franklin [1], which is: can we go from BDH to CDHP?
%es, the answer is summarized as follows:

So we chose P-Q and Q the points of oragrandns.

There is a strong probability that we can found and n. even.
Since, we may findh; even (g-1 is even), as we search only in th
corresponding U and V which can give this condition and if we fin

this, automatically the:, will be also even. Given P,aP,bP,cP andaP,bP)° = cte can we find for example

Numerate Application :To better understand our ideas we?>P? . abe ca
proposs the follaming example: AS: L(aP,bP)° = t(P, P)*™ = t(P, P)°* — t(cP,abP) = cte
This example has been proposed in the article of Bonneh Frankli” cP has small order r (CP can be large so the order of cP can be

: ) _ I), we have therefore:
Choosing the curve® = 23 + 1 over the fieldFy; and P=(2,3) a SMal), -
point of this curve t(cP,abP)¥p.p (Dabp) = cte

Applying the method declared above, we must firstly find the ordg? this case we calculate by Miller onlyp. , (O) so:

of P
As 2P=P+P=(2,3)+(2,3) fp.p(abP) = ctefp,,(0) = CTE (6)
— 3z° _ 3x4 __ 12 __
We havempp = 55 = 555 = ¢ =2 We must so writefp, . in the following form:
Thenzop =22 — 4 =0 fo = D) @RIl | P Cober) Jpy
And yp :_2(2) —3=1so| 2P =(0.1) By the same procedure as we mentioned above, we simplify
3P=2P+P=(0,1)+(2,3) the expression fp_, to obtain an expression as follow:
Mepp = 5=5= _ JePpuy Y fePruy,
wsp=12-0-2=—-1=10 fer = G g
And ysp = 1(2—10) —3 =—11 =0 so| 3P = (10,0) We replace the coordinates of alP&.p, Yasp) in this expression
4P=2P+2P=(0,1)+(0,1) After (6 ) we get the coordinates df;(.,p) according to that of

mapap =0 Xs(aop)- In the equation of the curve we replace tHg,r and so



we find an equation of degree at most r (its solution depends onB. Algorithm of Reduction of FRtnput: P € E(F,) of order

the value r, we can even accepted an equation of degr&® ). rand Qe < P >

Its solution is Xy.,py that we search, so it is easy to calculatéind k, minimal such thap(r) € E(F,x)

Yo (abp)- Then we can extrack,,p andYypp. Find R € E(F,) such that R is not belonging toE(Fqk) (and
thent, (P, Q) is not trivial)

But if r is not small, according to the parity of r and pursuing thealculateo = ¢,.(P, R)(q’“—l)/r and g = tT(Q,R)(qk‘U/T

method stated above, we can extradis(a;r),Yo@or)) and then caiculate I, the logarithm discrete of versusa in Fx

(Xabp.Yarp) Output: The integer | such that Q=IP

Similarly we calculate acP, bcP O
Algorithm A is more desirable than Algorithm B. Because,

D. Recap the calculations by Weil are twice times quick [9] by comparison
with Tate pairing. So it is desirable to use algorithm B as it is two

As we can see, to cryptanalysis CDHP and BDHP we are linkegighe quick than A. More than that, if we take a point P in E [r] and

sequently on the following condition: if we seek to a point Q in E [r] we will have:
. . . . t,-(P, . ; . .
1) The need of an isomorphism linear (section Iil.A) convenable- (P, @) = tTEQ’}Q_—‘i'_;' That is to say, in the expression of Weil we
to the curve used use twice times Tate. So, the numerical result in the algorithm of

2) The parity of the order of the point used in the elliptic curve¥Veil may be great than Tate. Since, it is twice time great than this
since an odd order (precisely a prime order) is very strong tater and thus, extract | frore,(P,Q)" is difficult than extract it
be cryptanalyst (section 1I1.B) from ¢,.(P, Q).

3) The order of the elliptic curve, however the composite ordéfter all this, we shows that calculating PDL by Weil is more
may serve the cryptanalysis (the last Algorithm of Miller)  difficult by comparison with Tate

We will add this condition to the following one mentioned in the
literature [13]:
1) # E(F,) should have a sufficiently large prime factor n to resist . .
the parallelized Pollarg-attack; The Tate pairing can serve very well the cryptanalysis for two
2) # E(F,) # q to resist Semaev, Smart and Satoh-Araki attack§3SONs:
on anomalous curves;
3) rdoesn'tdivideg® —1 for 1 < k < 30, to resit the MOV attack. 1) The projection of discrete logarithm of the elliptic curve
This requirement is not inevitable. We can choose a larger ¢  on the finite field is less rigid than Weil
instead of large k to achieve security as well. However, a large 2) The resolution of CDHP and BDH which are the heart of

IV. CONCLUSION

g will slow down the speed of group operations. the security of the most cryptographic cryptosystem (for
4) ChoosingF>=, m should be prime to resist some attacks on example the scheme basic of Bonneh and Franklin ), can

elliptic curve based oF>m where m is composite. (subffield be trivial to attack using Tate pairing

basis) But this last condition is linked to:

Concrete observation With the Weil pairing we can not reach 1) The diffeomofism used (suitable to the curve used: Supersingular
to attack neither CDHP nor BDH since: or Ordinary), 2) The parity of the order of the point used, 3) The
If e.(aP,$(bP)) = e.(P, $(abP)) #E (cardinal of the elliptic curve).

So ID4py (PaP)) _ IDy0ypy (PP)) To block such attack we can use for example: the curve supersingular
fp,pDPewp)) ~ IDpDg(abp)) which has a distortion not linear. Or, the ordinary curve with
And then fp,,p (DaP)X fDp(Dgavr)) = fDyanr (PP) X embedding degree k, not divisible by neither the degree of the twist
Ipap(Dgwpry) (2,3,4,6). We privilege so the prime embedding degree such as 11,
In one equation we have two unknowfy,p and Dq,p Which is 13, 17, 19... But as we need the twist to speed up the calculate of
infeasible to be resolved!! the Pairing, we can so block the attack after using the condition
2. Even if it is naturally and always utilized (according to the
E. PDL with MOV and FR Pollard p-attack), but in this work we have demonstrate by an others

methods that it's necessary to making it. More than that, we see
From which we stated above, we can attacked the CDHP and that it is insufficient (condition 3) and we add to it the need of the
BDH using Tate. We will see that this pairing may well serve us tourve of #E=rh or #E=r, with r and also h will be a great primes
attack the PDL by comparison with Weil. integers (with the fact that the complexity of Algorithm(Miller) i.e
1) Attack of Menezes-Okamoto-Vanstone (MOV attack)he second is related to the complexity of factorizing #E).

It is an attack that use Weil pairing. It functioned in the followingThus, we proved that under this condition the Tate pairing is less
manner: secure than Weil (with this latter we can not attack neither CDHP

nor BDH because we have always two unknoyuppr and D,,p)
A. Algorithm of Reduction MOVInput: P € E(F,) of order
r,and Qe < P~

Find k, minimal such that E[fE E(F.) Acknowledge : we would like to thank Nadia EI Mrabet
Find R € E[r] and calculaten = eT(p[f R) for her helpful and comments. And the head of our laboratory Mr
Calculated = e, (Q, R) Aboutajdinne Driss.

Calculate the discrete logarithm gfversusa in F«

Output: the integer | such that Q=IP REFERENCES
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