
On the CCA2 Security of McEliece
in the Standard Model

Edoardo Persichetti

Florida Atlantic University

Abstract. In this paper we study public-key encryption schemes based on error-
correcting codes that are IND-CCA2 secure in the standard model. In particular, we
analyze a protocol due to Dowsley, Müller-Quade and Nascimento, based on a work of
Rosen and Segev. The original formulation of the protocol contained some ambiguities
and incongruences, which we point out and correct; moreover, the protocol deviates
substantially from the work it is based on. We then present a construction which
resembles more closely the original Rosen-Segev framework, and show how this can
be instantiated with the McEliece scheme.

1 Introduction

The McEliece cryptosystem [11] is the first scheme based on coding theory prob-
lems and it makes use of error-correcting codes (binary Goppa codes in the original
proposal). Persichetti [15] has shown that it is possible to produce a very efficient
CCA2-secure scheme in the random oracle model; it is however of interest to study
systems that are secure in the standard model.

Rosen and Segev in [16] gave a general approach for CCA2 security in the stan-
dard model incorporating tools like lossy trapdoor functions and one-time signature
schemes. This general protocol can be applied directly to many different hard prob-
lems such as Quadratic Residuosity, Composite Residuosity, the d-linear Assumption
and the Syndrome Decoding Problem, as shown in [6]. Dowsley et al. [3] have at-
tempted to adopt the Rosen-Segev approach to the McEliece framework. To do this,
a new structure called k-repetition PKE is introduced, as well as a number of differ-
ences in the key generation, encryption and decryption processes. It is claimed that
the scheme has IND-CCA2 security in the standard model, but some ambiguities
in the constructions were present which undermined this claim. These have been
addressed in subsequent works: in a follow-up paper [2], the authors, with the ad-
dition of Döttling, present a corrected version of the scheme of [3]. The paper was
published in 2012, around the same time an earlier version of this work [14] was
released. It is therefore safe to assume the results were obtained independently.

Mathew et al. [10] introduced an alternative construction for code-based IND-
CCA2 secure PKE in the standard model, which is more efficient than the propos-
als studied in this work. However, their construction is based on the Niederreiter



scheme [12]. Finally, in an independent work [19], Yoshida, Morozov and Tanaka
proved that it is possible to obtain Key Privacy for both the Rosen-Segev scheme
and the Dowsley et al. scheme. This is an alternative security notion that aims at
guaranteeing the non-malleability of public keys, rather than ciphertexts. For this
reason, it is also known as Anonymity or Indistinguishability of Keys (IK). Note
that this notion was proved to hold for code-based schemes in the random oracle
model, again in [15].

In this paper we analyze in detail the construction of [3], since we believe it
introduced an interesting alternative to the Rosen-Segev approach. First of all, we
make some observations, point out the ambiguities of the description of the scheme,
and discuss the fixes of [2,14]. For the sake of completeness, we provide a correct
formulation together with a proof of security. Finally, we show how to get a CCA2-
secure encryption scheme based on the McEliece assumptions using the original
Rosen-Segev approach.

2 Preliminaries

We will summarize here all the objects we are going to work with in the paper.

Formally, we define a Public-Key Encryption scheme (PKE) to be formed by the
6-tuple (K,P,C, KeyGen,Enc,Dec), defined as follows:

– K: The pair (Kpubl,Kpriv), respectively the public key and private key spaces.

– P: The set of messages to be encrypted, or plaintext space.

– C: The set of the messages transmitted over the channel, or ciphertext space.

– KeyGen: A probabilistic key generation algorithm that takes as input a security
parameter 1δ and outputs a public key pk ∈ Kpubl and a private key sk ∈ Kpriv.

– Enc: A (possibly probabilistic) encryption algorithm that receives as input a
public key pk ∈ Kpubl and a plaintext φ ∈ P and returns a ciphertext ψ ∈ C.

– Dec: A deterministic decryption algorithm that receives as input a private key
sk ∈ Kpriv and a ciphertext ψ ∈ C and outputs a plaintext φ ∈ P or the failure
symbol ⊥.

Similarly, we define a Signature scheme (SS) as a 6-tuple (K,M, Σ,KeyGen, Sign,Ver),
defined as follows:



– K: The pair (Ksign,Kver), respectively the signing key and verification key spaces.

– M: The set of documents to be signed, or message space.

– Σ: The set of the signatures to be transmitted with the messages, or signature
space.

– KeyGen: A probabilistic key generation algorithm that takes as input a secu-
rity parameter 1δ and outputs a signing key sgk ∈ Ksign and a verification key
vk ∈ Kver.

– Sign: A (possibly probabilistic) signing algorithm that receives as input a signing
key sgk ∈ Ksign and a message µ ∈ M and returns a signature σ ∈ Σ.

– Ver: A deterministic decryption algorithm that receives as input a verification
key vk ∈ Kver, a message µ ∈ M and a signature σ ∈ Σ and outputs 1, if the
signature is recognized as valid, or 0 otherwise.

2.1 Security notions

Here we refresh the security notions which will be addressed in this work.

Definition 1 (IND). An adversary A for the indistinguishability (IND) property is
a two-stage polynomial-time algorithm. In the first stage, A takes as input a public
key pk ∈ Kpubl, then outputs two arbitrary plaintexts φ0, φ1. In the second stage,
it receives a ciphertext ψ∗ = Encpk(φb), for b ∈ {0, 1}, and returns a bit b∗. The
adversary succeeds if b∗ = b. More precisely, we define the advantage of A against
PKE as

AdvA(λ) = Pr[b∗ = b]− 1

2
. (1)

Indistinguishability can be achieved in various attack models. In the strongest model
(that of interest to us), called CCA2, the adversary is allowed to make use of a
decryption oracle during the game, with the only exception that it is not allowed to
ask for the decryption of the challenge ciphertext.

Definition 2 (IND-CCA2). The attack game for IND-CCA2 (or active attack)
proceeds as follows:

- Query a key generation oracle to obtain a public key pk.

- Make a sequence of calls to a decryption oracle, submitting any string ψ of the
proper length (not necessarily an element of C). The oracle will respond with
Decsk(ψ).



- Choose φ0, φ1 ∈ P and submit them to an encryption oracle. The oracle will
choose a random b ∈ {0, 1} and reply with the “challenge” ciphertext ψ∗ =
Encpk(φb).

- Keep performing decryption queries. If the submitted ciphertext is ψ = ψ∗, re-
turn ⊥.

- Output b∗ ∈ {0, 1}.

We say that a PKE has Indistinguishability against Adaptive Chosen Ciphertext
Attacks (IND-CCA2) if the advantage AdvCCA2 of any IND adversary A in the CCA2
attack model is negligible.

There are many notions of security for signature schemes; the one we present
here is what we need for the Rosen-Segev scheme.

Definition 3 (One-Time Strong Unforgeability). We define an adversary A
as a polynomial-time algorithm that acts as follows:

- Query a key generation oracle to obtain a verification key vk.

- Choose a message µ ∈ M and submit it to a signing oracle. The oracle will reply
with σ = Signsgk(µ).

- Output a pair (µ∗, σ∗).

The adversary succeeds if Vervk(µ
∗, σ∗) = 1 and (µ∗, σ∗) 6= (µ, σ). We say that a

signature scheme is One-Time Strongly Unforgeable if the probability of success of
any adversary A is negligible in the security parameter, i.e.

Pr[vk←− Kver : Vervk(A(vk, Signsgk(µ))) = 1] ∈ negl(λ). (2)

Note that in this scenario the adversary is only allowed to ask for the signature
of a single message (hence the One-Time), so this is a relatively weak security
assumption.

Definition 4 (Hard-Core Predicate). Let f be a one-way function and h be a
predicate, i.e. a function whose output is a single bit. Define an adversary A to be a
probabilistic polynomial-time algorithm that, on input f(x), tries to compute h(x),
i.e. A(f(x)) = b ∈ {0, 1}. The predicate h is a Hard-Core Predicate of the function
f if the probability Pr[b = h(x)]− 1

2 is negligible for all random choices of x.

2.2 The McEliece cryptosystem

The McEliece cryptosystem, based on coding theory, was introduced in 1978 by
Robert J. McEliece [11] and, for an appropriate choice of parameters, it is still
unbroken. In the original proposal, binary Goppa codes are used as a basis for



the construction. We give here a more general and modern description extending
the scheme to generic finite fields Fq and introducing a few little optimizations.
The input parameters are the code length n, the code dimension k and the error-
correction capacity w.

– Setup: Choose a code family and fix public parameters n, k, w.

– Kpubl: The set of k × n matrices over Fq.

– Kpriv: The set1 of “code descriptions” for the chosen code family.

– P: The vector space Fkq .

– C: The vector space Fnq .

– KeyGen: Sample a random generator matrix G for a code of the chosen fam-
ily. Compute the “scrambled” generator matrix Ĝ, then publish the public key
Ĝ ∈ Kpubl and store the private key Γ ∈ Kpriv.

– Enc: On input a public key Ĝ ∈ Kpubl and a plaintext m ∈ P, sample a random

error vector e of weight w in Fnq and return the ciphertext ψ = mĜ+ e ∈ C.

– Dec: On input the private key Γ ∈ Kpriv and a ciphertext ψ ∈ C, apply the decod-
ing algorithm DΓ to it. If the decoding succeeds, return the resulting plaintext
φ = m. Otherwise, output ⊥.

Remark 1. In the original McEliece proposal the scrambling process was accom-
plished using an invertible matrix S and a permutation matrix P , and Ĝ was ob-
tained as SGP . This is rather outdated and unpractical; moreover, it can introduce
vulnerabilities to the scheme as per the work of Strenzke et al. (for example [17,18]).
A still secure (Biswas and Sendrier, [1]), but much simpler description would be to
take the public key Ĝ to be just the systematic form of G.

The security of the McEliece scheme relies on two computational assumptions.

Assumption 1 (Indistinguishability) The matrix Ĝ output by KeyGen is com-
putationally indistinguishable from a uniformly chosen matrix of the same size.

Assumption 2 (Decoding hardness) Decoding a random linear code with pa-
rameters n, k, w is hard.

It is immediately clear that the following corollary is true.

Corollary 1. Given that both the above assumptions hold, the McEliece cryptosys-
tem is one-way secure under passive attacks.
1 For instance for Goppa codes, this is given by the support α1, . . . , αn ∈ Fqm and the Goppa

polynomial g.



Remark 2. In a recent paper [4], Faugère et al. presented a distinguisher for instances
of the McEliece cryptosystem that make use of high-rate Goppa codes. While the
distinguisher works only in a special case and doesn’t affect security for the general
scheme, it is still recommended to avoid such insecure choices.

As we mentioned in the introduction, it is possible to easily obtain CCA2 security
for the McEliece cryptosystem in the Random Oracle Model using either standard
conversions (as in [7,8]) or the dedicated paradigm of [15]. We therefore consider
only the issue of achieving such a security level in the Standard Model.

2.3 Computable functions and correlated products

We define here the notion of security under correlated products for a collection of
functions. Formally, we describe a collection of efficiently computable functions as
a pair of algorithms F = (G,F) where G is a generation algorithm that samples the
description f of a function and F(f, x) is an evaluation algorithm that evaluates the
function f on a given input x. We then define a k-wise product as follows:

Definition 5. Let F = (G,F) be a collection of efficiently computable functions and
k be an integer. The k-wise product Fk is a pair of algorithms (Gk,Fk) such that:

- Gk is a generation algorithm that independently samples k functions from F by
invoking k times the algorithm G and returns a tuple (f1, . . . , fk).
- Fk is an evaluation algorithm that receives as input a sequence of functions (f1, . . . , fk)
and a sequence of points (x1, . . . , xk) and invokes F to evaluate each function on the
corresponding point, i.e.

Fk(f1, . . . , fk, x1, . . . , xk) = (F(f1, x1), . . . ,F(fk, xk)).

A trapdoor one-way function is then an efficiently computable function that,
given the image of a uniform chosen input, is easy to invert with the use of a certain
trapdoor td but hard to invert otherwise; i.e. there exists an algorithm F−1 such
that F−1(td,F(f, x)) = x.
We may think to extend the notion to the case where the input is given according to a
certain distribution, that is, there exists a correlation between the points x1, . . . , xk.

Definition 6. Let F = (G,F) be a collection of efficiently computable functions with
domain D and Ck be a distribution of points in D1×· · ·×Dk. We say that F is secure
under a Ck-correlated product if Fk is one-way with respect to the input distribution
Ck.

In the special case where the input distribution Ck is exactly the uniform k-
repetition distribution (that is, k copies of the same input x ∈ D) we simply speak
about one-wayness under k-correlated inputs. Rosen and Segev in [16] showed that
a collection of lossy trapdoor functions for an appropriate choice of parameters can
be used to construct a collection of functions that is one-way under k-correlated
inputs. Their work is summarized in the next section.



3 The Rosen-Segev scheme

The computational assumption underlying the scheme is that there exists a collection
of functions F = (G,F) which is secure under k-correlated inputs. The scheme makes
use of a strongly-unforgeable signature scheme and of a hard-core predicate h for
the collection Fk.

KeyGenRS : Invoke G for 2k times independently and obtain the descriptions of
functions (f01 , f

1
1 , . . . , f

0
k , f

1
k ) and the corresponding trapdoors (td01 , td

1
1 , . . . , td

0
k, td

1
k).

The former is distributed as the public key pk, while the latter is the private key sk.

EncRS : To encrypt a plaintext m ∈ {0, 1} with the public key pk, sample a key
from a strongly-unforgeable one-time signature scheme, say (vk, sgk) and a random
x ∈ {0, 1}N . Write vki for the i-th bit of vk and let h be a hard-core predicate, then:

– ci = F(f vkii , x) for i = 1, . . . , k.

– y = m⊕ h(f vk11 , . . . , f vkkk , x).

– σ = SignSS
sgk(c1, . . . , ck, y).

It is assumed that vk ∈ {0, 1}k: if not, it is enough to apply a universal one-way
hash function to obtain the desired length.
Finally, output the ciphertext ψ = (vk, c1, . . . , ck, y, σ).

DecRS : Upon receipt of a ciphertext ψ:

– Verify the signature; if VerSSvk((c1, . . . , ck, y), σ) = 0 output ⊥.

– Otherwise compute xi = F−1(tdvkii , ci) for i = 1, . . . , k.

– If x1 = · · · = xk then set m = y ⊕ h(f vk11 , . . . , f vkkk , x1) and return the plaintext
m, otherwise output ⊥.

The security of the scheme is summarized in the next theorem, which was proved
in [16].

Theorem 1. Assuming that F is secure under k-correlated inputs, and that the
signature scheme is one-time strongly unforgeable, the above encryption scheme is
IND-CCA2-secure.

The proof consists of a standard argument, divided in two parts. The first part
shows that if an adversary exists capable to break the CCA2 security of the scheme,
it can be converted to an adversary able to forge the signature scheme. In the second
part, assuming that the forgery doesn’t occur, an adversary is built that contradicts
the security of the hard-core predicate. Due to space constraints, we don’t present
the proof here, but we refer the reader to [16] for more details.



4 Previous proposals

It would be natural to describe the McEliece encryption process as a function
fG(x, y) = xG + y. However, this function is clearly not secure under correlated
inputs. Let us assume Fq has characteristic 2 like in the original McEliece scheme.
Then, given two evaluations fG1(x, y) = xG1 + y and fG2(x, y) = xG2 + y, an at-
tacker could simply sum the outputs together and, since the error vector cancels
out, obtain x(G1 + G2), from which it is easy to recover x. The problem is that,
since we are defining a function, there is no randomness anymore, whereas McEliece
requires a random error vector in order to be secure under k-correlated inputs. A
mapping that incorporates a random element would in fact give a different result for
multiple encryptions of the same plaintext and so would not have a unique image.

We now present two schemes that have been proposed to deal with the matter.

4.1 Syndrome decoding

This construction was presented in [6] and is based on the Niederreiter cryptosystem
[12]. Since this relies on the properties of the parity-check matrix rather than the
generator matrix, it is often considered the “dual” cryptosystem and the computa-
tional assumptions for the security change accordingly.
The Niederreiter trapdoor function can be described as the family N = (G,F) in the
following way:

Generation: on input n, k the algorithm G generates a random parity-check ma-
trix H for an [n, k]-linear code with an efficient decoding algorithm over Fq, then
computes its systematic form Ĥ. The algorithm returns the public key Ĥ and the
private key Γ .

Evaluation: on input Ĥ, e, where e is a string of fixed weight w in Fnq , the algorithm

F computes ψ = Ĥe and returns the ciphertext ψ.

It is possible to invert F using the trapdoor: on input Γ and ψ, simply decode to
obtain e using the decoding algorithm connected to Γ . The function is proved to
be one-way under k-correlated inputs in [6, Th. 6.2] if k is chosen such that the
Niederreiter assumptions hold for n and (n − k)k, and it is intended to be used in
the general Rosen-Segev framework.

4.2 k-repetition PKE

Dowsley, Müller-Quade and Nascimento [3] propose a scheme that resembles the
Rosen-Segev protocol trying to apply it to the McEliece cryptosystem. Despite the
authors’ claim that this is the “direct translation” of [16], this is not exactly the
case.



Among other differences, the main discrepancy is that the scheme doesn’t rely on
a collection of functions but instead defines a structure called k-repetition Public-Key
Encryption (PKEk). This is essentially an application of k samples of the PKE to
the same input, in which the decryption algorithm also includes a verification step on
the k outputs. The encryption step produces a signature directly on the McEliece
ciphertexts instead of introducing a random vector x as in the original scheme.
This means that it is necessary to use an IND-CPA secure variant of McEliece’s
cryptosystem to achieve CCA2 security. For this task, the authors propose to use
the “Randomized McEliece” variant by Nojima et al. [13]. This variant uses, as
the name says, additional randomness, in the form of a random string. The string is
sampled from a randomness set R with elements of length k2, and then concatenated
to the plaintext so that the resulting string has length k and can be encoded as
normal. We briefly recall the scheme below.

– Setup: Fix public system parameters q, n, k, w ∈ N such that k = k1 + k2.

– Kpubl: The set of k × n matrices over Fq.

– Kpriv: The set of “code descriptions” for the chosen code family.

– P: The vector space Fk1q .

– R: The vector space Fk2q .

– C: The vector space Fnq .

– KeyGen: Sample a random generator matrix G for a code of the chosen fam-
ily. Compute the “scrambled” generator matrix Ĝ, then publish the public key
Ĝ ∈ Kpubl and store the private key Γ ∈ Kpriv.

– Enc: On input a public key Ĝ ∈ Kpubl, a plaintext m ∈ P and a random string
r ∈ R, sample a random error vector e of weight w in Fnq and return the cipher-

text ψ = (r|m)Ĝ+ e ∈ C.

– Dec: On input the private key Γ ∈ Kpriv and a ciphertext ψ ∈ C, apply the
decoding algorithm DΓ to it. If the decoding succeeds, parse the result as (r|m)
and return the plaintext φ = m. Otherwise, output ⊥.

Remark 3. It is clear that, as already mentioned by the authors in [13], the IND-
CPA security of the randomized McEliece scheme is not absolute, but depends on the
choice of the sizes of the message m and randomness r in the encryption procedure
(r|m)Ĝ+e. In the context of a CPA attack game, in fact, this ciphertext is subject to
general decoding attacks with partial information about the plaintext. As illustrated



in [13, Table 1], if the randomness r is not large enough, the IND-CPA security of
the scheme can be easily broken.

We now present the scheme described in [3]. Note that, in the paper, this is presented
as a general scheme, applicable to any IND-CPA secure PKE which is secure and
verifiable under k-correlated inputs.

KeyGenDMQN : Invoke KeyGenPKE for 2k times independently and obtain the col-
lection of public keys (pk01 , pk

1
1 , . . . , pk

0
k, pk

1
k) and the corresponding private keys

(sk01 , sk
1
1 , . . . , sk

0
k, sk

1
k), then run the key generation algorithm for the signature scheme

to obtain a key (vk∗, sgk∗). Publish the public key pk = (pk01 , pk
1
1 , . . . , pk

0
k, pk

1
k) and

choose the private key accordingly to vk∗, i.e. sk = (vk∗, sk
1−vk∗1
1 , . . . , sk

1−vk∗k
k ).

EncDMQN : To encrypt a plaintext m with the public key pk, sample another, different
key (vk, sgk) from the signature scheme, then:

– ci = EncPKE

pk
vki
i

(m) for i = 1, . . . , k.

– σ = SignSS
sgk(c1, . . . , ck).

– Output the ciphertext ψ = (vk, c1, . . . , ck, σ).

DecDMQN : Upon receipt of a ciphertext ψ:

– If vk = vk∗ or VerSSvk((c1, . . . , ck), σ) = 0 output ⊥.

– Otherwise compute m = DecPKE

sk
vki
i

(ci) for some i such that vki 6= vk∗i .

– Verify that ci = EncPKE

pk
vki
i

(m) for all i = 1, . . . , k. If the verification is successful

return the plaintext m, otherwise output ⊥.

Since we know that vk 6= vk∗, there is at least one position in which they differ,
hence the decryption process is well defined.

Remark 4. Note that, even though the encryption process is not deterministic, for
McEliece encryption it is still possible to perform the check in the last step of
DecDMQN. It is in fact enough to check the Hamming weight of ci−mĜi where Ĝi is
the generator matrix corresponding to the public key pkvkii . This is not clearly stated
by the authors along with the description of the general scheme, but it is mentioned
later on in [3, Theorem 3] for the particular case of the randomized McEliece.

The above specification of the scheme appears to be ambiguous. In fact, even
assuming that the underlying encryption scheme is IND-CPA secure, the encryp-
tion step is described simply as EncPKE

pk
vki
i

(m) for i = 1, . . . , k, without indicating

explicitly the role of the randomness. In [3, Section 4] some remarks are made



about the security and there is the suggestion that the scheme in use be the ran-
domized McEliece scheme from [13]; however, precise details on how this should
be instantiated are missing. One could in general think at the k encryptions as
ci = EncPKE

pk
vki
i

(m, ri) = (ri|m)Ĝi + ei. In this case, since we check the Hamming

weight of ci − (ri|m)Ĝi, the check would obviously fail unless r1 = · · · = rk = r.

Remark 5. The KeyGen algorithm is slightly different from the Rosen-Segev case.
In particular, 2k keys are generated, then a random verification key vk∗ is chosen
and half of the private keys (the ones corresponding to vk∗) are discarded. This also
implies that decryption only works when vk 6= vk∗. This technique is used in the
context of the proof of Theorem 1, specifically in the second part while constructing
an efficient distinguisher for the hard-core predicate. While, as we will see in the
following, this is necessary for the proof (both for the original paper and for the
proposed scheme), it is certainly a redundant requirement in the KeyGen process.

In light of the previous observations, we describe below a corrected description of
the three algorithms composing the scheme:

KeyGenDMQN : Invoke KeyGenPKE for 2k times independently and obtain the col-
lection of public keys (pk01 , pk

1
1 , . . . , pk

0
k, pk

1
k) and the corresponding private keys

(sk01 , sk
1
1 , . . . , sk

0
k, sk

1
k). The former is distributed as the public key pk, while the lat-

ter is the private key sk.

EncDMQN : To encrypt a plaintext m with the public key pk, sample a key (vk, sgk)
from the signature scheme and a randomness r, then:

– ci = EncPKE

pk
vki
i

(m, r)2 for i = 1, . . . , k.

– σ = SignSS
sgk(c1, . . . , ck).

– Output the ciphertext ψ = (vk, c1, . . . , ck, σ).

DecDMQN : Upon receipt of a ciphertext ψ:

– If VerSSvk((c1, . . . , ck), σ) = 0 output ⊥.

– Otherwise compute (m, r) = DecPKE

sk
vki
i

(ci) for some i.

– Verify that ci = EncPKE

pk
vki
i

(m, r) for all i = 1, . . . , k. If the verification is successful

return the plaintext m, otherwise output ⊥.

The original construction is proved to be CCA2-secure in [3, Theorem 1]. We
have constructed our own arguments for security, but due to space limitations, these
have been moved to Appendix A.

2 Note that the randomness we are expliciting here is the one necessary to realize the IND-CPA
security of PKE, hence Enc is still a randomized algorithm. In particular, for the McEliece
instantiation we would have ci = (r|m)Ĝi + ei.



Remark 6. The follow-up paper of [2] also includes a modified version that allows to
encrypt correlated inputs. Note that, however, this is still not a “direct translation”
of the Rosen-Segev scheme. Moreover, improvements such as encrypting correlated
inputs are not necessarily relevant when public-key encryption is used to exchange
a single symmetric key (e.g. as a Key Encapsulation Mechanism, or KEM), which is
(or should be) its main purpose. Therefore, in the next section, we propose a version
that is simpler, and much closer to [16].

5 A direct translation of McEliece

We now explain how to realize the Rosen-Segev scheme using McEliece. The con-
struction arises naturally if we want to be as close as possible to the original McEliece
formulation. We hence follow the usual approach of the McEliece cryptosystem, that
is to choose a different random error vector every time we call the evaluation al-
gorithm; this implies that we are not using functions anymore. The construction is
proved to be secure under k-correlated inputs in Theorem 2. It proceeds as follows:

Describe McEliece as a pair McE = (G,F) composed by two algorithms: G is a
generation algorithm that samples a description, and F is an evaluation algorithm
that provides the evaluation on a given input.

Generation: on input n, k the algorithm G generates a random generator matrix
G for an [n, k]-linear code with an efficient decoding algorithm over Fq, computes
the “scrambled” generator matrix Ĝ, then publishes the public key Ĝ and stores the
private key Γ .

Evaluation: on input Ĝ,m the algorithm F generates a random error vector e of
fixed weight w in Fnq , computes ψ = mĜ+ e and outputs the ciphertext ψ.

It is possible to invert F using the trapdoor: on input Γ and ψ, simply decode to
obtain e using the decoding algorithm connected to Γ , then retrieve m using linear
algebra.

We claim that this encryption process is secure under k-correlated inputs. First, we
need a technical lemma.

Lemma 1. If Assumption 2 holds for parameters n̂, k and ŵ, then the ensembles

{(G,mG + e) : G ∈ Fk×n̂q ,m ∈ Fkq , e ∈ Wn̂,ŵ} and {(G, y) : G ∈ Fk×n̂q , y
R←− Fn̂q } are

computationally indistinguishable.

Proof. Consider the problem of distinguishing the ensembles {(H,HeT ) : H ∈
F(n̂−k)×n̂
q , e ∈ Wn̂,ŵ} and {(H, y) : H ∈ F(n̂−k)×n̂

q , y
R←− Fn̂−kq } as in [5] and sup-

pose A is a probabilistic polynomial-time algorithm that is able to distinguish the



ensembles described above. In particular, say A outputs 1 if the challenge ensemble
is of the form (G,mG+ e) and 0 otherwise. We show how to construct an adversary
A′ that solves the above problem.

Let (H, z) be the received input, where z is either HeT for a certain error vector
e ∈ Wn̂,ŵ or a random vector of Fn̂−kq . By linear algebra, is easy to find a vector

x ∈ Fn̂q with wt(x) ≥ ŵ such that z = HxT . Submit (G̃, x) to A, where G̃ is the

generator matrix associated to H. Now, if z = HeT we can write x = m̃G̃ + e; in
this case, in fact, we have HxT = z = HeT =⇒ H(x − e)T = 0 and clearly this
implies that (x−e)T is a codeword. Then A will output 1 and so will A′. Otherwise,
A will output 0 and so will A′. In both cases, A′ is able to distinguish correctly and
this terminates the proof. ut

Note that this was proved in [5] for the syndrome decoding (Niederreiter) case.
We know [9] that the two formulations are equivalent; in particular, any adversary
able to distinguish the above ensembles can be used to build an adversary for the
Niederreiter case.

The security of the construction is proved in the following theorem, which closely
follows the proof of [6, Th. 6.2].

Theorem 2. Fix an integer k. If the parameters n, k, w are chosen such that de-
coding a random linear code with parameters nk, k and wk is hard, then the above
encryption process is secure under k-correlated inputs.

Proof. Let A be an adversary for the one-wayness under k-correlated inputs. We
define the advantage of A to be

AdvA(λ) = Pr[A(Ĝ1, . . . , Ĝk,F(Ĝ1,m), . . . ,F(Ĝk,m)) = m]

where Ĝ1, . . . , Ĝk are k independent public keys generated by G.
We assume the indistinguishability assumption holds: we can then exchange all
the matrices Ĝi with uniform matrices Ui with a negligible advantage for the at-
tacker. Now, let’s define the k × nk matrix U by concatenating the rows of the
matrices Ui, i.e. U = (U1| . . . |Uk). We assume that the distributions (U1, . . . , Uk,
F(U1,m), . . . ,F(Uk,m)) and (U,F(U,m)) are interchangeable without a significant
advantage for the attacker. Note that in the latter the error vector used will have
length nk and weight wk. A formal argument for this indistinguishability assump-
tion will be provided below.

We now invoke Lemma 1 with n̂ = nk and ŵ = wk. Hence

AdvA(λ) = Pr[A(U,F(U,m)) = m]− Pr[A(U, y) = m] ∈ negl(n)

and since this last one is of course negligible, we conclude the proof. ut



An indistinguishability assumption on error vectors Similarly to what happens for
the IND-CPA security of the McEliece variant (as pointed out in Remark 3), also
in this case the security we are trying to achieve is not absolute, but depends on a
suitable choice of parameters. The assumption in this case is that we can replace
the vector (mU1 +e1| . . . |mUk +ek) with the vector mU +e, where U = (U1| . . . |Uk)
and e is a random error vector of weight wk; in other words, we would like to argue
that e′ = (e1| . . . |ek) is indistinguishable from e. Note that wt(e′) = wt(e) but while
the distribution of the error positions on e is truly pseudorandom, e′ is formed by k
blocks of weight w each. It is plausible that the number of vectors of this kind (that
we denote #e′) is not too small compared to the total of error vectors with same
length and weight. Unfortunately, the only estimate we can provide is not of help:

#e′

|Wnk,wk|
=

(
n

w

)k

(
nk

wk

) ≥
( n
w

)wk
(ne
w

)wk =
1

ewk
. (3)

However, the bound is not tight, and experimental evidence indicates that this
ratio is much bigger.

It is possible to implement the Rosen-Segev scheme using the choice of F and G
that we described above. We present the details below.

KeyGenP : Invoke G for 2k times independently and obtain the collections of public
keys pk = (pk01 , pk

1
1 , . . . , pk

0
k, pk

1
k) and private keys sk = (sk01 , sk

1
1 , . . . , sk

0
k, sk

1
k), where

pkij = (Ĝj)
i and skij = (S, P, Γ )ij as above.

EncP : To encrypt a plaintext m with the public key pk, sample a key (vk, sgk) and
a random x ∈ {0, 1}k, then:

– ci = F(pkvkii , x) for i = 1, . . . , k.

– y = m⊕ h(pkvk11 , . . . , pkvkkk , x).

– σ = SignSS
sgk(c1, . . . , ck, y).

where vki represents the i-th bit of vk. The ciphertext is ψ = (vk, c1, . . . , ck, y, σ).

DecP : Upon receipt of a ciphertext ψ:

– Verify the signature; if VerSSvk((c1, . . . , ck, y), σ) = 0 output ⊥.

– Otherwise compute xi = F−1(skvkii , ci) for i = 1, . . . , k.3

– If x1 = · · · = xk then set m = y⊕h(pkvk11 , . . . , pkvkkk , x1) and return the plaintext
m, otherwise output ⊥.



For simplicity, as in the original construction, we can assume m to be a single
bit, in which case h describes a hard-core predicate for McEliece. However, the
protocol extends easily to multiple bits plaintexts: as suggested in [16], to encrypt a
polynomial number T of bits, it is enough to replace the hard-core predicate h with
a hard-core function h′ : {0, 1}∗ → {0, 1}T .

The security is summarized in the following corollary.

Corollary 2. The above encryption scheme is IND-CCA2 secure in the standard
model.

Proof. By Theorem 2, the collection of McEliece encryption schemes McE is k-
correlation secure. Then this is analogous to Theorem 1, noting that the same argu-
ment applies when F = McE, i.e. f describes a randomized algorithm rather than a
function. The proof uses the same steps as in Theorem 3, with the exception that
in our case Lemma 3 is proved by constructing an adversary A′ that works as a
predictor for the hard-core predicate h. ut

6 Conclusions

The scheme of Dowsley et al. [3] is a first proposal to translate the Rosen-Segev
protocol to the McEliece setting. However, the construction is ambiguous, as we
have shown in Section 4, and features some strange and unnecessary modifications
such as “forgetting” half the private keys, or forbidding ciphertexts to feature the
verification key vk∗. The original Rosen-Segev scheme has no such requirements.
The scheme was subsequently fixed in the follow-up joint work with Döttling [2], but
still deviates substantially from the original Rosen-Segev framework. We therefore
present a construction that, instead, follows more closely the original framework. We
provide a choice of algorithms F and G, based on the McEliece cryptosystem, that can
be used directly into the Rosen-Segev scheme. We then show that our construction
is IND-CCA2 secure following the original security arguments of Rosen and Segev.

References

1. B. Biswas and N. Sendrier. McEliece cryptosystem implementation: theory and practice. In
PQCrypto, pages 47–62, 2008.

2. N. Döttling, R. Dowsley, J. Müller-Quade, and A. C. Nascimento. A CCA2 secure variant
of the McEliece cryptosystem. IEEE Transactions on Information Theory, 58(10):6672–6680,
2012.

3. R. Dowsley, J. Müller-Quade, and A. C. Nascimento. A CCA2 secure public key encryption
scheme based on the McEliece assumptions in the standard model. In Cryptographers? Track
at the RSA Conference, pages 240–251. Springer, 2009.

3 By analogy with the Rosen-Segev scheme. Clearly in practice it would be much more efficient,
rather than decoding k ciphertexts, to just decode one and then re-encode and test as in [3,
Theorem 3].



4. J.-C. Faugère, V. Gauthier-Umaña, A. Otmani, L. Perret, and J.-P. Tillich. A distinguisher
for high rate McEliece cryptosystems. In Information Theory Workshop (ITW), 2011 IEEE,
pages 282 –286, oct. 2011.

5. J.-B. Fischer and J. Stern. An efficient pseudo-random generator provably as secure as syn-
drome decoding. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 245–255. Springer, 1996.

6. D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More constructions of lossy and
correlation-secure trapdoor functions. In International Workshop on Public Key Cryptography,
pages 279–295. Springer, 2010.

7. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In M. J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, volume 1666 of
LNCS, pages 537–554. Springer, 1999.

8. K. Kobara and H. Imai. Semantically secure McEliece public-key cryptosystems-conversions for
McEliece pkc. In International Workshop on Public Key Cryptography, pages 19–35. Springer,
2001.

9. Y. X. Li, R. H. Deng, and X. M. Wang. On the equivalence of McEliece’s and Niederreiter’s
public-key cryptosystems. IEEE Transactions on Information Theory, 40(1):271–273, 1994.

10. K. P. Mathew, S. Vasant, S. Venkatesan, and C. P. Rangan. An efficient ind-cca2 secure variant
of the niederreiter encryption scheme in the standard model. In ACISP, pages 166–179, 2012.

11. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. Deep Space
Network Progress Report, 44:114–116, Jan. 1978.

12. H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob. Control and
Inf. Theory, 15(2):159–166, 1986.

13. R. Nojima, H. Imai, K. Kobara, and K. Morozov. Semantic security for the McEliece cryp-
tosystem without random oracles. Des. Codes Cryptography, 49(1-3):289–305, 2008.

14. E. Persichetti. On a CCA2-secure variant of McEliece in the standard model. IACR Cryptology
ePrint Archive, 2012:268, 2012.

15. E. Persichetti. Secure and anonymous hybrid encryption from coding theory. In P. Gaborit,
editor, Post-Quantum Cryptography: 5th International Workshop, PQCrypto 2013, Limoges,
France, June 4-7, 2013. Proceedings, pages 174–187, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

16. A. Rosen and G. Segev. Chosen-ciphertext security via correlated products. In Theory of
Cryptography Conference, pages 419–436. Springer, 2009.

17. F. Strenzke. A timing attack against the secret permutation in the McEliece pkc. In PQCrypto,
pages 95–107, 2010.

18. F. Strenzke, E. Tews, H. G. Molter, R. Overbeck, and A. Shoufan. Side channels in the McEliece
pkc. In PQCrypto, pages 216–229, 2008.

19. Y. Yoshida, K. Morozov, and K. Tanaka. CCA2 key-privacy for code-based encryption in
the standard model. In International Workshop on Post-Quantum Cryptography, pages 35–50.
Springer, 2017.

A Security Arguments for the Corrected Scheme

Theorem 3. Assuming that PKEk is IND-CPA secure and verifiable under k-
correlated inputs, and that the signature scheme is one-time strongly unforgeable,
the above encryption scheme is IND-CCA2-secure.

Let A be an IND-CCA2 adversary. During the attack game, A submits m0,m1

and gets back the challenge ciphertext ψ∗ = (vk∗, c∗1 , . . . , c
∗
k, σ
∗). Indicate with Forge

the event that, for one of A’s decryption queries ψ = (vk, c1, . . . , ck, σ), it holds



vk = vk∗ and VerSSvk((c1, . . . , ck), σ) = 1. The theorem is proved by means of the two
following lemmas.

Lemma 2. Pr[Forge] is negligible.

Proof. Assume that there exists an adversary A for which Pr[Forge] is not negli-
gible. We build an adversary A′ that breaks the security of the one-time strongly
unforgeable scheme. A′ works as follows:

Key Generation: Invoke KeyGenDMQN as above and return pk to A.

Decryption queries: Upon a decryption query ψ = (vk, c1, . . . , ck, σ):

1. If vk = vk∗ and VerSSvk((c1, . . . , ck), σ) = 1 output ⊥ and halt.

2. Otherwise, decrypt normally using DecDMQN.

Challenge queries: Upon a challenge query m0,m1:

1. Choose random b ∈ {0, 1}.

2. Use EncDMQN to compute c∗i = Enc
pk

vk∗
i

i

(mb, r) for i = 1, . . . , k.

3. Obtain the signature σ∗ on (c∗1 , . . . , c
∗
k) with respect to vk∗4.

4. Return the challenge ciphertext ψ∗ = (vk∗, c∗1 , . . . , c
∗
k, σ
∗).

Note that, if Forge doesn’t occur, the simulation of the CCA2 interaction is perfect.
Therefore, the probability that A′ breaks the security of the one-time signature
scheme is exactly Pr[Forge]. The one-time strong unforgeability implies that this
probability is negligible. ut

Lemma 3.
∣∣∣Pr[b = b∗ ∧ ¬Forge]− 1

2

∣∣∣ is negligible.

Proof. Assume that there exists an adversary A for which
∣∣∣Pr[b = b∗ ∧¬Forge]− 1

2

∣∣∣
is not negligible. We build an adversary A′ that breaks the IND-CPA security of
PKEk. A′ works as follows:
Key Generation: On input the public key (pk1, . . . , pkk) for PKEk:

1. Execute KeyGenSS and obtain a key (vk∗, sgk∗).

2. Set pkvk
∗

i = pki for i = 1, . . . , k.

3. Run KeyGenPKE for k times and denote the resulting public keys by (pk
1−vk∗1
1 ,

. . . , pk
1−vk∗k
k ) and private keys by (sk

1−vk∗1
1 , . . . , sk

1−vk∗k
k ).

4 Remember that in the one-time strong unforgeability game the adversary is allowed to ask to a
signing oracle for the signature on one message.



4. Return the public key pk = (pk01 , pk
1
1 , . . . , pk

0
k, pk

1
k) to A.

Decryption queries: Upon a decryption query from A:

1. If Forge occurs output ⊥ and halt.

2. Otherwise, there will be some i such that vki 6= vk∗i . Decrypt normally using
DecDMQN with the key skvkii previously generated.

Challenge queries: Upon a challenge query m0,m1:

1. Send m0,m1 to the challenge oracle for the IND-CPA game of A′ and obtain the
corresponding challenge ciphertext (c∗1 , . . . , c

∗
k).

2. Sign (c∗1 , . . . , c
∗
k) using sgk∗ to get the signature σ∗.

3. Return the challenge ciphertext ψ∗ = (vk∗, c∗1 , . . . , c
∗
k, σ
∗).

Output: When A outputs b∗ also A′ outputs b∗.

As long as Forge doesn’t occur, it is clear that the IND-CPA advantage of A′ against
PKEk is the same as the IND-CCA2 advantage of A against the above scheme. Since
we are assuming the IND-CPA security of PKEk, we have the IND-CCA2 security
as desired. ut


