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Abstract

In this paper, we introduce the abstraction of Dual Form Signatures as a useful framework for proving
security (existential unforgeability) from static assumptions for schemes with special structure that are
used as a basis of other cryptographic protocols and applications. We demonstrate the power of this
framework by proving security under static assumptions for close variants of pre-existing schemes:

• the LRSW-based Camenisch-Lysyanskaya signature scheme

• the identity-based sequential aggregate signatures of Boldyreva, Gentry, O’Neill, and Yum.

The Camenisch-Lysyanskaya signature scheme was previously proven only under the interactive LRSW
assumption, and our result can be viewed as a static replacement for the LRSW assumption. The
scheme of Boldyreva, Gentry, O’Neill, and Yum was also previously proven only under an interactive
assumption that was shown to hold in the generic group model. The structure of the public key signature
scheme underlying the BGOY aggregate signatures is quite distinctive, and our work presents the first
security analysis of this kind of structure under static assumptions. We view our work as enhancing our
understanding of the security of these signatures, and also as an important step towards obtaining proofs
under the weakest possible assumptions.

Finally, we believe our work also provides a new path for proving security of signatures with embedded
structure. Examples of these include: attribute-based signatures, quoteable signatures, and signing group
elements.

1 Introduction

Digital signatures are a fundamental technique for verifying the authenticity of a digital message. The
significance of digital signatures in cryptography is also amplified by their use as building blocks for more
complex cryptographic protocols. Recently, we have seen several pairing based signature schemes (e.g.,
[22, 18, 29, 71]) that are both practical and have added structure which has been used to build other
primitives ranging from Aggregate Signatures [20, 58] to Oblivious Transfer [30, 44]. Ideally, for such a
fundamental cryptographic primitive we would like to have security proofs from straightforward, static
complexity assumptions.
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Meeting this goal for certain systems is often challenging. For instance, the Camenisch and Lysyanskaya
signature scheme [29]1 has been very influential as it is used as the foundation for a wide variety of advanced
cryptographic systems, including anonymous credentials [29, 9, 8], group signatures [29, 7], ecash [27], un-
cloneable functions [26], batch verification [28], and RFID encryption [6]. While the demonstrated utility
of CL signatures has made them desirable, it has been difficult to reduce their security to a static security
assumption. Currently, the CL signature scheme is proven secure under the LRSW assumption [60], an
interactive complexity assumption that closely mirrors the description of the signature scheme itself. In
addition, the interactive assumption transfers to the systems built around these signatures.

The identity-based sequential aggregate signatures of Boldyreva, Gentry, O’Neill, and Yum [14, 15] were
also proven in the random oracle model under a interactive assumption (justified in the generic bilinear group
model), which again closely mirrors the underlying signature scheme itself. (This can be viewed as providing
a proof of the scheme only in the generic group model.) Proofs of complicated interactive assumptions in
the generic group model have several disadvantages. First, they are themselves complex and prone to error.
In fact, the original version of the BGOY identity-based sequential aggregate signature scheme [14] relied on
an assumption that was shown to be false, and the scheme was insecure [50]. This scheme and proof were
corrected in [15]. Secondly, such proofs do not tend to provide much insight into the security of the scheme.
This lack of insight tends to hinder transferring schemes to other settings. For example, many schemes
developed in bilinear groups now have lattice-based analogs, and these transformations reused high-level
ideas from the original security proofs in the bilinear group setting. Techniques from [71] were used in the
lattice setting in [25], techniques from [31] were used in [32], and techniques from [17] were used in [2]. This
kind of transference of ideas from the bilinear setting to the lattice setting is unlikely to be achieved through
generic group proofs.

In this work, we develop techniques that can be applied to prove security from static assumptions for
new signature schemes as well as (slight variants of) pre-existing schemes. Providing new proofs for these
existing schemes provides a meaningful sanity check as well as new insight into their security. This kind of
sanity check is valuable not only for schemes proven in the generic group model, but also for signatures (CL
signatures included) that require extra checks to rule out trivial breaks (e.g. not allowing the message signed
to be equal to 0), since these subtleties can easily be missed at first glance. Having new proofs from static
assumptions for variants of schemes like CL signatures and BGOY signatures gives us additional confidence
in their security without having to sacrifice the variety of applications built from them. Ultimately, this
provides us with a fuller understanding of these kinds of signatures, and is a critical step towards obtaining
proofs under the simplest and weakest assumptions.

Dual Form Signatures Our work is centered around a new abstraction that we call Dual Form Signatures.
Dual Form Signatures have similar structure to existing signature schemes, however they have two signing
algorithms, SignA and SignB , that respectively define two forms of signatures that will both verify under the
same public key. In addition, the security definition will categorize forgeries into two disjoint types, Type I
and Type II. Typically, these forgery types will roughly correspond with signatures of form A and B.

In a Dual Form system, we will demand three security properties (stated informally here):

A-I Matching. If an attacker is only given oracle access to SignA, then it is hard to create any forgery that
is not of Type I.

B-II Matching. If an attacker is only given oracle access to SignB , then it is hard to create any forgery
that is not of Type II.

Dual-Oracle Invariance. If an attacker is given oracle access to both SignA and SignB and a “challenge
signature” which is either from SignA or SignB , the attacker’s probability of producing a Type I forgery
is approximately the same when the challenge signature is from SignA as when the challenge signature
is from SignB .

1Throughout, we will be discussing the CL signatures based on the LRSW assumption, which should not be confused with
those based on the strong RSA assumption.
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A Dual Form Signature scheme immediately gives a secure signature scheme if we simply set the signing
algorithm Sign = SignA. Unforgeability now follows from a hybrid argument. Consider any EUF-CMA [43]
attacker A. By the A-I matching property, we know that it might have a noticeable probability ε of producing
a Type I forgery, but has only a negligible probability of producing any other kind of forgery. We then show
that ε must also be negligible. By the dual-oracle invariance property, the probability of producing a Type
I forgery will be close to ε if we gradually replace the signing algorithm with SignB , one signature at a time.
Once all of the signatures the attacker receives are from SignB , the B-II Matching property implies that the
probability of producing a Type I forgery must be negligible in the security parameter.

We demonstrate the usefulness of our framework with two main applications, using significantly different
techniques. This illustrates the versatility of our framework and its adaptability to schemes with different
underlying structures. In particular, while dual form signatures are related to the dual system encryption
methodology introduced by Waters [72] for proving full security of IBE schemes and other advanced encryp-
tion functionalities, we demonstrate that our dual form framework can be applied to signature schemes that
have no known encryption or IBE analogs. Though all of the applications given here use bilinear groups,
the dual form framework can be used in other contexts, including proofs under general assumptions.

Our first application is a slight variant of the Camenisch-Lysyanskaya signature scheme, set in a bilinear
group G of composite order N = p1p2p3. This application is surprising, since these signatures do not have
a known IBE analog. We let Gpi for each i = 1, 2, 3 denote the subgroup of order pi in the group. The
SignA algorithm produces signatures which exhibit the CL structure in the Gp1 and Gp2 subgroups and are
randomized in the Gp3 subgroup. The SignB algorithm produces signatures which exhibit the CL structure
in the Gp1 subgroup and are randomized in the Gp2 and Gp3 subgroups. Type I and II forgeries roughly
mirror signatures of form A and B. The verification procedure in our scheme will verify that the signature
is well formed in the Gp1 subgroup, but not “check” the other subgroups.

We prove security in the dual form framework based on three static subgroup decision-type assumptions,
similar to those used in [56]. The most challenging part of the proof is dual-oracle invariance, which we
prove by developing a backdoor verification test (performed by the simulator) which acts as an almost-
perfect distinguisher between forgery types. Here we face a potential paradox, which is similar to that
encountered in dual system encryption [72, 56]: we need to create a simulator that does not know whether
the challenge signature it produces is distributed as an output of SignA or SignB , but it also must be able
to test the type of the attacker’s forgery. To arrange this, we create a “backdoor verification” test, which
the simulator can perform to test the form of all but a small space of signatures. Essentially, this backdoor
verification test acts an almost-perfect type distinguisher which fails to correctly determine the type of only
a very small set of potential forgeries.

The challenge signature of unknown form produced by the simulator will fall within the untestable space;
however, with very high probability a forgery by an attacker will not, because some information about this
space is information-theoretically hidden from the attacker. This is possible because the elements of the
verification key are all in the subgroup Gp1 , and the space essentially resides in Gp2 . Thus the verification
key reveals no information about the hidden space. The only information about the space that the attacker
receives is contained in the single signature of unknown type, and we show that this is insufficient for the
attacker to be able to construct a forgery that falls inside the space for a different message. This is reminiscent
of the concept of nominal semi-functionality in dual system encryption (introduced in [56]): in this setting,
the simulator produces a key of unknown type which is correlated in its view with the ciphertext it produces,
but this correlation is information-theoretically hidden from the attacker. This correlation prevents the
simulator from determining the type of the key for itself by testing decryption against a ciphertext.

We believe that the existing techniques and systems built around CL signatures should apply to our
variant with modest modifications. While our assumptions are not strictly comparable to the LRSW as-
sumption, they have the qualitative feature of being static. Moreover, the security of our modified scheme
can “fall back” on the LRSW assumption in the Gp1 subgroup, so security cannot be any worse. One can
also view our proofs as a heuristic argument for gaining more confidence in the security of the prior scheme
and the LRSW assumption.

As a second application of our dual form framework, we prove security from static assumptions for
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a variant of the BGOY identity-based sequential aggregate signature scheme. Aggregate signatures are
useful because they allow signature “compression,” meaning that any n individual signatures by n (possibly)
different signers on n (possibly) different messages can be transformed into an aggregate signature of the
same size as an individual one that nevertheless allows verifying that all these signers signed their messages.
However, aggregate signatures do not provide compression of the public keys, which are needed for signature
verification. In the identity-based setting, only the identities of the signers are needed – this is a big
savings because identities are much shorter than randomly generated keys. However, identity-based aggegate
signatures have been notoriously difficult to realize.

We first prove security for a basic public-key version of the scheme, and then show that security for its
identity-based sequential aggregate analog reduces to security of the basic scheme (in the random oracle
model, as for the original proof). Our techniques here are significantly different, and reflect the different
structure of the scheme (it is this structure that allows for aggregation). The core structure of the underlying
public key scheme is composed of three group elements of the form ga+bmgr1r2 , gr1 , gr2 , where m is a message
(or a hash of the message), a, b are fixed parameters, and r1, r2 are randomly chosen for each signature.
There are significant differences between this and the core structure of other notable signatures, like CL and
Waters signatures [29, 71]. Here, the message term is not multiplicatively randomized, but rather additively
randomized by the quadratic term r1r2. It is the quadratic nature of this term that allows verification via
application of the bilinear map while thwarting attackers who try to combine received signatures by taking
linear combinations in the exponents. This unique structure presents a challenge for static security analysis,
and we develop new techniques to achieve a proof for a variant of this scheme in our dual form framework.

We still employ composite order subgroups, with the main structure of the scheme reflected in the Gp1
subgroup and the other two subgroups used for differentiating between signature and forgery types. However,
to prove dual-oracle invariance, we rely on the fact that the scheme has the basic structure of a one-time
signature scheme embedded in it, in addition to the quadratic mechanism to prevent an attacker from forming
new signatures by taking combinations of received signatures. We capture the security resulting from this
combination of structures through a static assumption for our dual-oracle invariance proof, and we show
that this assumption holds in the generic group model. Though we do employ the generic group model as
a check on our static assumptions, we believe that our proof provides valuable intuition into the security of
the scheme that is not gleaned from a proof based on an interactive assumption or given solely in the generic
group model. Also, checking the security of a static assumption in the generic group model is much easier
(and less error-prone) than checking the security of an interactive assumption or scheme. We believe that
the techniques and insights provided by our proof are an important step toward finding a prime order variant
of the scheme that is secure under more standard assumptions, such as the decisional linear assumption.

In Appendix C, we provide one more application: a signature scheme using the private key structure in
the Lewko-Waters IBE system [56]. The LW system itself can be viewed as a composite order extension of
the Boneh-Boyen selectively secure IBE scheme [16], although the structure of the proofs of these systems
are very different (LW achieves adaptive security). For this reason, we call these “BB-derived” signatures.
While the existing LW IBE system can be transformed into a signature scheme using Naor’s 2 general
transformation, our scheme checks the signature “directly” without going through an IBE encryption. The
resulting signature has a constant number of elements in the public key and signatures consist of two group
elements.

Given that several interesting applications have arisen from CL signatures, a natural question is to ask if
one can follow in the same path using BB-derived signatures. BB-derived signatures share desirable structural
features with CL signatures, making them prime candidates for use in building the many applications that
have been built from CL signatures. Using BB-derived signatures as a base scheme would also have several
advantages. First, BB-derived signatures contain only two group elements, while CL signatures contain
three. In addition, CL signatures require additional checks to rule out degenerate cases (i.e. the message
cannot be 0, and the first signature element cannot be the identity). These additional checks percolate up to
the applications that are built upon CL signatures, and might require more diligence to avoid errors easily
made, whereas the BB-derived signature verification does not need to check for any such degenerate cases.

2Naor’s observation was noted in [19].
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Further Directions While we have focused here on applying our techniques for core short signatures,
we envision that dual form signatures will be a framework for proving security of many different signature
systems that have to this point been difficult to analyze under static assumption Some examples include
embed additional structure, such as Attribute-Based signatures [61] and Quoteable signatures [3]. Attribute-
based signatures allow a signer to sign a message with a predicate satisfied by his attributes, without revealing
any additional information about his attribute set. Our framework could potentially be applied to obtain
stronger security proofs for ABS schemes, such as the schemes of [61] proved only in the generic group model.
Quoteable signatures enable derivation of signatures from each other under certain conditions, and current
constructions are proved only selectively secure [3]. Another future target is signatures that “natively” sign
group elements [1].

The primary goal of our work is providing techniques for realizing security under static assumptions,
and we leverage composite order groups as a convenient setting for this. A natural future direction is to
complement our work by discovering prime order analogs of our techniques. Many previous systems were
originally constructed in composite order groups and later transferred into prime order groups [21, 46, 23,
45, 24, 70, 47, 52, 51, 38, 39, 55, 66]. The general techniques presented in [38, 54] do not seem directly
applicable here, but we emphasize that our dual form framework is not tied to composite order groups and
could also be used in the prime order setting.

1.1 Related Work

Goldwasser, Micali, and Rivest [43] gave the first formal definitions of security for signature schemes. Most
early signature systems proved secure in the standard model were “tree-based”. This included schemes built
from general assumptions [11, 63, 68] as well as some that proposed more efficient solutions [37, 34, 35] that
traded off the tree depth with the size of the public key.

The term “hash and sign” has been informally associated with more efficient signature schemes where the
signature is compact and not built in a tree form. There exist several hash and sign systems in the random
oracle model from different assumptions such as [69, 65, 12, 67, 22, 41], among others. In the standard model,
there have been signature schemes with short signatures based on the Strong RSA assumption by Gennaro,
Halevi, and Rabin [40] and Cramer-Shoup [36] and the RSA assumption by Hohenberger and Waters [48, 49].

Using bilinear groups, there are notable signature constructions by Boneh and Boyen [18], Camenisch
and Lysyanskaya [29], and Waters [71]. The proofs of each of these schemes do not apply the random oracle
heuristic. Boneh and Boyen [18] introduce a non-static “q-type” assumption called q-Strong Diffie-Hellman
to prove security and Camenisch and Lysyanskaya prove their security based on the interactive LRSW
assumption. The Waters’ signature scheme proves security on the weaker Computational Diffie-Hellman
assumption, but requires a larger public key in the scheme. As noted above, several advanced cryptosystems
have been built using these signature schemes as building blocks.

Aggregate signatures were first introduced and realized in [20]. Due to the savings on bandwidth and
storage that signature compression permits, aggregate signatures have proven useful in many practical appli-
cations, including PKI certificate chains and route attestation in Secure BGP. There has been a significant
amount of work on aggregate signatures in the public-key setting [20, 59, 58, 64, 4]. In the identity-based
setting, the first progress was made by Gentry and Ramzan [42], who presented a “synchronized” (using
the terminology of [4]) identity-based aggregate signature scheme, meaning that signers are required to have
synchronized clocks. However, it is desirable to avoid this requirement. The BGOY scheme that we modify
[15] employs “sequential” aggregation (first introduced by [59]) instead of requiring synchronization. This
means that the aggregation process cannot be carried out by anyone, but it must be done by the signers
themselves one-by-one at the same time they produce their signatures. This turns out to be sufficient for
many practical applications.

As previously noted, our dual form abstraction bears some resemblance to the dual system encryption
technique introduced by Waters [72]; however, there are several important distinctions. While Naor showed
that the private keys for IBE systems give immediate rise to signature schemes, the converse is not known
to be true and several dual form signature systems such as CL signatures have no known IBE analog. In
addition, even the signatures derived from IBE systems will typically have different verification algorithms
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than the generic one derived from Naor’s technique. Finally, we note that our dual form signature system is
formally given as an abstraction. Our techniques are also related to techniques which have been employed
recently in the area of leakage-resilience, e.g. [53, 62, 5]. In these works, the form of signatures or ciphertexts
changes as the security proof progresses, similar to our strategy of changing signatures from one form to
the other. There is also some relation to the work of Bellare and Goldwasser [10], who present signatures
containing a (simulation-sound) NIZK proof of knowledge, and one can think of using the NIZK simulator
as an alternate signing algorithm. The main contribution of our work is formalizing such techniques into an
abstraction which can be broadly applied to signature schemes, particularly useful schemes like CL signatures.

2 Dual Form Signatures

We now define dual form signatures and their security properties. We then show that creating a secure
dual form signature system naturally yields an existentially unforgeable signature scheme. We emphasize
that the purpose of the dual form signature framework is to provide a template for creating security proofs
from static assumptions, but the techniques employed to prove the required properties can be tailored to the
structure of the particular scheme.

2.1 Definition

We define a dual form signature system to have the following algorithms:

KeyGen(λ): Given a security parameter λ, generate a public key, VK, and a private key, SK.

SignA(SK,M): Given a message, M , and the secret key, output a signature, σ.

SignB(SK,M): Given a message, M , and the secret key, output a signature, σ.

Verify(VK,M, σ): Given a message, the public key, and a signature, output ‘true’ or ‘false’.

We note that a dual form signature scheme is identical to a usual signature scheme, except that it has
two different signing algorithms. While only one signing algorithm will be used in the resulting existentially
unforgeable scheme, having two different signing algorithms will be useful in our proof of security.

2.2 Forgery Classes

In addition to having two signature algorithms, the dual form signature framework also considers two disjoint
classes of forgeries. Whether or not a signature verifies depends on the message that it signs as well as the
verification key. For a fixed verification key, we consider the set of pairs, S ×M, over the message space,
M, and the signature space, S. Consider the subset of these pairs for which the Verify algorithm outputs
‘true’: we will denote this set as V. 3 We let VI and VII denote two disjoint subsets of V, and we refer to
signatures from these sets as Type I and Type II forgeries, respectively. In our applications, we will have the
property V = VI ∪ VII in addition to VI ∩ VII = ∅, but only the latter property is necessary.

We will use these classes to specify two different types of forgeries received from an adversary in our proof
of security. In general, these classes are not the same as the output ranges of our two signing algorithms.
However, Type I forgeries will be related to signatures output by the SignA algorithm and Type II forgeries
will be related to signatures output by the SignB algorithm. The precise relationships between the forgery
types and the signing algorithms are explicitly defined by the following set of security properties for the dual
form system.

3Here we will assume that the Verify algorithm is deterministic. If we consider a nondeterministic Verify algorithm, we could
simply take the subset of ordered pairs that are accepted by Verify with non-negligible probability.
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2.3 Security Properties

We define the following three security properties for a dual form signature scheme. We consider an attacker
A who is initially given the verification key VK produced by running the key generation algorithm. The
value SK is also produced, and not given to A.

A-I Matching: Let OA be an oracle for the algorithm SignA. More precisely, this oracle takes a message
as input, and produces a signature that is identically distributed to an output of the SignA algorithm
(for the SK produced from the key generation). We say that a dual form signature is A-I matching if
for all probabilistic polynomial-time (PPT) algorithms, A, there exists a negligible function, negl(λ),
in the security parameter λ such that:

Pr[AOA(VK) /∈ VI ] = negl(λ).

This property guarantees that if an attacker is only given oracle access to SignA, then it is hard to
create anything but a Type I forgery.

B-II Matching: Let OB be an oracle for the algorithm SignB (which takes in a message and outputs a
signature that is identically distributed an output of the SignB algorithm). We say that a dual form
signature is B-II matching if for all PPT algorithms, A:

Pr[AOB (VK) /∈ VII ] = negl(λ).

This property guarantees that if an attacker is only given oracle access to SignB , then it is hard to
create anything but a Type II forgery.

Dual-Oracle Invariance (DOI): First we define the dual-oracle security game.

1. The key generation algorithm is run, producing a verification key VK and a secret key SK.

2. The adversary, A, is given the verification key VK and oracle access to O0 = SignA(·) and
O1 = SignB(·).

3. A outputs a challenge message, m.

4. A random bit, b ← {0, 1}, is chosen, and then a signature σ ← Ob(m) is computed and given to
A. We call σ the challenge signature.

5. A continues to have oracle access to O0 and O1.

6. A outputs a forgery pair (m∗, σ∗), where A has not already received a signature for m∗.

We say that a dual form signature scheme has dual-oracle invariance if, for all PPT attackers A, there
exists a negligible function, negl(λ), in the security parameter λ such that

|Pr[(m∗, σ∗) ∈ VI |b = 1]− Pr[(m∗, σ∗) ∈ VI |b = 0]| = negl(λ).

We say that a dual form signature scheme is secure if it satisfies all three of these security properties.

2.4 Secure Signature Scheme

Once we have developed a secure dual form signature system, (KeyGenDF ,SignDFA ,SignDFB ,VerifyDF ), this
system immediately implies a secure signature scheme. The secure scheme is constructed as follows:

Construction 1.

• KeyGen = KeyGenDF
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• Sign = SignDFA

• Verify = VerifyDF

Our new secure signature scheme is identical to the dual form system except that we have arbitrarily
chosen to use SignA as our signing algorithm. We could have equivalently elected to use SignB . (In which
case, we would modify the dual-oracle invariance property to be with respect to Type II forgeries instead of
Type I forgeries. Alternatively, we could strengthen the property to address both forgery types.) Now we
will prove that this signature scheme is secure.

2.5 Proof of Security

We prove:

Theorem 2.1. If Π = (KeyGenDF ,SignDFA ,SignDFB ,VerifyDF ) is a secure dual form signature scheme,
then Construction 1= (KeyGenDF ,SignDFA ,VerifyDF ) is existentially unforgeable under an adaptive chosen
message attack.

We begin by defining some additional games. We denote the first game as GameReal. GameReal is the
usual existential unforgeability security game for the digital signature scheme described in Construction 1.
We denote the advantage of an algorithm A in GameReal as AdvRealA . The next game, GameOnlyI , is the
same as GameReal, except the attacker is limited to producing Type I forgeries. Finally, GameOnlyI,B , will
be defined in exactly the same way as GameOnlyI except that all of the attacker’s queries are answered with
signatures from the SignB algorithm.

We now introduce an additional property, oracle invariance, which we will show is implied by dual-oracle
invariance through a hybrid argument.

Oracle Invariance: We say that a dual form signature scheme satisfies oracle invariance if for all PPT
algorithms, A:

|Pr[AOA(VK) ∈ VI ]− Pr[AOB (VK) ∈ VI ]| = negl(λ).

In other words, given access to an oracle for either signature algorithm, an attacker is nearly equally likely
to output a Type I forgery. Here, we must also restrict the output of A to be a forgery in the traditional
sense of existential unforgeability: this means that A is not allowed to output a signature on a message it
has queried to the signing oracle. We now prove that dual-oracle invariance implies oracle invariance.

Theorem 2.2. If a dual form signature scheme, Π = (KeyGenDF ,SignDFA ,SignDFB ,VerifyDF ), has dual-
oracle invariance, then it must have oracle invariance.

To prove Theorem 2.2, we will use a hybrid argument over a sequence of games. Suppose that there
exists an attacker, A, on GameOnlyI , and that A makes a polynomial number of queries, q, to the signature
oracle. Then, for 0 ≤ k ≤ q, we define Gamek to be the same as GameOnlyI , except the first k signatures
are answered by the SignB oracle and the last q − k signatures are answered by the SignA oracle. We will
denote the attacker’s advantage in Gamek by AdvkA.

Lemma 2.1. Suppose that there exists an algorithm, A, such that AdvkA−Adv
k−1
A = ε for some 0 ≤ k ≤ q.

Then, we can construct an algorithm, B, that breaks dual-oracle invariance.

Proof. B is given oracle access to OA = SignA(·) and OB = SignB(·) and passes the corresponding public
key to A. Suppose that A requests a signature for message mi for 0 ≤ i ≤ q. If i < k, B will return OB(mi).
If i > k, B will return OA(mi). However, if i = k, then B will pass mi to the dual-oracle challenger and
receive a challenge signature for mi. B can then pass the challenge signature to A. A then outputs a forgery,
(m∗, σ∗), which B forwards to the challenger.
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If the challenge signature that B receives is from the SignA algorithm, then A will be playing Gamek−1,
and if the challenge signature is from the SignB algorithm then A will be playing Gamek. Therefore, if
the challenge signature is from SignA, then the probability that A creates a valid, Type I forgery is exactly
Advk−1A . Since B simply forwards this signature to the challenger, the probability that B outputs a forgery

in VI is equal to Advk−1A . Likewise, if the challenge signature is from SignB , then the probability that B
outputs a forgery in VI is equal to AdvkA. Hence,

Pr[(m∗, σ∗) ∈ VI |b = 1]− Pr[(m∗, σ∗) ∈ VI |b = 0] = AdvkA −Advk−1A = ε.

This proves the lemma.

Using Lemma 2.1, we can prove Theorem 2.2.

Proof of Theorem 2.2. Suppose that there exists an attacker, A, that breaks the oracle invariance of the
dual form system, attaining a probability difference of ε. We will construct an algorithm B, such that
Adv0B −Adv

q
B = ε.

B is given access to an oracle for either the SignA algorithm or the SignB algorithm, depending on whether
it is playing Game0 or Gameq, respectively. B can use the oracle to sign any queries made by algorithm A.
A will return a forgery (m∗, σ∗), that B can output as a forgery. If B is playing Game0, then the probability
that it is successful is exactly equal to the probability that A produces a Type I forgery given access to a
SignA oracle. Likewise, if B is playing Gameq, then the probability that it is successful is exactly equal to
the probability that A produces a Type I forgery given access to a SignB oracle. That is,

Pr[AOA(VK) ∈ VI ]− Pr[AOB (VK) ∈ VI ] = Adv0B −Adv
q
B = ε.

However, if there exists an attacker, namely B, that can distinguish between Game0 and Gameq with
advantage ε, then there is some 0 ≤ k ≤ q such that B can distinguish between Gamek and Gamek−1
with advantage at least ε/q. However, we know from Lemma 2.1 that if there exists an attacker that can
distinguish between Gamek and Gamek−1 with advantage ε/q, then we can create an attacker that breaks
dual-oracle invariance with advantage ε/q.

Since q is polynomial, if ε is non-negligible, then ε/q is also non-negligible. Thus, if there exists an
attacker that breaks oracle invariance, then there exists an attacker that breaks dual-oracle invariance. This
proves the theorem.

We now prove Theorem 2.1. Our proof consists of a hybrid argument over a series of games. Between each
step, we use the attacker against Construction 1 to break A-I matching, B-II matching, or oracle invariance.
We begin by correctly simulating the signature scheme and limiting the attacker to Type I forgeries using
the A-I matching property of the dual form system. Then, using the oracle invariance property of the dual
form system, we change the simulation of the signature scheme to use the SignB algorithm to respond to
the attacker’s queries. However, since the attacker is still limited to Type I forgeries, if it produces a forgery
then it violates the B-II matching property of the dual form system.

Lemma 2.2. Suppose there exists an algorithm A, such that AdvRealA − AdvOnlyIA = ε. Then, we can
construct an algorithm, B, with advantage ε in breaking the A-I matching property of the dual form system.

Proof. This follows directly from the definition of A-I matching. Given oracle access to SignA, B can simulate
GameReal with A. With probability ε, A produces a valid forgery, m∗ /∈ VI . B can pass this forgery to the
A-I matching challenger.

Lemma 2.3. Suppose that there exists an algorithm, A, such that AdvOnlyIA − AdvOnlyI,BA = ε. Then, we
can construct an algorithm B, that breaks the oracle invariance of the dual form system with advantage ε.
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Proof. This follows from the definition of the oracle invariance of a dual form system. B will be given oracle
access to either SignA or SignB from the oracle invariance challenger. B will use this oracle to answer all of
the signing queries made by algorithm A. If B receives an oracle for SignA from the challenger, then it will
be simulating GameOnlyI , and if B receives an oracle for SignB , it will be simulating game GameOnlyI,B .

Eventually, B will return the forgery output by A. When the output of A is a Type I forgery, the output
of B must be a Type I forgery and in particular,

Pr[BOA(VK) ∈ VI ]− Pr[BOB (VK) ∈ VI ] = AdvOnlyIA −AdvOnlyI,BA = ε.

Thus, B breaks the oracle invariance of the dual form system with advantage ε.

Finally, we now show that the advantage of any attacker against GameOnlyI,B is negligible.

Lemma 2.4. Suppose that there exists an algorithm, A, such that AdvOnlyI,BA = ε. Then, we can construct
an algorithm, B, with advantage ε in breaking the B-II matching property of the dual form system.

Proof. Again, this follows from the definition of B-II matching for the dual form system. If we simply let
B = A, we know that with probability ε, A will create a valid Type I forgery given only oracle access to the
SignB algorithm. This means that B will succeed in breaking B-II matching with probability ε.

Theorem 2.1 now follows.

3 Background on Composite Order Bilinear Groups

Composite order bilinear groups were first introduced in [21]. We define a group generator G, an algorithm
which takes a security parameter λ as input and outputs a description of a bilinear group G. In our case, we
will have G output (N = p1p2p3,G,GT , e) where p1, p2, p3 are distinct primes, G and GT are cyclic groups
of order N = p1p2p3, and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

Computing e(g, h) is also commonly referred to as “pairing” g with h.
We assume that the group operations in G and GT as well as the bilinear map e are computable in

polynomial time with respect to λ, and that the group descriptions of G and GT include generators of
the respective cyclic groups. We let Gp1 , Gp2 , and Gp3 denote the subgroups of order p1, p2, and p3 in G
respectively. We note that when hi ∈ Gpi and hj ∈ Gpj for i 6= j, e(hi, hj) is the identity element in GT . To
see this, suppose we have h1 ∈ Gp1 and h2 ∈ Gp2 . Let g denote a generator of G. Then, gp1p2 generates Gp3 ,
gp1p3 generates Gp2 , and gp2p3 generates Gp1 . Hence, for some α1, α2, h1 = (gp2p3)α1 and h2 = (gp1p3)α2 .
Then:

e(h1, h2) = e(gp2p3α1 , gp1p3α2) = e(gα1 , gp3α2)p1p2p3 = 1.

This orthogonality property of Gp1 ,Gp2 ,Gp3 is a useful feature of composite order bilinear groups which we
leverage in our constructions and proofs.

If we let g1, g2, g3 denote generators of the subgroups Gp1 , Gp2 , and Gp3 respectively, then every element
h in G can be expressed as h = ga1g

b
2g
c
3 for some a, b, c ∈ ZN . We refer to ga1 as the “Gp1 part” or “Gp1

component” of h. If we say that an h has no Gp2 component, for example, we mean that b ≡ 0 mod p2.
Below, we will often use g to denote an element of Gp1 (as opposed to writing g1).

The original Camenisch-Lysyanskaya scheme and BGOY identity-based sequential aggregate signature
scheme both use prime order bilinear groups, i.e. groups G and GT are each of prime order q with an
efficiently computable bilinear map e : G2 → GT .
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4 Camenisch-Lysyanskaya Signatures

Now we use the dual form framework to prove security of a signature scheme similar to the one put forward
by Camenisch and Lysyanskaya [29]. The Camenisch-Lysyanskaya signature scheme was already shown to
be secure under the LRSW assumption. However, the scheme can be naturally adapted to our framework,
allowing us to prove security under static, non-interactive assumptions. Our result is not strictly comparable
to the result under the LRSW assumption because our signature scheme is not identical to the original.
However, this is the first proof of security for a scheme similar to the Camenisch-Lysyanskaya signature
scheme from static, non-interactive assumptions.

Our signature scheme will use bilinear groups, G and GT , of composite order N = p1p2p3, where p1,
p2, and p3 are all distinct primes. Our construction is identical to the original Camenisch-Lysyanskaya
signature scheme in the Gp1 subgroup, but with additional components in the subgroups Gp2 and Gp3 . The
signatures produced by the SignA algorithm will have random components in Gp3 and components in Gp2
which mirror the structure of the scheme in Gp1 . The signatures produced by the SignB algorithm will have
random components in both Gp2 and Gp3 . Type I forgeries are those that are distributed exactly like SignA
signatures in the Gp2 subgroup, while Type II forgeries encompass all other distributions.

To prove dual-oracle invariance, we develop a backdoor verification test that the simulator can use to
determine the type of the attacker’s forgery. We leverage the fact that the simulator will know the discrete
logarithms of the public parameters, which will allow it to strip off the components in Gp1 in the forgery and
check the distribution of the Gp2 components. This check will fail to determine the type correctly only with
negligible probability. In more detail, we create a simulator which must solve a subgroup decision problem
and ascertain whether an element T is in Gp1p3 or in the full group G. It will use T to create a challenge
signature which is either distributed as an output of the SignA algorithm or as an output of the SignB
algorithm, depending on the nature of T . It will be unable to determine the nature of this signature for itself
because this will fall into the negligible error space of its backdoor verification test. When the simulator
receives a forgery from the attacker, it will perform the backdoor verification test and correctly determine
the type of the forgery, unless the attacker manages to produce a forgery for which this test fails. This will
occur only with negligible probability, because the attacker will have only limited information about the error
space from the challenge signature, and it needs to forge on a different message. This is possible because
the public parameters are in Gp1 , and so reveal no information about the error space of the backdoor test
modulo p2. We use a pairwise independent argument to show that the limited amount of information the
attacker can glean from the challenge signature on a message m is insufficient for it to produce a forgery for
a different message m∗ that causes the backdoor test to err.

4.1 Our Dual Form Scheme

KeyGen(λ): The key generation algorithm chooses two groups, G = 〈g〉 and GT , of order N = p1p2p3
(where p1, p2, and p3 are all distinct primes of length λ) that have a non-degenerate, efficiently
computable bilinear map, e : G × G → GT . It then selects uniformly at random g ∈ Gp1 , g3 ∈ Gp3 ,
g2,3 ∈ Gp2p3 , and x, y, xe, ye ∈ ZN . It sets

SK = (x, y, xe, ye, g3, g2,3),

and
PK = (N,G, g,X = gx, Y = gy).

SignA(SK,m): Given a secret key (x, y, xe, ye, g3, g2,3), a public key (N,G, g,X, Y ), and a message m ∈ Z∗N ,
the algorithm chooses a random r, r′ ∈ ZN , R2,3 ∈ Gp2p3 , and random R3, R

′
3, and R′′3 ∈ Gp3 , and

outputs the signature

σ = (grRr
′

2,3R3, (gr)y(Rr
′

2,3)yeR′3, (gr)x+mxy(Rr
′

2,3)xe+mxeyeR′′3 ).

Note that the random elements of Gp3 can be obtained by raising g3 to random exponents modulo N .
Likewise, the random elements of Gp2p3 can be obtained by raising g2,3 to random exponents modulo
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N . The random exponents modulo N will be uncorrelated modulo p2 and modulo p3 by the Chinese
Remainder Theorem.

SignB(SK,m): Given a secret key (x, y, xe, ye, g3, g2,3), a public key (N,G, g,X, Y ), and a message m ∈ Z∗N ,
the algorithm chooses a random r ∈ ZN and random R2,3, R′2,3, and R′′2,3 ∈ Gp2p3 , and outputs the
signature

σ = (grR2,3, (gr)yR′2,3, (gr)x+mxyR′′2,3).

The random elements can be generated in the same way as in SignA.

Verify(VK,m, σ): Given a public key pk = (N,G, g,X, Y ), message m 6= 0, and a signature σ = (σ1, σ2, σ3),
the verification algorithm checks that:

e(σ1, g) 6= 1

(which ensures that σ1 6∈ Gp2p3), and

e(σ1, Y ) = e(g, σ2) and e(X,σ1) · e(X,σ2)m = e(g, σ3).

As in the original CL scheme, messages must be chosen from Z∗N , so that m 6= 0. If we allow m = 0, then
an adversary can easily forge a valid signature using the public key elements (g, Y,X). Also like the original
scheme, the Verify algorithm will not accept a signature where all the elements are the identity in Gp1 . It
suffices to check that the first element is not the identity in Gp1 and that the other verification equations
are satisfied. If σ1 is the identity in Gp1 , then it will be an element of the subgroup Gp2p3 . To determine if
σ1 ∈ Gp2p3 , we pair σ1 with the public key element g under the bilinear map and verify that it does not equal
the identity in GT . Without this check, a signature where all three elements are members of the subgroup
Gp2p3 would be valid for any message with the randomness r′ = 0 mod p1.

Notice, until SignA is called, no information about the exponents xe and ye is given out. Once SignA is
called, these exponents behave exactly like the secret key exponents x and y, except in the Gp2 subgroup.
These exponents will be used to verify that a forgery is of Type I. The additional randomization with the
Gp3 elements guarantees that there will be no correlation in the Gp3 subgroup between the three signature
elements. Unlike the signatures given out by the SignA algorithm, signatures from the SignB algorithm will
be completely randomized in the Gp2 subgroup as well.

Forgery Classes We will divide verifiable forgeries according to their correlation in the Gp2 subgroup,
similar to the way we have defined the signatures from the SignA and SignB algorithms. We let z be an
exponent in ZN . By the Chinese Remainder Theorem, we can represent z as an ordered tuple (z1, z2, z3) ∈
Zp1 × Zp2 × Zp3 , where z1 = z mod p1, z2 = z mod p2, and z3 = z mod p3. Letting (z1, z2, z3) = (0 mod
p1, 1 mod p2, 0 mod p3) and g2 be a generator of Gp2 , we define the forgery classes as follows:

Type I. VI = {(m∗, σ∗) ∈ V|(σ∗1)z = gr
′

2 , (σ
∗
2)z = gr

′ye
2 , and (σ∗3)z = g

r′(xe+m
∗xeye)

2 for some r′}

Type II. VII = {(m∗, σ∗) ∈ V|(m∗, σ∗) 6∈ VI}

Essentially, Type I forgeries will be correlated in the Gp2 subgroup exactly in the same way as they are
correlated in the Gp1 subgroup, with the exponents xe and ye playing the same role in the Gp2 subgroup that
x and y play in the Gp1 subgroup. Type I forgeries will align with the SignA algorithm, to guarantee that
our scheme is A-I matching. Type II forgeries include any other verifiable signatures, i.e. those not correctly
correlated in the Gp2 subgroup. Unlike the signatures produced by the SignB algorithm, Type II forgeries
need not be completely random in the Gp2 subgroup. However, we will show in our proof of security that
this is enough to guarantee B-II matching.
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4.2 Complexity Assumptions

We now state our complexity assumptions. We let G and GT denote two cyclic groups of order N = p1p2p3,
where p1, p2, and p3 are distinct primes, and e : G2 → GT is an efficient, non-degenerate bilinear map. In
addition, we will denote the subgroup of G of order p1p2 as Gp1p2 , for example.

The first two of these assumptions were introduced in [56], where it is proven that these assumptions hold
in the generic group model, assuming it is hard to find a non-trivial factor of the group order, N . These are
specific instances of the General Subgroup Decision Assumption described in [13]. The third assumption is
new, and in Appendix B we prove that it also holds in the generic group model, assuming it is hard to find
a non-trivial factor of the group order, N .

Assumption 4.1. Given a group generator G, we define the following distribution:

(N = p1p2p3,G,GT , e)
R← G,

g,X1
R← Gp1 , X2

R← Gp2 , X3
R← Gp3

D = (N,G,GT , e, g,X1X2, X3)

T1
R← Gp1p2 , T2

R← Gp1
We define the advantage of an algorithm, A, in breaking Assumption 4.1 to be:

Adv4.1A (λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 1. We say that G satisfies Assumption 4.1 if for any polynomial time algorithm, A, Adv4.1A (λ)
is a negligible function of λ.

Assumption 4.2. Given a group generator G, we define the following distribution:

(N = p1p2p3,G,GT , e)
R← G,

g,X1
R← Gp1 , X2, Y2

R← Gp2 , X3, Y3
R← Gp3 ,

D = (N,G,GT , e, g,X1X2, X3, Y2Y3),

T1
R← G, T2

R← Gp1p3
We define the advantage of an algorithm, A, in breaking Assumption 4.2 to be:

Adv4.2A (λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 2. We say that G satisfies Assumption 4.2 if for any polynomial time algorithm, A, Adv4.2A (λ)
is a negligible function of λ.

Assumption 4.3. Given a group generator G, we define the following distribution:

(N = p1p2p3,G,GT , e)
R← G,

a, r
R← ZN , g

R← Gp1 , X2, X
′
2, X

′′
2 , Z2

R← Gp2 , X3
R← Gp3 ,

D = (N,G,GT , e, g, ga, grX2, g
raX ′2, g

ra2X ′′2 , Z2, X3),

We define the advantage of an algorithm, A, in breaking Assumption 4.3 to be:

Adv4.3A (λ) := Pr[A(D) = (gr
′a2R3, g

r′R′3) and r′ 6= 0 mod p1],

where R3 and R′3 are any values in the subgroup Gp3 .

Definition 3. We say that G satisfies Assumption 4.3 if for any polynomial time algorithm, A, Adv4.3A (λ)
is a negligible function of λ.
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4.3 Proof of Security

We will show that our signature scheme is secure under these assumptions by showing that it satisfies the
three properties of a secure dual form signature scheme.

Lemma 4.1. If Assumption 4.1 holds, then our signature scheme is A-I matching.

Proof. Suppose that there exists an attacker, A, that can create a Type II forgery (i.e. a non-Type I forgery)
with probability ε given access to an oracle for the SignA algorithm. Then we can create an algorithm B
that breaks Assumption 4.1 with advantage ε.
B first receives g,X1X2, X3, T . B chooses random exponents x, y ∈ ZN and passes (g, gx, gy) to A. B then

acts as an oracle for the SignA algorithm, using (x, y,X3) as the secret key, where xe = x and ye = y. Note
that by the Chinese Remainder Theorem, x mod p1 and x mod p2 are uncorrelated, so the value x modulo
p1 will not be correlated to the value of xe modulo p2, and likewise, y modulo p1 will not be correlated to
ye modulo p2. Also, notice that B does not actually need to know the secret key element in Gp2p3 because
it will be able to simulate the SignA algorithm without it.

To sign a message m, B chooses random exponents r, t, u, v ∈ ZN and returns

σ = ((X1X2)rXt
3, (X1X2)ryXu

3 , (X1X2)r(x+mxy)Xv
3 ).

A produces a forgery (m∗, σ∗), where σ∗ = (σ∗1 , σ
∗
2 , σ
∗
3). First B must check that Verify(m∗, σ∗) = ‘true’,

if not then B will abort. In addition, B must verify that it has received a Type II forgery. To do this, B can
check the correlation in both the Gp2 components by pairing each signature element with X1X2 as follows.
It checks if:

e(σ∗1 , (X1X2)y) = e(σ∗2 , X1X2)

e(σ∗1 , (X1X2)x+mxy) = e(σ∗3 , X1X2).

If and only if (m∗, σ∗) is a Type I forgery, both of these equations will hold. Therefore, if both of these are
true, then B will abort. Notice that B can only create Type I forgeries, and it needs the output of A to be
a Type II forgery in order to defeat the Assumption 4.1 challenger.

Finally, if one or both of these equations fail, B will be guaranteed that it has a Type II forgery, which
it can use to determine what subgroup T is in. B can simply use T in place of X1X2 in the previous two
equations and checks if:

e(σ∗1 , T
y) = e(σ∗2 , T )

e(σ∗1 , T
x+mxy) = e(σ∗3 , T ).

By the contrapositive of the previous argument, since (m∗, σ∗) is a Type II forgery, if T ∈ Gp1p2 , then
one of these equations must fail. On the other hand, since the forgery must be verifiable, if T ∈ Gp1 , the Gp2
components will not affect the bilinear map and the correlation will correctly hold in the Gp1 components.
Thus, if (m∗, σ∗) ∈ VII then B can determine what subgroup T is in with probability 1.

Hence, if A succeeds in creating a Type II forgery with non-negligible probability ε, then B can achieve
a non-negligible advantage against Assumption 4.1.

Lemma 4.2. If Assumption 4.2 holds, then our signature scheme has the dual-oracle invariance property.

Proof. Suppose that there exists an attacker, A, that can break dual-oracle invariance with a non-negligible
advantage. Then we can create an algorithm B that breaks Assumption 4.2 with non-negligible advantage.
B receives G, g,X1X2, X3, Y2Y3, T . B chooses random exponents x, y, xe, ye ∈ ZN and sets SK =

(x, y, xe, ye, X3, Y2Y3) and PK = (G, g,X = gx, Y = gy). Using the secret key, B can answer queries
from A to either oracle, by simply deciding whether to randomize the second two pieces of the signature in
the Gp2 subgroup.
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For a query, m, to the SignA oracle, B chooses r, r′, t, u, v ∈ ZN and responds with:

σ = (grp1(Y2Y3)r
′
Xt

3, g
ry
p1 (Y2Y3)r

′yeXu
3 , g

r(x+mxy)
p1 (Y2Y3)r

′(xe+mxeye)Xv
3 ).

For query, m, to the SignB oracle, B chooses r, t, u, v ∈ ZN and responds with:

σ = (grp1(Y2Y3)t, gryp1 (Y2Y3)u, gr(x+mxy)p1 (Y2Y3)v).

Finally, for the challenge message, m, B chooses r, r′, t, u, v ∈ ZN and returns:

σ = (T r(Y2Y3)r
′
Xt

3, T
ry(Y2Y3)r

′yeXu
3 , T

r(x+mxy)(Y2Y3)r
′(xe+mxeye)Xv

3 ).

If T ∈ Gp1p3 , then B has correctly simulated the SignA oracle on the challenge message, and If T ∈ G,
then B has properly simulated the SignB oracle. We will now argue that B can use the output of A to
determine whether T has a Gp2 component or not.

In order to use the output of A to determine which subgroup T belongs to, B must be able to determine
whether A returns a Type I or a Type II forgery. First, B will check that A has not seen a signature for
m∗ before and that the forgery (m∗, σ∗) verifies correctly, if not then B will guess randomly. Next, B will
try to distinguish between the two forgery types by checking the correlation in the Gp2 components of the
signature σ∗ = (σ∗1 , σ

∗
2 , σ
∗
3). We call this our backdoor verification test.

If we let gi be a generator of the subgroup Gpi , we can rewrite the signature elements as follows:

σ∗1 = grgr
′

2 g
u
3

σ∗2 = grygr
′ye+k2

2 gv3

σ∗3 = gr(x+m
∗xy)g

r′(xe+m
∗xeye)+k3

2 gw3 ,

where r, r′, k2, k3, u, v, and w are all constants from ZN . From the definition of our forgery types, in this
new representation, (m∗, σ∗) is a Type I forgery if and only if k2 = k3 = 0.

To determine if k2 = k3 = 0, first B will need to isolate the Gp2 components of σ∗2 and σ∗3 by removing
their Gp1 components. We will refer to σ∗2 with its Gp1 component removed as s2, and σ∗3 with its Gp1
component removed as s3. B is able to find s2 and s3 by using the known correlation in the Gp1 components
as follows:

s2 =
σ∗2

(σ∗1)y
=
grygr

′ye+k2
2 gv3

grygr
′y

2 guy3
= g

r′(ye−y)+k2
2 gv

′

3

s3 =
σ∗3

(σ∗1)x+m∗xy
=

gr(x+m
∗xy)g

r′(xe+m
∗xeye)+k3

2 gw3

gr(x+m∗xy)g
r′(x+m∗xy)
2 g

u(x+m∗xy)
3

= g
r′((xe+m

∗xeye)−(x+m∗xy))+k3
2 gw

′

3 ,

where v′ = v−uy and w′ = w−u(x+m∗xy). These constants will be unimportant since we only care about
the correlation in the Gp2 components. Next, we will use the expected correlation for a Type I forgery in
the Gp2 components of s2 and s3 to try remove them from the remaining Gp3 components. Let

c∗ =
(xe +m∗xeye)− (x+m∗xy)

ye − y
,

then
s =

s3
sc
∗

2

= gk3−c
∗k2

2 gw
′′

3 ,

where w′′ = w′ − c∗v′. Finally, B will check if s is indeed an element of Gp3 by computing the pairing of s
with X1X2 and checking if it is the identity element in GT ,

e(s,X1X2)
?
= 1 ∈ GT .
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Clearly, if (m∗, σ∗) is a Type I forgery, then k2 = k3 = 0, so s ∈ Gp3 . However, s will be an element of
Gp3 as long as k3 − c∗k2 = 0 mod p2. This gives us the criterion for a Type II forgery to pass this backdoor
verification test. In fact, notice that our challenge signature will meet exactly this requirement, regardless
of what subgroup T is in. This is important, because it means that B cannot break the assumption without
the output of A.

We claim that an attacker can only create a Type II forgery that satisfies this criterion with negligible
probability. We know that in a Type II forgery, k2 or k3 will be nonzero. However, in order to pass the
backdoor verification test, if k2 or k3 is nonzero, they both must be nonzero. Thus, the attacker must be
able to produce a forgery with exponents k2 and k3 that non-trivially satisfy the equation k3 − c∗k2 = 0
(modulo p2). This requires the attacker to implicitly find the value of c∗ modulo p2.

During the query phase, x and y modulo p2 are not given out by either signing oracle. The only place
they appear is in the challenge signature. The exponents xe and ye modulo p2 are information-theoretically
revealed by B during the query phase, and the challenge message m will be known to the attacker. However,
in the challenge signature, there remains the freshly chosen random exponents r and r′ and the values of x
and y modulo p2. No information could have previously been revealed about these exponents modulo p2.
(Note that the r and r′ from the challenge signature are not the same as the r and r′ from the forgery σ∗.)

The challenge signature establishes three equations in Zp2 from the exponents of the three Gp2 compo-
nents. In these three equations, there are four unknown values, x, y, r, and r′ modulo p2. We will also need
to consider the constant exponents contributed by T and Y2Y3. We will represent these elements by their
subgroup components,

T = gt1gt22 g
t3
3

Y2Y3 = gy22 g
y3
3 ,

where gi is a generator for the subgroup Gpi .
Finally, if we define the three exponents of the three challenge signature elements to be a1, a2, a3, respec-

tively, then the equations available to the attacker are

t2r + y2r
′ = a1 (1)

t2ry + y2r
′ye = a2 (2)

t2r(x+mxy) + y2r
′(xe +mxeye) = a3. (3)

Recall that all these equations hold modulo p2. We will argue that from these equations, an attacker has
only a negligible chance of implicitly determining

c∗ =
(xe +m∗xeye)− (x+m∗xy)

ye − y
.

We will relabel some of our variables by defining s := t2r+y2r
′, v := t2r (which are distributed uniformly

randomly). We can then rewrite our three equations as:

s = a1

sye + v(y − ye) = a2

s(xe +mxeye) + v(x− xe +m(xy − xeye)) = a3.

Now, information-theoretically, the attacker knows the values of a1, a2, a3, xe, ye,m, so it additionally learns
the values v(y− ye) and v(x−xe+m(xy−xeye)) here, and nothing more. We introduce one more change of
variable, setting v′ := v(y − ye), b := v(x− xe), and d := v(xy − xeye). We argue that the joint distribution
of v′, b, d modulo p2 is negligibly close to the uniform distribution on Z3

p2 . To see this, note that given a
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triple of values for v′, b, d in Zp2 (with xe, ye fixed), one can (almost always) solve uniquely for v, x, y as:

v =
v′b

d− bye − xev′

y =
v′

v
+ ye

x =
b

v
+ xe.

With all but negligible probability, the denominators will be invertible. Now, information-theoretically, the
attacker knows only v′ and b+md modulo p2 (and also knows m). If it correctly determines c∗ modulo p2,
then it can also determine v′c∗ = b+ dm∗. This can only happen with negligible probability when m∗ 6= m
modulo p2, since b+ dm is a pairwise independent function of m. Now, it is possible that m∗ is equal to m
modulo p2, but unequal to m modulo N . If this occurs with non-negligible probability, then B can extract
a non-trivial factor of N by computing the g.c.d of N and m −m∗. This non-trivial factor can be used to
break Assumption 4.2 with non-negligible advantage, as proven in [56]. Thus, we may assume that m 6= m∗

modulo p2, except with negligible probability.
Since the attacker has a negligible chance of creating a Type II forgery that will pass the backdoor

verification test, if the forgery does pass, then with probability negligibly close to 1, it must be a Type I
forgery. We already know that if the forgery fails the test, it must be a Type II forgery. Therefore, B will be
able to determine the forgery type with probability negligibly close to 1, and thus can break Assumption 4.2
with non-negligible advantage.

Lemma 4.3. If Assumption 4.3 holds, then our signature scheme is B-II matching.

Proof. Suppose that there exists an attacker, A, that can create a Type I forgery with non-negligible prob-
ability ε given access to an oracle for the SignB algorithm. Then we can create an algorithm B that breaks
Assumption 4.3 with probability negligibly close to ε.
B first receives g, ga, grX2, g

raX ′2, g
ra2X ′′2 , Z2, X3. B chooses random exponents b, xe, ye ∈ ZN , and sets

PK = (g, ga, (ga)b) and SK = (x = a, y = ab, xe, ye, X3, Z2X3). Clearly, B does not know a, so parts of the
secret key are set implicitly. Also, notice that the exponents x and y are distributed uniformly at random
modulo p1.
B can now simulate the SignB oracle. If A queries on a message m, B chooses r̃, u2, v2, w2, u3, v3, w3 ∈ ZN

and signs,

σ = ((grX2)r̃Zu2
2 Xu3

3 , (graX ′2)br̃Zv22 Xv3
3 , (graX ′2(gra

2

X ′′2 )mb)r̃Zw2
2 Xw3

3 ).

The Gp1 components of the signature will all have the correct correlation, where x = a and y = ab and the
randomness is rr̃. Also, it is easy to verify that the Gp2 and the Gp3 components will all appear uniformly
distributed.

After it has finished making queries, A will return a forgery (m∗, σ∗). First B will check that (m∗, σ∗)
verifies, and if not B will abort. Then, B must check that (m∗, σ∗) is a Type I forgery. To do this, B can
compute

s2 :=
σ∗2

(σ∗1)ye
, s3 :=

σ∗3
(σ∗1)xe+m∗xeye

.

It then checks if e(s2, Z2) = 1 = e(s3, Z2). If these checks pass, then it is a Type I forgery. Otherwise, it is
a Type II forgery, and B will abort.

However, with non-negligible probability ε, A will return a Type I forgery. This implies that the forgery
has the correct correlation in xe and ye modulo p2. We observe that xe and ye are information-theoretically
hidden from A. Therefore, A can only produce a Type I forgery with the correct correlation in xe and ye
and nonzero Gp2 components with negligible probability, say δ′.

Thus, with probability at least ε− δ′, B will receive a Type I forgery that has no Gp2 components. This
would mean creating a signature of the form:

σ∗ = (gr
′
Xu′

3 , g
r′yXv′

3 , g
r′(x+m∗xy)Xw′

3 ).
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If A returns a forgery of this type and r′ 6= 0 mod p1, then B can return,

σ∗1 = gr
′
Xu′

3(
σ∗3

(σ∗2)1/b

)1/m∗b

=

(
gr
′(a+m∗a2b)Xw′

3

(gr′aX
v′/b
3 )

)1/m∗b

= gr
′a2Xw′′

3 ,

where w′′ = 1
m∗b (w

′ − v′

b ). This will defeat the Assumption 4.3 challenger.
If A returns a signature where r′ = 0 mod p1, then by the definition of the verification algorithm, it will

not be accepted. (Recall this was required in the definition of our original verification algorithm.)
Thus, with probability at least ε − δ′, the forgery returned will allow B to defeat the Assumption 4.3

challenger. Therefore, B will be successful in defeating the Assumption 4.3 challenger with probability
negligibly close to ε.

5 BGOY Signatures

Here we give a public key variant of the BGOY signatures and prove existential unforgeability using our
dual form framework. In Appendix A, we show how this base scheme can be built into an identity-based
sequential aggregate signature scheme and reduce the security of the aggregate scheme to the security of this
base scheme, in the random oracle model. We will also employ the random oracle model in our proof for the
base scheme, although this use of the random oracle can be removed (see below for discussion of this).

Our techniques here are quite different than those employed for the BB-derived and CL signature variants,
and they reflect the different structure of this scheme. There are some basic commonalities, however: we
again employ a bilinear group of order N = p1p2p3, and the main structure of the scheme occurs in the
Gp1 subgroup. The signatures produced by the SignA algorithm contain group elements which are only in
Gp1 , while the signatures produced by the SignB algorithm additionally have components in Gp3 . These
components in Gp3 are not fully randomized each time and do not occur on all signature elements: they
occur only on three signature elements, and the ratio between two of their exponents is the same for all
SignB signatures. Our forgery types will be defined in terms of the subgroups present on two of the elements
in the forgery.

We design our proof to reflect the structure of the scheme, which essentially combines a one-time signature
with a mechanism to prevent an attacker from producing new signatures from linear combinations of old
signatures in the exponent. In proving dual-oracle invariance, we leverage these structures by first changing
the challenge signature from an output of SignA to a signature that has components in Gp2 , and then changing
it to an output of SignB . It is crucial to note that as we proceed through this intermediary step, the challenge
signature is the only signature which has any non-zero components in Gp2 . This allows us to argue that
as we make this transition, an attacker cannot change from producing Type I forgeries (which do not have
Gp2 components on certain elements) to producing forgeries which do have non-zero Gp2 components in
the relevant locations. Intuitively, such an attacker would violate the combination of one-time security and
inability to combine signatures, since the attacker has only received one signature with Gp2 elements, and
it cannot combine this with any other signatures to produce a forgery on a new message. These aspects
seem hard to capture when working directly in a prime order rather than composite order group. (We note,
however, that the one-time aspect was also implicit in the security proof of the Gentry-Ramzan scheme [42]
on which the BGOY scheme was based; however, differences in the schemes prevent capturing it in the same
way for the latter.) The techniques here are also quite different from those used in our proofs for CL and
BB-derived signatures: here there is no backdoor verification test or pairwise-independence argument.

5.1 The Dual Form Scheme

KeyGen(λ)→ VK,SK The key generation algorithm chooses a bilinear group G of order N = p1p2p3. It
chooses two random elements g, k ∈ Gp1 , random elements g3, g

d
3 ∈ Gp3 , and random exponents a1, a2, b1, b2,
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α1, α2, β1, β2 ∈ ZN . It also chooses a function H : {0, 1}∗ → ZN which will be modeled as a random oracle.
It sets the verification key as

VK := {N,H,G, g, k, ga1 , ga2 , gb1 , gb2 , gα1 , gα2 , gβ1 , gβ2}

and the secret key as
SK := {N,H,G, g, k, ga1a2 , gb1b2 , gα1α2 , gβ1β2 , g3, g

d
3}.

SignA(m,SK)→ σ The SignA algorithm takes in a message m ∈ {0, 1}∗. It chooses two random exponents
r1, r2 ∈ ZN , and computes:

σ1 := ga1a2+b1b2H(m)gr1r2 , σ2 := gr1 , σ3 := gr2 , σ4 := kr2 , σ5 := gα1α2+β1β2H(m)kr1r2 .

It outputs the signature σ := (σ1, σ2, σ3, σ4, σ5).

SignB(m,SK)→ σ The SignB algorithm takes in a message m ∈ {0, 1}∗. It chooses two random exponents
r1, r2, x, y ∈ ZN , and computes:

σ1 := ga1a2+b1b2H(m)gr1r2gx3 , σ2 := gr1gy3 , σ3 := gr2 , σ4 := kr2 , σ5 := gα1α2+β1β2H(m)kr1r2(gd3)x.

It outputs the signature σ := (σ1, σ2, σ3, σ4, σ5).

Verify(m,σ,VK)→ {True, False} The verification algorithm first checks that:

e(σ1, g) = e(ga1 , ga2)e(gb1 , gb2)H(m)e(σ2, σ3).

It also checks that:
e(σ5, g) = e(gα1 , gα2)e(gβ1 , gβ2)H(m)e(σ2, σ4).

Finally, it checks that:
e(g, σ4) = e(k, σ3).

If all of these checks pass, it outputs “True.” Otherwise, it outputs “False.”

We note that the use of the random oracle H to hash messages in {0, 1}∗ to elements in ZN in this
public key scheme that forms the base of our identity-based sequential aggregate signatures is not necessary,
and can be replaced in the following way. Instead of using ga1a2+H(m)b1b2 , we can assume our messages
are n-bit strings (denoted m1m2 . . .mn) and use ga0b0

∏n
i=1 g

miaibi . Here, ga0 , . . . , gan , gb0 , . . . , gbn will be
in the public verification key. In the proof, instead of guessing which random oracle query corresponds to
the challenge message, the simulator will guess a bit which differs between the challenge message and the
message that will be used in the forgery. This guess will be correct with non-negligible probability. However,
the use of the random oracle model to prove security for the full identity-based sequential aggregate scheme
is still required. Removing the random oracle model altogether remains an open problem.

Forgery Classes We will divide the forgery types based on whether they have any Gp2 or Gp3 components
on σ1 or σ5. We let z2 ∈ ZN denote the exponent represented by the tuple (0 mod p1, 1 mod p2, 0 mod p3),
and we let z3 ∈ ZN denote the exponent represented by the tuple (0 mod p1, 0 mod p2, 1 mod p3). Then we
can define the forgery classes as follows:

Type I. VI = {(m∗, σ∗) ∈ V|(σ∗1)z2 = 1, (σ∗1)z3 = 1 and (σ∗5)z2 = 1, (σ∗5)z3 = 1}

Type II. VII = {(m∗, σ∗) ∈ V|(σ∗1)z2 6= 1 or (σ∗5)z2 6= 1 or (σ∗1)z3 6= 1 or (σ∗5)z3 6= 1}

In other words, Type I forgeries have σ∗1 , σ
∗
5 ∈ Gp1 , while Type II forgeries have a non-zero component

in Gp3 or Gp2 on at least one of these terms. We note that these types are disjoint and exhaustive.
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5.2 Complexity Assumptions

We now state the static complexity assumptions which we will use to prove security of our scheme. The first
is a weaker version of Assumption 4.1 stated in Section 4.2. (Here, we do not give out the X1X2 term.) The
third is another instance of the General Subgroup Decision assumption [13], and was previously used in [57]
(where it was also proven to hold in the generic group model, assuming it is hard to find a non-trivial factor
of the group order). The second and fourth assumptions are new, and we prove in Appendix B that they
hold in the generic group model, assuming it is hard to find a non-trivial factor of the group order, N .

Assumption 5.1. Given a group generator G, we define the following distribution:

(N = p1p2p3,G,GT , e)
R← G,

g
R← Gp1 , g3

R← Gp3
D = (N,G,GT , e, g, g3)

T1
R← Gp1p2 , T2

R← Gp1
We define the advantage of an algorithm, A, in breaking Assumption 5.1 to be:

Adv5.1A (λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 4. We say that G satisfies Assumption 5.1 if for any polynomial time algorithm, A, Adv5.1A (λ)
is a negligible function of λ.

Assumption 5.2. Given a group generator G, we define the following distribution:

(N = p1p2p3,G,GT , e)
R← G,

g, gc1 , gc2 , X1
R← Gp1 , X2

R← Gp2 , g3
R← Gp3 ,

D = (N,G,GT , e, g, gc1 , gc2 , g3, X1X2)

Given D, we assume it is hard to produce group elements s1, s2, s3 ∈ G such that e(s1, g)/e(s2, s3) =
e(gc1 , gc2) and s1 has a non-zero component in Gp2 . More formally, we let z2 ∈ ZN denote the exponent
represented by the tuple (0 mod p1, 1 mod p2, 0 mod p3) and we define the advantage of an algorithm, A, in
breaking Assumption 5.2 to be:

Adv5.2A (λ) := Pr[A(D) = (s1, s2, s3) s.t. e(s1, g)/e(s2, s3) = e(gc1 , gc2) and sz21 6= 1].

Definition 5. We say that G satisfies Assumption 5.2 if for any polynomial time algorithm, A, Adv5.2A (λ)
is a negligible function of λ.

We note that without the requirement of a non-zero Gp2 component on s1, this is easy – set s1 = 1, s2 =
gc1 , s3 = g−c2 .

Perhaps surprisingly, we are able to use the above simple assumption to in some sense capture both the
“one-time” security of the BGOY scheme and its mechanism to prevent taking linear combinations of old
signatures to prevent forgeries. We discuss this more in Section 5.3 where the assumption is used.

Assumption 5.3. Given a group generator G, we define the following distribution:

(N = p1p2p3,G,GT , e)
R← G,

g,X1
R← Gp1 , Y2

R← Gp2 , X3, Y3
R← Gp3

D = (N,G,GT , e, g,X1X3, Y2Y3)

T1
R← Gp1p3 , T2

R← Gp1p2
We define the advantage of an algorithm, A, in breaking Assumption 5.3 to be:

Adv5.3A (λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.
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Definition 6. We say that G satisfies Assumption 5.3 if for any polynomial time algorithm, A, Adv5.3A (λ)
is a negligible function of λ.

Assumption 5.4. Given a group generator G, we define the following distribution:

(N = p1p2p3,G,GT , e)
R← G,

g, gc1 , gc2
R← Gp1 , g3, X3

R← Gp3
D = (N,G,GT , e, g, gc1 , gc2 , gc1c2X3, g3)

Given D, we assume it is hard to compute gc1c2 . More formally, We define the advantage of an algorithm,
A, in breaking Assumption 5.4 to be:

Adv5.4A (λ) := Pr[A(D) = gc1c2 ].

Definition 7. We say that G satisfies Assumption 5.4 if for any polynomial time algorithm, A, Adv5.4A (λ)
is a negligible function of λ.

For the identity-based, aggregate version of our scheme, we will need one more assumption which is again
an instance of the General Subgroup Decision assumption. This is weaker than the Assumption 1 appearing
in [57].

Assumption 5.5. Given a group generator G, we define the following distribution:

(N = p1p2p3,G,GT , e)
R← G,

D = (N,G,GT , e)

T1
R← Gp1 , T2

R← G

We define the advantage of an algorithm, A, in breaking Assumption 5.3 to be:

Adv5.3A (λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 8. We say that G satisfies Assumption 5.5 if for any polynomial time algorithm, A, Adv5.5A (λ)
is a negligible function of λ.

5.3 Proof of Security

We now prove that our scheme has the A-I matching, dual-oracle invariance, and B-II matching properties,
when H is modeled as a random oracle.

Lemma 5.1. Under Assumption 5.1, our scheme is A-I matching.

Proof. We assume there exists a PPT attacker A which violates the A-I matching property. We will use A
to create a PPT algorithm B which breaks Assumption 5.1 (either the way it is written, or with the roles
of p2 and p3 interchanged). B receives g, T (we will not need the g3 term here, so we ignore it). B chooses
random exponents a1, a2, b1, b2, α1, α2, β1, β2, v ∈ ZN . It sets the verification key as:

VK := {N,G, g, k := gv, ga1 , ga2 , gb1 , gb2 , gα1 , gα2 , gβ1 , gβ2}.

For this portion of the proof, the random oracle is not really needed, so we can think of H as a publicly
available function here or just have B choose random responses to the random oracle queries and remember
its answers to maintain consistency. It is also easy for the simulator to respond to A’s signing queries by
calling the SignA algorithm, since it knows all of the secret key needed in the SignA algorithm.
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With non-negligible probability, A produces a forgery (σ∗1 , . . . , σ
∗
5),m∗ that is not of Type I (i.e it is of

Type II). This means that either σ∗1 or σ∗5 has a non-zero component in Gp2 or Gp3 . We let h∗ denote H(m∗).
Whenever it receives a valid forgery, B computes:

S := (σ∗1 · g−a1a2−h
∗b1b2)v · (σ∗5 · g−α1α2−h∗β1β2)−1.

Since the forgery verifies correctly, this S has a zero Gp1 component. With non-negligible probability, S will
have a non-zero Gp2 or Gp3 component, since there is a non-zero Gp2 or Gp3 component on at least one of
σ∗1 and σ∗5 whenever A produces a forgery that is not of Type I. We note that two non-zero Gp2 or Gp3
components will cancel out in the computation of S only with negligible probability, because the value of v
modulo p2 and p3 is information-theoretically hidden from A.

Either S will have a non-zero Gp2 component with non-negligible probability, or S will have a non-zero
Gp3 component with non-negligible probability. If the former happens, we will break Assumption 5.1 as it
is written, by having B compute e(T, S). If the result is 1, then B guesses randomly. If the result if not
1, then B knows that T ∈ Gp1p2 . Thus, it achieves non-negligible advantage against Assumption 5.1. If S
instead has a Gp3 component with non-negligible probability, then we break Assumption 5.1 with the roles
of p2 and p3 interchanged in the same fashion.

To prove dual-oracle invariance, we first define an intermediary security game. We let GameA denote
the dual-oracle security game where the challenge signature is produced by calling the SignA algorithm, and
we let GameB denote the dual-oracle security game where the challenge signature is produced by calling the
SignB algorithm. We now define:

GameMid This is like GameA and GameB except that the challenge signature is distributed as:

σ1 := ga1a2+b1b2H(m)gr1r2R2, σ2 := gr1R′2, σ3 := gr2 , σ4 := kr2 , σ5 := gα1α2+β1β2H(m)kr1r2R′′2 ,

where R2, R
′
2, R

′′
2 are random elements of Gp2 .

We now prove:

Lemma 5.2. Under Assumption 5.1, for any PPT A, its probability of producing a forgery which has a
non-zero component in Gp3 on either σ∗1 or σ∗5 is only negligibly different between GameA and GameMid.
Also, its total probability of producing a forgery is only negligibly different between GameA and GameMid.

Proof. We assume there exists a PPT attacker A which achieves a non-negligible difference either in its
probability of producing a forgery at all or in its probability of producing a forgery which has non-zero com-
ponent in Gp3 between GameA and GameMid. We will create a PPT algorithm B which breaks Assumption
5.1. B receives g, g3, T , where T is either in Gp1 or Gp1p2 . It will simulate either GameA or GameMid with
A, depending on the value of T .

It chooses random exponents a1, a2, b1, b2, α1, α2, β1, β2, v ∈ ZN and forms the verification key as:

VK : {N,G, g, k := gv, ga1 , ga2 , gb1 , gb2 , gα1 , gα2 , gβ1 , gβ2}.

As in the proof of the previous lemma, modeling H as a random oracle is not needed here, so we can think
of H as a public function for this step, or simply imagine that B chooses random responses to the random
oracle queries and remembers its answers for consistency. Since B knows all of the Gp1 elements in the secret
key, it can call the SignA algorithm to produce signatures. It also chooses d ∈ ZN randomly and sets the
rest of the secret key as g3, g

d
3 so it can call the SignB algorithm to produce signatures as well.

To produce the challenge signature on a message m with H(m) denoted by h, the simulator chooses a
random r2 ∈ ZN and implicitly sets gr1 to be the Gp1 part of T . It forms the challenge signature as:

σ1 = ga1a2+hb1b2T r2 , σ2 = T, σ3 = gr2 , σ4 = kr2 , σ5 = gα1α2+hβ1β2T vr2 .

22



If T ∈ Gp1 , this is identically distributed to the outcome of calling the SignA algorithm, so B has properly
simulated GameA in this case. If T ∈ Gp1p2 , then the Gp2 components on σ1, σ2, and σ5 are uniformly
random here, since r2 and v are random modulo p2. In this case, B has properly simulated GameMid.
B can always perform the verification test to check whether or not A has produced a valid forgery. Now,

when A has produced a forgery, B tests if σ∗1 , σ
∗
5 have any Gp3 components by pairing each with g3. We note

that one of σ∗1 , σ
∗
5 has a non-zero Gp3 component if and only if one of the pairings e(σ∗1 , g3), e(σ∗5 , g3) does

not yield the group identity. Thus, B can observe when A is forging, and also when it is producing a forgery
with with a non-zero Gp3 component on either of σ∗1 , σ

∗
5 . Thus, B can use the non-negligible difference in

A’s probability of satisfying whichever one of these conditions to achieve a non-negligible advantage against
Assumption 5.1.

We next prove dual oracle invariance with respect to forgeries (σ∗1 , . . . , σ
∗
5) having a non-zero Gp2 com-

ponent on σ∗1 or σ∗5 . This is where we use Assumption 5.2. As we mentioned, this will in some sense capture
both the “one-time” security of the BGOY scheme as well as its mechanism to prevent the adversary from
taking linear combinations of old signatures to create forgeries.

We give a bit more intuition about how this is possible. For simplicity, let’s ignore the last two elements
of the signature (i.e., corresponding exactly to the original scheme [15]) and and consider forgeries having
non-zero Gp2 component on σ∗1 ; the remaining signature elements are not used in an essential way here.
Intuitively, we set up the simulation by embedding gc1 , gc2 in the assumption into ga1 , ga2 , gb1 , gb2 in the
verification key of the scheme so that, to answer a signing query, the simulator produces (σ1, σ2, σ3) where
the gc1c2 term embedded in σ1 is cancelled out by gc1 , gc2 embedded in the σ2, σ3 components. However,
for exactly one signature, the gc1c2 term embedded in σ1 already cancels out, which allows the simulator to
embed X1X2 into gr1r2 instead. Thus, the simulator can produce one signature with X1X2 embedded in σ1,
but (necessarily) no gc1c2 term. However, observe that if the adversary could take a linear combination of
both kinds of signatures to produce a new one (or create one from scratch), this would have both gc1c2 and
X1X2 embedded in the first component, which is exactly the type of forgery we consider and could be used
to contradict the assumption.

Lemma 5.3. Under Assumption 5.2, for any PPT A, its probability of producing a forgery which has a
non-zero component in Gp2 on either σ∗1 or σ∗5 is negligible in GameMid.

Proof. We assume there exists a PPT attacker A who produces such a forgery with non-negligible probability
in GameMid. We will create a PPT algorithm B which breaks Assumption 5.2. B is given g, gc1 , gc2 , g3, X1X2.
B will simulate GameMid. Here, we will use that H is modeled as a random oracle. B first chooses a random
value h ∈ ZN , which it wants to be H(m) for the challenge message m. However, B does not know what
m will be at the start of the game, so it will guess which oracle query corresponds to the challenge message
m and respond with h to this query (B artificially inserts a random oracle query on the challenge message
once the challenge message is received in order to ensure that it queried at least once). It responds to all
other random oracle queries by choosing a random value in ZN (unless the query is repeated, in which case,
it repeats its previous response). Since the attacker A can only make a polynomial number of random oracle
queries, B’s guess will be correct with non-negligible probability. When the guess is incorrect, B will abort.
B chooses random exponents b′1, b

′
2, α
′
1, α
′
2, β
′
1, β
′
2, v,∈ ZN . It sets k = gv and implicitly sets a1 = c1, a2 =

hc2, b1 = c1 + b′1, b2 = −c2 + b′2, α1 = vc1 + α′1, α2 = hc2 + α′2, β1 = vc1 + β′1, β2 = −c2 + β′2. It forms the
verification key as:

VK : {N,G, g, k := gv, ga1 = gc1 , ga2 = (gc2)h, gb1 = gc1gb
′
1 , gb2 = (gc2)−1gb

′
1 ,

gα1 = (gc1)vgα
′
1 , gα2 = (gc2)hgα

′
2 , gβ1 = (gc1)vgβ

′
1 , gβ2 = (gc2)−1gβ

′
2}.

The parameters b′1, b
′
2, α
′
1, α
′
2, β
′
1, β
′
2 here are just used for re-randomization so that the parameters are prop-

erly distributed. The important thing to note is that a1a2 +hb1b2 and α1α2 +hβ1β2 will have no occurrences
of c1c2, since these will cancel out.

To respond to a SignA query on a message m′, B proceeds as follows. We let h′ denote H(m′). B chooses
random values r′1, r

′
2 ∈ ZN and implicitly sets r1 = c1(h− h′) + r′1, r2 = −c2 + r′2. Since r′1, r

′
2 are random,
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these are well-distributed. The term −c1c2(h− h′) in r1r2 will be used to the cancel the c1c2 terms arising
from a1a2 + h′b1b2 and α1α2 + h′β1β2. We note that

a1a2 + h′b1b2 = (h− h′)c1c2 − h′b′1c2 + h′b′2c1 + h′b′1b
′
2,

α1α2 + h′β1β2 = v(h− h′)c1c2 + vc1α
′
2 + α′1hc2 + α′1α

′
2 + h′β′1β

′
2 − h′β′1c2 + h′vc1β

′
2.

r1r2 = −(h− h′)c1c2 − r′1c2 + r′1r
′
2 + c1(h− h′)r′2.

The signature is formed as:

σ1 = (gc2)−h
′b′1−r

′
1(gc1)h

′b′2+(h−h′)r′2gh
′b′1b

′
2+r

′
1r
′
2 , σ2 = (gc1)h−h

′
gr
′
1 , σ3 = (gc2)−1gr

′
2 ,

σ4 = (gc2)−vgvr
′
2 , σ5 = (gc1)vα

′
2+vh

′β′2+v(h−h
′)r′2(gc2)hα

′
1−h

′β′1−vr
′
1gα

′
1α
′
2+h

′β′1β
′
2+vr

′
1r
′
2 .

To respond to SignB queries, the simulator chooses a random d ∈ ZN and computes gd3 . For each query,
it first forms a signature (σ′1, . . . , σ

′
5) in Gp1 as above, and adds on Gp3 components by choosing random

values x, y ∈ ZN and computing:

σ1 := σ′1 · gx3 , σ2 := σ′2 · g
y
3 , σ3 := σ′3, σ4 := σ′4, σ5 := σ′5 · (gd3)x.

It returns (σ1, . . . , σ5), which is well-distributed as an output of the SignB algorithm.
If the simulator has guessed correctly so that the challenge message m satisfies H(m) = h, then the

simulator creates the challenge signature as follows (otherwise, it aborts). It leverages the fact that the c1c2
terms in a1a2 + hb1b2 and α1α2 + hβ1β2 cancel, so it no longer needs to embed c1 and c2 into the r1 and

r2 values. Instead, it chooses random exponents r′1, r2 ∈ ZN and implicitly sets gr1 to be X
r′1
1 . It forms the

signature as:
σ1 = (gc2)−hb

′
1(gc1)hb

′
2ghb

′
1b
′
2(X1X2)r

′
1r2 , σ2 = (X1X2)r

′
1 , σ3 = gr2 ,

σ4 = kr2 , σ5 = (gc1)vα
′
2+hvβ

′
2(gc2)hα

′
1−hβ

′
1gα

′
1α
′
2+hβ

′
1β
′
2(X1X2)vr

′
1r2 .

Note that since r′1, r2, and v are all random modulo p2, the terms X
r′1
2 , X

r′1r2
2 and X

vr′1r2
2 are distributed

randomly in Gp2 . So B has properly simulated GameMid. It is crucial to note here that the simulator can only
make this one signature with Gp2 components - this is a reflection of both the underlying one-time security
and the mechanism which prevents combining signatures. By the cancelation technique, the simulator can
only sign this one message with p2 components, and it cannot combine this with other signatures.

Since the event that A produces a forgery which has a non-zero Gp2 component on σ∗1 or σ∗5 is independent
of the event that B aborts, we have that with non-negligible probability, B does not abort and A produces
such a forgery (m∗, σ∗). We let h∗ denote H(m∗). When B receives a forgery, it computes:

σ′1 := σ∗1 · (gc2)h
∗b′1(gc1)−h

∗b′2g−h
∗b′1b

′
2 ,

σ′5 := σ∗5 · (gc1)−vα
′
2−vh

∗β′2(gc2)−hα
′
1+h

∗β′1g−α
′
1α
′
2−h

∗β′1β
′
2 .

This strips off the extra randomizing terms, and the remaining Gp1 parts of the forgery must be of the form:

σ′1 = (gc1c2)h−h
∗
gr1r2 , σ∗2 = gr1 , σ∗3 = gr2 , σ∗4 = kr2 , σ′5 = (gc1c2)v(h−h

∗)kr1r2

for some r1, r2 ∈ ZN .
Now, if σ′1 also has a non-zero Gp2 component, then B can compute:

s1 := (σ′1)(h−h
∗)−1

, s2 := (σ∗2)(h−h
∗)−1

, s3 = σ∗3 ,

and we then have that
e(g, s1)/e(s2, s3) = e(gc1 , gc2),
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and s1 has a non-zero Gp2 component, so this breaks Assumption 5.2. We note that either s2 or s3 might
also have a non-zero Gp2 component, but both cannot have non-zero Gp2 components, since the original
forgery (m∗, σ∗) verifies.

If instead σ′5 has a non-zero Gp2 component, then B can compute:

s1 : (σ′5)(h−h
∗)−1v−1

, s2 := (σ∗2)(h−h
∗)−1

, s3 = σ∗3 ,

which will satisfy
e(g, s1)/e(s2, s3) = e(gc1 , gc2),

and s1 has non-zero Gp2 component. Hence, since at least one of these two events must occur with non-
negligible probability, B can break Assumption 5.2 with non-negligible probability.

By Lemma 5.2, we see that a PPT attacker must have the same overall probability of forging in GameA
versus GameMid, up to a negligible difference. By A-I matching, it can only produce Type I forgeries in
GameA with non-negligible probability. By lemmas 5.2 and 5.3, we see that a PPT attacker cannot start
producing forgeries of Type II with non-negligible probability as we move from GameA to GameMid. This
allows us to conclude that any PPT attacker’s probability of producing a Type I forgery must differ only
negligibly between GameA and GameMid. We now show that the same holds for the transition from GameMid

to GameB , and dual-oracle invariance then follows.

Lemma 5.4. Under Assumption 5.3, for any PPT attacker, its probability of producing a Type I forgery is
only negligibly different between GameMid and GameB .

Proof. We assume there exists a PPT attacker A which achieves a non-negligibly different probability of
producing a Type I forgery between GameMid and GameB . We will use this to create a PPT algorithm
B which breaks Assumption 5.3. B is given g,X1X3, Y2Y3, T , and its task is to determine if T ∈ Gp1p3 or
T ∈ Gp1p2 . It will simulate either GameMid or GameB with A, depending on the value of T . It will use the
term Y2Y3 to test if A is produces a Type I forgery.
B chooses random exponents a1, a2, b1, b2, α1, α2, β1, β2, v ∈ ZN and sets the verification key as:

VK : {N,G, g, k := gv, ga1 , ga2 , gb1 , gb2 , gα1 , gα2 , gβ1 , gβ2}.

For this stage of the proof, modeling H as a random oracle is not needed, so we can again think of H as
a public function for this step, or simply imagine that B chooses random responses to the random oracle
queries and remembers its answers for consistency. Since B knows all of the Gp1 elements in the secret key,
it can call the SignA algorithm to produce signatures.

To produce signatures which are properly distributed as outputs of the SignB algorithm, B proceeds as
follows. To sign a message m′ with H(m′) = h′, it chooses random exponents r′1, r2 ∈ ZN and implicitly sets

gr1 equal to X
r′1
1 . It will implicitly set the value d in the SignB algorithm equal to the value of v modulo p3

(this is uncorrelated from the verification key, which only involves the value of v modulo p1). It forms the
signature as:

σ1 = ga1a2+h
′b1b2(X1X3)r

′
1r2 , σ2 = (X1X3)r

′
1 , σ3 = gr2 , σ4 = kr2 , σ5 = gα1α2+h

′β1β2(X1X3)vr
′
1r2 .

This produces signatures identically distributed to outputs of the SignB algorithm.
To produce the challenge signature for a message m with H(m) = h, B chooses a random exponent

r2 ∈ ZN and implicitly sets gr1 equal to the Gp1 component of T . It forms the signature as:

σ1 = ga1a2+hb1b2T r2 , σ2 = T, σ3 = gr2 , σ4 = kr2 , σ5 = gα1α2+hβ1β2T vr2 .

If T ∈ Gp1p3 , this produces a signature identically distributed to an output of the SignB algorithm. If
T ∈ Gp1p2 , this produces a signature whose Gp2 components on σ1, σ2, and σ5 are uniformly random, since
r2 and v are random modulo p2. (Note that the value of v modulo p2 is not involved in either the verification
key or the SignB signatures.) Thus, if T ∈ Gp1p3 , then B has properly simulated GameB , and if T ∈ Gp1p2 ,
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then B has properly simulated GameMid. When B receives a forgery (m∗, σ∗) from A, it can test whether
the forgery is of Type I or not by computing e(Y2Y3, σ

∗
1) and e(Y2Y3, σ

∗
5). The forgery is of Type I if and only

if both of these pairings produce the identity element. Hence, B can leverage the non-negligible difference
in A’s probability of producing a Type I forgery to achieve non-negligible advantage against Assumption
5.3.

This completes our proof of dual-oracle invariance. Finally, we prove our scheme is B-II matching.

Lemma 5.5. Under Assumption 5.4, our scheme is B-II matching.

Proof. We assume there exists a PPT attacker A who produces a non-Type II forgery (i.e. a Type I forgery)
with non-negligible probability when it is only given signatures produced by the SignB algorithm. We will
create a PPT algorithm B which breaks Assumption 5.4. B is given g, gc1 , gc2 , gc1c2X3, g3. It chooses random
exponents b1, b2, α1, α2, β1, β2 ∈ ZN . It implicitly sets a1 = c1 and a2 = c2. It forms the verification key as:

VK : {N,G, g, k := gv, ga1 = gc1 , ga2 = gc2 , gb1 , gb2 , gα1 , gα2 , gβ1 , gβ2}.

As for many of the previous steps,, modeling H as a random oracle is not necessary here, so we can again
think of H as a public function for this step, or simply imagine that B chooses random responses to the
random oracle queries and remembers its answers for consistency.

To produce a signature for a message m with H(m) = h, B proceeds as follows. It chooses a random
value d ∈ ZN which will be fixed for all signatures. For each signature, it chooses fresh random values r′1, r2.

It will implicitly set gr1 as (gc1c2)d(v−d)
−1r−1

2 gr
′
1 . (Note the v − d and r2 are invertible modulo N with all

but negligible probability.) Since r′1, r2 are random, this makes r1, r2 also randomly distributed, as required.
It also chooses random values t, y ∈ ZN . It computes the signature as:

σ1 = ghb1b2(gc1c2X3)1+d(v−d)
−1

gr
′
1r2gt3, σ2 = (gc1c2X3)d(v−d)

−1r−1
2 gr

′
1gy3 , σ3 = gr2 ,

σ4 = kr2 , σ5 = gα1α2+hβ1β2(gc1c2X3)vd(v−d)
−1

gvr
′
1r2gdt3 .

To see that the Gp3 parts are well distributed, note that the ratio between the exponents of X3 is equal to d:

d(1 + d/(v − d)) = vd/(v − d).

This equality is the reason we have used the value d/(v − d). To see how we arrived at this choice of
parameters, let the variable r denote the coefficient of gc1c2X3 inside gr1r2 . To make the Gp1 parts well-
distributed and make the ratio between the X3 exponents equal to d simultaneously, we need r to satisfy:

d(1 + r) = vr.

Solving for r, we obtain r = d/(v − d), which is the value we have used above. The extra terms gt3 and gdt3
ensure that the Gp3 components on σ1 and σ5 are random up to having this fixed ratio, and the gy3 term
ensures that the Gp3 component of σ2 is always uniformly random. Thus, B is producing signatures which
are identically distributed to outputs of SignB .

When A produces a forgery (m∗, σ∗) where H(m∗) = h∗, B computes the quantities:

σ′1 := σ∗1 · g−h
∗b1b2 , σ′5 := σ∗5 · g−α1α2−h∗β1β2 .

Then, B computes:

((σ′1)v/(σ′5))
v−1

.

If A has produced Type I forgery (i.e. σ∗1 , σ
∗
5 ∈ Gp1), then this quantity is equal to gc1c2 . Since this happens

with non-negligible probability, B breaks Assumption 5.4.
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A Our Identity-Based Sequential Aggregate Signature Scheme

We show that the public key signature scheme defined in Section 5 gives rise to a provably secure identity-
based sequential aggregate signature (IBSAS) scheme. The scheme is an extension of the BGOY scheme [15]
in composite order groups.
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A.1 Syntax and Security Definitions

We recall from [15] that an identity-based sequential aggregate signature (IBSAS) scheme consists of four
algorithms:

Setup(1λ)→ PP,MK The setup algorithm takes as input the unary encoding of security parameter λ and
outputs the public parameters PP and master secret key MK.

KeyDer(MK, I)→ SKI The key derivation algorithm takes as input the master key K and an identity I,
and outputs a signing key SKI .

AggSign(SKI ,m, ((I1,m1), . . . , (Ii,mi)), σ
′)→ σ The sequential aggregate signing algorithm takes as in-

put a signing key SKI , a message m, a list of identity-message pairs (I1,m1), . . . , (Ii,mi) for i ∈ Z+, and an
aggregate signature σ′, and outputs a new aggregate signature σ or ⊥.

AggVerify(PP, ((I1,mn), . . . , (In,mn)), σ) → {True, False} The aggregate verification algorithm takes
as input public parameters PP, a list of identity-message pairs (I1,m1), . . . , (In,mn) for n ∈ Z+, and an
aggregate signature σ, and outputs “True” or “False.”

The scheme is required to be correct, meaning that for any n ∈ Z+ and list of identity-message pairs
(I1,m1), . . . , (In,mn), the aggregate verification algorithm when run on PP, ((I1,mn), . . . , (In,mn)), σn out-
puts “True,” for any PP, σn generated as follows. We first generate PP,MK by running the setup algo-
rithm on 1λ. For i = 1 to n we generate σi by running the aggregate signing algorithm run on inputs
SKIi ,mi, ((I1,m1), . . . , (Ii−1,mi−1)), σi−1, where σ0 is empty and each SKIi is itself generated by running
the key derivation algorithm on inputs MK, Ii.

Now, the security definition for an IBSAS scheme considers a challenger interacting with an adversary
against the scheme as follows:

Setup The challenger runs the Setup algorithm to generate public parameters PP and master secret key
MK. It gives PP to the adversary.

Attack Phase The adversary may issue “CreateKey” and “Aggregate” queries to the challenger. For a
“CreateKey” query, the adversary provides an identity I, and the challenger responds with a signing key SKI

it generates by running the key derivation algorithm on inputs MK and I. For an “Aggregate” query, the
adversary provides an identity I, a message m, a list of identity-message pairs (I1,m1), . . . , (Ii,mi) for any
i ∈ Z+ of the adversary’s choosing, and an aggregate signature σ′. The challenger responds with an aggregate
signature σ it generates by running the aggregate signing algorithm on SKI (itself generated by running the
key derivation algorithm on inputs MK and I) and the remaining inputs provided by the adversary.

Forgery Finally, the adversary outputs an attempted forgery consisting of a list of identity-message pairs
(I1,m1), . . . , (In,mn), for any i ∈ Z+ of the adversary’s choosing, and an aggregate signature σ. We say that
the adversary succeeds if (1) the verification algorithm returns “True” on inputs PP, ((I1,m1), . . . , (In,mn)), σ,
(2) all of I1, . . . , In are distinct, and (3) there is some 1 ≤ i∗ ≤ n such that during the attack phase the
adversary made neither a CreateKey query on Ii∗ nor any Aggregate query with the first two components
as Ii∗ and mi∗ .

We define the advantage of an adversary against an IBSAS scheme to be the probability it succeeds in the
above experiment. We say that an IBSAS scheme is secure if the advantage of any PPT adversary against
it is negligible.
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A.2 Our Scheme

We now define our IBSAS scheme.

Setup(1λ) → VK,SK The setup algorithm chooses a bilinear group G of order N = p1p2p3. It chooses
a random elements g, k ∈ G, and random exponents a, b, α, β ∈ ZN . It also chooses hash functions
H1, H2, H3, H4 : {0, 1}∗ → G and H5 : {0, 1}∗ → ZN , which will be modeled as random oracles. It sets the
public parameters as

PP := {N, {Hi}i=1,..,5,G, g, k, ga, gb, gα, gβ}

and the master secret key as
MK := {N, {Hi}i=1,..,4,G, a, b, α, β}.

KeyDer(MK, I)→ SKI The key derivation algorithm outputs

SKI := (H1(I)a, H2(I)b, H3(I)α, H4(I)β)

as the signing key for identity I.

AggSign(SKIi ,mi, ((I1,m1), . . . , (Ii−1,mi−1)), σ′) → σ If i > 1, the sequential aggregate signing algo-
rithm first checks σ′ verifies (according to the verification algorithm defined below) relative to PP and
(I1,m1), . . . , (Ii−1,mi−1); if not, it outputs ⊥. If so, then it chooses two random exponents s, x ∈ ZN , and
computes:

σ1 := σ′1H1(I)aH2(I)bH5(m)(σ′3)xs, σ2 := (σ′2)1/sgx, σ3 := (σ′3)s,

σ4 := (σ′4)s, σ5 := σ′5H1(I)αH2(I)βH5(m)(σ′4)xs

where if i = 1 we let σ′1 = 1G, σ′2 = g, σ′3 = g, σ′4 = k, σ′5 = 1G. It outputs the new aggregate signature
σ := (σ1, σ2, σ3, σ4, σ5).

Note that if we define r′1 = dlogg(σ
′
2) and r′2 = dlogg(σ

′
3), then the new aggregate signature has random-

ness r1 = s−1r′1 + x and r2 = sr′2. These values are random and mutually independent.

AggVerify(PP, ((I1,mn), . . . , (In,mn)), σ) → {True, False} The aggregate verification algorithm first
checks that I1, . . . , In are all distinct. It then checks that:

e(σ1, g) = e(

n∏
i=1

H1(Ii), g
a)e(

n∏
i=1

H2(Ii)
H5(mi), gb)e(σ2, σ3).

It also checks that:

e(σ5, g) = e(

n∏
i=1

H3(Ii), g
α)e(

n∏
i=1

H4(Ii)
H5(mi), gβ)e(σ2, σ4).

Finally, it checks that:
e(g, σ4) = e(k, σ3).

If all of these checks pass, it outputs “True.” Otherwise, it outputs “False.”
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We show correctness of the scheme by induction on i in the definition of correctness. For i = 1 this is
straightforward. For i > 1 we derive the first equation checked by aggregate verification algorithm as follows:

e(σ1, g) = e(σ′1, g)e(H1(Ii)
aH2(I)bH5(mi)(σ′3)xs, g)

= e(

i−1∏
j=1

H1(Ij), g
a)e(

i−1∏
j=1

H2(Ij)
H5(mj), gb)e(σ′2, σ

′
3)e(H1(Ii), g

a)e(H2(I)H5(mi), gb)e((σ′3)xs, g)

= e(

i∏
j=1

H1(Ij), g
a)e(

i∏
j=1

H2(Ij)
H5(mj), gb)e((σ′2)1/sgx, (σ′3)s)

= e(

i∏
j=1

H1(Ij), g
a)e(

i∏
j=1

H2(Ij)
H5(mj), gb)e(σ2, σ3)

where on the second line we use that by assumption the equation holds for (σ′1, σ
′
2, σ
′
3) if we remove (Ii,mi)

from the list of identity-message pairs. An analogous derivation pertains to the second equation checked
by the aggregate verification algorithm. Finally, the last equation checked by the aggregate verification
algorithm is easy to derive.

Discussion Our scheme can be viewed as an extension of the prior IBSAS scheme of [15] (BGOY) in
composite order rather than prime groups. Namely, the σ1, σ2, σ3 components of our aggregate signature
correspond exactly to a BGOY aggregate signature (in a composite order group). The additional σ4, σ5
elements in our aggregate signature may be viewed as a “second copy” of the BGOY scheme tied together
with the first copy by g and by r1, r2 (defined as dlogg(σ2) and dlogg(σ3) respectively). This second copy is
carried over to the corresponding public-key signature scheme in Section 5 and facilitates the security proof
of the latter.

However, note that the second copy is not “complete” in the sense that there is no component of the
form kr1 , which is crucial for our security proof but introduces a new challenge for aggregation. Namely,
it is important for the scheme’s security that the aggregation process independently re-randomize both r1
and r2. However, we cannot additively re-randomize r1 and r2 as r1 + s and r2 + x for random s, x as done
in [15], since in our case the signing algorithm would then need to form a “cross-term” kr1x to multiply into
σ5, which is hard without kr1 . Instead we re-randomize r2 multiplicatively as sr2 but r1 as s−1r1 + x in
order to allow updating the randomness in σ1 and σ5 correctly without needing kr1 .

We also note that while our security model for IBSAS schemes requires that the signers in an aggregate
signature have distinct identities, this is mainly to simplify the security proof of our scheme. Indeed, it is
possible to circumvent this issue for our scheme by using a technique introduced in [58]. Namely, if a signer
I has previously added a signature on a message m to an aggregate (σ′1, . . . , σ

′
5) and wishes to add another

signature on a message m′, it can set σ1 := σ′1H2(I)bH5(m‖m′)/H2(I)bH5(m) and similarly for σ5, and then
re-randomize the aggregate signature as above.

A.3 Security Analysis

Unlike the prior BGOY scheme, our IBSAS scheme is provably-secure under static assumptions. This is a
corollary of the following.

Theorem A.1. Under Assumption 5.5 and the assumption that the public-key signature scheme (using the
SignA algorithm) defined in Section 5 is existentially unforgeable, our IBSAS scheme is secure in the sense
defined above.

Proof. Assume there is a PPT adversary A breaking the IBSAS scheme. In the first step of the proof, we
change the real IBSAS security game Gamereal to a game Gamereal′ where the elements g, k in the public
parameters as well as the outputs of random oracles H1, . . . ,H4 belong to the Gp1 subgroup rather than the
full group G. For this we use Assumption 5.5 that given G, N and a challenge T where either T ∈ G or
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T ∈ Gp1 , it is hard to guess which one is the case. We give a simulator S that breaks this assumption if
there is a non-negligible difference in A’s advantage in Gamereal versus Gamereal′ . Simulator S given G, N
and T runs A on public parameters

PP := {N, {Hi}i=1,..,5,G, g := T, k := T d, T a, T b, Tα, T β}

where it chooses d, a, b, α, β ∈ ZN itself at random. When A makes a random oracle query to Hi for any
1 ≤ i ≤ 4, it responds with T r for a new random r ∈ ZN , and when A makes a random oracle query to H5,
it responds with a new random x ∈ ZN . (However, S maintains consistent answers to any repeat queries.)
Since S knows the corresponding MK to PP it can easily answer any CreateKey or Aggregate queries from
A appropriately. Finally, if A produces a forgery then S outputs 1. It is easy to see that if there is a
non-negligible difference in A’s advantage in Gamereal versus Gamereal′ then S breaks the Assumption 5.5.

It remains to argue that if A’s advantage in Gamereal′ is non-negligible then there is an adversary B that
breaks the public-key signature scheme. We describe B as follows. On input

VK := {N,H,G, g, k, ga1 , ga2 , gb1 , gb2 , gα1 , gα2 , gβ1 , gβ2}

B runs A on public parameters

PP := {N, {Hi}i=1,..,5,G, g, k, ga := ga1 , gb := gb1 , gα := gα1 , gβ := gβ1}; .

Let qi denote the maximum number of queries that A makes to Hi for 1 ≤ i ≤ 4. Then B chooses random
numbers 1 ≤ n∗i ≤ qi for 1 ≤ i ≤ 4. To simplify the simulation, we assume that A never includes an identity
I anywhere in its CreateKey or Aggregate queries, or in its forgery, that it has not queried to Hi for all
1 ≤ i ≤ 4. We describe how B responds to the various queries A can make (it is understood that consistency
is maintained for repeat queries):

Queries to H1, . . . ,H4 When A makes its j-th query to H1, which we denote by I1,j , if j = n∗1 it responds
with ga2 and otherwise with gt where t ∈ ZN is a new randomly chosen value. The responses given by
B to A’s queries to H2, H3, H4 are analogous where ga2 is replaced with gb2 , gα2 , and gβ2 respectively.
As before we denote the j-th query to Hi by Ii,j .

Queries to H5 When A makes a query to H5, A forwards this query to its own oracle H and gives the
response to B.

CreateKey queries When A makes a CreateKey query on identity I, if I = Ii,n∗i for any 1 ≤ i ≤ 4 then
B aborts. Otherwise, let Hi(I) = gti for 1 ≤ i ≤ 4 where the ti are known to B (by maintaining an
appropriate list). It sets

SKI := (ga1t1 , gb1t2 , gα1t3 , gβ1t4)

and gives SKI as the response to A.

Aggregate queries When A makes an Aggregate query on identity I, message m, list of identity-message
pairs (I1,m1), . . . , (Ik,mk) and aggregate signature σ′, if Ij = Ii,n∗i for any 1 ≤ j ≤ k and 1 ≤ i ≤ 4
then B aborts. Otherwise, B first checks that σ′ verifies with respect to PP and (I1,m1), . . . , (Ik,mk),
and otherwise responds to A with ⊥. If so, if I = Ii,n∗i for any 1 ≤ i ≤ 4 then B queries m to its own
signing oracle to receive (σ1, . . . , σ5). Otherwise, let Hi(I) = gti for 1 ≤ i ≤ 4 where the ti are known
to B. Using VK it sets

σ1 := ga1t1+b1t2H5(m)gr1r2 , σ2 := gr1 , σ3 := gr2 , σ4 := kr2 , σ5 := gα1t3+β1t4H5(m)kr1r2

where r1, r2 ∈ ZN are randomly chosen. Now let Hi(Ij) = gti,j for 1 ≤ i ≤ 4 and 1 ≤ j ≤ k where the
ti,j are known to B. It updates σ1 and σ5 as follows

σ1 := σ1

k∏
j=1

ga1t1,j+b1t2,jH5(mj), σ5 := σ5

k∏
j=1

gα1t3,j+β1t4,jH5(mj)

and gives (σ1, . . . , σ5) to A.
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Finally, A outputs as its attempted forgery an aggregate signature σ∗ = (σ∗1 , . . . , σ
∗
5) and a list of identity-

message pairs (I1,m1), . . . , (In,mn). If this is not a successful forgery, then we can ignore this attempt.
Otherwise, let i∗ satisfy condition (3) of the forgery definition. If Ij = Ii,n∗i for any 1 ≤ j 6= i∗ ≤ n and
1 ≤ i ≤ 4, or if Ii∗ 6= Ii,n∗i for any 1 ≤ i ≤ 4, then B aborts. Otherwise, let Hi(Ij) = gti,j for 1 ≤ i ≤ 4 and
1 ≤ j ≤ n where the ti,j are known to B Then B updates σ∗1 and and σ∗5 as follows:

σ∗1 := σ∗1/
∏
j 6=i∗

ga1t1,j+b1t2,jH5(mj), σ∗5 := σ∗5/
∏
j 6=i∗

gα1t3,j+β1t4,jH5(mj) .

It outputs (σ∗1 , . . . , σ
∗
5) as its own forgery. This concludes the description of B. Observe that unless B aborts,

it provides A with a perfect simulation of Gamereal′ ; in particular, this uses the fact that (as previously
noted) our aggregation procedure independently re-randomizes both r1 and r2. Furthermore, it is not hard
to show that B outputs a forgery of its own whenever A does; this uses the fact that I1, . . . , In in A’s forgery
are required to be distinct. Furthermore, B does not abort with probability at least 1/q1q2q3q4, which is
inverse polynomial. (A somewhat tighter security reduction is possible using Coron’s technique [33].) This
is because due to the rules of the IBSAS security game, B will not abort as long as it guesses the correct
values of n∗i for all 1 ≤ i ≤ 4, meaning that A queries Ii∗ in its forgery as the n∗i -th query to Hi, and all
these guesses are random and independent. The theorem follows.

B Security of Our Assumptions in the Generic Group Model

Though the assumptions we use are static and compact, some fall outside of the usual class of “subgroup
decision” assumptions. As a check on these assumptions, we show they hold in the generic bilinear group
model extended to the setting of composite order groups as in [52], when it is hard to find a non-trivial
factor of the group order N .

The Model We briefly describe the generic bilinear group model for composite order groups (or just
“generic group model”) and refer the reader to [52] for more details. Fix groups G,GT , each of the same
order p1 · · · pt, equipped with a bilinear map e : G×G→ GT . In the generic group model, a group element
x ∈ G is represented by a tuple (x1, . . . , xt) where each xi ∈ Zpi is dloggi(x) for a fixed generator gi of the
Gpi subgroup of G. Similarly, a group element in y ∈ GT is represented by a bracketed tuple [y1, . . . , yt], with
respect to the generators e(gi, gi). An algorithm is not given access to the groups G,GT directly, but rather
is provided with “handles” that correspond to group elements. The algorithm may query for the handle of
a new group element in a limited number of ways. First, it may submit two handles for elements both in
G or both in GT and it will receive in return the handle corresponding to their product under the group
operation. It may also submit a handle and an exponent in ZN , and it will receive a handle corresponding to
that group element raised to that exponent. It can also query for the handle of a result of a pairing operating
by submitting the two handles of the elements in G to be paired. We limit the adversary to querying on
handles it has previously received (this can be enforced by choosing random handles from a large enough set
that the adversary can only a guess a new handle with negligible probability).

To show an assumption is hard in this model, we consider a game between an adversary and a challenger.
The challenger will generate group elements according to the distribution specified in the assumption, and
will give the adversary handles to the group elements that are given out in the assumption. The adversary
then makes queries for handles of new elements, according to the allowed operations of group multiplication,
exponentiation by an element of ZN , and pairing. It is the adversary’s task to break the assumption.

We employ the strategy developed in [52]. We represent any group elements that are randomly chosen
from a subgroup by a tuple with indeterminates (i.e., formal variables) in the corresponding positions. For
example, a random element a ∈ Gp1p2 would be represented by A = (A1, A2, 0 . . . , 0) where A1, A2 are
indeterminates. Dependencies between elements are expressed by re-using formal variables. In the original
game, these random variables are instantiated by choosing group elements from the appropriate distributions
and giving out these handles. However, we pass to an alternate game where the variables are never concretely
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instantiated, and the challenger instead keeps track of the formal variables, and only assigns group elements
equal handles if they are the same as formal polynomials in the variables. The difference between this and
the original game is negligible (assuming the polynomials in the formal variables have constant degree), since
two unequal formal polynomials will only happen to be equal when instantiated with negligible probability.
We can then make an additional change to the game by doing all computation modulo N instead of modulo
pi in each component, since if this causes a difference, then a non-trivial factor of N can be computed, which
we are assuming to be hard.

In addition to the terms explicitly given to the adversary in our assumptions, we will add a randomly
distributed element of the full group, G. We denote this element by (Y1, Y2, Y3). This models the fact that
the adversary may have the capability to sample randomly from the full group. To see that giving the
adversary a single randomly distributed group element suffices to model this sampling ability, consider an
alternate game where the adversary is additionally able to query for a fresh random sample from G. If there
exists an adversary A who breaks one of our assumptions in this model, then we can create an adversary
B which breaks the assumption given only one randomly generated group element. This is because B can
respond to the random sampling queries of A by taking its one group element and raising it to randomly
chosen powers. We do not claim that this applies to all assumptions, since the internal views of B and
A will differ. However, in our assumptions, the goal is merely to produce group elements with particular
distributions, so A’s success will always imply success for B.

We do not include a random generator for GT , since all of the assumptions we consider here require
the adversary to produce elements in G, and elements of GT clearly do not aid the adversary in this task.
We note that the theorems in [52] which were used in [56, 57] to show generic security for the subgroup
decision assumptions that we also employ do not explicitly include generators of G or GT being given to the
adversary, but the theorems still hold if one were to add these terms.

Theorem B.1. Assumption 4.3 holds in the generic group model if it is hard to find a non-trivial factor of
N .

Proof. Here the adversary is given

(1, 0, 0), (A1, 0, 0), (R1, X2, 0), (A1R1,W2, 0), (R1A
2
1, V2, 0), (0, 1, 0), (0, 0, 1), (Y1, Y2, Y3)

and must compute
a = (a1, a2, a3), b = (b1, b2, b3)

such that

a1 = b1A
2
1 (4)

and a2, b2 = 0, a1 6= 0. Since the adversary can only produce linear combinations in ZN of the terms it is
given, it must use the (R1A

2
1, V2, 0) term to introduce a non-zeroA2

1 term in a. However, this introduces a non-
zero contribution from V2 in a2, and this cannot be canceled out because V2 does not appear elsewhere.

Theorem B.2. Assumption 5.4 holds in the generic group model if it is hard to find a non-trivial factor of
N .

Proof. Here the adversary if given

(1, 0, 0), (C1, 0, 0), (C2, 0, 0), (C1C2, 0, X3), (0, 0, 1), (Y1, Y2, Y3)

and must compute (C1C2, 0, 0). Since the adversary can only take linear combinations of the received terms,
it must use non-zero contribution from (C1C2, 0, X3), but this also yields a non-zero contribution from X3

in the third coordinate, which cannot be canceled out because X3 does not appear elsewhere.

Theorem B.3. Assumption 5.2 holds in the generic group model if it is hard to find a non-trivial factor of
N .
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Proof. Here is the adversary given

(1, 0, 0), (C1, 0, 0), (C2, 0, 0), (0, 0, 1), (X1, X2, 0), (Y1, Y2, Y3)

and must compute
a = (a1, a2, a3), b = (b1, b2, b3), d = (d1, d2, d3)

such that

a1 − b1d1 = C1C2 (5)

and a2 6= 0. Let’s write

a1 = αa + βaC1 + γaC2 + ζaX1 + ηaY1

b1 = αb + βbC1 + γbC2 + +ζbX1 + ηbY1

d1 = αd + βdC1 + γdC2 + +ζdX1 + ηdY1

where the coefficients are in ZN . Consider the coefficients of X1C1, X1C2, Y1C1, Y1C2 in b1d1, which are
respectively βbζd + βdζb, γbζd + γdζb, ηbβd + ηdβb, ηbγd + ηdγb. We argue at least one of them is non-zero,
which contradicts equation 5. (This uses some ideas from the proof of [15, Lemma C.1].) By equation 5 we
have βbγd + γbβd = 1. In particular, this means at least one the pairs (βb, γd), (γb, βd) contains two non-zero
coefficients. But since the coefficients of C2

1 and C2
2 on the RHS of equation 5 are zero and it is assumed to

be hard to find a non-trivial factor of N , exactly one of these pairs contains two non-zero coefficients and the
other pair has both equal to zero. Moreover, since a2 6= 0, at least one of ζa, ηa must be non-zero. If ζa is
non-zero then ζbαd + ζdαb = −ζa is also non-zero. But since the coefficient of X2

1 on the RHS of equation 5
is zero, similarly to before we have that exactly one of ζb, ζd is non-zero and the other is equal to zero. If
ηa 6= 0, then an analogous statement holds for ηb, ηd. In all cases we can derive the desired contradiction.

C BB-Derived Signatures

In this section, we will improve upon a signature scheme implied by a variant of the IBE scheme introduced
by Boneh and Boyen [16] as a final example of leveraging the dual form signature framework.

Naor observed that if an IBE scheme is adaptively secure, then the implied signature scheme is also secure
under the same complexity assumptions [19]. The IBE scheme originally proposed by Boneh and Boyen was
only shown to be selectively secure. However, Waters proposed a variant of the Boneh-Boyen scheme with
linear-size public keys that was shown to be adaptively secure [71]. Unfortunately, these linear size public
keys would carry over to the implied signature scheme.

Our starting point is a variant of the Boneh-Boyen IBE introduced by Lewko and Waters [56]. By
embedding the Boneh-Boyen scheme in composite order groups, Lewko and Waters were able to keep the
constant-size public keys and show that the scheme is adaptively secure. This yields an implied signature
scheme which has constant-size signatures and is existentially unforgeable. (By “constant-size”, we mean a
constant number of group elements. The group size will depend on the security parameter.) Our signature
scheme is a more efficient version of this, where verification is done directly instead of through IBE encryption.
Because of this modification, security for our scheme does not follow from the security of the related IBE
scheme.

In our scheme, the Boneh-Boyen structure takes place in Gp1 , while Gp3 is used for additional random-
ization, and the difference between the two signing algorithms appears in Gp2 . Namely, signatures produced
by SignA have no Gp2 components, while signatures produced by SignB have random Gp2 components. We
define the forgery types similarly: Type I forgeries have no Gp2 components, while Type II forgeries have
at least one nonzero Gp2 component. As for CL signatures, we prove dual-oracle invariance by designing
a backdoor verification test that the simulator can perform to reveal the presence of Gp2 components in
the forgery produced by the attacker. To perform this test, the simulator uses knowledge of the discrete
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logarithms of some of the public parameters u and h that form the core of the Boneh-Boyen structure. More
precisely, in the Gp1 group our signatures are of the form gr, gα(umh)r, where g, u, h are public parameters,
α is secret, and r is chosen randomly each time. In the proof, the simulator will know the discrete logarithms
of u and h base g (denoted by a and b respectively), which will allow it to perform a backdoor verification
which is like the real verification, except that the base g has been replaced by another a group element of the
simulator’s choice. Since the public parameters reveal no information about a and b modulo p2 and a+ bm
is a pairwise independent function of m, we are able to show that the challenge signature does not reveal
enough information about the space on which the backdoor test fails to enable the attacker to produce a
forgery for some new message m∗ that causes the simulator to mistake its type.

C.1 Our Dual Form Scheme

We now give our dual form version of BB-derived signatures.

KeyGen(λ): The key generation algorithm chooses two groups, G and GT of order N = p1p2p3, where
p1, p2, and p3 are distinct primes of length λ and e : G × G → GT is a non-degenerate, efficiently
computable bilinear map. It selects uniformly at random u, g, h ∈ Gp1 and α ∈ ZN . It sets

SK = (α, g2,3, g3)

and
PK = (N, u, g, h, e(g, g)α),

where g2,3 and g3 are generators of the subgroups Gp2p3 and Gp3 , respectively.

SignA(SK,M): Given a secret key SK = (α, g2,3, g3), a public key PK = (N, u, g, h, e(g, g)α), and a message
m ∈ Z∗N , the algorithm chooses r ∈ ZN and R3, R

′
3 ∈ Gp3 uniformly at random (we note that random

elements in Gp3 can be generated by raising the generator g3 to random exponents in ZN ). It outputs
the signature

σ = (σ2, σ1) = (grR3, g
α(umh)rR′3).

SignB(SK,M): Given a secret key SK = (α, g2,3, g3), a public key PK = (N, u, g, h, e(g, g)α), and a message
m ∈ Z∗N , the algorithm chooses r ∈ ZN and R2,3, R

′
2,3 ∈ Gp2p3 uniformly at random. It outputs the

signature
σ = (σ2, σ1) = (grR2,3, g

α(umh)rR′2,3).

Verify(PK,m, σ): Given a public key PK = (N, u, g, h, e(g, g)α), a message m, and a signature σ = (σ2, σ1),
the verification algorithm checks that

e(σ1, g)

e(σ2, umh)
=
e(g, g)αe(umh, g)r

e(g, umh)r
= e(g, g)α.

Forgery Classes We will divide the forgery types based on whether they have a Gp2 component. We let
z ∈ ZN denote the exponent represented by the tuple (0 mod p1, 1 mod p2, 0 mod p3). Then we can define
the forgery classes as follows:

Type I. VI = {(m∗, σ∗) ∈ V|(σ∗2)z = 1 and (σ∗1)z = 1}

Type II. VII = {(m∗, σ∗) ∈ V|(σ∗2)z 6= 1 or (σ∗1)z 6= 1}
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C.2 Complexity Assumptions

We employ the same three static assumptions used to prove security for the LW IBE scheme [56]. The first
two of these were previously stated in Section 4.2, so here we only state the third.

Assumption C.1. Given a group generator G, we define the following distribution:

(N = p1p2p3,G,GT , e)
R← G,

α, s
R← ZN , g

R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 ,

D = (G, g, gαX2, X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R← GT

We define the advantage of an algorithm, A, in breaking Assumption C.1 to be:

AdvC.1A (λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 9. We say that G satisfies Assumption C.1 if for any polynomial time algorithm, A, AdvC.1A (λ)
is a negligible function of λ.

C.3 Proof of Security

We will show that our new signature scheme is secure under these assumptions by showing that it satisfies
the three properties of a secure dual form signature scheme.

Lemma C.1. If Assumption 4.1 holds, then our signature scheme is A-I Matching.

Proof. Suppose that there exists an attacker, A, that can create a forgery that is not of Type I with
probability ε given access to an oracle for the SignA algorithm. Then we can create an algorithm B that
breaks Assumption 4.1 with advantage negligibly close to ε.
B first receives g,X3, T . B then randomly chooses exponents α, a, b ∈ ZN and sets SK = (α,X3) and

PK = (N, u = ga, g = g, h = gb, e(g, g)α = e(g, g)α). Notice that the SignA algorithm does not use g2,3, so
B does not need it in the secret key. For a query m, B chooses r, u, v ∈ ZN uniformly at random and outputs
the signature,

σ = (grXu
3 , g

α(umh)rXv
3 ).

Eventually, A will output a forgery, (σ∗,m∗). First, B will check that the forgery verifies, if not then
B will output b ∈ {0, 1} uniformly at random. If the forgery verifies, then B will try to use this forgery to
determine whether T is in Gp1 or Gp1p2 .
B sets

C0 = e(T, g)α, C1 = T am
∗+b, C2 = T.

Then B proceeds with a backdoor verification test using the C values as follows,

e(σ1, C2)

e(σ2, C1)
= C0.

Since it is guaranteed that (σ∗,m∗) passes the real verification test, we know that it will pass this
verification equation with T = gs for any exponent s ∈ ZN . However, since we do not know if T ∈ Gp1 ,
we do not know if we can express T simply as gs. In general, we can break T into its separate subgroup
components as follows,

T = gsgt22 ,
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where g2 is some generator for Gp2 and the exponents s and t2 are random, unless T ∈ Gp1 , in which case
t2 = 0. Likewise, we can divide the signature elements into their components,

σ∗2 = grg
s2,2
2 g

s2,3
3

σ∗1 = gα+r(am
∗+b)g

s1,2
2 g

s1,3
3 ,

where r and each si,j are some exponents in ZN . If B receives a Type I forgery, then s2,2 = s1,2 = 0.
Then the backdoor verification equation proceeds as follows,

e(σ1, C2)

e(σ2, C1)
=
e(g, g)αse(gam

∗+b, g)rse(g2, g2)s1,2t2

e(gam∗+b, g)rse(g2, g2)s2,2t2(am
∗+b)

= e(g, g)αse(g2, g2)t2(s1,2−s2,2(am
∗+b))

= C0e(g2, g2)t2(s1,2−s2,2(am
∗+b)) ?

= C0.

If this equality is false, then B will output 1. If the equality is true, then B will flip a coin b ∈ {0, 1} and
return b. Notice that if B tried to create its own signatures using T , if they were verifiable then they would
always pass this additional verification test. This means that B cannot gain any advantage against the
Assumption 4.1 challenger without using the output of A.

It must either be the case that T ∈ Gp1 or T ∈ Gp1p2 . If T ∈ Gp1 , then t2 = 0 and the equality will
always hold. In this case B will output 1 with probability 1/2.

If T ∈ Gp1p2 , then t2 6= 0, so B will pass the verification depending on the values of s2,2 and s1,2. If A
returns a Type I forgery, then s2,2 = s1,2 = 0 so s1,2 = s2,2(am∗ + b) and the forgery will always pass both
verification tests. In this case B will output 1 with probability 1/2.

If T ∈ Gp1p2 and A returns a Type II forgery (i.e. any forgery that is not of Type I), then either
s1,2 = s2,2(am∗ + b) or s1,2 6= s2,2(am∗ + b). If s1,2 = s2,2(am∗ + b), then the forgery will always pass the
second verification test and B will output 1 with probability 1/2. However, in order for an attacker to create
a Type II forgery where s1,2 = s2,2(am∗ + b), the attacker must be able to implicitly determine am∗ + b
modulo p2. Of course, m∗ will be known to the attacker, but a and b modulo p2 are not revealed at any
point during the query phase, so there is a negligible chance, δ, of an attacker being able to create a Type
II forgery that passes the second verification test.

Finally, if T ∈ Gp1p2 and s1,2 6= s2,2(am∗ + b) then the test will always fail, so B will output a 1 with
probability 1. Thus, we can calculate the advantage of B agains the Assumption 4.1 challenger,

|Pr[B(D,T1) = 1]− Pr[B(D,T2) = 1]| =
∣∣∣∣ε(δ · 1

2
+ (1− δ)1

)
+ (1− ε)1

2
− 1

2

∣∣∣∣
=

1

2
ε− 1

2
εδ.

Thus, if ε is non-negligible, then B has non-negligible advantage against the Assumption 4.1 challenger.

Lemma C.2. If Assumption 4.2 holds, then our signature scheme satisfies dual-oracle invariance.

Proof. Suppose that there exists an attacker, A, that can break dual-oracle invariance with non-negligible
advantage. Then we can create an algorithm B that breaks Assumption 4.2 with non-negligible advantage.
B receives G, g,X1X2, X3, Y2Y3, T . B picks random exponents a, b, α ∈ ZN and sets PK = (N, u =

ga, g = g, h = gb, e(g, g)α = e(g, g)α) and SK = (α,X3, Y2Y3). Using these keys, B will be able to simulate
both the SignA and the SignB algorithms.

If A requests a signature from the SignA oracle for a message m, B chooses r, u, v ∈ ZN randomly and
outputs the signature

σ = (grXu
3 , g

α(umh)rXv
3 ).
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Likewise, if A requests a signature from the SignB oracle for a message m, then B chooses r, u, v ∈ ZN
randomly and outputs the signature

σ = (gr(Y2Y3)u, gα(umh)r(Y2Y3)v).

Finally, A will query B on some challenge message, m. B will choose a random u ∈ ZN , and return the
challenge signature

σ = (T, gαT am+bXu
3 ).

Clearly, if T ∈ Gp1p3 , then the challenge signature will be a correctly formed signature from the SignA
algorithm, and if T ∈ G, then the challenge signature will be a correctly formed signature from the SignB
algorithm. Note that am+b modulo p2 will not be correlated with a and b modulo p1, so the second element
will be randomly distributed in the Gp2 subgroup.

Once A returns the forgery, (σ∗,m∗), B must first check that A has not seen a signature for m∗ before
and that (σ∗,m∗) verifies. If either of these checks fail then B will guess randomly. If both of these are true,
then B must determine what forgery class (σ∗,m∗) belongs to in order to determine what subgroup T is in.
To distinguish between the forgery types, B must use a backdoor verification test similar to the one used in
the proof of Lemma C.1. B sets

C0 = e(X1X2, g)α, C1 = (X1X2)am
∗+b, C2 = X1X2,

and checks if
e(σ1, C2)

e(σ2, C1)
= C0.

As we did in the proof of Lemma C.1, we can separate X1X2 into its subgroup components,

X1X2 = gsgx2
2 ,

where g2 is some generator for the subgroup Gp2 and s and x2 are random exponents from Z∗N . As before,
note that since (σ∗,m∗) passes the real verification equation, it will pass this backdoor verification in the
Gp1 subgroup. We can also rewrite the forgery elements in terms of their subgroup components,

σ∗2 = grg
s2,2
2 g

s2,3
3

σ∗1 = gα+r(am
∗+b)g

s1,2
2 g

s1,3
3 ,

where g3 is a generator for Gp3 and r and each si,j are exponents in ZN .
The backdoor verification equation then becomes,

e(σ1, C2)

e(σ2, C1)
=
e(g, g)αse(gam

∗+b, g)rse(g2, g2)s1,2x2

e(gam∗+b, g)rse(g2, g2)s2,2x2(am∗+b)

= e(g, g)αse(g2, g2)x2(s1,2−s2,2(am∗+b))

= C0e(g2, g2)x2(s1,2−s2,2(am∗+b)) ?
= C0.

This gives us a result similar to the proof of Lemma C.1. However, in this case we know that x2 is nonzero,
so a forgery will only pass this verification test if s1,2 = s2,2(am∗+b). Thus, if the forgery fails the test, then
with probability 1 it is a Type II forgery. If the forgery passes the test then it can be either Type I or Type
II. If σ∗ is a Type I forgery, then s2,2 = s1,2 = 0, and it will pass this backdoor verification test. We claim
that a Type II forgery can also pass the additional verification test, but only with negligible probability.

In order to create a Type II forgery where s1,2 = s2,2(am∗ + b), an attacker must implicitly determine
am∗ + b modulo p2. Of course, m∗ will be known to the attacker. However, during the query phase, no
information about the values of a and b modulo p2 is revealed. Therefore, if an attacker is to determine the
values of a and b modulo p2, it must be from the challenge signature.
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In the challenge signature, a and b are only included in the second signature element. Thus, from the
challenge signature, the attacker can derive the single value am+b modulo p2. However, this single equation
has two unknowns (a and b), and it is impossible to determine the unique values of a and b modulo p2.
Moreover, am+ b is a pairwise independent function of m modulo p2. Therefore, the attacker has no better
than the negligible probability of achieving the correct value of am∗ + b modulo p2, as long as m 6= m∗

modulo p2. It is possible that m∗ is equal to m modulo p2, but unequal to m modulo N . If this occurs
with non-negligible probability, then B can extract a non-trivial factor of N by computing the g.c.d of N
and m−m∗. This non-trivial factor can be used to break Assumption 4.2 with non-negligible advantage, as
proven in [56]. Thus, we may assume that m 6= m∗ modulo p2, except with negligible probability. Hence, if
a forgery passes the additional verification test, then with high probability it is a Type I forgery.

Lemma C.3. If Assumption C.1 holds, then our signature scheme is B-II Matching.

Proof. Suppose that there exists an attacker, A, that can create a Type I forgery with non-negligible prob-
ability ε given access to an oracle for the SignB algorithm. Then we can create an algorithm B that breaks
Assumption C.1 with non-negligible advantage.
B first receives g, gαX2, X3, g

sY2, Z2. B then chooses random exponents a, b,∈ ZN and sets PK = (u =
ga, g = g, h = gb, e(g, g)α = e(gαX2, g)) and SK = (α,X3, Z2X3). B does not know α, but can use gαX2 to
correctly simulate the SignB algorithm.

If A requests the signature for a message m, B chooses exponents r, u, v, c, d ∈ ZN and outputs the
signature

σ = (grZc2X
u
3 , g

αX2(umh)rZd2X
v
3 )

This is clearly a verifiable signature and it will be randomly distributed in the Gp2 and Gp3 subgroups.
After the query phase, A will output some forgery, (m∗, σ∗). First, B will check that the forgery correctly

verifies. If the forgery fails verification, then B will guess randomly. If the forgery verifies, then B can use
this forgery to determine whether T = e(g, g)αs or if it is randomly selected from GT . B will use a backdoor
verification test similar to the one used in the proofs of Lemmas C.1 and Lemma C.2. First, B sets

C0 = T, C1 = (gsY2)am
∗+b, C2 = gsY2.

Since a and b are chosen randomly modulo N , there will be no correlation between the Gp1 and the Gp2
components of C1. Finally, B will check that

e(σ1, C2)

e(σ2, C1)
= C0.

We can represent T by
T = e(g, g)αsr

′
,

where r′ = 1 if T = e(g, g)αs and r′ 6= 1 with high probability if T is randomly chosen from GT . We will use
the same representation of σ∗ as in the proof of Lemmas C.1 and C.2. If σ∗ is a Type I forgery, we know
that s2,2 and s1,2 must be zero.

The backdoor verification equation now becomes:

e(σ1, C2)

e(σ2, C1)
=
e(g, g)αse(gam

∗+b, g)rse(g2, Y2)s1,2

e(gam∗+b, g)rse(g2, Y2)s2,2(am
∗+b)

= e(g, g)αse(g2, Y2)s1,2−s2,2(am
∗+b) ?

= C0.

If the equation verifies correctly, then B will output 1. If the equation fails, then B will flip a coin b ∈ {0, 1}
and output b. As before, notice that if B attempted to create its own signatures using T that they would
always pass this verification test. This means that B cannot gain any advantage over the Assumption C.1
challenger without the output of A.
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Suppose that T is selected randomly from GT , then with all but negligible probability r′ 6= 1. This means
that the additional verification equation will fail with all but with some negligible probability, δ. In this case
B will output 1 with probability 1/2.

On the other hand, consider the case where T = e(g, g)αs. With probability ε, A will produce a Type I
forgery where it is guaranteed that s2,2 = s1,2 = 0. In this case, since (σ∗,m∗) passes the real verification
test, it must pass the backdoor verification test, meaning that B will output 1 with probability 1.

If T = e(g, g)αs and A produces a Type II forgery, where s1,2 6= s2,2(am + b), then the verification
equation will be false and B will output 1 with probability 1/2. If A produces a Type II forgery where
s1,2 = s2,2(am + b), since (σ∗,m∗) passes the real verification test, the equation will be true and B will
output 1. However, a and b modulo p2 are not given out at all during the query phase, so the probability of
A achieving this correlation will be some negligible probability, δ′.

Given all these possibilities, we can calculate the advantage of B as follows,

|Pr[B(D,T1) = 1]− Pr[B(D,T2) = 1]| =
∣∣∣∣Pr[B(D,T1) = 1]−

(
δPr[B(D,T1) = 1] + (1− δ) · 1

2

)∣∣∣∣
=

∣∣∣∣(1− δ)(Pr[B(D,T1) = 1]− 1

2

)∣∣∣∣
= (1− δ)

((
ε+ (1− ε)

(
δ′ + (1− δ′) 1

2

))
− 1

2

)
= (1− δ)

(
1

2
ε+

1

2
δ′ − 1

2
εδ′
)
,

which is non-negligible.
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