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ABSTRACT

This work fall within the cadre of Cryptanalysis. Because, under
certain condition, we would give a fairly simple method to solve
the CDHP (the Problem Computational of Diffie and Hellman) and
others problems associated to it. Since, solving this problem, will help
us to provide a solution to the BDH (Problem Bilinear of Diffie and
Hellman). The CDHP and BDHP are the heart of many cryptosystems
in the point of view security, so solving it may be a threat to this
cryptosystem’s. To elucidate this, we use a concept of geometry
algebraic named Tate Pairing.
This work is purely theoretical, we give firstly an overview on the
idea and we illustrate it by an examples to see its efficiency.

I. I NTRODUCTION

In modern cryptography, a lot of protocols and cryptosysem’s are
based on the Problem of Diffie Hellman. Our aim in this work is to
attack many of this problem: CDHP and BDHP, by using what is
called Pairing.
Under certain condition, solving the problem Computational of Diffie
and Hellman (CDHP) using Tate pairing, may help us to break all
cryptosystems based on this problem. And as the BDHP is related
to CDHP, then, all the protocols related to it, can be easily attacked.
Which imply a real threat to the exchange tripartite of Joux [2] and
to the cryptography based on the identity of Boneh and Franklin
[1], as well as, others protocols. After this work we will be careful
to select the parameters linked to these cryptosystems. And so our
contribution is to fix a condition to make into consideration to select
such parameters.
Among the reasons that pushed us to address this problem, it is an
open question in the article of Bonneh and Franklin [1] which state
that there isn’t equivalence between the problems CDHP and BDHP.
With the fact that, between these two problem we have only the
implication CDHP−→ BDHP. Is it possible to obtain the reverse?
The issue is almost solved theoretically but under certain condition.
That’s we will show in this article.

Organisation

This work is organized as follows: Firstly we give some
preliminary mathematics. In the third section we detail our idea
in order to solve these problems. We give a conclusion in the end
section.
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Order of Point, Divisor and algorithm of Miller.

II. PRELIMINARIES

A. Elliptic Curves

In general the equation of an elliptic curve E over a finite field k,
is of the form:
Y 2 + a1XY + a3Y = X3 + a2X

2 + a4X + a6 (*)
The elliptic curve over a field k, is defined as follows:
E(k)={ (X, Y ) ∈ K2/(X, Y ) verifies (*)}
A point P of coordinated (x, y) in an ellitpic curve E is singular, if
∂(E)
∂(x)

=0 and ∂(E)
∂(y)

= 0. The curve is called singular if it has at least
one point singular.
The elliptic curve admits an element neutral noted universally by O,
which has the form: (0,1,0) in the projective coordinates.

1) Group law for elliptic curve:An elliptic curve is fitted with
an internal law of composition additive:
Let P = (XP , YP ) ∈ E(k) andQ = (XQ, YQ) ∈ E(k) so :
P + O = P , O + P = P
P + (−P ) = O , −P = (XP ,−YP − a1XP − a3)

Explicit formula

Let P = (XP , YP ) and Q = (XQ, YQ). The coordinates of P +
Q are defined as:
XP+Q = λ2 + a1λ− a2 −XP −XQ,
YP+Q = −(λ + a1)XP+Q − ν − a3

With, λ =
YQ−YP

XQ−XP
if P 6= Q and λ =

3X2
P +2a2XP +a4−a1YP

2YQ+a1XP +a3
if

not .
In general, for a field k of characteristic different to 2 and 3, the
coordinates will be as follows:
If XP 6= XQ, P+Q is the point of coordinate(XP+Q, YP+Q) such
that: XP+Q=λ2 −XP −XQ

And, YP+Q = λ(XP −XP+Q)− YP with λ =
YQ−YP

XQ−XP

But if: XP = XQ with YP 6= YQ, we will have P+Q=O. And
if: YP = YQ, we will have a point double 2P of coordinated
(X2P , Y2P ), such thatX2P = λ2 − 2XP and Y2P = λ(XP −
XP+Q) − YP , with λ = (3XP + a)(2YP )−1. Taking into account
that the equation of the elliptic curve for a field of characteristic
different from 2 and 3 is in the form:Y 2 = X3 +aX +b after using
a suitable change of variable.

2) Scalar Multiplication: To calculate the product scalar kP,
several algorithm can be considered (NAF algorithm, Montemogry
...). But we cite for example the following methods [3] which makes
the calculations fast enough:
Input : a = m, B = O, C = P;

- if a is even a← a
2

, B=B, C=2C;
- if a is odd,a← a-1, B=B+C, C=C;



- if a 6= 0, go to step 2.
- Output B
3) Order of E (k), with k =Fq: . The order of the field is

given by the famous theorem of Hasse:
q + 1− 2 2

√
q ≤ |E(Fq)| ≤ q + 1 + 2 2

√
q

In general, we can use the algorithm of Schouf [4] published in 1985
to determine the order of the group.
The order of the point is the smallest integer m such that
mP = O, but if this parameters m doesn’t exist the point P admits an
infinite order.

4) Point of r-torsion: We say that P is a point of r-torsion (r
is a positive integer) if r P = O
Definition 1: Let r be a positive integer, the ensemble
E[r] = { P ∈ E(Fq)/rP = O} is called an ensemble of point of r
torsion.
Fq is an an algebraically closed. The integer r is not necessarily the
order of point P it may be its multiple

Definition 2: Let G be an extension of k then we have:
E(G)[r]=E[r]

⋂
G={P∈E(G)/rP=O}

The Degree MOV [5] : Let E be an elliptic curve inFq and let r be
a positive integer. The smallest integer k such thatE[r] = E(Fqk )[r]
is called the MOV degree relatively to r

5) Curves Supersingular :Let E be an elliptic curve defined
over F(q), with q is a power of p.
The curve E issupersingular, if it satisfies one of the tree equivalents
conditions
1 · E(Fq) ≡ 1 mod p, orE(Fq) = q + 1− t, with p|t (t is the

trace)
2 . E has a point nontrivial of order p on̄Fq, i.e, E[p] =∞.
3 . The endomorphism of the ring E onFq is non-commutative, or
more specifically, it is an order on the quaternion algebra
A no-supersingular curve is calledOrdinary

Distortions : The distortions have been found by Verheul
[6]. Originally, they were used to provide an effective computable
isomorphisms between elliptic curve overF 2 of orderp2−p+1. The
distortions has the advantage that they send points to independent
form. However, finding independent points is an important problem
for the pairings.

Example of distortion

Field Curve Distortion
Fp y2 = x3 + ax φ(x, y) = (−x, iy)
Fp y2 = x3 + b φ(x, y)=(ζ x,y)

Propriety 1 (Verheul)[7] : Let E /Fq be a curve supersingular
such that P∈E(Fq) [n].
If n is relatively prime with the characteristic ofFq. Then there
exists a distortion relatively related to p.

Propriety 2 (Verheul)[7] : Let E(Fq) be an ordinary elliptic
curve , and let P∈ E(Fq ) [n].
If n is relatively prime to the characteristic ofFq. And E[n] is not
in E(Fq ), then there is no distortion relatively related to p.

The distortion in supersingular curve is related to the form of
the curve. But in general, for supersingular or ordinary curve, we
must only know if they have a form equal to that of a Twist Curve.
Then we can use diffeomorfism linked to these curves

Some preliminary on Twisted Curves:
1. Twist of degree quadrature:Let E(Fq) : y2 = x3 + ax + b

be an elliptic curve and v∈ F ∗
q a quadratic non residue inF ∗

q . So
E’/F: y2 = x3 + v2ax + v3b is named a quadratic twist of E.
E’ is isomorphic to E in an extension of degree 2 onFq

2. Twist of Large Degree:For any curve E(Fq) it is possible
to have different twist from the quadratic one.
In this case we have: E’:y2 = x3 + a′x + b′ with a′ = v

4
d a and

b′ = v
6
d b, v is the root of degree exactly d (not less) on F

All these twists are isomorphic to E (Fqd )
The twists possible (either quadratic or with higher degree) are
grouped in the following table.
But we can say that for both cases: q = 1(mod d) is a necessary
condition for these twists
We includes in the following table the isomorphisms
ϕd: E’ 7→ E, with d is the degree of the twists

TABLE I
K IND OF TWIST

d P∈E P∈E’ E E’

2 (x,y) (vx, v
3
2 y) y2 = x3 + ax + b y2 = x3 + v2ax + v3b

3 (x,y) (v
1
3 x, v

1
2 y) y2 = x3 + b y2 = x3 + vb

4 (x,y) (v
1
2 x, v

3
4 y) y2 = x3 + ax y2 = x3 + vax

6 (x,y) (v
1
3 x, v

1
2 y) y2 = x3 + b y2 = x3 + vb

ϕd

(v−1x, v− 3
2
y)

(v− 1
3
x, v −

1
2 y)

(v −
1
2 x, v −

3
4 y)

(v −
1
3 x, v −

1
2 y)

In a field of characteristic different from 2 and 3, we can
transform all the curves in twists, we just find a suitable v

B. Rational function
Lets E(k) be an elliptic curve of equation f(X,Y) = 0. The function

g is zero of E(k), if g is a multiple of f, and we can define an
equivalence relation on the ring k[E] as: k[X,Y]/(f). The field k(E)
is the field of rational functions on E.
The function is rational over k(X,Y), if it set at least one point of
E(k) in the form rational. For example, E(Fqk ) can be written as
g(X,Y )
h(X,Y )

with g(X, Y ) and h(X, Y ) are two function onE[Fqk ].
And we can write g(X,Y)=gx(X)+Ygy(Y ) with gx,gy ∈ Fqk [X], as
Y 2 = X3 + aX + b (equation of field of characteristic different to
2 and 3)
For a rational functiong(X,Y )

h(X,Y )
the zeros ofg(X, Y ) are called the

zeros of the rational function, and the zeros ofh(X, Y ) are its poles.
The rational functions defined on an elliptic curve E, admit the
number of zero equals to the number of pole (for more details see
[8])

C. Divisors
A divisor is a universal concept that relate the zeros and poles with

there order of multiplicities. For example, we can write a divisor D
as follows:
D=a1[P1]+a2[P2]+a3[P3]+a4[P4]+a5[P5], with a1, a2, a3, a4, a5

∈ Z are zeros or poles of pointsP1, P2, P3, P4, P5, for an elliptic
curve E.
For exampleD = [2P ]− 3[Q]− 2[P ]. But in this divisor [2P] and
2[P] are different. We called the first a zero of order 1 and the second
a zero of order -2
A divisor is so a set generated by symbols [P]. We noted all divisors



by Div(E)
The degree of D is an integer that has the following value:
deg(

∑
i ai[Pi])=

∑
ai, and its sum is: sum(

∑
i ai[Pi])=

∑
aiPi.

We note all the set of divisors of degree 0 byDiv0

We say that a divisor D=
∑

i aiPi is principal, if it is a divisor of
degree 0 and ifsum(

∑
i ai[Pi]) = O

The set of divisors principal is noted Prin(E).
Two divisors D and D’ are equivalent if their difference is an element
of Prin(E).
The divisor of the rational function f is defined as follows:
div(f) =

∑
p∈E(k) ordp(f)[P ] with ordP (f), is the order of f at

point P (zeros or poles). And we know that any rational functions
has degree 0 by [8]
For the divisor D=

∑
i aiPi and the function rationale f we have:

f(D)=
∏

f(Pi)
ai , we only requires that we should have the support

of D and div(f) to be disjoint
Example of divisors for a known rational function
To find a divisor for an equation of the rational functionax+ by + c
(equation of a line which pass through the pointsP1, P2 of an elliptic
curve E, withP1 6= ±P2). This line intersects the curve in a third
point P3. So the function f(x,y)=ax + by + c has tree zeros at the
points P1, P2, P3 and a pole of order 3 in point O. Because, f
has tree zeros and since it is a rational function (degree 0), it has
necessarily a pole of order 3 in (O), then, div(f)=P1 +P2 +P3−3O
i.e (ax + by + c) = P1 + P2 + P3 − 3O
For the equation of the vertical line (x − xQ = 0) that passe
through Q and -Q. By the same reasoning as above we have:
div(x− xQ) = [Q] + [−Q]− 2O

D. Pairing
A pairing is a bilinear map that takes two points on an elliptic

curve and output an element of the group multiplicative of n-th
roots of unity. The pairing satisfies the following properties: bilinear,
alternative and non-degenerate.
Considering E(k)[r] (points of r-torsion on elliptic curve E)
Bilinear: : ∀ P1,P2,Q1, Q2 ∈ E[r], cr(P1 + P2, Q1) = cr(P1,
Q1) · cr(P2, Q1) andcr(P1, Q1 + Q2) = cr(P1, Q1) · cr(P1, Q2)
Identity : ∀P ∈ E[r] cr(P, P ) = 1
Alternate: cr(P, Q) = cr(Q, P )−1

Non-degenerate:If ∀P ∈ E[r] cr(P, Q) = 1 then Q = O and if
∀Q ∈ E[r] cr(P, Q) = 1 thenP = O
It is clear from these properties that we havecr ∈ µr (set of therth

roots of unity), sincecr(P, Q)r = cr(rP, Q) = cr(O, Q) = 1
Among the pairing we cited: Weil, Tate, Ate,η. But in the imple-
mentations cryptographic we often use Weil and Tate.
The Tate pairing is two times faster than Weil [9]. Although, this
latter is more desirable for the security and as in cryptography we
are more interested to the security. Then, it is better to use Weil
pairing. In this study we will see and we will be convinced that the
Tate pairing is less secure than Weil.

1) Explicit formula for the pairing:Before giving the explicit
formulas for each pairing, we demonstrate firstly the following
equivalence:
[P ]− [O] and [P + R]− [R] are equivalent [7] for any point R on
an elliptic curve.
However according to what we see above we have: div(U)=[P]+[R]+[-
(P+R)]-3[O] and
div(V)=[-(P+R)]+[P+R]-2[O], with U is the line that passes through
the points P, R, -(P+R). And V is the line that passes through the
points P+R and -(P+R).
And then:[P ]− [O] = [P + R]− [R] + div( U

V
) �

Thus, we can write the divisorDP by one of the expression[P ]−[O]
or [P + R]− [R]

2) Tate Pairing: Let r be an integer which is prime with the
characteristic ofFq.
Let k=Fqk be a field that contains all roots of unity of order r, and
P ∈ E(k)[r], Q ∈ E(k).

Let: DP andDQ be two divisors of degree 0 with disjoint support,
fDP a function such that:div(fDP ) = rDP

The Tate pairing is the application :
tr:E(k)[r]×E(k)/rE(k)→ k∗/(k∗)r

(P,Q)→tr(P, Q)=fDP (DQ) modulo (k∗)r

If we take DP = [P ] − [O], DQ = [Q + T ] − [T ] (T is of our
choice). So,DP andDQ have disjoint supports, then:
tr(P, Q)=fP (Q+T )

fP (T )
. But for this pairing to have an exact value, it

must be defined as follows:tr(P, Q) = (fDP (DQ))(q
k−1)/r

3) Weil Pairing: Let: P, Q∈ E[r] andDP , DQ two divisors of
degree 0 with different support. So we can takeDP to be equivalent
to [P ]− [O] andDQ equivalent
to [Q + S]-[S], with S is chosen such that P, O, Q+S, S are points
different to each others.
As P and Q∈ E[r], thenrDP andrDQ are two principals divisors.
So, there are two principal functionfP andfQ such that:divfP =
rDP anddivfQ = rDQ

The Weil pairing is defended as follows:
er:E[r]× E[r]→ µr (µr is the set of therth root of the unity)

such that:er(P, Q) =
fDQ

(DP )

fDP
(DQ)

Calculate the pairing is ineffective until the invention of the algorithm
of Miller in 1986, but until present we haven’t a practical method to
implement easily the pairing.

4) Algorithm of Miller: This algorithm computefDP (Q)
using the following method:
For a divisorDP = [P + R] − [R] and an integer positive i, we
define the following divisor:
Di = i[P + R]− i[R]− [iP ] + [O] which is principal, so there is a
rational functionfi such thatdiv(fi) = Di.
For i=r we haveDr = r[P + R] − r[R] − [rP ] + [O] = rDP .
Because, rP=O sofr = fDP the problem is summarized so in the
calculation offr(Q)
To elucidate this: givenfr1(Q) and fr2(Q) for an integer positive
r1 and r2, and the pointsr1P , r2P , (r1 + r2)P . We want to
calculatefr1+r2

By definition we have:Dr1 = r1[P + R] − r1[R] − [r1P ] + [O]
andDr2 = r2[P + R]− r2[R]− [r2P ] + [O],
Dr1+r2 = (r1 + r2)[P + R]− (r1 + r2)[R]− [(r1 + r2)P ] + [O]
Defining the following equations:aX + bY + c = 0 as a line passed
through two pointsr1P andr2P (if r1 = r2 we obtain an equation
of the tangent). And posingLr1P,r2P (X, Y ) = aX + bY + c.
Let X + d = 0 be the vertical line that passes through the point
(r1 + r2)P and defining the functionV(r1+r2)(X, Y ) = X + d.
Using what we have mentioned previously we have:
div(Lr1P,r2P ) = [r1P ] + [r2P ] + [−(r1 + r2)P ]− 3O
div(V(r1+r2)) = [(r1 + r2)P ] + [−(r1 + r2)P ]− 2O
So, Dr1+r2 = Dr1 + Dr2 + div(Lr1P,r2P )− div(V(r1+r2)).

Which imply f(r1+r2)(Q) = f(r1)(DQ) · f(r2)(DQ) · Lr1P,r2P Q

V(r1+r2)Q

As we havedivfr1+r2(Q) = divfr1(Q) + div fr2(Q) + div
Lr1P,r2P

V(r1+r2)

Remembered that our aim is to calculatefr = fP using the
following algorithm that takes as output
σ(f(r1)(Q), f(r1)(Q), r1P, r2P, (r1 + r2)P ) = f(r1+r2)(Q)

Algorithm of Miller

Let k be an integer, the algorithm works in an iterative manner.
It takes in its output the rational function (recursive)fk which is
generated from the following divisor:
fk = (P+R)k

Rk(kP )
[10] (sinceDk = k[P +R]−k[R]− [kP ]+ [O]). For

k=r, fr = fP . Theses iterations can be calculated from the relation
given above i.e
f(r1+r2)P = (f(r1)P · f(r2)P ·

L(r1P,r2P )
V(r1+r2)P

), from which we deduce:



f2k = (fk)2 · TkP
V2kP

with T and V are respectively the tangent and
the vertical to the point kP.
Before expressing the algorithm of Miller, we express the integer
r which is the order of the points, in the basic binary so:
r =

∑i=m
i=0 (ri2

i), with the fact that(f0) = 1 and (f1) = (
VP+R

LP,R
)

It is clear that (f0) = 1 and for (f1) we have:
div(aX + bY + c) = [P ] + [Q] + [R] − 3O (aX+bY+c is
the line passing by P,Q,R), anddiv(X −XQ) = [Q] + [−Q]− 2O.
Then: div(aX+bY +c)

div(X−XR)
= [P ] + [R]− [−Q]− [O] but P + R = −Q,

so [P + R]− [P ]− [R] + [O] = (
VP+R

LP,R
) = (f1). Which proves very

well the relationship and the recurrence for i = 1.

Miller(P, Q, r)

Input: r = ( rn...r0)(binary representation ),
P ∈ E[r](⊂ E(Fq)) and Q∈ G1(⊂ E(Fqk ))

Output: fr,P (Q) ∈ G3 (⊂ F ∗
qk )

T ← P
f1 ← 1
for i = n - 1 to 0 do
1: T ← [2]T

f1 ← f1
2 × l1(Q)

v1(Q)

l1 is the tangent to the curve in T.
V1 is the vertical to the curve in [2]T.

2: if ri=1 then

f1 ← f1 × l2(Q)
v2(Q)

l2 is the line passing through the point TP
V2 is the vertical to the point P + T.

Output: Return f1

E. Problem Bilinear of Diffie Hellman
Before presenting the equivalence between the problem CDHP

and the problem BHD, we remember the following problems:
Problem of Discreet Logarithm: DLP
Given P and aP, can we find a?

Problem calculator of Difiie Hellman: CDHP
It is the problem that interests us in this study: Given P, aP, bP,
can we find or rather calculate abP?

Problem Decisional of Difiie Hellman: DDHP
Given P, aP, bP, cP, can we say that abP = cP?. But this problem can
be solved in polynomial time after using the pairing, for example if
we prove that e(P,cP) = e(aP,bP) so abP = cP.

Problem Bilinear of Diffie Helleman: BDHP
Given P, aP, bP, cP can we calculatee(P, P )abc?

F. Overview on some technique proposed to cryptanalysis such
problem

According to [11], Verheul, Galbraith , Hess and Vercauteren,
Satoh, have make their search in this area. We can summarize their
result in the following theorem
Theorem [11]: Let e :G1×G2 −→ GT be a non-degenerate pairing
between groups of prime order r. Then the following statements are
equivalent.
(a) One can solve LPI and RPI in polynomial time.
(b) One can solve LPI in polynomial time and any homomorphism
G1 −→ G2 can be computed in polynomial time.
(c) One can solve RPI in polynomial time and any homomorphism
G2 −→ G1 can be computed in polynomial time.

So according to [11] if we have these equivalence we can
solve the CDHP. With the fact that
Definition 3 of RPI (Right Pairing Inversion problem ): Given P
∈ G1 andζ ∈ GT , find Q ∈ G2 satisfying e(P,Q) =ζ.
Definition 4 of LPI (Left Pairing Inversion problem ): Given Q∈
G2 andζ ∈ GT , find P∈ G1 satisfying e(P,Q) =ζ.
Definition 5 of GPI (General Pairing Inversion problem ): Given
ζ ∈ GT , find (P,Q)∈ G1 ×G2 such that e(P,Q) =ζ.
But if we examine very well such idea we can see that its hard
(we refer the interest to [14], to more examen the difficulty of such
methods).

III. O UR IDEA

Before exploding our idea we need to show firstly the linearity of
some diffeomorphism.

A. Linearity
1) First case: Linearity of some distortions :Firstly φ is

linear if φ(aP ) = aφ(P ) for all a > 0.
The distortionφ(x, y) = (−x, iy) andφ(x, y) = (ζx, y) are linear,
since:
Using the recursion we can show this propriety. For example for
φ(x, y) = (−x, iy), we have:
Firstly, the linearity is true for a = 1. We would to show it for all a
> 0
Suppose that it is true for a-1 i.e :φ((a− 1)P ) = (a− 1)φ(P ) and
we would to show thatφ(aP ) = aφ(P )
But to demonstrate this we must prove that:
φ(P + (a− 1)P ) = φ(P ) + φ((a− 1)P )
We have:P + (a− 1)P = (xP , yP ) + (x(a−1)P , y(a−1)P ) = aP

With (λaP =
y(a−1)P−yP

x(a−1)P−xP
, xaP = (λaP )2 − xP − x(a−1)P , yaP =

λaP (xP − xaP )− yP )
On the other hand we haveφ(P ) + φ((a − 1)P ) =
(−xP , iyP ) + (−x(a−1)P , iy(a−1)P )

With λφ(P )+φ((a−1)P ) =
iy(a−1)P−iyP

−x(a−1)P +xP
= −iλaP , so

xφ(P )+φ((a−1)P ) = (−iλaP )2 + xP + x(a−1)P = -xaP and
yφ(P )+φ((a−1)P ) = −iλaP (−xP + xaP )− iyP =iyaP

So: φ(P ) + φ((a− 1)P ) = (-xaP ,iyaP )
And sinceφ(P + (a− 1)P ) = φ(aP )= (−xaP , iyaP )
We have very wellφ(P + (a− 1)P ) = φ(P ) + φ((a− 1)P )
And as we have assumed by induction thatφ((a − 1)P ) =
(a− 1)φ(P )
So: φ(aP ) = φ(P + (a − 1)P ) = φ(P ) + φ((a − 1)P ) =
φ(P ) + (a − 1)φ(P ) = aφ(P ). This clearly shows the linearity of
this distortion
By the same method as above, we shows the linearity of the other
distortionφ(x, y) = (ζx, y)
Observation:
1. There are distortions which are not linear, for example the
distortionϕ(x, y)=(w xp

r
( 2P−1

3 )
, yp

rp−1 ) which is suitable to the curve

y2 = x3 + ax defined on the fieldsFp2 , r2 = a, r∈ Fp2 , w3 = r,
w ∈ Fp6 , is not linear
2. The distortions declared above are not the only ones that are
linear, it may exist others.

2) Second case: Linearity ofϕd: For all the isomorphisms
declared above [Table 1] we have checked their linearity. We can
choose one among them to know how it works, for exampleϕ2

We still ruse the demonstration of recursion. But we give only its big
lines and afterwards, it is simple to extract it
The parametersλt, x(P+Q)t

, xPt , xQt are reserved to the points of
the twists
We must show thatϕ2(P + Q) = ϕ2(P )+ ϕ2(Q)

As we have:λt = v
−( 3

4 )

v
−( 1

2 )
λ=v−( 1

4 )λ



So, x(P+Q)t
= (v−( 1

4 )λ)2 − v−( 1
2 )xP − v−( 1

2 )xQ = v−( 1
2 )xP+Q

And y(P+Q)t
= v−( 1

4 )λ(v−( 1
2 )xP − v−( 1

2 )xP+Q) − v−( 3
4 )yP =

v−( 3
4 )yP+Q

The relationship is therefore very simple to extract.

B. Compute of CDHP

Our idea to solve CDHP is to use the pairing, since the first
use of the pairing is in cryptanalysis. However in 1993 Menezes-
Okamoto-Vanstone used the Weil pairing to reduce the discrete
logarithm problem in finite field to elliptic curve. One year after
Frey Ruck proposed a similar attack using Tate. Also in this work
we use this later to solve the CDHP.
The security of several cryptosystem is based on Computational
Diffie Helman Problem for very large integer (greater than 256 bit
for an elliptic curve). Can we solve this problem? the answer may
be yes. The idea is very simple using Tate pairing (or rather the
rational function associated to this pairing). Given P, aP and bP,
trying to calculate abP. We choose the Tate pairing and we proceed
as follows:
Firstly, we compute the order of the point P, aP, bP.
Then we havetraP (aP, bP )=(fDaP (DbP ))(q

k−1)/rab . But this
expression may be trivial, according to the following properties:
Propriety 3 (Galbraith) [7]
Let P ∈ E(Fq)[r], with r is relatively prime to q so:
tr(P, P ) 6= 1 if k = 1
And tr(P, P ) = 1, for k > 1.

So: traP (aP, bP ) = tr(P, P )ab = 1, for any integers a and
b. Then this calculation is trivial.
But to remedy this problem we have the following property:

Propriety 4 (Veurheul)[7]
Let r be a prime,P ∈ E(Fq)[r] and Q ∈ E(Fqk ) linearly
independent to P, k> 0. Sotr(P, P ) is non-degenerate ie6= to 1

To elucidated this result to our case, we choose so one of the
linear diffeomorfismes reported earlier (most convenient to the
elliptic curve chosen) and we will have:
traP (aP, φ(bP )) = trP (P, aφ(bP )) = trP (P, φ(abP )) (by the
bilinear of the pairing and the linear of the diffeomormism). This
equality can not be trivial, since aP,φ(bP ), and also P,φ(abP ) are
linearly independent.
So tr′(aP, φ(bP )) = tr(P, φ(abP )) is not trivial (r’ and r are
respectively the order of aP and P).
Which implies that

(fDaP (Dφ(bP )))
qk−1

r′ = (fDP (Dφ(abP )))
qk−1

r

Then:
(fDaP (Dφ(bP )))

r
r′ = fDP (Dφ(abP )) (1)

Exploitation of the idea

As we havefr = (P )(P )
(2P )

(P )(2P )
(3P )

..... (P )((r−1)P )
(rP )

= fDP = fP

We must simplify only this expression. In the numerator figure the
lines that link to two points different, such thatL(P ),(2P ) = (P )(2P )
which is a line that links the two points P and 2P. And we have
in the denominator the vertical line that passes through one point
(tangent). For exampleV2P = (2P ) is a vertical line that passes
through 2P. By Maple or by another software (logiciel), we calculate
P, 2P ,....., rP. And after it is easy to find the corresponding equation
of lines for each numerator, and that of denominator. By a suitable
programming (or by hand ... if r is small), we simplify the expression
of fP taking into account thatY 2 = X3 + eX + f for example (
equation of a chosen elliptic curve). We simplify each degree of Y
that exceeds 2, in the end we get a formula of the form:

fP =
fPnuX

+ Y fPnuY

fPdeX
+ Y fPdeY

(2)

With fPnuX
and fPnuY

are in k[X] (k is the chosen field) and of
degree less than or equal to r.
Returning to (1) we associate toφ(abP ) the coordinate of
(Xφφ(abP ), Yφ(abP )). After the algorithm of Miller, we calculate
fDaP (DbP ) after having replacedDbP by its expression, for example
DbP = [bP + R]− [R] with R is of our choice.
It is easy to apply the algorithm of Miller tofDaP (DbP ), as aP, bP
are given. After then, we calculate:fDaP (DbP )

r
r′ .

But DabP = [abP ] − [O] replacing this expression in (1) we find
that:
fDP (φ(abP )) = (fDaP (DbP )

r
r′ )(fDP (O))

Also according to the algorithm of Miller, we calculatefDP (O). We
then find that

fDP (φ(abP )) = cte1 (3)

We replaceφ(abP ) by its coordinates in the expression offDP

which is (2) to find : Yφ(abP ) in function of Xφ(abP ) using (3).
Then we replace this expression inY 2 = X3 + eX + f which gives
us an equation of degree less than or equal to r and its solution is
the Xφ(abP ) that we seek.
Substituting this solution in the equation of elliptic curve, this gives
us the expression ofYφ(abP ).
These coordinates are exactly the coordinates ofφ(abP ) which we
want. Then we can easily calculate abP
But since for r greater than (> 12), we can not get to solve an
equation of degree r. We can then use the following method:
We discuss this method according to the case:
1st case: Assuming that r is even ie r=2r′′ and if we return
to tr′(aP, φ(bP )) = tr(P, φ(abP )). Exposing by r′′, we find:
(tr′(aP, φ(bP )))r′′ = (tr(P, φ(abP )))r′′ , which is still equivalent
to
(tr′(aP, φ(bP )))r′′ = (tr(r

′′P, φ(abP ))). So (fDaP (DbP ))r′′ =
fDr′′P (φ(abP ))
We proceed as above, therefore we find:

fDr′′P (φ(abP )) = (fDaP (DbP ))r′′(fDP (O)) = cte2 (4)

But asfDr′′P = (r′′P )(r′′P )
(2r′′P )

(because 2r”P=O), so

fDr′′P = fr′′P = y −mr′′P x− βr′′P (5)

SinceV2r′′P = 1 (2r”P=O).
With the fact that βr′′P = yr′′P − mr′′P · xr′′P and

mr′′P =
3x2

r′′P +1

2yr′′P
We replaces in the expression (5) the pointφ(abP ) with there
coordinateyφ(abP ) andxφ(abP )

In the end we substitute the founded expression in (4) to find
for example yφ(abP ) in function of xφ(abP ) (or reverse). After
having substitute the founded expression in the expression
Y 2 = X3 + eX + f (equation of the chosen elliptic curve ). We
find very well the equation (linked toxφ(abP )) of tree degree which
is resolved, may be by hand or with a software. After calculating
xφ(abP ) we replacing it in the equation of the elliptic curve to
extractyφ(abP ).
So the coordinate (xφ(abP ),yφ(abP )) are exactly the coordinate of
φ(abP ), after it is easy to extract abP .
2nd case: If r is odd which is a case always meted, so we do as
follows:
We discuss also this case according to the case
First case: r is factorial ie it is not prime, so we have: r =r′′r′′′.
With one of the factors is very large, assuming that isr′′ (so r′′′

should be small)
Then exponent by r′′ we have: (tr′(aP, φ(bP )))r′′ =



(tr(P, φ(abP )))r′′ which imply that
fr′′′(Dφ(abP )) = (tr′(aP, φ(bP )))r′′

So, if we can simplify
fr′′′ = (r′′P )(r′′P )

(2r′′P )
(r′′P )(2r′′P )

(3r′′P )
..... (r

′′P )((r′′r′′′−1)P )
(r′′r′′′P )

, we can
arrived at the result, but this is linked tor′′′

If not, we can do otherwise (pursued for example the following
method)
Second case:r is not factorial ie r is prime, it is the most worse
case and the most hard to break.
We search for a point Q in E(k) this point is not in E [r], with
condition that P-Q and Q have an order even. If we have this we
can resolve the problem, since:
Supposing for example that the order of P-Q is 2k and that of Q is
2k′. In addition assuming for example thatk > k′ so k=k′k′′.
Returning now to the equation:tr′(aP, φ(bP )) = tr(P, φ(abP ))
So tr′(aP, φ(bP )) = tr(P −Q+Q, φ(abP )) = t2k(P −Q, φ(abP ))
t2k′(Q, φ(abP ))
Exposing by k imply that: (tr′(aP, φ(bP )))k=(t2k(P −
Q, φ(abP )))k(t2k′(Q, φ(abP )))k

The term (t2K(P − Q, φ(abP )))k = t2k(k(P − Q), φ(abP )) =
fk(P−Q)(Dφ(abP )) is simplificative ( it is an equation of two variable
with degree 1). And for the second term i.e(t2k′(Q, φ(abP )))k we
have: Ifk′′ is divisible by 2 then we have:(t2k′(Q, φ(abP )))k = 1,
if not, it depends onk′′ we can find the desired expression (more
simplificative), but if not we should change the Q.
The third term(tr′(aP, φ(bP )))k = cte, since we know aP and bP. So
persuading as above we can extract the coordinate(xφ(abP ), yφ(abP ))

Existence of P-Q and Q with the desired order:Let E be
an elliptic curve defined overFq, then E(Fq) is a commutated group
of rank equal to 1 or 2. So [12] E(Fq) ' Zn1 ⊕ Zn2 with n1 \ n2

andn1 \ q-1.
The following algorithm [12] is summarize to calculaten1 andn2.
Algorithm (Miller):
1. Calculate N = card(E(K)) (using Schoof’s algorithm or one of its
variants).
2. Take U, V at random from E.
3. Calculate s = ord(U); t = ord(V) (to do this we must know the
factorization of N).
4. Calculate m = ppcm(s,t) andζ = em(U, V ) a root of unity.
5. Calculate d = ord(ζ), verified if md = N.
6. If it is true thenn1= d, n2 = m. Otherwise return to 2.

So we chose P-Q and Q the points of ordern1 andn2.
There is a strong probability that we can foundn1 and n2 even.
Since, we may findn1 even (q-1 is even), as we search only in the
corresponding U and V which can give this condition and if we find
this, automatically then2 will be also even.

Numerate Application :To better understand our ideas we
propose the following example:
This example has been proposed in the article of Bonneh Franklin
Choosing the curvey2 = x3 + 1 over the fieldF11 and P=(2,3) a
point of this curve
Applying the method declared above, we must firstly find the order
of P
As 2P=P+P=(2,3)+(2,3)
We havemP,P = 3x2

2y
= 3×4

6
= 12

6
= 2

Thenx2P = 22 − 4 = 0
And y2P = 2(2)− 3 = 1 so 2P = (0,1)
3P=2P+P=(0,1)+(2,3)
m2P,P = 3−1

2−0
=1

x3P = 12 − 0− 2 = −1 = 10
And y3P = 1(2− 10)− 3 = −11 = 0 so 3P = (10,0)
4P=2P+2P=(0,1)+(0,1)
m2P,2P = 0

Thenx4P = 0
And y2P = 10 so 4P = (0,10)
5P=4P+P=(0,10)+(2,3)
m4P,P = 10−3

0−2
=7

9
= 7×5

9×5
= 2

x5P = 22 − 0− 2 = 2
And y5P = 2(0)− 3 = 8 so 5P = (2,8)
For 6P = 5P+P we havex5P = xP = 2
And y5P 6= yP therefore necessarily6P = O) then P have ordr 6
We have, 6 doesn’t divide 11, but 6\ 112 − 1. So we can grouping
the calculate in the fieldF112

Our goal in this exercise is to find a point 20P from the points 4P
and 5P
Using the diffeomorphismφ(x, y) = (ζx, y) which is suitable to the
curve used, so we have:
t3(4P, φ(5P )) = t6(P, 4φ(5P )) = t6(P, φ(20P )) (according to the
propriety: bilinear of the pairing and the linear of distortion)
As P has an order even 6=2.3 so exposing by 3 we find:
t3(4P, φ(5P ))3 = t6(P, φ(20P ))3

Firstly, according to [7] we haveζ = 11−1
2

(1 + 3( 11+1
4 )) =

5(1+5i)=5+3i
So : φ(5P ) = (ζx5P , y5P ) = ((5 + 3i)2, 8) = (10 + 6i,8)
Without passing by the algorithm of Miller we can calcu-
late t6(4P, φ(5P ))3, because it is equal tot6(12P, φ(5P )) =
t6(O, φ(5P )) = 1, sincef0 = 1
And thenf3P (Dφ(20P )) = 1
But 3P has order 2
So f3P = f2 = (3P )(3P )

6P
= T3P

V6P
As 6P = O,V6P = 1 andT3P = V3P = x− x3P = x-10 = x+1
In addition we havef3P (Dφ(20P )) = f3P (φ(20P )

f3P (O)
= 1

Sincef3P (O) = 1 sof3P (φ(20P )) = 1
Thenxφ(20P ) + 1 = 1 imply xφ(20P ) = 0
Which implies thatyφ(20P = 1 or yφ(20P = −1 = 10 because
y2 = x3 + 1
Thenφ(20P ) = (0, 1) or φ(20P ) = (0, 10)
So 20P = (0, 1) or 20P = (0, 10) sinceφ(20P ) = (ζ x20P , y20P )
then20P = (ζ2ζ x20P , y20P ) = (x20P ,y20P ) asζ3 = 1
We have then20P = (0, 1) or 20P = (0,10) =4P
The case (0.10) is excluded, because we can not find from aP and
bP an abP = aP or to bP
So 20P = (0,1) = 2P which is true, since 20P = 18P+ 2P= O+2P =
2P

C. From BDH to CDHP
Always with Tate, we can answer the question posed in the article

of Bonneh Franklin [1], which is: can we go from BDH to CDHP?
Yes, the answer is summarized as follows:

Given P,aP,bP,cP andt(aP, bP )c = cte can we find for example
abP?
As: t(aP, bP )c = t(P, P )abc = t(P, P )cab = t(cP, abP ) = cte
If cP has small order r (cP can be large so the order of cP can be
small), we have therefore:
t(cP,abP)=fDcP (DabP ) = cte
In this case we calculate by Miller onlyfDcP (O) so:

fDcP (abP ) = ctefDcP (O) = CTE (6)

We must so writefDcP in the following form:
fr = (cP )(cP )

(2cP )
(cP )(2cP )

(3cP )
..... (cP )((r−1)cP )

(rcP )
= fDcP = fcP

By the same procedure as we mentioned above, we simplify
the expression fDcP to obtain an expression as follow:

fcP =
fcPnuX

+Y fcPnuY
fcPdeX

+Y fcPdeY

We replace the coordinates of abP=(XabP , YabP ) in this expression
After (6 ) we get the coordinates ofYφ(abP ) according to that of
Xφ(abP ). In the equation of the curve we replace theYabP and so



we find an equation of degree at most r (its solution depends on
the value r, we can even accepted an equation of degree< 20 ).
Its solution is Xφ(abP ) that we search, so it is easy to calculate
Yφ(abP ). Then we can extractXabP andYabP .

But if r is not small, according to the parity of r and pursuing the
method stated above, we can extract (Xφ(abP ),Yφ(abP )) and then
(XabP ,YabP )
Similarly we calculate acP, bcP �

D. Recap

As we can see, to cryptanalysis CDHP and BDHP we are linked
sequently on the following condition:

1) The need of an isomorphism linear (section III.A) convenable
to the curve used

2) The parity of the order of the point used in the elliptic curve,
since an odd order (precisely a prime order) is very strong to
be cryptanalyst (section III.B)

3) The order of the elliptic curve, however the composite order
may serve the cryptanalysis (the last Algorithm of Miller)

We will add this condition to the following one mentioned in the
literature [13]:

1) # E(Fq) should have a sufficiently large prime factor n to resist
the parallelized Pollardρ-attack;

2) # E(Fq) 6= q to resist Semaev, Smart and Satoh-Araki attacks
on anomalous curves;

3) r doesn’t divideqk−1 for 1 < k < 30, to resit the MOV attack.
This requirement is not inevitable. We can choose a larger q
instead of large k to achieve security as well. However, a large
q will slow down the speed of group operations.

4) ChoosingF2m , m should be prime to resist some attacks on
elliptic curve based onF2m where m is composite. (subffield
basis)

Concrete observation :With the Weil pairing we can not reach
to attack neither CDHP nor BDH since:
If er(aP, φ(bP )) = er(P, φ(abP ))

So
fDφ(bP )

(DaP ))

fDaP
(Dφ(bP ))

=
fDφ(abP )

(DP ))

fDP
(Dφ(abP ))

And then fDφ(bP )(DaP )× fDP (Dφ(abP )) = fDφ(abP )(DP ) ×
fDaP (Dφ(bP ))
In one equation we have two unknownfabP and DabP which is
infeasible to be resolved!!

E. PDL with MOV and FR

From which we stated above, we can attacked the CDHP and the
BDH using Tate. We will see that this pairing may well serve us to
attack the PDL by comparison with Weil.

1) Attack of Menezes-Okamoto-Vanstone (MOV attack):
It is an attack that use Weil pairing. It functioned in the following
manner:

A. Algorithm of Reduction MOV:Input: P ∈ E(Fq) of order
r, and Q∈ ≺ P �
Find k, minimal such that E[r]∈ E(Fqk )
Find R∈ E[r] and calculateα = er(P, R)
Calculateβ = er(Q, R)
Calculate the discrete logarithm ofβ versusα in Fqk

Output: the integer l such that Q=lP

2) Attack of Frey-Ruck:Similarly Frey and Ruck used the
following method, to project the discrete logarithm problem of an
elliptic curves to the finite field

B. Algorithm of Reduction of FR:Input: P ∈ E(Fq) of order
r and Q∈ ≺ P �
Find k, minimal such thatµ(r) ∈ E(Fqk )
Find R ∈ E(Fqk ) such that R is not belonging torE(Fqk ) (and
then tr(P, Q) is not trivial)
Calculateα = tr(P, R)(q

k−1)/r andβ = tr(Q, R)(q
k−1)/r

Calculate l, the logarithm discrete ofβ versusα in Fqk

Output: The integer l such that Q=lP

Algorithm A is more desirable than Algorithm B. Because,
the calculations by Weil are twice times quick [9] by comparison
with Tate pairing. So it is desirable to use algorithm B as it is two
time quick than A. More than that, if we take a point P in E [r] and
if we seek to a point Q in E [r] we will have:
er(P, Q) = tr(P,Q)

tr(Q,P )
. That is to say, in the expression of Weil we

use twice times Tate. So, the numerical result in the algorithm of
Weil may be great than Tate. Since, it is twice time great than this
later and thus, extract l fromer(P, Q)l is difficult than extract it
from tr(P, Q)l.
After all this, we shows that calculating PDL by Weil is more
difficult by comparison with Tate

IV. CONCLUSION

The Tate pairing can serve very well the cryptanalysis for two
reasons:

1) The projection of discrete logarithm of the elliptic curve
on the finite field is less rigid than Weil

2) The resolution of CDHP and BDH which are the heart of
the security of the most cryptographic cryptosystem (for
example the scheme basic of Bonneh and Franklin ), can
be trivial to attack using Tate pairing

But this last condition is linked to:
1) The diffeomofism used (suitable to the curve used: Supersingular
or Ordinary), 2) The parity of the order of the point used, 3) The
#E (cardinal of the elliptic curve).
To block such attack we can use for example: the curve supersingular
which has a distortion not linear. Or, the ordinary curve with
embedding degree k, not divisible by neither the degree of the twist
(2,3,4,6). We privilege so the prime embedding degree such as 11,
13, 17, 19... But as we need the twist to speed up the calculate of
the Pairing, we can so block the attack after using the condition
2. Even if it is naturally and always utilized (according to the
Pollardρ-attack), but in this work we have demonstrate by an others
methods that it’s necessary to making it. More than that, we see
that it is insufficient (condition 3) and we add to it the need of the
curve of #E=rh or #E=r, with r and also h will be a great primes
integers (with the fact that the complexity of Algorithm(Miller) i.e
the second is related to the complexity of factorizing #E).
Thus, we proved that under this condition the Tate pairing is less
secure than Weil (with this latter we can not attack neither CDHP
nor BDH because we have always two unknownfabP andDabP )
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