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Abstract. SM3 is a hash function designed by Xiaoyun Wang et al., and
published by the Chinese Commercial Cryptography Administration Office
for the use of electronic authentication service system. The design of SM3
builds upon the design of the SHA-2 hash function, but introduces additional
strengthening features. In this paper, using a higher order differential crypt-
analysis approach, we present a practical 4-sum distinguisher against the com-
pression function of SM3 reduced to 32 rounds. In addition, we point out a
slide-rotational property of SM3-XOR, which exists due to the fact that con-
stants used in the rounds are not independent.

1 Introduction

In December of 2007, the Chinese National Cryptographic Administration Bu-
reau released the specification of a Trusted Cryptography Module, detailing
a cryptoprocessor to be used within the Trusted Computing framework in
China. The module specifies a set of cryptographic algorithms that include
the SMS4 block cipher, the SM2 asymmetric algorithm and SM3, a new cryp-
tographic hash function designed by Xiaoyun Wang et al. [6]. The design of
SM3 resembles the design of SHA-2 but includes additional fortifying features
such as feeding two message-derived words into each round, as opposed to
only one in the case of SHA-2.
The main idea of the second order differential cryptanalysis of hash functions
[2, 3] is to use the boomerang technique [14], previously used for block ciphers,
whereby the additional freedom to choose the key is exploited by using message
modification techniques. Unlike in the context of first order analysis, where
message modification is applied on a pair of messages, in second order analysis,
this technique is applied to a quartet of values. Generally, the aim of the
second order analysis is to find zero-sum quartets, i.e., quartets of input-output
function values, for which the four inputs as well as the four outputs sum to
zero. In case of a compression function that follows Davies-Meyer mode, a
zero-sum can be seen as a second order collision for the compression function
[2]. Finally, the zero-sum condition can be considered as an evasive property
[5]. Such a property is impossible to achieve with a non-negligible probability
using oracle accesses to an ideal primitive. Thus, if it can be shown that the
property can be satisfied for a particular construction, then it can be used
for disproving its indifferentiability claims [4]. Another example of evasive
properties in the context of hash functions are rotational properties [7]. Two
words are said to be rotational if they are equal up to bit-wise rotation by some



number of positions. If among the outputs for some carefully chosen inputs,
the rotational relations hold with probability higher than the corresponding
one for ideal function, then a distinguisher can be mounted [8].
In this work, we investigate the security of the SM3 hash function. To the best
of our knowledge, this is the first public analysis of SM3. In the first part of
the paper, we present a practical algorithm to find a second order collision for
32 rounds reduced version of the SM3 compression function. An interesting
feature of our approach is that the two differential paths that are used for
the bottom and the top part of the boomerang are not independent, as was
required in [2]. This results in seemingly conflicting bit conditions [11] in the
early rounds of the bottom part of the boomerang. However, as will be shown
by the analysis in this paper, the bit conflict that occurs is recoverable and it
can be bypassed by using a long carry propagation on the left and the right face
of the boomerang. The long carry propagation that is required to happen in
order to resolve the conflicting condition is a relatively low-probability event.
However, in our approach, it is ensured by message modification and does not
affect the overall probability of the second-order collision search.
In the second part of the paper, we note a slide-rotational property of SM3 and,
we analyze the SM3-XOR compression function, which is the SM3 compression
function with the addition mod 232 replaced by XOR. In particular, we show
that, for SM3-XOR, one can easily construct input-output pairs satisfying
a simple rotational property. Such a property exists due to the fact that,
unlike in SHA-2, the constants in rounds i, i + 1, for i = 0, . . . , 63, i ̸= 15
are computed by bitwise rotation starting from two predefined independent
values. Previously, SHA2-XOR was analyzed in [15].

1.1 Related work

In [2, 3], Biryukov et al. presented second order analysis of SHA-2 and BLAKE.
In particular, for the SHA-2 hash function, a second order collision for its com-
pression function reduced to 46 rounds was computed [2]. The BLAKE hash
function reduced to 8 rounds was shown to be suspectable to a second order
attack which requires around 2242 compression function calls [3]. Sasaki [13]
provided a second order collision for the compression function of the 5-pass
HAVAL. A distinguisher for 32-round Skein-256 [10] requiring 2114 compres-
sion function calls was presented by Leurent et al. Rotational cryptanalysis
was introduced by Khovratovich et al [7]. The SHA2-XOR compression func-
tion was analyzed by Yoshida et al. [15], where it was shown that an iterative
differential can be used to detect non-randomness for up to 31 rounds of SHA2-
XOR. The probability of the 31-round iterative differential for SHA2-XOR is
2−246 whereas for a random function the corresponding probability should be
2−256. This allowed an attack against 32-round SHACAL-2-XOR and also a
pseudo-collision attack for SHA2-XOR reduced to 34 rounds.
The rest of the paper is organized as follows. The relevant specifications of
the SM3 hash function are briefly reviewed in the next section. In Section
3, relevant background on higher order analysis of hash functions and the
notation used throughout the paper are given. Our second order attack against
a reduced-round SM3 compression function is described in Section 4. The slide-
rotational property of SM3 is discussed in Section 5. Finally, our conclusion
is given in Section 6.
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Fig. 1. One round of the SM3 hash function

2 Specifications of the SM3 hash function

SM3 is a Merkle-Damg̊ard construction that processes 512-bit input message
blocks and returns a 256-bit hash value. Before hashing, the message of length
l is padded by a bit set to 1, followed by k bits set to 0, where k is the smallest
integer such that l + 1 + k = 448 mod 512. Finally, the remaining 64 bits are
set to the value of l in the binary form. SM3 consists of two parts: the message
expansion and the state update function (see Fig. 1). Below, we describe the
two parts. The auxiliary functions, P0 and P1, both operating on 32-bit words
are used in the specifications and are defined by:

P0(X) = X ⊕ (X <<< 9)⊕ (X <<< 17)

P1(X) = X ⊕ (X <<< 15)⊕ (X <<< 23).

Message expansion: The input here is the 512 message block represented
as 16 32-bit words, M0, . . . ,M15. It is expanded to 68 32-bit words by letting
Wi = Mi for 0 ≤ i < 16 and

Wi = P1(Wj−16 ⊕Wj−9 ⊕ (Wj−3 <<< 15))⊕ (Wj−13 <<< 7)⊕Wj−6 (1)

for 16 ≤ i < 68. Another expanded message array used in SM3 is W ′
i , 0 ≤ i <

64, defined by

W ′
i = Wi ⊕Wi+4

State update transformation: In SM3, the state update starts from the
fixed initial value of 8 32-bit words [6] and updates them in 64 rounds. Let
A,B,C,D,E, F,G and H denote the inner state registers. As shown in Fig.



1, the j-th round transformation is given by

SS1 = ((A <<< 12) + E + (Tj <<< j)) <<< 7,

SS2 = SS1⊕ (A <<< 12)

TT1 = FFj(A,B,C) +D + SS2 +W ′
j

TT2 = GGj(E,F,G) +H + SS1 +Wj

D = C, C = B <<< 9, B = A, A = TT1

H = G, G = F <<< 19, F = E, E = P0(TT2)

(2)

where the functions FFj and GGj are defined by

FFj(X,Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ j ≤ 15
(X ∧ Y ) ∨ (Y ∧ Z) ∨ (X ∧ Z) 16 ≤ j < 64

GGj(X,Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ j ≤ 15
(X ∧ Y ) ∨ (¬X ∧ Z) 16 ≤ j < 64

The round constants are Tj = 0x79cc4519 for j ∈ {0, . . . , 15} and Tj =
0x7a879d8a, for j ∈ {16, . . . , 63}.
Comparison with SHA-2: The major difference between SHA-2 and SM3
is that in each round of SM3, two expanded message words are fed to the inner
state, as opposed to just one in SHA-2. Also, the maximal distance between
taps in the message expansion mechanism in SM3 is 4, whereas in SHA-2, it is
8. Another difference is that while addition modulo 232 is used in the message
expansion and the feedforward mechanisms in case of SHA-2, only XOR is
used in SM3. Finally, one round of the SM3 hash function contains 8 mod 232

additions, as opposed to 7 such additions in the case of SHA-2.

3 Background and notation

The following notation is used throughout the paper:

- x(b): the bth bit of an n-bit word x

- x(c···b): the word x(c)x(c−1) · · ·x(b)

- ei: an n-bit unit vector with 1 in the ith bit position

- x: the bit-wise complemented word (or bit) corresponding to x

- W i
j , 1 ≤ i ≤ 4, 0 ≤ j ≤ 63: expanded message words, where i denotes

the boomerang branch. More precisely, i = 1, 2 signify the left and right
branches on the front face and i = 3, 4 signify the left and right branches
on the back face of the boomerang

- hj , 0 ≤ j ≤ 63: the 256-bit compression function inner state after j rounds
(e.g., h0 is the state before any round has been executed)

- i-th round: the transformation that maps hi into hi+1

- hi
j , 1 ≤ i ≤ 4, 0 ≤ j ≤ 63: the 256-bit inner state after j rounds at the i-th

boomerang branch, where h1
i and h2

i correspond to the front face branches
and h3

i and h4
i correspond to the back face branches.



3.1 Higher-order analysis of hash functions

In this section, the main idea of how to use the boomerang attack in the
context of compression functions is provided. The goal of this attack on the
function f is to find a quartet (x0, x1, x2, x3) such that

x0 ⊕ x1 ⊕ x2 ⊕ x3 = 0

f(x0)⊕ f(x1)⊕ f(x2)⊕ f(x3) = 0
(3)

which is called a zero-sum or equivalently, a second-order collision. For a de-
tailed exposition of these notions, plese refer to Appendix A. The strategies to
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Fig. 2. Boomerang attack against a compression function

construct a second order collision previously applied to SHA-2 and BLAKE [2,
3] varied to some degree. Here, we review the approach used in [2]. The general
idea is to construct a quartet that forms boomerang structure [14] for a block
cipher in the Davis-Meyer mode. The differentials used in the boomerang are
related key differentials, where the secret key of the block cipher corresponds
to the message block in the case of a compression function. The encryption
function is divided into two parts, E1 ◦ E0. As shown in Fig. 2, for the bot-
tom part of the boomerang, a related-key differential (∆,∆K) → β for E1

with probability q is constructed. Similarly, another related-key differential
(δ, δK) → α with probability p is used for E−1

0 . Then, an attempt to ran-
domly satisfy the differentials in the boomerang structure, with probability
p2q2 would proceed as follows:
- Randomly choose X, the inner state in the middle of the hash function
execution, representing the input to E1 (and the output of E0). Let X

∗ =
X ⊕∆, Y = X ⊕ δ and Y ∗ = X ⊕∆⊕ δ.



- Compute backward from X, X∗, Y , Y ∗ using E−1
0 to obtain P , P ∗, Q,

Q∗, using keys K, K ⊕∆K , K ⊕ δK , K ⊕ δK ⊕∆K , respectively.
- Compute forward from X, X∗, Y , Y ∗ using E1 to obtain C, C∗, D, D∗

using keys K, K ⊕∆K , K ⊕ δK , K ⊕ δK ⊕∆K , respectively.
- Verify whether C ⊕ C∗ = D ⊕D∗ and P ⊕Q = P ∗ ⊕Q∗.

If the last condition is satisfied, a zero-sum quartet is found for the encryption
function in Davis-Meyer mode, since P ⊕Q⊕P ∗⊕Q∗ = 0 and also (C⊕P )⊕
(C∗ ⊕ P ∗)⊕ (D ⊕Q)⊕ (D∗ ⊕Q∗) = 0.
To improve the efficiency of the above process, instead of trying to satisfy
the boomerang randomly, message modification can be used for some of the
differential paths in the boomerang. For example, in [2], message modification
is applied to satisfy the middle part of the boomerang, i.e., to satisfy the two
differentials paths of the function E1. The other paths in the boomerang are
satisfied randomly.

4 Zero-sum for reduced-round SM3

Here, a method for finding a zero-sum for the 32-round SM3 compression
function is detailed. An example for the found zero-sum for the 32-round
reduced SM3 compression function is given in Table 3.

4.1 Choosing the differential paths

In what follows, the backward and the forward differential paths used in the
boomerang are provided and we explain why the two chosen paths are favor-
able. The 32-round block cipher used in the Davis-Meyer mode in the SM3
compression function is decomposed into E1 ◦E0. The function E0 consists of
rounds r = 0, . . . , 14 and the function E1 consists of rounds 15, . . . , 31. The
forward and backward differential paths for E1 and E0 used in the attack are
given at the end of the Appendix (Tables 1 and 2, respectively). For example,
the last row in Table 1 denotes that there is no active bits between the two
inner states representing the output of round 14.
The paths have been found by linearizing the compression function and then
applying CodingTool [12], a tool for effective search for low Hamming weight
codewords of a given linear code. The linearization amounted to replacing
addition mod 232 by XOR and the functions FFi and GGi, 16 ≤ i < 64 by zero
functions. Functions FFi and GGi, 0 ≤ i < 16, have been left unchanged, since
they are already linear. The input to CodingTool is a generating matrix of a
linear code and the output is a low Hamming-weight codeword. Here, the linear
code in question is the linear mapping from the message to the concatenated
bit-vectors representing consecutive inner states of the compression function.
The matrix describing this mapping, i.e., the generating matrix of the linear
code, is obtained by applying the linearized compression function to the unit
vectors. Then, the matrix is fed to the low Hamming weight codeword search
algorithm. The search is done for both functions E−1

0 and E1.
The probabilities for the provided differentials are obtained by multiplying
the round probabilities provided in Tables 1 and 2. As shown in the tables,
the overall probabilities for E−1

0 and E1 paths are 2−25 and 2−57, respectively.
Therefore, assuming that the events of satisfying the two differential paths are



independent, by using a naive search, the probability of finding a quartet that
yields a zero-sum would be 2−2×(25+57) = 2−164. Instead of applying a naive
search, message modification allows a major improvement to this complexity.
The differential path for E1 in rounds 15 − 19 is satisfied by using message
modification and the rest, that is, rounds 0− 4 and also round 31, is satisfied
by a random search. Then, the search complexity drops to 22×(25+2) = 254.
To clarify the advantage of the paths given in Tables 1 and 2, first we note
that the Hamming weight of the two paths does not change if the paths are
rotated by some fixed number of bit-positions. Therefore, the rotation amount
is a free parameter that can be chosen to maximize the probability of success.
As for the backward path shown in Table 1, the choice of the rotation amount
is simply due to the fact that the number of active most significant bits is
maximized, which improves the differential probability, given that the active
most significant bits do not affect such probability.
As for the rotational amount used for the forward differential, the number
of most significant bits in rounds 15 − 19 is less important, because in these
rounds, the path is satisfied by message modification and there is no need to
minimize the path probability by forcing bits to be on the most significant bit
position. What matters for the forward differential is that one of the active bits
in round 31 would correspond to the most significant bit since, as explained
above, this condition is satisfied by a random search, as is the case with the
particular paths in Table 2. This reduces the exhaustive search by more than
a factor of 2 and when the alternative paths for the path in round 31 are
taken into account, the reduction is by a factor of around 3. This reduction
is relatively significant, since our goal is to find a zero-sum efficiently with a
practical complexity.
In addition to the path given in Table 2, it can be easily verified that there
exist two more paths obtained by rotating the one in Table 2 such that, in
round 31, one of the active bits is the most significant bit. These two paths
are obtained using rotation to the left by 17 and 9 positions. However, each of
the three paths have conflicting bit conditions in rounds 15− 16 with respect
to the backward differential, including the path given in Table 2. In the next
subsection, we show that the conflict between the backward path and the
forward path given in Table 2 is recoverable, i.e., it can be bypassed by message
modification, which is the reason why we focus on this path.

4.2 Message modification and the conflicting bits

In this section, we provide some details on the message modification technique
in the context of the boomerang, i.e., where the message modification is per-
formed on a quartet of values, instead of on a pair of values. The focus is
put on resolving the particular conflict between the bit-conditions on the two
faces of boomerang that occurs in our SM3 analysis. A simple general tool for
bypassing such conflicts, in the case when this is possible, is provided.
The message modification procedure that satisfies rounds 15 − 19 of the for-
ward differential on the front and the back face of the boomerang proceeds
as follows. Here, by message modification, we also assume the modification of
the middle inner state registers. Following the notation specified in Section 3,
let h1

15 and h2
15 denote the inner states satisfying the difference specified by

the first row of Table 2. In the back face of the boomerang, the corresponding



inner states are h3
15 = h1

15 and h4
15 = h2

15. The goal is to have both the front
face and back face differences propagate according to Table 2.

The modification procedure can start from h1
15. The message words W 1

15,W
2
15

and the inner states h1
15, h

2
15 are modified so that the difference on the front

face between h1
15 and h2

15 propagates according to Table 2. Now, if the bit-
conditions for controlling the propagation between h1

15 and h3
15 do not conflict

with the bit-conditions for h1
15 and h2

15, the message modification procedure
can be applied again, but this time on h1

15 and h3
15. Then, clearly, the differ-

ence between h3
15 and h4

15 propagates in the exact same way as the difference
between h1

15 and h2
15 and the goal is fulfilled. Also, due to the boomerang

property, the difference between h2
15 and h4

15 propagates in the same way as
h1
15 and h3

15.

However, the conflicting bit condition occurs due to the backward and forward
paths in Tables 1 and 2. The conflicting condition and how it is resolved
is explained below and also visualized on Fig. 3, where rounds 15 and 16
are shown. As depicted in the figure, the front-side and back-side differences
(due to the forward path) are denoted by ∆ and the left-side and right-side
differences (due to the backward path) by δ. The conflict arises when one
attempts to force the bit 22 difference coming from D15 not propagate to
more than one bit in both front-side and back-side of A16. The problem is
that bit 22 is also active on the left-side and the front-side, as shown in Fig.
3 beside the W15 ⊕ W19 word. In particular, due to the message difference
specified by the backward differential, we have

(W 1
15 ⊕W 1

19)⊕ (W 3
15 ⊕W 3

19) = e14 ⊕ e22 ⊕ e31 (4)

At the same time, due to (2), for the active bit 22 of D15 to propagate only to
a 1-bit difference in A16 in both the front and the back face of the boomerang,
bits 22 of both

α1 = FF15(A
1
15, B

1
15, C

1
15) + SS2115 + (W 1

15 ⊕W 1
19)

α3 = FF15(A
3
15, B

3
15, C

3
15) + SS2315 + (W 3

15 ⊕W 3
19)

have to be fixed to the bit value b = 0 if there is no carry generated at bit
position 21 in neither of the two additions

A1
16 = α1 +D1

15 (5)

A3
16 = α3 +D3

15 (6)

If, however, there is a carry generated at position 21 in both (5) and (6), then
the above bit b needs to be fixed to 1. Thus, under the assumption that the
carry is either generated at position 21 in both (5) and (6), or not generated
in neither of these two additions, both the front and the back face of the
boomerang cannot be satisfied, since bit 22 is active in (4).

Thus, to bypass the conflicting bit, the fact that, in (4), bit 14 is also active
should be utilized. Then, by using an 8-bit long carry propagation from bit
14 to bit 22 on the left and the right face of the boomerang, the existence
of carry at bit 21 can be ensured in exactly one of the additions (5) and (6),
which cancels out the activation of bit 22 on the left and the right face of the
boomerang.
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Next, a simple lemma that ensures long carry propagation for the purpose of
deactivating a particular bit is provided. The lemma can be used during the
message modification process, i.e., whenever a deactivation of a bit by a carry
chain is needed. Consider sums of n-bit words X +S and X ′ +S and suppose
that bits k and l, where k < l are active in X. The lemma specifies how to
perform message modification on X so that the bit l in X + S and X ′ + S
remains inactive.

Lemma 1 Let X, X ′, and S be n-bit words. Also, let 0 ≤ k < l ≤ n and
X ⊕X ′ = el ⊕ ek. If

2k ≤ X(k−1..0) + S(k..0) < 2k+1 (7)

X(k) = X(l) (8)

X(l−1..k+1) = S(l−1..k+1) (9)

then
(X + S)⊕ (X ′ + S) = el−1 ⊕ . . .⊕ ek+1 ⊕ ek. (10)

The proof is provided in Appendix B. To resolve the round 15 bit conflict
explained above, the Lemma can be applied by letting X = (W 1

15 ⊕ W 1
19),



X ′ = (W 3
15 ⊕W 3

19), S = (FF15(A
1
15, B

1
15, C

1
15) +SS2115 +D1

15), k = 14, l = 22,
n = 32, where the active bit 31 in (W 1

15 ⊕W 1
19) can be ignored since it is on

the most significant position. Then, X = (W 1
15 ⊕ W 1

19) is modified to satisfy
requirements (7)-(9). This message modification is done by only modifying a
subset of bits {21, 20 . . . , 0} of W 1

19. Now, on the front face of the boomerang,
A1

16 and A2
16 will have a signed difference of −22, while, at the back face of the

boomerang, A3
16 and A4

16 will have the same signed difference, as specified by
the forward differential, i.e., the conflicting bit condition has been bypassed.

As can be verified, this is the only conflicting condition in rounds 15 and
16. The application of Lemma 1 can also be seen as a way to increase the
probability of satisfying the paths in the boomerang by 28, since the event
of the carry propagation takes place with probability of around 2−8. As for
the conflicting conditions in rounds 17 − 19, they are resolved by repeated
applications of Lemma 1. The result of the message modification procedure
described above is a quartet that satisfies the differences in rounds 15−19. The
quartet is used as input for the next stage of the zero-sum search procedure.

4.3 Searching for the zero-sum

After the differences in rounds 15−19 have been satisfied, the remaining paths
in the boomerang are satisfied randomly. The corresponding search procedure
is facilitated due to the existence of many neutral bits with respect to the ma-
jority of already satisfied conditions. Namely, all the bits in words W8, . . . ,W14

are neutral with respect to the rounds 15 − 19. The search proceeds by ran-
domly satisfying the remaining conditions, i.e., the path given in Table 1 and
also the last round of the path in Table 2. Although the nominal probabil-
ity is as low as 22×(25+2) = 2−54, this probability does not take into account
the alternative differential paths that are similar to the ones specified above.
Due to these additional paths, the actual probability is much larger, as was
confirmed by executing the search procedure. Similar observation have been
reported in for example in [3, 10].

The zero-sum for 32 rounds of the SM3 compression function, given in Table
3, was found after around 20 days of computation using 4 workstations, each
with four 2.4 GHz Dual-Core AMD Opteron processors.

A natural way to extend the attack to more rounds would be to increase the
number of rounds on which the message modification is performed. Namely, it
should be noted that the consequence of the neutral bits described above is the
fact that the complexities to satisfy the bottom and the top differential add
up and do not multiply, similar as in [2]. Thus, one can imagine extending
the middle rounds so that the message modification procedure terminates
after a practical amount of computation. However, caution should be exercised
when estimating the number of rounds that can be added since the number
of conflicting bits grows quickly which consequently increases the number of
necessary applications of Lemma 1. According to our experience, satisfying
the conditions in the boomerang becomes increasingly difficult without an
automated systematic procedure as the number of conflicting conditions grows.
Thus, extending the number of rounds to be dealt with by an automated
message modification procedure is the goal of our future research. Such a
procedure would also be relevant for the SHA-2 boomerang analysis [2].



5 A slide-rotational property of SM3-XOR

As mentioned in Section 1.1, the SHA2-XOR compression function was pre-
viously studied by Yoshida et al. [15]. In this section, we show that, in the
case of the full SM3-XOR, pairs satisfying a certain rotational relation can be
easily generated. An example of such a pair for the SM3-XOR is provided in
Table 4. The possibility of practical generation of such evasive [5] SM3-XOR
pairs demonstrates the existence of a non-trivial property which is not known
to exist in SHA2-XOR.
The above mentioned property exists due to the fact that the constants over
the 64 rounds of SM3 are related. According to the SM3 specification, in
rounds j ∈ {0, . . . , 15}, one constant rotated by j is utilized, whereas the
other constant rotated by j is used in rounds j ∈ {16, . . . , 63}. Since opera-
tions like XOR, FFi, GGi, 0 ≤ i < 64, that are used in the SM3-XOR round
function preserve the rotational property, it is natural to attempt a rotational
attack, as provided below. We note that if instead of SM3-XOR, the original
SM3 compression function is used, the addition mod 232 transforms the attack
into a probabilistic one, as outlined below. Due to the high number of addi-
tions per round, it appears difficult to exploit this rotational property directly
and therefore the security of the SM3 compression function, at this stage of
analysis, does not seem to be directly affected.
Two 32-bit words X,Y are said to be rotational if X = Y <<< n. Let messages
W and W ∗ satisfy W ∗

1 = W0 <<< 1,W ∗
2 = W1 <<< 1, . . . ,W ∗

16 = W15 <<< 1.
Below, a procedure for the instant generation of pairs v, v∗ such that

v∗1 = v0 <<< 1, v∗2 = v1 <<< 8, v∗3 = v2 <<< 1

v∗5 = v4 <<< 1, v∗6 = v5 <<< 18, v∗7 = v6 <<< 1

V ∗
1 = V0 <<< 1, V ∗

2 = V1 <<< 8, V ∗
3 = V2 <<< 1

V ∗
5 = V4 <<< 1, V ∗

6 = V5 <<< 18, V ∗
7 = V6 <<< 1

(11)

is provided, where V = SM3-XOR(v,W ), V ∗ = SM3-XOR(v∗,W ∗) and vi, Vi

for 0 ≤ i ≤ 7 denote i-th 32-bit word in the v and V , respectively. For a
random function, a random (v,W ), (v∗,W ∗) satisfying the above constraints
will yield the corresponding V and V ∗ with probability 2−6×32 = 2−192, since
(11) imposes 6 32-bit conditions on V , V ∗.

5.1 Constructing a slide-rotational pair

We start by the following observations:
- The slide rotational messages expand to slide-rotational expanded mes-
sages with probability 1. In particular, fix W0, . . . ,W15 and let

W ∗
1 = W0 <<< 1,W ∗

2 = W1 <<< 1, . . . ,W ∗
16 = W15 <<< 1 (12)

After expanding both W and W ∗, we have W ∗
i+1 = Wi <<< 1, for i =

{0, 1, . . . , 62} and also W
′∗
i+1 = W ′

i <<< 1, for i = {0, 1, . . . , 66}.
- We recall that Ti, 0 ≤ i ≤ 63 are the round constants. If we have

W ∗
i+1 = Wi <<< 1,W

′∗
i+1 = W ′

i <<< 1, Ti+1 = Ti <<< 1 (13)

A∗
i+1 = Ai <<< 1, B∗

i+1 = Bi <<< 1, . . . , H∗
i+1 = Hi <<< 1 (14)

for i = k, then (14) will also hold for i = k + 1, where k = 0, . . . , 62.



The observations above suggest that sliding can be introduced, as depicted
in Fig. 4. Namely, consider randomly initializing W and letting W ∗ satisfy
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Fig. 4. The slide-rotational attack against SM3-XOR

(12). Moreover, A0, B0 . . . , H0 is chosen randomly and the inner state registers
after the first round in the second instance of the hash function are initialized
according to (14). Then, until round 15, due to (13), the rotational property
in the inner state registers will be preserved. Once the two instances reach
rounds 15 and 16, respectively, a different round transformation is applied in
the two instances and the rotational property may discontinue. This problem
is bypassed by starting from the middle, i.e., by populating the inner states
entering the critical rounds 15 and 16 (see Fig. 4). The details of how the
critical rounds are bypassed are provided in Appendix C and an example of a
rotational pair satisfying (11) is given in Table 4.

When instead of SM3-XOR, the SM3 compression function is considered, this
property turns into a probabilistic one. Following [7], if pr = P [(x <<< r)+(y <
<< r) = (x+y) <<< r] where x and y are 32-bit words, then p1 = 2−1.415. Since
there exists 8 additions in one SM3 round, the probability that one round and
its corresponding slided round will preserve the rotational property is given
by (p1)

8 = 2−11.320 [7].

6 Conclusion

In this paper, a second order collision for the SM3 compression function re-
duced to 32 rounds is presented. The top and the bottom differentials, used in
the boomerang, impose seemingly conflicting conditions. The novelty of our
method is that these conditions are resolved during message modification by
using long carry propagation on the left and right face of the boomerang. In
the second part of the paper, a slide-rotational property of SM3-XOR function
is exposed and an example of a slide-rotational pair for SM3-XOR compression
function is given.
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A Higher-order analysis of hash functions

Here, we review higher-order analysis of hash functions. In particular, the
two equivalent notions of second order collisions and zero-sums are defined.



Then, the main idea of how to use the boomerang attack in the context of a
compression function is provided. First, the notion of higher order differentials
[9] is recalled.

Definition 1 Let (S,+) and (T,+) be Abelian groups. For a function f : S →
T , the derivative of f at a ∈ S is defined as

∆af(x) = f(x+ a)− f(x)

The i-th derivative of f at (a1, . . . , ai) is then defined by

∆(i)
a1,...,ai

f(x) = ∆ai(∆
(i−1)
a1,...,ai−1

f(x))

In case of a function f : Fm
2 → Fn

2 , we have (Proposition 3, [9]):

Lemma 2 Let L[a1, . . . , ai] be the list of all 2i possible linear combinations
of a1, a2, . . . , ai. Then,

∆(i)
a1,...,ai

f(x) =
⊕

c∈L[a1,...,ai]

f(x⊕ c)

As defined in [2], an i-th order differential collision for f is an i-tuple (a1, . . . , ai),
together with a value x such that

∆(a1,...,ai)f(x) = 0

As argued in [2], since the i + 1 input parameters a1, . . . , ai and x can be
chosen freely, the query complexity of finding an i-th order collision is 2n/(i+1),
where n denotes the bit-size of the output of the function f . Here, the query
complexity denotes the number of queries made to the f function oracle. Thus,
the query complexity of finding a second order collision for the function f , i.e.,
values x, a1 and a2, such that

f(x⊕ a1 ⊕ a2)⊕ f(x⊕ a1)⊕ f(x⊕ a2)⊕ f(x) = 0 (15)

is 2n/3. As for the computational complexity, which would include evaluating
f around 2n/3 times and finding, among the outputs, a quartet that sums to
0, no algorithm with complexity better than 2n/2 is known. It should be noted
that in [13], the boomerang technique is used to find a zero-sum quartet of
inputs x0, x1, x2, x3, introduced in [1], such that

x0 ⊕ x1 ⊕ x2 ⊕ x3 = 0

f(x0)⊕ f(x1)⊕ f(x2)⊕ f(x3) = 0
(16)

It is easy to verify that a zero-sum quartet and second order collision notions
are equivalent. For example, given a zero-sum quartet, it suffices to put x = x0,
a1 = x0 ⊕ x1, a2 = x0 ⊕ x2 to have (15) satisfied.



B Proof of Lemma 1

Due to (7) and the fact that X(k) ̸= X
′(k), exactly one of the values in

{X(k..0) + S(k..0), X
′(k..0) + S(k..0)} will have a carry propagation from bit

position k to k+1. Therefore, using (9), it is clear that (X+S)(l−1..k)⊕ (X ′+

S)(l−1..k) = el−1 ⊕ . . . ⊕ ek+1 ⊕ ek. Since X(l) ̸= X
′(l), X + S and X ′ + S

will be equal on bit l. Finally, from (8), (X + S)(m) = (X ′ + S)(m) for m > l,
m < n, which completes the proof.

C Bypassing rounds 15 and 16

In this appendix, we explain how to bypass the critical rounds 15 and 16 which
may discontinue the rotational property. That way, it is possible to have the
slide property hold over all rounds of the two hash function instances. The idea
is to start by populating the inner states entering the critical rounds 15 and
16 (see Fig. 4). In particular, a rotational pair (A15, . . . , H15), (A

∗
16, . . . , H

∗
16)

is carefully chosen so that (A16, . . . , H16) and (A∗
17, . . . , H

∗
17) satisfy relation

(14). It should be noted that the rotational property may be destroyed only
between A16 and A∗

17 and between E16 and E∗
17, since the other registers go

through identical rotational-preserving transformations in round 15 and round
16. As for A16 and A∗

17, for the purpose of tracking the possible rotational
disturbance between the two registers, the equation to compute these two
registers can be rewritten as

A16 = FF15(A15, B15, C15)⊕ (T15 <<< 22)⊕ α (17)

A∗
17 = FF16(A

∗
16, B

∗
16, C

∗
16)⊕ (T16 <<< 23)⊕ α∗ (18)

where α = D15 ⊕ W15 ⊕ W19 ⊕ (((A15 <<< 12) ⊕ E15) <<< 7) ⊕ (A15 <<< 12)
and α∗ = D∗

16 ⊕ W ∗
16 ⊕ W ∗

20 ⊕ (((A∗
16 <<< 12) ⊕ E∗

16) <<< 7) ⊕ (A∗
16 <<< 12).

Since (14) and (13) hold for i = 15, α∗ = α <<< 1. Therefore, to have A16 and
A∗

17 be a rotational pair, it suffices to make FF15(A15, B15, C15)⊕(T15 <<< 22)
and FF16(A

∗
16, B

∗
16, C

∗
16) ⊕ (T16 <<< 23) satisfy the rotational property. After

expressing A∗
16, B

∗
16, C

∗
16 in terms of A15, B15, C15 and using that FF15 and

FF16 preserve the rotational property, the condition can be expressed in terms
of A15, B15, C15 as follows:

FF15(A15, B15, C15)⊕ FF16(A15, B15, C15) = (T15 ⊕ T16) <<< 22 (19)

When applied on 1-bit values X, Y and Z, the equation FF15(X,Y, Z) ⊕
FF16(X,Y, Z) = 0 is satisfied for 2 out of 8 (X,Y, Z) values. Since the Ham-
ming weight of the right-hand side of (19) is equal to 14, the number of solu-
tions to the equation is 218 × 614 = 232 × 314. As for preserving the rotational
property between E16 and E∗

17, developing the registers as in (17) and then
forming the equation of the form (19) yields that the number of solutions E15,
F15 and G15 is 432 = 264. Therefore, the number of solutions for (A15, . . . , H15)
that pass the disturbance in rounds 15 and 16 is 232×314×264×264 ≈ 2182.19,
since D15 and H15 are free variables. For such pairs, it follows that relations
(11) are satisfied.



i Inner state Wi ⊕ Wi+4 Wi Prob

0

A: +22

2−23

B: −22
C: −31, −22
D: −31, +29, +27,

+22, +21, +20, −29, +27, −29, +27,
+11, +9, −6, +21, +20, +21, +20
−4, +3, −2 +19, −11, −19, +11,

E: +12 −6, +4, −3 +6, −4, −3
F: −12
G: −31, +12
H: +31, −29, −27,

+21, +20, +12,
−11, −9, +6,
−4, +3

1

B: +22

2−2

C: −31
D: −31, −22
F: +12
G: −31
H: −31, +12

2

C: +31

1
D: −31
G: +31
H: −31

3
D: +31

-31 -31 1
H: +31

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

15

Table 1. Backward differential path with probability 2−25

i Inner state Wi ⊕ Wi+4 Wi Prob

15

C: +29, +27, +21,
+20, −11, +9,
−6, −4, −3, −2

D: −31, +29, +27,
−22, +21, +20,
+11, −9, +6,
+4, +3, −2

G: +29, −27, −21, +31 2−26

+20, −11, +9,
−6, −4, −3,

H: +31, −30, +27,
+23, +20, −15,
+14, −12, +11,
−9, −7, +6, +4, +3

16

A: −22
D: +29, +27, +21,

+20, −11, +9, −29, +27, −29, +27,
−6, −4, −3, −2 −21, −20, +21, −20,

E: +12 +19, +11, +19, +11, 2−25

H: +29, −27, −21, +6, +4, +3 +6, +4, +3
+20, −11, +9,
−6, −4, −3

17
B: −22

2−2
F: +12

18 C: −31
2−2

G: +31

19 D: −31 −31 −31 1
H: +31

20

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

31 −31, −22, +14 2−2

32 A: −31, −22, +14

Table 2. Forward differential path with probability 2−57



A1, B1, . . . , H1 0x7a0d7b2f 0x776a25d5 0xcff768ac 0xd2eb20d5
0xd2c08d9b 0x744d3e5c 0xdf04e2ba 0x2cd3bb94

W1
0 , . . . ,W1

15

0x31c2ba4f 0x336fa0d6 0x94a32431 0x9d3caeaa
0x814d29d5 0xc8ebf2e6 0x7a41c51f 0x3aa0bedd
0xaac4fb81 0xd584f8b 0x619690c2 0xfac9a4d1
0x2a28a333 0x175fb61c 0x6133d9ab 0x81e48a5e

A2, B2, . . . , H2 0x3c6a7d6d 0xbbdf98c0 0x5da6c569 0x89c62255
0xd75bec0e 0x6117de9c 0xb3f56bd3 0x3445d8b4

W2
0 , . . . ,W2

15

0x2dc2be4f 0x33efa256 0xbc9b2c69 0x3d6cfeaa
0x3cea950 0x48ebf2e6 0x7241ad1f 0x32a0bedd
0xaac4fb81 0xbd083f9b 0x618698ca 0xfac9a4d1
0xaa28a333 0x1f5f9e1c 0x6133d9ab 0x81e48a5e

A3, B3, . . . , H3 0x7a4d7b2f 0x772a25d5 0x4fb768ac 0x6a7b1aa9
0xd2c09d9b 0x744d2e5c 0x5f04d2ba 0xc493b1cc

W3
0 , . . . ,W3

15

0x19fab217 0x336fa0d6 0x94a32431 0x1d3caeaa
0x814d29d5 0xc8ebf2e6 0x7a41c51f 0x3aa0bedd
0xaac4fb81 0xd584f8b 0x619690c2 0xfac9a4d1
0x2a28a333 0x175fb61c 0x6133d9ab 0x81e48a5e

A4, B4, . . . , H4 0x3c2a7d6d 0xbb9f98c0 0xdde6c569 0x31561829
0xd75bfc0e 0x6117ce9c 0x33f55bd3 0xdc05d2ec

W4
0 , . . . ,W4

15

0x5fab617 0x33efa256 0xbc9b2c69 0xbd6cfeaa
0x3cea950 0x48ebf2e6 0x7241ad1f 0x32a0bedd
0xaac4fb81 0xbd083f9b 0x618698ca 0xfac9a4d1
0xaa28a333 0x1f5f9e1c 0x6133d9ab 0x81e48a5e

Table 3. An example for a zero-sum for 32 rounds of the SM3 compression function

A1, B1, . . . , H1 0x565060b7 0x125d5655 0x285c7653 0xeaf5fe1e
0xda8bd7dd 0xb8bb1904 0x43bcaf18 0x7cf88895

W1
0 , . . . ,W1

15

0x8f450bbd 0x4a0c9922 0x73dd44f8 0x9eceaaf8
0x33b13e20 0xb59d9c33 0x6b5a5f23 0xc0d2b468
0x7a9a1e16 0xaff62878 0x3fbb01f4 0x75278787
0xac0b849e 0x498f3045 0x62687c15 0xd3498eb

A2, B2, . . . , H2 0x24baacaa 0x53285c76 0xd5ebfc3d 0xdf1ee2a6
0x71763209 0x2bc610ef 0xf9f1112a 0xffeb86a4

W2
0 , . . . ,W2

15

0x7efa7542 0x1e8a177b 0x94193244 0xe7ba89f0
0x3d9d55f1 0x67627c40 0x6b3b3867 0xd6b4be46
0x81a568d1 0xf5343c2c 0x5fec50f1 0x7f7603e8
0xea4f0f0e 0x5817093d 0x931e608a 0xc4d0f82a

Table 4. An example for a slide-rotational pair for the SM3-XOR compression function


