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Abstract. A self-pairing is a pairing computation where both inputs are
the same group element. Self-pairings are used in some cryptographic
schemes and protocols. In this paper, we show how to compute the
Tate-Lichtenbaum pairing 〈D,φ(D)〉 on a curve more efficiently than
the general case. The speedup is obtained by requiring a simpler final
exponentiation. We also discuss how to use this pairing in cryptographic
applications.
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1 Introduction

A pairing is a non-degenerate bilinear map

e : G1 ×G2 7→ GT

where G1,G2,GT are cyclic groups of prime order r (the first two are usually
written additively, and the third multiplicatively). Such groups are found from
elliptic or hyperelliptic curves and the pairing is usually the Tate-Lichtenbaum
pairing or one of its variants. Pairings have found many applications in cryptog-
raphy.

This paper restricts to the case G2 = G1, which is usually implemented
using supersingular curves and distortion maps. The goal of the paper is to give
fast methods for computing e(P, P ), in other words, for computing the Tate-
Lichtenbaum pairing in the special case when both points are equal. We call this
special case a “self-pairing”. For cryptographic purposes, the self-pairing should
be non-degenerate, i.e., for all non-zero P ∈ G we have e(P, P ) 6= 1T ∈ GT .

Several cryptographic applications involve computing pairings in the form
e(P, P ). For example, on-line/off-line signature scheme of Zhang et al [15] (we
discuss this scheme in Section 6) and the designated confirmer signature [16].

It is natural to hope that the case e(P, P ) might be simpler to compute than
the general case e(P,Q). Our result, which may be surprising, is that the final
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exponentiation can be simplified in this case. This extends the previous work of
Zhao, Zhang and Xie [17].

There has been a lot of work on efficient implementations of the general
bilinear pairing e(P,Q). Motivated by the idea of Miller loop shortening [2],
many optimizations have been proposed [6, 9, 14, 7]. On the other hand, pairings
on hyperelliptic curves have been also investigated. Some excellent surveys can
be found in [3, 1]. It should be remarked that the Eta and Ate pairings on
hyperelliptic curves have been also presented in [2] and [5] respectively. However,
there is little work on the performance of self-pairings [12, 17].

In this paper, we study self-pairing computation on curves with a single point
at infinity. Since we need a distortion map φ, we restrict to supersingular curves.
Our pairing is the twisted Tate-Lichtenbaum pairing τ(P, φ(Q)). We instantiate
our general result with supersingular hyperelliptic curves of genus two over large
prime fields and finite fields with even characteristic.

The remainder of this paper is structured as follows. In Section 2, we provide
some fundamental definitions. Section 3 presents the main result. Section 4 and
Section 5 show how the main result can be achieved using hyperelliptic curves
over large prime fields and finite fields with even characteristic respectively. In
Section 6, we show how the pairings can be used in a real protocol, and we
discuss the efficiency in comparison with other methods.

2 Preliminaries

In this section, we briefly recall the arithmetic on hyperelliptic curves and the
definition of the Tate-Lichtenbaum and Weil pairings.

Let C be a nonsingular curve of genus g defined over a finite field Fq with
q = pn elements. In the remainder of the paper, we will assume that C has a
unique point ∞ at infinity. Our concrete examples will be hyperelliptic curves
with affine part given by

y2 + h(x)y = f(x)

where h, f ∈ Fq[x], deg(h) ≤ g, f monic and deg(f) = 2g + 1.
For any algebraic extension K of Fq, denote by C(K) := {(x, y) ∈ K ×K |

y2 + h(x)y = f(x)}
⋃
{∞}, the set of K−rational points on C. Although the set

C(K) for g ≥ 2 does not form a group, we can embed C into an abelian variety
of dimension g called the Jacobian of C and denoted by JC . As usual, we will
represent elements of JC(K) by elements of the divisor class group of degree 0
divisors Div0C(K)/PrinC(K).

2.1 The Tate-Lichtenbaum and Weil Pairings

Let r be a prime with r | #JC(Fq) and gcd(r, q) = 1 and let k be the smallest
integer such that r | (qk−1), then k is called the embedding degree with respect
to r. Note that this implies that the r-th roots of unity µr are contained in Fqk
and in no strictly smaller extension of Fq. Note that r > k, since k is the order
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of q modulo r and hence k | (r − 1) holds. Denote by JC(Fqk)[r] the r-torsion
points on JC defined over Fqk .

For D1 ∈ JC(Fqk)[r], the divisor rD1 is linearly equivalent to zero, hence
there is some rational function whose divisor is rD1, namely the Miller function
fr,D1

[10, 11]. Let D2 be a divisor class, with representative D2 = ΣP ordPD2(P )
having support disjoint fromD1. We define a pairing called the Tate-Lichtenbaum
pairing as follows:

JC(Fqk)[r]× JC(Fqk)/rJC(Fqk)→ F∗qk/(F
∗
qk)r;

(D1, D2) 7→ fr,D1
(D2) =

∏
P

fr,D1
(P )ordPD2 .

This pairing is bilinear, non-degenerate and the result is independent of the
choice of representatives of the divisor classes.

Note that another way to compute f(P ) when f is non-zero and defined at
P is as the leading coefficient of a series expansion of f with respect to a local
uniformizer of the curve at P .

If the Miller function fr,D1
is properly normalised [5], one can compute

fr,D1
(D2) as fr,D1

(ε(D2)) where ε(D2) is the effective part of the unique re-
duced divisor in the class of D2. All Miller functions will be normalised in the
remainder of the paper.

For cryptographic applications, one will require a unique pairing value in
the group µr ⊆ Fqk of r-th roots of unity. Thus one can define the reduced
Tate-Lichtenbaum pairing as

τ(D1, D2) = fr,D1(D2)
(qk−1)

r = fr,D1
(ε(D2))

(qk−1)
r .

For our proof we need to use the Weil pairing. The crucial feature of the
Weil pairing is that the pairing value already lies in µr ⊂ F∗qk and so no final
exponentiation is required. Recall that the Weil pairing is a non-degenerate and
bilinear map of the form

er : JC(Fqk)[r]× JC(Fqk)[r]→ µr.

Howe [8] has proved that one may compute the Weil pairing as follows.
Let D1, D2 ∈ JC(Fqk)[r] be degree zero divisors (representing divisor classes).
Howe’s result does not require the supports of D1 and D2 to be disjoint. Let f1
and f2 be functions such that rD1 = div(f1) and rD2 = div(f2). Then

er(D1, D2) = (−1)r
∑

P∈C ordP (D1)ordP (D2)
fr,D2(D1)

fr,D1
(D2)

.

Lemma 1. Let D1, D2 ∈ JC(Fqk)[r] be degree zero divisors and let f1 and f2 be
normalised functions such that rD1 = div(f1) and rD2 = div(f2). For i = 1, 2
denote by ε(Di) the effective part of Di and di its degree, so that Di = ε(Di)−
di(∞). Suppose that the supports of ε(D1) and ε(D2) are disjoint. Then

er(D1, D2) = (−1)rd1d2
fr,D2

(ε(D1))

fr,D1
(ε(D2))

.
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Proof. We note that

(−1)rd1d2er(D1, D2) =
f2(D1)

f1(D2)
=
f2(ε(D1))

f1(ε(D2))

(
fd21

fd12

)
(∞).

Since the leading term of the series expansion at infinity of the function fd21 /fd12

is one, the result follows.

3 Main Results

We now give our main result, which is that one can simplify the final exponenti-
ation of the Tate-Lichtenbaum pairing and still get a value in µr, in the case of
self-pairings. An interesting feature of the proof is that it uses the Weil pairing,
but the result itself is about the Tate-Lichtenbaum pairing.

Theorem 1. Let C be a curve over Fq. Let r be a large prime such that r |
#JC(Fq). Let k = 2d be the embedding degree with respect to r. Let σ(x) = xq

d

be the qd-power Frobenius map (i.e., σ generates Gal(Fqk/Fqd)). Suppose that
φ ∈ Aut(C) satisfies

1. τ(D,φ(D)) 6= 1 where D ∈ JC(Fq)[r] is non-zero,

2. σ(φ) = φ̂ = φ−1 and σ(φ̂) = φ, where φ̂ ◦ φ = φ ◦ φ̂ = [1].

Then fr,D(ε(φ(D)))2(q
d−1) ∈ µr.

Proof. According to the definition of the Weil pairing, we have (here we are
actually using the inverse of the Weil pairing, which is more suitable for our
application)

(−1)rdeg(ε(D))deg(ε(φ(D))) fr,D(ε(φ(D)))

fr,φ(D)(ε(D))
∈ µr.

Note that

div(fr,D ◦ φ̂) = div(φ̂∗(fr,D)) = φ̂∗(rD) = rφ(D) = div(fr,φ(D)).

It follows that
fr,φ(D)(ε(D)) = fr,D(ε(φ̂(D))).

By condition (2) and fr,D ∈ Fq(C) where Fq(C) is the algebraic function field
of C over Fq, we get

σ
(
fr,D(ε(φ(D)))

)
= fr,D(ε(σ(φ)(D))) = fr,D(ε(φ̂(D)))

and
σ
(
fr,D(ε(φ̂(D)))

)
= fr,D(ε(σ(φ̂)(D))) = fr,D(ε(φ(D))).

This implies that

σ
(
fr,D(ε(φ(D)))fr,D(ε(φ̂(D)))

)
= fr,D(ε(φ(D)))fr,D(ε(φ̂(D))).
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That is, (
fr,D(ε(φ(D)))fr,D(ε(φ̂(D)))

)qd−1
= 1.

Therefore, (
fr,D(ε(φ̂(D)))

)qd−1
=
(

1/fr,D(ε(φ(D)))
)qd−1

.

Note that if the characteristic of Fq is odd then qd − 1 is even, this gives

(−1)q
d−1 = 1; if the characteristic of Fq is even, the fact that −1 = 1 also

gives (−1)q
d−1 = 1. By raising the inverse of the Weil pairing to the power

qd − 1, we get(
(−1)rdeg(ε(D))2 fr,D(ε(φ(D)))

fr,φ(D)(ε(D))

)qd−1
= fr,D(ε(φ(D)))2(q

d−1) ∈ µr.

This completes the proof of Theorem 1.

The main achievement of this result is to replace the usual Tate-Lichtenbaum
final exponentation, to the power (qd−1)(qd+1)/r, with the final exponentiation
to the power 2(qd − 1). Note that raising to the power 2(qd − 1) is simply one
action of qd-power Frobenius (which is applying a linear map), one inversion,
one multiplication, and one squaring (all in Fqk). In contrast, the (qd + 1)/r
term in the usual final exponentiation may require a very large number of field
operations, especially if r is small compared with qd.

4 Hyperelliptic curves over Large Prime Fields

We first show how the self-pairing can be computed on the curve defined by the
equation

C : y2 = x5 + a, a ∈ F∗p, p ≡ 2, 3 (mod 5).

It is easy to see that the genus of the hyperelliptic curve is two. Although the
case g = 2 is considered here, we should point out that our result also applies to
the curves y2 = x2g+1 + a over Fp with genus g.

The order of Jacobian of the hyperelliptic curve C is p2 + 1. Note that this
curve is supersingular and its embedding degree is k = 4. There exists an auto-
morphism φ of C defined by φ(x, y) = (ζx, y) where ζ ∈ Fp4 \ Fp is a primitive
5-th root of unity. Let D ∈ JC(Fq)[r]. The automorphism φ induces an efficient
automorphism on the Jacobian, which with the customary abuse of notation we
also call φ:

φ : [x2 + u1x+ u0, v1x+ v0] 7→ [x2 + ζu1x+ ζ2u0, ζ
4v1x+ v0]

[x+ u0, v0] 7→ [x+ ζu0, v0]

∞ 7→ ∞.
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There exists another automorphism φ̂ : C → C defined by φ(x, y) = (ζ4x, y).

Note that φ̂ ◦ φ is the identity on C. Similarly, this automorphism also induces
an efficient automorphism on the Jacobian as follows:

φ̂ : [x2 + u1x+ u0, v1x+ v0] 7→ [x2 + ζ4u1x+ ζ3u0, ζv1x+ v0]

[x+ u0, v0] 7→ [x+ ζ4u0, v0]

∞ 7→ ∞.

It is easy to check φ ◦ φ̂ = φ̂ ◦ φ = [1] on JC(Fpk).

Lemma 2. With notation as above, condition (1) is satisfied.

Proof. According to Proposition 4.8 of [4], there exists a distortion map of the
form πipφ

j where πp is the p-power Frobenius map and 0 ≤ i, j ≤ 3. Since D is in

JC(Fp), then πipφ
j(D) = φj

′
for some 0 ≤ j′ ≤ 3. Assume that τ(D,φ(D)) = 1

for some non-zero D. It follows from Galois theory that τ(D,πipφ
j(D)) = 1 with

0 ≤ i, j ≤ 3 which leads to a contradiction to Proposition 4.8 of [4]. Therefore,
τ(D,φ(D)) 6= 1, i.e., condition (1) is satisfied for φ.

Note that one can also obtain this result using Theorem 4 of Takashima [13].

Lemma 3. With notation as above, condition (2) is satisfied.

Proof. Let D = [x2 +u1x+u0, v1x+v0] ∈ JC(Fq)[r] in Mumford representation.

Then φ(D) = [x2+ζu1x+ζ2u0, ζ
4v1x+v0] and φ̂(D) = [x2+ζ4u1x+ζ3u0, ζv1x+

v0]. Let σ be the generator in the Galois group Gal(Fp4/Fp2). Since p2 ≡ 4
(mod 5) and the order of ζ is 5, it follows that σ(ζ) = ζ4. This implies that

σ(φ(D)) =[x2 + ζ4u1x+ (ζ2)4u0, (ζ
4)4v1x+ v0]

=[x2 + ζ4u1x+ ζ3u0, ζv1x+ v0]

=φ̂(D)

and
σ(φ̂(D)) =[x2 + (ζ4)4u1x+ (ζ3)2u0, ζ

4v1x+ v0]

=[x2 + ζu1x+ ζ2u0, ζ
4v1x+ v0]

=φ(D).

This completes the proof.

Since all conditions are satisfied, we can apply Theorem 1. Hence, we have

fr,D(ε(φ(D)))2(p
2−1) ∈ µr.

This shows that we can compute the self-pairing with a simple final exponenti-
ation.
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5 Hyperelliptic curves in Characteristic Two

Since the curves over finite fields with even characteristic have larger embed-
ding degree and may be preferred in hardware implementations, we will discuss
the self-pairing computation on hyperelliptic curves over finite fields with even
characteristic in this section.

Let m be a positive integer coprime to 6. Let Fq be a finite field with q = 2m.
Assume that C is a hyperelliptic curve over Fq with equation

C : y2 + y = x5 + x3 + d, d = 0 or 1. (1)

Note that this curve is supersingular and its embedding degree is k = 12. We
use the same notation for the representation of Fq12 as in Section 7.1 of [2], i.e.,
Fq6 ' Fq[w]/(w6 + w5 + w3 + w2 + 1) and Fq12 ' Fq6 [s0]/(s20 + s0 + w5 + w3).
Denote s1 = w2 + w4 and s2 = w4 + 1. There exists an automorphism on C
given as follows.

φ : C → C

(x, y) 7→ (x+ w, y + s2x
2 + s1x+ s0).

It induces an automorphism on the Jacobian as follows:

φ : [x2 + u1x+ u0, v1x+ v0] 7→ [x2 + u1x+ u0 + wu1 + w2,

(v1 + s2u1 + s1)x+v0 + s0 + v1w + s2u0 + s2u1w + s1w]

[x+ u0, v0] 7→ [x+ u0 + w, v0 + s2u
2
0 + s1u0 + s0]

∞ 7→ ∞.

The inverse of φ can be defined as follows.

φ̂ : C → C

(x, y)→ (x+ w, y + s2x
2 + s1x+ s0 + 1).

One can verify that φ̂ ◦ φ is the identity map on C. Similarly, φ̂ induces an
automorphism on the Jacobian as follows:

φ̂ : [x2 + u1x+ u0, v1x+ v0] 7→ [x2 + u1x+ u0 + wu1 + w2,

(v1 + s2u1 + s1)x+v0 + s0 + v1w + s2u0 + s2u1w + s1w + 1]

[x+ u0, v0] 7→ [x+ u0 + w, v0 + s2u
2
0 + s1u0 + s0 + 1]

∞ 7→ ∞.

Let D ∈ JC(Fq)[r]. We show that condition (1) and (2) are also satisfied in
this case.

Lemma 4. With notation as above, condition (1) is satisfied.
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Proof. By Theorem 10 of [13], and since the other distortion maps in that Theo-
rem are all defined over proper subfields of Fq12 , we know that all the maps φπjq
with 0 ≤ j ≤ 3 are distortion maps. In particular, it follows that φ = φπ0

q is a
distortion map. Therefore, we have τ(D,φ(D)) 6= 1 in this case.

Lemma 5. Let notation be as above, then condition (2) is satisfied.

Proof. Let D ∈ JC(Fq)[r] be written D = [x2 + u1x+ u0, v1x+ v0] in Mumford

representation. Then φ(D) and φ̂(D) can be determined as above. Let σ be the
generator in the Galois group Gal(Fq12/Fp6). Note that σ(s2) = s2, σ(s1) = s1
and σ(w) = w. Since σ(s0) = s0 + 1 and σ(s0 + 1) = s0, it follows that

σ(φ(D))

=σ([x2+u1x+u0+wu1+w2,(v1+s2u1+s1)x+ v0+v1w+s2u0+s2u1w+s1w+s0])

=[x2+u1x+u0+wu1+w2,(v1+s2u1+s1)x+v0+s0+v1w+s2u0+s2u1w+s1w+1]

=φ̂(D)

and

σ(φ̂(D))

=σ([x2+u1x+u0+wu1+w
2,(v1+s2u1+s1)x+v0+s0+1+v1w+s2u0+s2u1w+s1w])

=[x2+u1x+u0+wu1+w2,(v1+s2u1+s1)x+v0+s0+v1w+s2u0+s2u1w+s1w]

=φ(D).

This completes the proof.

Since all conditions are satisfied, we can apply Theorem 1 on the curve.
Hence, we have

fr,D(ε(φ(D)))2(q
6−1) ∈ µr.

This shows that we can compute the self-pairing with a simple final exponenti-
ation.

6 Applications

In this section, we will consider how to use our results in pairing-based cryptosys-
tems. We assume that the Tate-Lichtenbaum pairing is being used to implement
the protocol. As we have noted, the main contribution of our result is to require
a much simpler final exponentiation.

In many cases it is more efficient to use the hyperelliptic ate pairing or
twisted hyperelliptic ate pairing [5], especially since that pairing requires no
final exponentiation, but this is not always the case. Recall that the ate pairing
has a Miller function of the form fq,D2

(D1) where q is the field of definition of
the curve and where r | (q2+1) or, in the case q = 2n, when r | (22n±2(3n+1)/2+
2n±2(n+1)/2 + 1). In both cases, for high security levels, one needs qk very large
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compared with r and so it is quite often the case that r < q. Hence, there is
no loop shortening from using the ate pairing at high security levels. Since our
pairing has a very simple final exponentiation, the motivation for using the ate
pairing disappears in these cases.

A further issue with the ate pairing in this setting is that it requires a dis-
tortion map from the 1-eigenspace of Frobenius to the q-eigenspace. Such a
distortion map may be more expensive to compute than the distortion maps
used in our method. For example, neither of the automorphisms from Sections 4
and 5 map to the q-eigenspace.

Now we discuss some details about the implementation for cryptographic
schemes. In [15], the authors proposed a new short signature scheme. The full
details are given in [15], but here we only note that a signature on message m is
a pair (σ, r) and the verification equation is

e(σ, σ) = e(uv±mgr, g).

Section 3.2 of [15] shows how to speed up verification by using a pre-computation:
one computes and stores a = e(u, g), b = e(v, g) and c = e(g, g) and verifies the
signature as

e(σ, σ) = ab±mcr,

which requires only one self-pairing computation.
It is natural to use our method to compute the self-pairing e(σ, σ) for that

protocol. However, there is one subtlety that must be addressed: The Tate-
Lichtenbaum pairing is the value

τ(D,φ(D)) = fr,D(φ(D))(q
d−1)(qd+1)/r

whereas we are computing the function

e(D,D) = fr,D(φ(D))2(q
d−1).

It follows that τ(D,φ(D)) 6= e(D,D) in general. Instead,

τ(D,φ(D)) = e(D,D)t

where, when q is odd, t ≡ (qd+1)/(2r) (mod r) (we now require that r2 - (qd+1))
and when q = 2m is even then t = 2m−1

(
(qd + 1)/r (mod r)

)
.

For the signature scheme, we can incorporate this extra exponentiation into
the precomputation. Let s = 2

(
r/(qd + 1) (mod r)

)
and define a = τ(u, φ(g))s,

b = τ(v, φ(g))s and c = τ(g, φ(g))s. Then the protocol works correctly and the
verification is faster than previous methods. These ideas can be also applied in
the designated confirmer signature scheme proposed by Zhang et. al [16].
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