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Abstract. In this study, a novel pairing based strong designated verifier signature
scheme based on non-interactive zero knowledge proofs is proposed. The security of
the proposal is presented by sequences of games without random oracles; furthermore,
this scheme has a security proof for the property of privacy of the signer’s identity in
comparison with the scheme proposed by Zhang et al. in 2007. In addition, this proposal
compared to the scheme presented by Huang et al. in 2011 supports non-delegatability.
The non-delegatability of our proposal is achieved since we do not use the common secret
key shared between the signer and the designated verifier in our construction. Further-
more, if a signer delegates her signing capability which is derived from her secret key on
a specific message to a third party, then, the third party cannot generate a valid desig-
nated verifier signature due to the relaxed special soundness of the non-interactive zero
knowledge proof. To the best of our knowledge, this construction is the first attempt to
generate a designated verifier signature scheme with non-delegatability in the standard
model, while satisfying of non-delegatability property is loose.
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1 Introduction

Jakobsson et al. [13] introduced the notion of designated verifier proofs (DVP) in 1996. These
proofs allow a signer (Alice) to designate a verifier (Bob) and prove the validity of a statement
only to Bob; while Bob cannot use this transcript to convince anyone else. This motivates
non-transferability and is generally achieved by proving either the validity of the statement
or the knowledge of Bob’s secret key. Consequently, Bob can always generate the same tran-
script. A designated verifier signature (DVS) is the non-interactive version of the DVP. A DVS
is publicly verifiable and a valid DVS is generated by Alice or Bob. The DVS is applied in
various cryptographic schemes such as voting [13], undeniable signature [5, 7, 9], deniable au-
thentication [25] where it is required that only designated entities can be convinced of several
statements. It is desirable that a third party except Alice and Bob cannot tell whose signa-
ture is sent to Bob. A DVS with this property is called a strong designated verifier signature
(SDVS)[13]. The strength of a SDVS as privacy of a signer’s identity (PSI) is formalized by
Laguillamie and Vergnand in 2004 [16]. A valid designated verifier signature for Bob on behalf
of Alice is generated if and only if the secret key of either Alice or Bob is known. This property
means non-delegatability for signing and is introduced by Lipmaa et al. [18] in 2005.
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1.1 Related Work

Several variants for DVS such as ring signatures [19, 20], universal designated verifier signatures
(UDVS) [8, 9, 14, 21, 24, 27], multi-designated verifier signatures [13, 15], and identity-based des-
ignated verifier signatures (IBDVS)[4, 10, 11, 23], and (SDVS)[4, 10] are proposed. Several DVS
schemes [16, 17, 21, 22] are shown to be delegatable since the notion of non-delegatability [18]
is introduced, while there are a few non-delegatable DVS schemes [11, 18, 28] in the random
oracle model [2]. Since 2007, two SDVS schemes in the standard model are proposed in [12]
and [28], respectively. To present a non-delegatable SDVS scheme without random oracles is
an open problem as aforementioned in [12].

1.2 Contribution

In this paper, a novel strong designated verifier scheme without random oracles is proposed. We
use the paradigm which is slightly analogous to the Bellare and Goldwasser’s paradigm [1]; this
paradigm combines the ordinary signature proposed by Waters [26] and non-interactive zero
knowledge (NIZK) proof without random oracles [6]. Our proof of non-delegatability evidently
is not a proof of knowledge, the proof with standard special soundness, of the secret key of the
signer or the designated verifier. The non-delegatability of our proposal is achieved since we
do not use the common secret key shared between the signer and the designated verifier in our
construction. Furthermore, if a signer delegates her signing capability which is derived from her
secret key on a specific message to a third party, then, the third party cannot generate a valid
designated verifier signature due to the relaxed special soundness of the NIZK proof. To the best
of our knowledge, this is the first attempt to generate a designated verifier signature scheme
with non-delegatability in the standard model, while satisfying of non-delegatability property is
due to the relaxed special soundness of the NIZK proof instead of standard special soundness
of these proofs [6]. Moreover, we prove the security of the proposal, i.e. unforgeability and
privacy of the signer’s identity using sequences of games without random oracles. This scheme
has a security proof for the property of privacy of the signer’s identity in comparison with
the scheme proposed by Zhang et al. in 2007 [28], and this proposal compared to the scheme
presented by Huang et al. in 2011 [12] supports non-delegatability as well.

1.3 Outline of the paper

The rest of this manuscript is organized as follows. Section 2 presents a number of preliminaries,
bilinear pairings and complexity assumptions, as the signature foundation. The model of SDVS
including outline of the SDVS scheme and its security properties are described in section 3. The
proposed scheme and its formal security proofs are presented in section 4. Section 5 presents
the conclusion. Appendices are given in sections 6 and 7.

2 Preliminaries

In this section, we review several fundamental backgrounds employed in this research, including
bilinear pairings and complexity assumptions.
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2.1 Bilinear pairings

Let G and GT be two cyclic multiplicative groups of prime order p; furthermore, let g be a
generator of G. The map e : G × G −→ GT is said to be an admissible bilinear pairing if the
following conditions hold true.

1. e is bilinear, i.e. e(ga, gb) = e(g, g)ab for all a and b ∈ Zp

2. e is non-degenerate, i.e. e(g, g) 6= 1GT

3. e is efficiently computable.

We refer readers to [3] for more details on the construction of bilinear pairings.

2.2 Definitions and complexity assumptions

Definition 1 (Problem generator g̃dl = (Gdl, gdl)). Gdl outputs an instance t = (p, γ, h = γx),
where p is prime, p is k-bit long, and γ is an element of Zp and h = γx mod p. In this case,
the solution is gdl(t) = x.
An algorithm A is said to completely break g̃dl if it is able to solve any instance t with non-
negligible probability [6].

Definition 2 (Problem generator H̃Paillier = (HPaillier, hPaillier)). HPaillier(k′) outputs an
instance (n, c), where n is k′-bit RSA modules along with c = (1 + n)αrn mod n2 (i.e. c is a
paillier encryption of α), where α is chosen at random in some given interval. The solution is
hPaillier(n, c) = α.
An algorithm A is said to completely break H̃Paillier if it is able to solve any instance (n, c)
with non-negligible probability [6].

Assumption 1 . H̃Paillier is 2-harder than g̃dl. This assumption is presented in [6]; further-
more, the reasonability of this assumption is discussed in [6].

Assumption 2 (Decisional Diffie-Hellman (DDH)assumption). Given (g, ga, gb, Z ∈ Zp) for
some unknown a, b ∈R Zp, there is no probabilistic polynomial-time algorithm A that can
decide if Z = gab or Z is a random element from Z ∈ Zp with non-negligible probability εddh.

Assumption 3 (Semantic security, security for indistinguishable chosen plaintext attack (IND-
CPA Security) of H̃Paillier = (HPaillier, hPaillier)). A cryptosystem with a security parameter
k′ is semantically secure if there is no probabilistic polynomial time algorithm A on inputs
(α0, α1) and c∗ = Epk1V

(αb), where b ∈R {0, 1} can output the correct plaintext inside c∗ with
non-negligible probability εind (a negligible quantity in k′ for all sufficiently large k′).

3 Model of strong designated verifier signature schemes

In this section, we review the outline and security properties of the strong designated verifier
signature schemes.
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3.1 Outline of designated verifier signature schemes

There are two participants in a designated verifier signature scheme, the signer S and the
designated verifier V . A designated verifier signature scheme consists of five algorithms as
follows.

– Setup: Given a security parameter k, this algorithm outputs the system parameters.
– Key generation: It takes the security parameter k as its input and outputs the secret-public

key (ski, pki) for i ∈ {S, V }.

– Signing: This algorithm (signing oracle Os) takes the signer’s secret key skS , the designated
verifier’s public key pkV , and a message M as its inputs to generate a signature θ.

– Verification: This algorithm (verification oracle Ov) takes the designated verifier’s secret
key skV , the signer’s public key pkS , the message M , and the signature θ as its inputs and
returns 1 if the signature is valid, otherwise returns 0 indicating the signature is invalid.

– Transcript simulation: This algorithm (simulation oracle Osim) takes the designated veri-
fier’s secret key skV , the signer’s public key pkS , and a message M as its inputs to output
an identically distributed transcript θ′ which is indistinguishable from the one generated
by the signer.

3.2 Security properties of designated verifier signature schemes

A SDVS scheme ought to be unforgeable, non-transferable, and satisfy the privacy of the
signer’s identity. An SDVS is said to be non-delegatable if it satisfies non-delegatability. Infor-
mal definitions of these properties are expressed as follows.

1. Correctness: A properly formed SDVS must be accepted by the verifying algorithm. For-
mally, the correctness of the SDVS requires that for any (pkS , skS), (pkV , skV ) and any mes-
sage M ∈ {0, 1}∗, we have pr[ver(skV , pkS , pkV ,M, θ = sign(skS , pkS , pkV ,M)) = 1] = 1.

2. Unforgeability: It requires that no one other than the signer S and the designated verifier
V can produce a valid designated verifier signature. The formal definition of unforgeability
[13] is expressed in Definition 3, Appendix A.

3. Non-transferability: This property means that it should be infeasible for any PPT distin-
guisher to tell whether σ on a message M was generated by the signer S or simulated by
the designated verifier V . The formal definition of non-transferability [13] is expressed in
Definition 4, Appendix A.

4. Privacy of the Signer’s Identity (PSI): A SDVS has the property of PSI if no one can tell
signatures generated by the signer S0 for a V is different from signatures generated by the
signer S1 for the V in case of not knowing the secret key of the V . The formal definition
of this property [16] is given in Definition 5, Appendix A.
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5. Non-delegatability: It requires that if one generates a valid designated verifier signature on
a message, it must ”know” the secret key of either S or V . Therefore, a signature is a proof
of knowledge of secret key of either S or V . The formal definition of non-delegatability [18]
is presented in Definition 6, Appendix A.

4 Our designated verifier signature scheme

In this section, we describe our designated verifier signature scheme. There are two participants
in the system the signer S and the designated verifier V . In the following, all the messages to
be signed will be represented as bit strings of length y. Our scheme consists of five algorithms
as follows.

1. Setup: The system parameters are as follows. Let (G, GT ) be bilinear groups where |G| =
|GT | = p for some prime p with k-bit length; further, let g be the generator of G. e denotes
an admissible pairing e : G × G −→ GT . Pick m′ ∈ G, and a vector m = (mi) of length
y, whose entries are random elements from G. The public parameters are (G, GT , e,m′,m).

2. Key generation: The signer S picks randomly x1S and x2S ∈ Z∗
p , then, the signer S com-

putes her public key pkS = (pk1S , pk2S) = (gx1S , gx2S ), where the signer secret key is
gx1Sx2S . Furthermore, it is assumed that every designated verifier has a secret-public key
pair (sk1V , pk1V ) = ((p′, q′), n) ←R HPaillier(k′), where n = p′q′ is a k′-bit RSA mod-
ulus with two large primes p′ and q′ for the paillier’s cryptosystem with the condition
k′ > lz(k) + 1, where lz(k) is the bit length of the plaintext inside the paillier’s cryptosys-
tem.
Moreover, the designated verifier V chooses another secret key sk2V = α with lα(k)-bit
length and sets the corresponding public key to the encryption of the message α under
the public key pk1V i.e., pk2V = c = Epk1V

(α) = (1 + n)αrn mod n2, where r is uniformly
selected in Z∗

n. Dsk1V
(Epk1V

(α)) = α is the decryption of Epk1V
(α) and the output is α.

The public keys of the designated verifier are (pk1V , pk2V ) = (n, c) and corresponding se-
cret keys are (sk1V , sk2V ) = ((p′, q′), α).

Before we explain the details of the proposal, the overview of the proposal is presented: a
signature of a user on a message M is θ = (σ1, σ2) = (gx1Sx2S (Mβ), gβ), where gx1Sx2S is
the secret key of the signer. The signature θ of the signer with the public key (pk1S , pk2S)
is verified as e(σ1, g) = e(σ2, g)e(pk1S , pk2S). To convert the signature to a designated ver-
ifier signature, we do not include σ2 in the signature; however instead, we set σ2 to be a
NIZK proof showing that σ1 is binding to either the signer or the designated verifier. The
non-delegatability of our proposal is achieved since we do not use the common secret key
shared between the signer and the designated verifier in our construction. However, if a
signer delegates her signing capability which is derived from her secret key on a specific
message to a third party, then, the third party cannot generate a valid designated verifier
signature due to the relaxed special soundness of the NIZK proof.

3. Signing. Let M be an y-bit message to be signed by the signer S and Mi denotes the
i-bit of M , and M̃ ⊆ {1, 2, ..., y} be the set of all i for which Mi = 1, the designated
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verifier signature is generated as follows. First, the signer S picks random values β and
r ∈R Z∗

p , then, the designated verifier signature θ = (σ1, σ2 = (a1, ż1 = Epk1V
(z1))) on M

is constructed as expressed in Eq.(1).

σ1 = gx1Sx2S (m′ ∏
i∈M̃

mi)β

a1 = e((m′ ∏
i∈M̃

mi), g)r

ż1 = Epk1V
(z1) = Epk1V

(r)pkβ
2V

(1)

4. Verifying. To check whether θ is a valid designated verifier signature on the message M ,
the designated verifier V uses his secret key sk1V to decrypt ż1; then, he checks whether
Eq.(2) holds.

e((m′ ∏
i∈M̃

mi), g)z1 = a1(
e(σ1,g)

e(pk1S ,pk2S) )
α (2)

If the equality holds, the designated verifier V accepts the signature θ; otherwise, the des-
ignated verifier V rejects it.

5. Simulation of a transcript. The designated verifier V can use his secret key α to simulate a
signature which is indistinguishable from the one generated by the signer S on an arbitrary
message M . He picks random values σ1 and z1 ∈R Z∗

p , then, the designated verifier signature
θ = (σ1, σ2 = (a1, ż1 = Epk1V

(z1))) on M is constructed as expressed in Eq. (3).

ż1 = Epk1V
(z1)

a1 =
e(m′ ∏

i∈M̃
mi,g)z1

(
e(σ1,g)

e(pk1S,pk2S) )
α

(3)

4.1 Analysis of the scheme

In this section, we will primarily show the correctness of the proposed scheme. Subsequently,
we prove that the proposal is secure without random oracles.

Correctness. The correctness of the scheme is clear by inspection.
Dsk1V

(ż1) equals the correct value z1 = r + βα since k′ > lz1(k) which ensures that z1 < n.
Moreover, we have

e((m′ ∏
i∈M̃

mi), g)z1

= e((m′ ∏
i∈M̃

mi), g)r+βα

= e((m′ ∏
i∈M̃

mi), g)re((m′ ∏
i∈M̃

mi), g)βα

= a1((e((m′ ∏
i∈M̃

mi), g))β)α

= a1(
e(σ1,g)

e(pk1S ,pk2S) )
α

(4)

As we shall see later (Theorem 2), the scheme is perfectly non-transferable. Hence, making
query to Osim is equivalent to making query to signing oracle Os in the games of unforgeability
and privacy of the signer’s identity.
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Theorem 1. If there exists an adversary A who can (t, qs, qsim, qv, ε) forge the designated
verifier signature scheme, then there exists another algorithm A1 that can use A to break the
DDH assumption with probability εddh in time t1 ' t and an algorithm A2 that breaks the
semantic security of the public-key cryptosystem HPaillier with probability εind in time t2 ' t,
where ε < εddh + εind + (qs + qsim + qv) 1

p .

Proof. The theorem is proved by a series of games; it is supposed that A is an adversary
which can violate the unforgeability of the scheme. Let Gi be the i-th game, and Xi be the
event that A outputs a successful forgery in game Gi.

– G0: This is the original game. The challenger C selects α, a and b ∈R Z∗
p ; furthermore, C

chooses two large numbers p′ and q′ such that n = p′q′, then, it sets (pk1S , pk2S , pk1V , pk2V ) =
(ga, gb, n, c). (sk1V , pk1V ) is given to the verification oracle Ov. A1 invokes A on inputs
(pk1S , pk2S , pk1V , pk2V ) = (ga, gb, n, c). The secret key employed to generate a designated
verifier signature is Ks = gab, while the secret key employed to simulate a designated ver-
ifier signature is Ksim = α. For each signature query M , C generates the corresponding
answer with Ks instead of gx1Sx2S as aforementioned in Eq.(1). For each simulation query
M , C simulates the corresponding answer as aforementioned in Eq.(3). For each verification
query (M, θ), C responses with the appropriate bit indicating the validity of the signature,
1 if the signature is valid, 0 otherwise. It should be noted that Ov verifies the signature
(M, θ) as aforementioned in Eq.(2) and outputs the correct bit. The adversary A finally
outputs a successful forgery (M∗, θ∗) with probability pr[X0] = ε, which M∗ is new and θ∗

satisfies the Eq.(2).

– G1: This game is different from the game G0 in which the secret key, Ks used to generate
a designated verifier signature is chosen at random from Zp, i.e. Ks = K ∈R Zp. Moreover,
the validity of the adversary’s forgery is checked w.r.t. the random key, K. If successful
probabilities of the adversaries in games G0 and G1 differs non-negligibly, it leads to an
algorithm A1 which breaks the DDH assumption with probability εddh in time t1 ' t.
Consequently, we have |pr[X1]− pr[X0]| ≤ εddh.

To prove the above equation, it is assumed that a random instance of the DDH problem,
i.e. g, ga, gb, and K ∈R Zp is given; A1’ goal is to decide whether K = gab or K is a
random element of Zp. A1 sets (pk1S , pk2S , pk1V , pk2V ) = (ga, gb, n, c) and invokes A on
these inputs. A1 computes Eq. (1) to answer a signing or (simulation) query, while gx1Sx2S

is replaced with K; A1 responses to a verification query (M, θ) with the appropriate bit
which Ov outputs w.r.t. K. Note that Ov computes Eq.(2), while e(pk1S , pk2S) is substi-
tuted with e(g,K). Finally, A outputs a successful forgery (M∗, θ∗); A1 checks whether
(M∗, θ∗) is a valid signature w.r.t. K with the help of Ov. If K = gab, A1 outputs 1 which
Ov outputs; otherwise, it outputs 0 if K is randomly chosen from Zp. Let j be a bit output
by A1; therefore, we have pr[j = 1|K = gab]− pr[j = 1|K ∈R Zp].

If K = gab, the game simulated by A1 is game G0; then, success probability of A is pr[X0].
If K is a random element of Zp, the game simulated by A1 is game G1; hence, the success
probability of A is pr[X1]. Therefore, we have pr[j = 1|K = gab] − pr[j = 1|K ∈R Zp] =
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|pr[X1]− pr[X0]|; as a result, we have |pr[X1]− pr[X0]| ≤ εddh by the DDH assumption.

– G2: This game is different from the game G1 in which the secret key of the designated ver-
ifier inside c, α′, is chosen at random by A2. Besides, the validity of the forgery is checked
w.r.t. the random keys K and α′. A2 invokes A on inputs (pk1S , pk2S , pk1V , pk2V ) =
(ga, gb, n, c). If success probabilities of the adversaries in games G2 and G1 differ non-
negligibly, it leads to an algorithm for breaking semantic security of HPaillier. As a result,
we have |pr[X2]− pr[X1]| ≤ εind.

To prove the above equation, it is assumed a random instance of the ciphertext created by
the cryptosystem HPaillier, i.e. c∗ is given; A2’s goal is to decide if the plaintext inside c∗

is α or α′. A2 sets (pk1S , pk2S , pk1V , pk2V ) = (ga, gb, n, c∗) and invokes A on these inputs.
To answer a signing or a simulation query, A2 picks random values σ and z1 ∈R Z∗

p and
generates (M, θ) as computed in Eq.(3). A2 responses to a verification query (M, θ) with
the help of Ov w.r.t. α′ and K. Finally, A outputs a successful forgery (M∗, θ∗); A2 checks
whether (M∗, θ∗) is a valid signature w.r.t. K and α′ with the help of Ov. If Ov outputs 1
meaning Dsk1V

(c∗) = α′; otherwise, Dsk1V
(c∗) = α. Therefore, we have

pr[α′ ← A2(c∗)]− pr[α← A2(c∗)].

If α′ = Dsk1V
(c∗), the game simulated by A2 is game G2; then, success probability of A is

pr[X2]. If α = Dsk1V
(c∗), the game simulated by A2 is game G1; hence, the success probabil-

ity of A is pr[X1]. Therefore, we have pr[α′ ← A2()c∗)]−pr[α← A2(c∗)] = |pr[X2]−pr[X1]|.
As a result, we have |pr[X2]− pr[X1]| ≤ εind by the semantic security assumption.

In game G2, the signatures on a message M is chosen at random from Z∗
p after issu-

ing qs + qsim + qv queries because of knowing α′. As a result, the probability of a valid
forgery output by A in game G2 is upper bounded by pr[X2] ≤ ( 1

p − qs − qsim − qv)−1 <

(qs + qsim + qv) 1
p .

Hence, we have ε = pr[X0] ≤ |pr[X0]− pr[X1]|+ |pr[X1]− pr[X2]|+ pr[X2] ≤ εddh + εind +
(qs + qsim + qv) 1

p .

Theorem 2. The proposal is non-transferable.
Proof. To prove non-transferability of the scheme, we show that the signature simulated by the
designated verifier V is indistinguishable from that generated by the signer S. As a result, we
have to show that the two following distributions are identical.

θ =


β ∈R Z∗

p

r ∈R Z∗
p

a1 = e((m′ ∏
i∈M̃

mi), g)r

ż1 = Epk1V
(z1) = Epk1V

(r)pkβ
2V

(5)

and
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θ′ =


z′1 ∈R Z∗

p

σ′1 ∈R Z∗
p

ż′1 = Epk1V
(z′1)

a′1 =
e(m′ ∏

i∈M̃
mi,g)z′1

(
e(σ′1,g)

e(pk1S,pk2S) )
α

(6)

Let θ be a valid signature which is randomly chosen from the set of all valid signer’s
signatures intended to the verifier V . Subsequently, we have distributions of probabilities as
follows:

Prθ = Pr[θ = θ] =
1

(p− 1)2
, (7)

and
Prθ′ = Pr[θ′ = θ] =

1
(p− 1)2

(8)

The analysis means both distributions of probability are the same. Hence, our proposal
satisfies perfect non-transferability.

Theorem 3. If there exists an adversary D that can (t, qs, qv, ε) break the PSI of the scheme,
then there exists another algorithm A1 who can use D to break DDH assumption with prob-
ability εddh in time t1 ' t and there is an algorithm A2 who can use D to break the semantic
security of the public-key cryptosystem HPaillier with probability εind in time t2 ' t, where
ε ≤ 2εddh + 2εind + 1

2 .

Proof. The security proof is given in Appendix B due to the lack of space.

We first informally discuss the property of non-delegatability, then, theorem 4 is given for
non-delegatability. If a signer would like to delegate her signing capability to a third party,
she could give (σ1, a1) to the third party. However, the third party could not generate a valid
designated verifier signature since the third party does not have β, having β is equivalent to
having the secret key of the signer, or α, the secret key designated verifier.

Someone may claim that the signature is delegatable with the help of the designated verifier
such that the designated verifier gives ( e(σ1,g)

e(pk1S ,pk2S) )
α and σ1 ∈R Z∗

p to a third party. The third
party computes the valid designated verifier signature θ = (σ1, σ2 = (a1, ż1 = Epk1V

(z1))) on

an arbitrary message M , where z1 ∈R Z∗
p and a1 =

e(m′ ∏
i∈M̃

mi,g)z1

(
e(σ1,g)

e(pk1S,pk2S) )
α

. However, the designated

verifier can distinguish who generates the signature due to the existence of the σ1 which he
delegated before as soon as he receives the designated verifier signature.

Satisfying of non-delegatability property is loose (we use relaxed special soundness property)
since it evidently is not a proof of knowledge (to have a proof of knowledge, we need standard
special soundness property) of the secret key of the signer or the designated verifier. To prove
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the proposed scheme is non-delegatable, we show that if there is a forger for the designated
verifier signature, we can construct another algorithm that outputs the second secret key of
the designated verifier in time O(T (k)+poly(k)) with the help of an algorithm that completely
breaks g̃dl = (Gdl, gdl) in T (k), where poly() is a polynomial. If T (k) is polynomial in k, then
O(T (k) + poly(k)) = poly(k). Similarly, if T (k) is superpolynomial, then O(T (k) + poly(k)) is
superpolynomial in k.

Theorem 4. If there exists a probabilistic polynomial-time forger F that can generate valid
signatures, then, the assumption 1 that H̃Paillier is 2-harder than g̃dl = (Gdl, gdl) is contra-
dicted.

Proof. It is supposed that there is a probabilistic polynomial-time forger F for the des-
ignated verifier signature scheme. We construct another algorithm B breaking H̃Paillier on
instances (pk1V , pk2V ) of size k′ ≥ 2k using F and any algorithm A1 that completely breaks
g̃dl = (Gdl, gdl) in running time t1 = T (k), where γ = e((m′ ∏

i∈M̃
mi), g).

B invokes F on (pk1S , pk2S , pk1V , pk2V ) to obtain a valid signature θ = (σ1, σ2 = (a1, ż1 =
Epk1V

(z1))) on M ; then, B will run A1 on a1 = e((m′ ∏
i∈M̃

mi), g)r to obtain r and will
run A1 on e(σ1,g)

e(pk1S ,pk2S) = e((m′ ∏
i∈M̃

mi), g)β to attain β. On the other hand, the ciphertext
ż1 = Epk1V

(r+βα) is specified as a pair of integers (u, w) such that ż1 = Epk1V
(u)pkw

2V mod n2.
Finally, B outputs the secret key of the designated verifier sk2V = α = r−u

w−β inside pk2V = c

with non-negligible probability in time O(T (k) + poly(k)), where poly(k) is the required time
to forge a valid signature. Hence, the conclusion contradicts the assumption that H̃Paillier is
2-harder than g̃dl = (Gdl, gdl).

5 conclusion

We propose a novel pairing based strong designated verifier signature scheme based on non-
interactive zero knowledge proofs. The security of the proposal is presented by sequences of
games without random oracles; furthermore, this scheme has a security proof for the property
of privacy of the signer’s identity in comparison with the scheme proposed by Zhang et al. in
2007. In addition, this proposal compared to the scheme presented by Huang et al. in 2011
supports non-delegatability.To the best of our knowledge, this construction is the first attempt
to generate a designated verifier signature scheme with non-delegatability in the standard
model, while satisfying non-delegatability property is loose.
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6 Appendix A

6.1 Formal definitions of Security properties of designated verifier signature
schemes

A SDVS scheme ought to be unforgeable, non-transferable, and satisfy the privacy of the
signer’s identity. An SDVS is said to be non-delegatable if it satisfies non-delegatability. Formal
definitions of these properties are expressed as follows.

1. Unforgeability: To have a formal definition for unforgeability, the following game between
the simulator C and a probabilistic polynomial time (PPT) adversary A is considered to
be played.
(a) C prepares the key pairs (pkS , skS) for S and (pkV , skV ) for V , and gives (pkS , pkV )

to A.
(b) A issues queries to the following oracles.

– Os: This oracle generates a signature σ on a given message M using skS such that
this signature is valid w.r.t. pkS and pkV , then returns it to A.

– Osim: This oracle generates a simulated signature σ′ on a given message M using
skV such that this simulated signature is valid w.r.t. pkS and pkV , then returns it
to A.

– Ov: This oracle takes a query of the form (M,σ) as an input and returns a bit b
which is 1 if σ is a valid signature on M w.r.t. pkS and pkV ; otherwise, returns 0.
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(c) A outputs a forgery (M∗, σ∗) and wins the game if the two following conditions hold
– V er(skV , pkS , pkV ,M∗, σ∗) = 1
– It did not query Os and Osim on input M∗.

The formal definition of unforgeability [13] is expressed in Definition 3.

Definition 3 (Unforgeability). An SDVS scheme is (t, qs, qsim, qv, ε)-unforgeable if no ad-
versary A which runs in time at most t; issues at most qs queries to Os; issues at most
qsim queries to Osim; and issues at most qv queries to Ov can win the above game with
probability at least ε.

Definition 4 (Non-transferability). An SDVS is non-transferable if there exists a PPT
simulation algorithm Sim on skV , pkS , pkV , and a message M outputs a simulated sig-
nature which is indistinguishable from the real signatures generated by the signer on the
same message. For any PPT distinguisher A, any (pkS , skS), (pkV , skV ), and any message
M ∈ {0, 1}∗, Eq. (1) holds.∣∣∣∣∣∣∣∣∣∣

pr


σ0 ←− Sign(skS , pkS , pkV ,m),
σ1 ←− Sim(skV , pkS , pkV ,m),
b←− {0, 1},
b′ ←− A(pkS , skS , pkV , skV , σb)
: b′ = b

− 1
2

∣∣∣∣∣∣∣∣∣∣
< ε(k) (9)

Where ε(k) is a negligible function in the security parameter k, and the probability is taken
over the randomness used in Sign and Sim, and the random coins consumed by A. If the
probability is equal to 1

2 , the SDVS scheme is perfectly non-transferable or source hiding
[13].

2. Privacy of the Signer’s Identity (PSI): To have a formal definition for PSI, the following
game between the simulator C and the distinguisher D is considered.

(a) C generates key pairs (pkS0 , skS0) for signer S0, (pkS1 , skS1) for signer S1, and (pkV , skV )
for designated verifier V , and invokes D on input pkS0 , pkS1 , and pkV .

(b) C issues queries (M,d) to the Os and Ov which d ∈ {0, 1} indicating which signer
responds to that query.

(c) C tosses a coin d ∈ {0, 1} for the message M∗ submitted by D, then computes the
challenge signature σ∗ ←− Sign(skSd

, pkSd
, pkV ,M∗) and returns σ∗ to D

(d) D outputs a bit d′ and wins the game if the two following conditions hold.
– d′ = d
– It did not query Ov on input (d, M∗, σ∗) for any d ∈ {0, 1}

The formal definition of this property [16] is given in Definition 5.
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Definition 5 (Privacy of the Signer’s Identity). An SDVS scheme is (t, qs, qv, ε)-PSI-secure
if no adversary A which runs in time at most t; issues at most qs queries to Os; and qv

queries to Ov can win the aforementioned game with probability that deviated from 1
2 by

more than ε.

Definition 6 (Non-delegatability). It is assumed that κ ∈ [0, 1] be the knowledge error
and F be a forger algorithm. Let FM be F with M as its input, and oracle calls to FM be
counted as one step. An SDVS scheme is non-delegatable with knowledge error κ if there
exists a positive polynomial poly() and a probabilistic oracle machine B which produces
either the secret key of the signer or the secret key of the designated verifier with probability

ε−κ
poly(k) , where ε > κ in expected polynomial time with the help of the forger F that forges
a valid signature on message M with probability ε.

7 Appendix B

Proof of theorem 3. It is assumed that D be a distinguisher against privacy of the signers’
identity. Let Gi be i-th game and Xi be the event that D outputs the correct bit, correct
signer’s identity, in game Gi.

– G0: This is the original game. The challenger C selects α, a0, b0, a1, and b1 ∈R Z∗
p ;

furthermore, C chooses two large numbers p′ and q′ such that n = p′q′, then, it sets
(pk1S0 , pk2S0 , pk1S1 , pk2S1 , pk1V , pk2V ) = (ga0 , gb0 , ga1 , gb1 , n, c). A1 invokes D on these in-
puts. The secret keys employed to generate a designated verifier signature are KS0 = ga0b0

or KS1 = ga1b1 , where KSd
is the secret key of signer Sd. For each signature query (M,d),

where d ∈R {0, 1} presenting the index of the signer, C simulates the corresponding answer
as aforementioned in Eq.(1), while C uses KSd

on behalf of gx1Sx2S . For each verification
query (M, θ, d), C responses with the appropriate bit which Ov outputs such that Ov veri-
fies the signature (M, θ, d) as aforementioned in Eq.(2) w.r.t. KSd

. The adversary D finally
asks for a designated verifier signature on a challenge message M∗; the challenger C ran-
domly selects one of the two secret keys KSd

, where d ∈R {0, 1} to generate the signature
of the challenge message, (M∗, θ∗). Then, D returns a bit d′ as the signer’s identity of the
signature. The success probability of D in distinguishing signer’s identity of the designated
verifier by definition is pr[X0] = ε.

– G1: This game is different from the game G0 in which the secret key of the signer S0,
KS0 = K0 used to generate a designated verifier signature is chosen at random from Zp,
i.e. K0 ∈R Zp. Moreover, the validity of the adversary’s verification queries are checked
w.r.t. the random key, K0 in case of d = 0. If successful probabilities of the adversaries in
distinguishing the identity of the signer in games G0 and G1 differ non-negligibly, it leads
to an algorithm A1 which breaks the DDH assumption with probability εddh in time t1 ' t.
As a consequence, we have |pr[X1]− pr[X0]| ≤ εddh.

To prove the above equation, we construct another algorithm A1 to break DDH assumption.
It is assumed a random instance of the DDH problem, i.e. g, ga0 , gb0 , and K0 ∈R Zp is given;
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A1’s goal is to decide whether K0 = ga0b0 or K0 is a random element of Zp. A1 chooses
b1 ∈R Zp and invokes D on inputs (pkS0, pkS1, pk1V , pk2V ) = ((ga0 , gb0), (ga1 , gb1), n, c).
A1 sets KS0 = K0 and KS1 = (ga1)b1 . When D makes a signing query (M,d), which d
indicates the index of the signer; A1 uses KSd

to generate the signature for V as presented
in Eq. (1) such that gx1Sx2S is replaced with KSd

. When D makes a verification query
(M, θ, d), A1 returns the corresponding bit presenting the validity or invalidity of the sig-
nature using verification oracle Ov w.r.t. KS0 = K0 and KS1 = (ga1)b1 . When D submits
its challenge message M∗, A1 randomly chooses one of the two secret keys and computes θ∗

as presented in Eq.(2). The successive queries issued by D are handled as aforementioned.
Finally, D outputs a bit d′. Then, A1 outputs 1 if d′ = d, meaning K0 = ga0b0 and output
0 meaning K0 is randomly chosen from Zp. Let j be a bit output by A1; therefore, we have
pr[j = 1|K0 = ga0b0 ]− pr[j = 1|K0 ∈R Zp].

If K0 = ga0b0 , the game simulated by A1 is game G0; then, success probability of D is
pr[X0]. If K0 is a random element of Zp, the game simulated by A1 is game G1; hence, the
success probability of D is pr[X1]. Therefore, we have pr[j = 1|K0 = ga0b0 ]−pr[j = 1|K0 ∈R

Zp] = |pr[X1]− pr[X0]| and by the DDH assumption we conclude that|pr[X1]− pr[X0]| ≤
εddh.

– G2: This game differs from the game G1 in which the secret key, KS1 is chosen at random
from Zp, i.e. K1 ∈R Zp. Moreover, the validity of the adversary’s forgery is checked w.r.t.
the random key, K1. Similar to the game G1, we have |pr[X2]− pr[X1]| ≤ εddh.

– G3: This game is different from the game G2 in which the secret key of the designated
verifier inside c, α′, is chosen at random by A2. Besides, the validity of the verifica-
tion queries is checked w.r.t. the random keys (K0,K1) and α′. A2 invokes D on inputs
(pkS0, pkS1, pk1V , pk2V ) = (ga0 , gb0 , ga1 , gb1 , n, c). If success probabilities of the adversaries
in game G3 and G2 differ non-negligibly, it leads to an algorithm for breaking semantic
security of HPaillier. As a result, we have |pr[X3]− pr[X2]| ≤ εind.

To prove the above equation, it is assumed a random instance of the ciphertext created by
the cryptosystem HPaillier, i.e. c∗ is given; A2’s goal is to decide if the plaintext inside c∗

is α or α′. A2 sets (pkS0, pkS1, pk1V , pk2V ) = ((ga0 , gb0), (ga1 , gb1), n, c) and invokes D on
these inputs. To answer a signing query (M,d), A2 chooses σ and z1 ∈R Z∗

p and computes
Eq.(3). A2 responses to a verification query (M, θ, d) with the help of Ov, while verification
is performed w.r.t. (K0,K1) and α′. When D submits a challenge message M∗, A2 chooses
σ and z1 ∈R Z∗

p and computes Eq.(3) and returns (M∗, θ∗) to D. Finally, D outputs a bit
d′. If d′ = d means that α′ = Dsk1V

(c∗); otherwise, α′ = Dsk1V
(c∗). Therefore, we have

pr[α′ ← A2(c∗)]− pr[α← A2(c∗)].

If α′ = Dsk1V
(c∗), the game simulated by A2 is game G3; then, success probability of D is

pr[X3]. If α = Dsk1V
(c∗), the game simulated by A2 is game G2; hence, the success proba-

bility of D is pr[X2]. We have pr[α′ ← A2(c∗ = c)]−pr[α← A2(c∗ = c)] = |pr[X3]−pr[X2]|.
As a result, we have |pr[X3]− pr[X2]| ≤ εind by assumption 3.
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In game G3, the signatures including challenge signature on a message M∗ is chosen at
random from Z∗

p because of knowing α′. As a result, the success probability of the adversary
in distinguishing the index of the signer is pr[X3] = 1

2 . As a consequence, we have
ε = pr[X0] ≤ |pr[X0]− pr[X1]|+ |pr[X1]− pr[X2]|+ |pr[X2]− pr[X3]|+ pr[X3] ≤ 2εddh +
εind + 1

2 .


