
FastPRP: Fast Pseudo-Random Permutations
for Small Domains

Emil Stefanov
UC Berkeley

emil@cs.berkeley.edu

Elaine Shi
UC Berkeley

elaines@cs.berkeley.edu

ABSTRACT
We propose a novel small-domain pseudo-random permuta-
tion, also referred to as a small-domain cipher or small-
domain (deterministic) encryption. We prove that our con-
struction achieves “strong security”, i.e., is indistinguishable
from a random permutation even when an adversary has
observed all possible input-output pairs. More importantly,
our construction is 1,000 to 8,000 times faster in most
realistic scenarios, in comparison with the best known con-
struction (also achieving strong security). Our implementa-
tion leverages the extended instruction sets of modern pro-
cessors; and we also introduce a smart caching strategy to
freely tune the tradeoff between time and space.

1. INTRODUCTION
Pseudo-random permutations (PRPs), also referred to as

block ciphers, are at the foundation of modern cryptography.
This paper investigates the problem of constructing pseudo-
random permutations over a small domain.

Applications of small-domain PRPs. First proposed
and studied by Black and Rogaway [7], small-domain PRPs
are useful in a variety of application scenarios. For example,
they are used in cryptographic constructions (e.g., Oblivious
RAMs [9,18]) for randomly reordering (permuting) a list of
items. They can be used to generate pseudo-random unique
tokens (e.g., product serial numbers) in a specific format.
They can also be used to encrypt data in a small domain,
such as encrypting a 9-digit social security number into an-
other 9-digit number. Because of this, a small-domain PRP
is also commonly referred to as a small-domain cipher or
format-preserving encryption (FPE). FPE has been a useful
tool in encrypting financial and personal identification infor-
mation, and transparently encrypting information in legacy
databases.

Challenges and requirements. The construction of small-
domain PRPs presents unique technical challenges. First,
note that applying a large-domain PRP such as a 128-bit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

AES and then projecting back into the domain D would
destroy permutivity. In addition, there are several other
challenges as suggested below.

• Arbitrary domain size. In this paper, we wish to con-
struct small-domain PRPs that support arbitrary do-
main sizes, as opposed to fixed domain size, such as
16-bit or 32-bit.

• Non-standard security requirement. Standard large-
domain PRPs over {0, 1}` typically achieve security
against an adversary who can issue up to q � 2`

queries. With small-domain PRPs, the adversary might
be able to exhaust all possible plaintext-ciphertext pairs.
Our goal is to design a small-domain PRP that can
withstand up to N queries from the adversary1. In
other words, we require the small-domain PRP to be
indisitinguishable from a random permutation, even to
an adversary who has observed allN possible plaintext-
ciphertext pairs.

• Efficient point-wise evaluation with small time and space.
Another requirement is that the small-domain PRP
should allow efficient point-wise evaluation. For ex-
ample, one should be able to evaluate the outcome of
the PRP over any input x in time and space sublinear
in N .

1.1 Our Results and Contributions
As shown in Table 1, existing small-domain PRP schemes

are either entirely based on empirical (but not provable)
security [3,4,16] or fall short of security and only have prov-
able security for a small number of adversary queries [7, 13]
(q � N). Recently, Granboulan and Pornin [10] propose
a novel small-domain PRP construction that can withstand
N queries, and has provable security. While their scheme
achieves non-trivial asymptotics, namely O((logN)3) time
and O(logN) space per invocation, it is generally consid-
ered to be impractical [6] due to the need to sample from
the hypergeometric distribution, which is a heavy-weight op-
eration.

We take an unconventional approach to solve this prob-
lem. We observe that asymptotic performance is not the
best metric to optimize for these small domain problems –

1Note that in some earlier works, this same notion of security
was also referred to as “withstanding N − 2 queries”, in the
sense that the adversary cannot predict the remaining two
outputs with probability more than 1

2
, even after observing

N − 2 input-output pairs.



Scheme Arbitrary domain size∗ Secure for q � N queries∗∗ Secure for q = N queries∗∗

[3, 4, 16,17] No No No
[6,7, 11,13,15] Yes Yes No

[10] Yes Yes Yes

This paper Yes Yes
Yes

(1,000∼8,000 times faster than [10])

*: Note that cycle-walking can be used in general to achieve arbitrary domain size, but is usually quite costly.
**: By “secure”, we mean provably (rather than empirically) indistinguishable from a random permutation even
when the adversary has seen any q possible input-output pairs.

Table 1: Comparison with related work

since asymptotic analysis by nature characterizes the per-
formance of algorithms under very large inputs. There-
fore, instead of proposing a construction that is asymptot-
ically better, we propose one that is asymptotically worse
– O(

√
N logN) in both time and space – but is 1,000 to

8,000 times faster than the best existing scheme [10] for the
most common use cases (domains of sizes up to N = 232

items). Our construction is currently by far the most prac-
tical construction for most realistic scenarios. In addition,
our construction can withstand up to N queries by the ad-
versary, and its security formally reduces to the security of
the underlying AES function, which is used to generate the
pseudo-random source needed by our construction.

1.2 Technical Highlights
No costly sampling from hypergeometric distribu-
tions. One approach taken by Granboulan and Pornin [10]
to construct a random permutation is to recursively parti-
tion (at random) a set of N items into two equally sized
sets, until each set has size 1. The task of partitioning a
set of N items into two equally sized sets can essentially be
transformed into the task of generating N random bits of
which exactly N

2
are 0 and N

2
are 1. Generating this bit-

string turns out to be a difficult problem because it seems to
require sampling from the hypergeometric distribution with
very high accuracy in order to preserve security.

We observe that it is possible to avoid the costly sam-
pling by relaxing the requirements and allowing there to be
slightly more ones or zeros in the bitstring. In our construc-
tion, each bit is randomly and independently generated and
so the total number of ones or zeros is a distribution centered
on N

2
.

Leveraging modern processor features. Our imple-
mentation is highly optimized and takes advantage of mod-
ern processors’ extended instructions, including AES instruc-
tions and the POPCNT instruction. These advanced x86-64 in-
structions are widely available on most modern server, desk-
top, and laptop processors.

Even though existing algorithms can also be modified to
use those instructions, they do not benefit nearly as much.
In fact, we modified the code of [10] to use those hardware
instructions and our algorithm is still thousands of times
faster.

Tunable time-space tradeoff. We propose a smart caching
strategy (Section 4) to cache and reuse intermediate com-
putation results – specifically, counters, as described in Sec-
tion 4 – allowing us to evaluate the permutation inO(

√
N logN)

time and space.
Our scheme is dynamically adjustable to the amount of

cache available. Specifically, at run-time, if the amount of
available memory changes, our scheme can dynamically ad-
just and maximally leverage the available memory to mini-
mize the computation time.

Finally, note that although our construction requiresO(N logN)
initial setup cost, in reality, since N is small (e.g., N =
232), the actual setup time of our algorithm is comparable
to cost of RSA key generation. This again demonstrates
that asymptotics is the wrong metric to optimize for small
domain problems.

1.3 Related Work
The problem of construct a small-domain PRP or small-

domain cipher was initially studied by Black and Rogaway [7].
One class of approaches is balanced or unbalanced Feistel-

based constructions [6,11,13,15]. However, these approaches
do not have proven security against up to N queries when
applied to small domains. Let N = 2n denote the size of
the domain. For balanced cipher, Luby and Racoff [11]

showed that 4 rounds can provide security to nearly 2n/4

queries. Maurer and Pietrzak [12] show that r rounds of

balanced Feistel could withstand about 2n/2−1/r queries.
Patarin [14,15] shows that 6 rounds is enough to withstand

about 2n/2 queries. Morris et al. analyze the security of the
Thorp shuffle [13], which is a maximally unbalanced Feis-
tel network. They show that the Thorp shuffle with O(r)

rounds is resilient up to 2n(1−1/r) queries.
Another class of approaches is de novo constructions [3,

4,16,17]. These constructions have empirical, but not prov-
able security. Some of them only work for fixed length block
ciphers. Moreover, due to lack of provable security, signifi-
cant attacks were found with the TEA construction, leading
to the hacking of Microsoft XBox console.

Small-domain ciphers are a special case of format-preserving
encryption, which was informally described by Brightwell
and Smith [8], named by Spies, and recently received a more
systematic treatment by Bellare and Ristenpart [5].

Table 1 compares our work against related work in this
space.

2. PROBLEM DEFINITION
We first formally define pseudo-random permutations and

their security requirement.

Definition 1 (CCA-secure PRP). Let D := {0, 1, . . . , N−
1} denote a finite domain of elements. Let K := {0, 1}k de-
note the key space. Let P : K × D → D be a permutation
that maps D onto itself. P is a (t, q, ε)-pseudo-random
permutation, if



Figure 1: Example of the permutation algorithm.

• For any K ∈ K, PRP(K, ·) is a one-to-one function
from D to D, and can be evaluated in polynomial time.

• For any t-time algorithm A making at least q oracle
queries,

Pr
k

$←K
[APRP(K,·),PRP−1(K,·) = 1]− Pr

p
$←P

[Ap,p−1

= 1] ≤ ε

where P denotes the family of all permutations for D.

In particular, in this paper, we would like to construct
pseudo-random functions a small domainD := {0, 1, . . . , N−
1} that are secure against up to q = N queries.

Our construction leverages a Pseudo-Random Function
(PRF) for large domains, such as AES. We formally define
PRF as below.

Definition 2 (Secure PRF). Let PRF : {0, 1}k×{0, 1}m
→ {0, 1}n denote a function that takes in a key from {0, 1}k,
and a string from {0, 1}m, and outputs a string in {0, 1}n.
We say that PRF is a (t, q, ε)-pseudo-random function, if

• For any K ∈ K, PRF(K, ·) can be evaluated in polyno-
mial time.

• For any t-time algorithm A making at least q oracle
queries,

Pr
k

$←K
[APRF(K,·) = 1]− Pr

f
$←F

[Af = 1] ≤ ε

where F denotes the family of all functions from {0, 1}m
to {0, 1}n.

3. ALGORITHM

3.1 Intuition
Suppose that we would like to randomly permute N ele-

ments from a domain D := {0, 1, . . . , N − 1}. The permuta-
tion can be done in the following manner:

• Choose a random bit β[i] ∈R {0, 1} for every i ∈ D.

• Let S0 := {i
∣∣ i ∈ D and β[i] = 0} denote the set of

elements whose β[i] values are 0, let S1 := {i
∣∣ i ∈

D and β[i] = 1} denote the set of elements whose β[i]
values are 1.

Place the set S0 ahead of S1 in the final permutation.

• Recurse and permute both sets S0 and S1.

The above randomized algorithm generates a random per-
mutation over the domain D := {0, 1, . . . , N − 1}. For the
formal proof of this, please refer to Section 3.5. To con-
struct a pseudo-random permutation, one can simply use a
pseudo-random source in place of the random bits fed to the
algorithm. For instance, we can use AESK(·) to generate the
pseudo-random bits of β to obtain a keyed pseudo-random
permutation where the secret key is K.

Example. Figure 1 illustrates the informal algorithm de-
scribed above, using a small domain example, where D :=
{0, 1, . . . , 7}. To find the outcome of the pseudo-random
permutation on the input x = 7, one first assigns a random
bit to each of the elements in D := {0, 1, . . . 7}. The vector
of these random bits form the bitstring β0. Since x = 7
gets assigned the random bit 0, it will be placed in the top
partition. Now this process is recursively applied to the top
partition, where the element was mapped to, until a parti-
tion of size 1 is reached. At that point, this pseudo-random
permutation algorithm determines that the final location of
input 7 is 2.

3.2 An Alternative View of the Algorithm
The algorithm (informally) described in Figure 1 is equiv-

alent to the following process.

• First, for each input i ∈ {0, 1, . . . , N − 1}, assign a
random O(logN)-bit number ρi to element i. (For ex-
ample, in Figure 1, the random number assigned to the
element 7 is represented by the bits on the highlighted
red path.)

• Next, sort all i’s based on their ρi values. With high
probability, allN elements will be assigned a unique ρi,
which determines a unique ordering of all N elements.

It is not hard to see that the above-mentioned procedure
outputs a random permutation of all elements i ∈ {0, 1, . . . , N−
1}.

Moreover, it is not hard to see that Figure 1 effectively
implements this above procedure, where the sorting is ac-
complished through a radix-sort process. In particular, in
the first step of the recursion, the inputs are sorted based
on the first bit of each ρi. We then recurse on this, and in
depth d of the recursion, the d-th bit is being sorted.

Based on this alternative view of the algorithm, it is not
hard to see that if the bit-strings β0, β1, . . . are generated
at random, then the above process yields a random permu-
tation. Similarly, if the bit-strings β0, β1, . . . are generated
from a pseudo-random sequence, the above process yields
a pseudo-random permutation. The formal security state-
ments and proofs are presented in Section 3.5.

3.3 Notations
We first introduce some notations before formally present-

ing the detailed construction.



Pseudo-random bitstrings βd. The bitstrings βd are in-
dexable arrays of pseudo-random independent bits. Each
bitstring is N bits long. The value of bit i of bitstring βd is
denoted as βd[i].

Bit counters C0 and C1. The number of zeros in R =
{βd[α], βd[α + 1], . . ., βd[α + x]} is denoted as C0(βd, α, x).
Similarly, the number of ones is denoted as C1(βd, α, x). The
set R is called the input range of C0 and C1.

Bit locators C−1
0 and C−1

1 . The index of the k’th zero bit in
R = {βd[α], βd[α+ 1], . . .} is denoted as C−1

0 (βd, α, k). Simi-
larly, the index of the k-th one bit is denoted as C−1

1 (βd, α, k).
The set R is called the input range of C−1

0 and C−1
1 .

3.4 Detailed Construction
Recall that we wish to construct a small-domain pseudo-

random permutation, PRP : K × D → D, where D :=
{0, 1, . . . , N − 1} represents the domain, and K := {0, 1}k
represents the key space.

Generation of pseudo-random source. The Permute
and Unpermute algorithms below require pseudo-random bits
as inputs. For notational convenience, we will divide these
pseudo-random bits into bitstrings, denoted as {β0, β1, . . . , },
where each βi ∈ {0, 1}N is a bitstring of length N .

These pseudo-random bits are generated with the key K ∈
K to the small-domain PRP, by applying the AES function:

S = AESK(0)||AESK(1)||AESK(2)|| . . . , (1)

In particular, β0 will be the first N bits of S, β1 will be
the next N bits of S, and so on.

Permute. To compute PRP(K,x), where K ∈ K, x ∈
M, simply call the recursive function shown in Figure 2
with Permute(x, 0, N, 0). Specifically, the pseudo-random
bits β0, β1, . . . required in this algorithm are generated as
in Equation 1 above.

Figure 1 is an example walk-through of this algorithm
for a small domain D := {0, 1, . . . , 7}. In Section 7, we show
that the algorithm will terminate within depth d of O(logN)
with high probability.

Unpermute. To compute PRP−1(K, y), where K ∈ K,
y ∈M, simply call the recursive function shown in Figure 3
with Unpermute(y, 0, N, 0). Specifically, the pseudo-random
bits β0, β1, . . . required in this algorithm are generated as in
Equation 1 above.

Since Unpermute is the inverse function of Permute, and
shares the same recursion tree as Permute, its depth is also
bounded by O(logN) with high probability (Section 7).

3.5 Security Analysis
The alternative view on the algorithm described in Sec-

tion 3.2 immediately gives us the following theorem:

Theorem 1 (Random permutation). Assuming the bit
vectors β0, β1, . . . , are chosen at random, where each bit rep-
resents the outcome of an indenpendent random coin flip.
The algorithm described in Figure 2 yields a perfectly ran-
dom permutation over elements in D = {0, 1, . . . , N − 1}.

Proof. As mentioned in Section 3.2, an alternative view
of the algorithm is to assign a random k-bit number ρi to
each element i ∈ D, where k = O(logN) with overwhelm-
ing probability (see Theorem ??). Then, it is not hard to
see that the permutation algorithm described in Figure 2 is

essentially performing a radix sort on these elements based
the binary representation of their ρi numbers.

Clearly, the process of assigning sufficiently large (k =
O(logN) with high probability) random numbers to each
element and sorting these elements based on these random
numbers would give us a random permutation. And since
our algorithm is equivalent to this process, where the sorting
part is achieved through a radix sort, the algorithm in Fig-
ure 2 results in a random permutation, assuming the bits
β0, β1, . . . are chosen independently and uniformly at ran-
dom.

Theorem 1 assumes that the bit-strings β0, β1, . . . , are
chosen at random. Instead, if these bit-strings are generated
pseudo-randomly from AES, one can show that the resulting
small-domain PRP is “at least as secure as” AES. To prove
this, one has to ensure that the permutation algorithm has
bounded depth, such that the bit-strings β0, β1, . . . , can be
obtained from a bounded number of AES invocations. In
particular, k invocations of AES would lead to a multiplica-
tive factor of k in the advantage of the adversary.

Corollary 1. Assume the bit vectors β0, β1, . . . are ob-
tained from a pseudo-random sequence, generated by apply-
ing an `-bit AES as in Equation 1. Typically, ` = 128 or 256
bits.

Suppose the underlying AES is a (t, q, ε)-pseudo-random
permutation, where q ≥ 4N log 4

3
N/`. Then, the algorithm

described in Figure 2 yields a (t,N, ε+exp(− q`
8N

)·N)-pseudo-
random permutation.

In particular, the security loss term exp(− q`
8N

) ·N is due
to the failure probability that the algorithm needs to make
more than q queries to the AES oracle. This happens when
the algorithm completes in more than q`

N
rounds.

To interpret the above corollary under realistic parametriza-
tions, we give the following back-of-the-envelope calcula-
tion. For example, imagine we use 256-bit AES, and suppose
N = 231 or smaller. Due to the birthday paradox, assume
that the security of AES as a PRF is roughly defined by

the relation ε ' q2

2256
. When q = 234 ≥ 4N log 4

3
N/`, the

security loss of AES as a PRF under q queries is roughly
ε ' 1

2188
, the additional security loss of the resulting small-

domain PRP is exp(−q`
8N

) ·N < 1
2338

.

Proof. (of Corollary 1.) Suppose that there exists an
adversary A who can break the small-domain permutation
PRP. We now leverage this adversary A to construct a sim-
ulator B which can distinguish AES from a truly random
function.

Basically, A submits a sequence of PRP or PRP−1 queries
to B, and B will simulate the small-domain PRP function,
and evaluate the outcomes of the PRP function, and its in-
verse PRP−1 for A. To do this, B obtains its bit-strings
β0, β1, . . . from an oracle, which either is generated from the
AES function or a pure random function.

Due to Theorem 2, the probability that the process com-
pletes in more than c = q`

N
≥ 4 log 4

3
N rounds is bounded by

N · exp(−c/8) = N · exp(− q`
8N

). Therefore, with probability

1− exp(− q`
8N

) ·N , B only has to make q or fewer queries to
the oracle. If, however, this fails, B simply aborts.

Then, B basically outputs whatever A outputs. It is not
hard to see that if A succeeds in distinguishing PRP from



Permute(x, α, `, d):

1: if ` = 1 then
2: return α
3: end if
4: if βd[α+ x] = 0 then
5: x′ ← C0(βd, α, x)
6: return Permute(x′, α,C0(βd, α, `), d+ 1)
7: else
8: x′ ← C1(βd, α, x)
9: return Permute(x′, α+ C0(βd, α, `),C1(βd, α, `), d+ 1)

10: end if

Figure 2: Permutation algorithm (encryption).

Unpermute(y, α, `, d):

1: if ` = 1 then
2: return 0
3: end if
4: if y < C0(α, `, d) then
5: y′ ← y
6: x′ ← Unpermute (y′, α,C0 (βd, α, `) , d+ 1)
7: return C−1

0 (βd, α, x
′ + 1)

8: else
9: y′ ← y − C0 (βd, α, `)

10: x′ ← Unpermute (y′, α+ C0 (βd, α, `) ,C1 (βd, α, `) , d+ 1)
11: return C−1

1 (βd, α, x
′ + 1)

12: end if

Figure 3: Inverse permutation algorithm (decryption).

a random permutation, then B would be able to distinguish
whether the oracle is a pseudo-random source generated
from AES or a pure random source, thereby breaking the
security of AES.

4. CACHING COUNTERS
The scheme will be very slow if we implement the Permute

and Unpermute algorithms exactly as shown in Figures 2 and
3. The reason is that a naive implementation of the C0, C1,
C−1
0 , and C−1

1 functions cause a linear scan of large ranges
of βd. The total length of the scanned regions is O(N), so
a naive implementation of Permute and Unpermute would
result in O(N) running time, which is too slow in practice.

We reduce the time complexity of Permute and Unpermute
to O(

√
N logN) with O(

√
N logN) amount of space, by

caching a small number of intermediate counters of β with
a granularity s (called the cache stride).

Definition 3 (Cache Stride s). The cache stride de-
termines the interval at which the values of C1(·) are cached.
With a cache stride s, the values of C1(βd, 0, s · i) are cached
for d = 0, 1, . . . , O(logN) and i = 1, 2, . . . , N/s.

Generating the cache takes O(N logN) time, but is per-
formed only once at initialization. In our experiments in
Section 6.1, we show that it can be done reasonably fast (less
than 10−6 seconds for N < 215 to 2.3 seconds for N = 231).
After this one-time initialization, we can reuse the cache to
evaluate multiple “ciphertexts” with the same key.

Figure 4: Using cached values of C1(·) to efficiently
compute arbitrary values of C1(·). In this exam-
ple, C1(βd, 5, 4) is computed using the cached values
of C1(βd, 0, 4) and C1(βd, 0, 8) and a small amount of
scanning to calculate the values of C1(βd, 4, 1) and
C1(βd, 8, 1).

Computing C1 with a cache. Figure 4 illustrates the
the cached counters for βd with N = 12 and s = 4. The
values a1 = C1(βd, 0, 4 · 1), a2 = C1(βd, 0, 4 · 2), and a3 =
C1(βd, 0, 4 · 3) are stored in a lookup table. If the algorithm
needs to compute C1(βd, 5, 4), it can calculate it as [a2 +
C1(βd, 8, 1)]− [a1 + C1(βd, 4, 1)].

This saves computation time because the algorithm now



only needs to scan a range of size 2 instead of size 4. Of
course, with larger and more realistic values of N and s, the
savings are much greater. In fact, any C1 function will have
to scan at most 2s bits, even if the counting range is much
larger (e.g., O(N)).

Although the algorithm works for any values of s, for our
experiments, we have chosen s = 2

√
N because it provides a

balanced trade-off between computation time and key size.
As a result, the C1 function will never need to scan more than
2s = 4

√
N bits. With this cache stride, we can guarantee

that any C1 function will have to scan at most 4
√
N bits,

even if the range covers O(N) bits.

Computing C0, C−1
0 , and C−1

1 with a cache. The func-
tions C0, C

−1
0 , and C−1

1 can all be calculated efficiently from
the cached values of C1.

For C0, we can simply count the ones in the input range
with the cache-optimized C1 function and then subtract the
count from the size of the range as follows:

C0(βd, α, x) = x− C1(βd, α, x)

Computing C−1
1 (βd, a, k) is slightly different since it re-

quires a binary search of the cached values of C1. First, we
set

k′ = C1(βd, 0, α) + k

by using the cache-optimized C1 function. We then binary
search the cache over i = 1, 2, . . . , N/s for i such that

C1(βd, 0, s · i) < k′ ≤ C1(βd, 0, s · (i+ 1))

This allows us to compute C−1
1 as follows:

C−1
1 (βd, a, k) = C−1

1 (βd, s · i, k′ − C1(βd, 0, s · i))

Similarly, C−1
0 can also be computed with a binary search.

Levels to cache. Note that in Definition 3, the values of
C1(βd, ·) are cached for d = 0, 1, . . . , O(logN). In practice, it
is not necessary to cache levels beyond about d = log2(N/s)
because the expected size of a input ranges for C1 at that
depth is less than s. For larger values of d, C1 can be imple-
mented as a linear scan. In our implementation we stopped
caching after depth d = log2(N/s).

4.1 Bidirectional Scanning
Caching C1 counter values significantly reduces the need

for linearly scanning bits of βd. However, it does not com-
pletely eliminate scanning. In order to compute values of
C1 for arbitrary inputs, we need to scan s bits on average
and at most 2s bits with forward scanning (i.e., in order of
increasing bit indexes of βd).

As illustrated in Figure 5, we can further reduce the amount
of scanning in half if we extend the algorithm to start from a
cached counter boundary and scan backwards until it reaches
an edge of the input range. Backward scanning should be
performed when the forward scanning length is more than
s/2 (half of the caching stride) and the result should be
subtracted from the cached counter value. This optimiza-
tion makes it so that the average bits scanned per invocation
of the C1 (and hence C0) functions is s/2 and the maximum
is s. The same trick can be used for C−1

0 and C−1
1 .

4.2 Counter Alignment
The location of counter boundaries can be slightly shifted

to align with the edges of partitions. For example, in Fig-

Figure 5: Performing bidirectional scanning instead
of forward-only scanning leads to a 2X speedup of
the algorithm.

ure 1, without counter alignment and a stride of s = 4, we
would store counters for C1(β1, 0, 4) and C1(β1, 4, 4). If we
align the counters, then we can instead store the counters
for C1(β1, 0, 5) and C1(β1, 5, 3).

Aligning counters helps boost performance. As can be
seen in Figures 2 and 3, the algorithm counts the number
of ones in the current partition at each level of recursion.
Therefore aligning the counters with the partition bound-
aries allows the algorithm to count the number of ones bits
in a partition by using the cache only and completely avoids
linearly scanning the bitstrings in these cases. Moving the
cache boundaries comes at a cost of making other C1 oper-
ations slightly less efficient, but because less efficient opera-
tions occur with lower frequency, counter alignment actually
improves the performance of the overall algorithm.

5. ENHANCEMENTS

5.1 Optimization via Assembly Instructions
The most time-consuming operation in FastPRP is the

linear scanning of the bitstrings βd, which happens as a re-
sult of calling the C0, C1, C

−1
0 , or C−1

1 function. In Section 4,
we explain how the amount of scanning can be significantly
reduced by caching a small number of counters. However,
the scanning cannot be completely eliminated, and the num-
ber of bits scanned per invocation of C0, C1, C

−1
0 , or C−1

1 is

Θ(
√
N logN).

We observe that this scanning operation can be performed
extremely efficiently with the x86 aesenc, aesenclast, and
popcnt assembly instructions. These instructions are avail-
able on most modern server, desktop, and laptop processors.
On other processors, such as those for mobile phones, the
scanning can be done in software without hardware acceler-
ation.

AES instructions. Modern x86 processors offer the aesenc



and aesenclast instructions which perform one round of an
AES encryption as a single instruction. Encrypting a single
block takes several rounds (e.g., 10 rounds for 128-bit AES
and 14 rounds for 256-bit AES). In our implementation we
use 128-bit AES, but this can easily be adjusted (e.g, by
adding 4 extra rounds to make it 256-bit).

POPCNT instruction. The popcnt (population count)
instruction conveniently allows us to count the number of
ones bits in a 64-bit register. Without this instruction, we
would need to use less efficient methods such as those in [1].

Example. Suppose that we need to scan β0 to count the
number of ones bits in S = {β0[0], β0[1], ..., β0[2559]}. Recall
that bitsrings are generated by consecutive calls to AESK(·)
with an incrementing index. Specifically, S is the following
bitstring:

S = AESK(0)||AESK(1)||AESK(2)|| . . . ||AESK(19)

The algorithm works as follows: Let c = 0. For i =
0, ..., 19, compute AESK(i), count the number of ones bits
in it, and add the count to c. Figure 6 shows assembly
code executed for a single value of i. The index i is passed
in as register xmm15. The first block of code uses the AES
instructions aesenc and aesenclast to compute AESK(i). The
second block of code uses the popcnt instruction to count the
number of bits in AESK(i).

In cases where the bitstring partially covers an AES block,
the ones bits in the first and last block of the bitstring can
be counted by reading individual bits. The bulk of the
AES blocks (in between the first and last block) can still
be scanned using the efficient assembly code in Figure 6.

This highly optimized scanning process is used in the im-
plementation of the C1 function to scan bitsrings imme-
diately before and after cached counter boundaries as de-
scribed in Section 4. Similar assembly code can be used to
perform the scanning for C0, C

−1
0 , and C−1

1 .

5.2 Cache Compression
The cache for FastPRP can vary from 365 bytes for N =

211 to 893KB for N = 231. Typically, this is a very small
amount of memory usage to get the performance and secu-
rity that FastPRP offers. However, in some scenarios, the
user may want to store many keys in memory or the amount
of memory could be severely limited such as in embedded
devices.

Recall that the cache consists of counters for regions of
length s in the bitstrings. Each counter specifies the num-
ber of ones in a particular region. Since all of the bits are
essentially independent random coin flips, we know that the
counter value is a random variable with a binomial distri-
bution. Hence the entropy of the counter for the number of
ones bits in a region of size s is

log2(πes)− 1

2
+O

(
1

s

)
We can use Huffman codes to compactly store the counter

values. This means that, for example, for N = 231 and
s = 216, we can use about 9 bits per counter on average
even though the counters are 16-bit numbers, resulting in
about a 57% compression ratio.

5.3 Incremental Caching

; Input AES round keys: xmm0-xmm10

; Input block ID: xmm15

; Output: rax (# ones in xmm15)

; xmm15 = AesEncrypt(xmm15)

pxor xmm15, xmm0 ; Whitening step (AES Round 0)

aesenc xmm15, xmm1 ; AES Round 1

aesenc xmm15, xmm2 ; AES Round 2

aesenc xmm15, xmm3 ; AES Round 3

aesenc xmm15, xmm4 ; AES Round 4

aesenc xmm15, xmm5 ; AES Round 5

aesenc xmm15, xmm6 ; AES Round 6

aesenc xmm15, xmm7 ; AES Round 7

aesenc xmm15, xmm8 ; AES Round 8

aesenc xmm15, xmm9 ; AES Round 9

aesenclast xmm15, xmm10 ; AES Round 10

; rax = Count ones bits in xmm15

movq r8, xmm15

psrldq xmm15, 8

movq r9, xmm15

popcnt rbx, r8

add rax, rbx

popcnt rcx, r9

add rax, rcx

Figure 6: Highly efficient x86-64 assembly instruc-
tions for counting the ones bits in a single AES
block.

The cache size can always be increased or decreased at run
time. For example, if the program is expecting to make lots
of PRP invocations in the near future, it can temporarily
increase the cache size for improved performance.

It is possible to store the cache in increments where each
increment cuts the cache stride in half. For example suppose
that N = 16. In increment I1, we can cache

I1 = {C1(βd, 0, 8),C1(βd, 8, 8)}

and in increment I2, we can cache

I2 = {C1(βd, 0, 4),C1(βd, 8, 4)}

Increment I1 is itself a cache with stride s = 8. However,
we can combine I1 and I2 to obtain a cache with stride s = 4.
Note that this is possible because the remaining cache values
C1(βd, 4, 4) and C1(βd, 12, 4) can be trivially computed from
I1 and I2 without performing any scanning.

Increments can also be stored on disk as separate files and
loaded on-demand when higher performance is desired.

6. EVALUATION
To evaluate our algorithm, we implemented our FastPRP

Permute and Unpermute algorithms for arbitrary values of
N . Our implementation uses an adjustable cache size as
described in Section 4 and the assembly instruction opti-
mizations described in Section 5.1. We chose a cache stride
of s = 2

√
N for our experiments because it offers a balanced

tradeoff between the cache size and speed. We ran all of our
experiments on the same 4 GHz Intel Core i7 CPU machine.

6.1 Performance



Figure 7: The performance of our construction with
cache stride of s = 2

√
N .

logN 11 15 21 25 31
Size 365 B 1.9 KB 20 KB 92 KB 893 KB
Time (s) < 10−6 < 10−6 0.001 0.031 2.34

Table 2: FastPRP cache sizes and cache generation
time.

Permute/Unpermute. Figure 7 shows the speed of our
algorithm’s Permute and Unpermute operations for domains
of size N = 211 to N = 231. Each data point is an average of
217 operations with uniform random inputs. As one would
expect, the performance of the algorithm decreases as N in-
creases because the recursion depth increases and the cache
stride s = 2

√
N increases with N .

The Unpermute operation is slower than the Permute oper-
ation because: (1) in our implementation we did not imple-
ment backward scanning for C−1

0 and C−1
1 functions invoked

by Unpermute, and (2) the C−1
0 and C−1

1 functions do an
additional binary search as explained in Section 4.

Cache generation. Generating the cached counters re-
quires a scan of bitstrings βd for d = 0, 1, . . . , log2(N/s).
This might be concerning because for N = 231, this consists
of scanning bitstrings of combined length of 235 bits. Our
results in Table 2 show that the cache generation time is
actually quite fast; even for N = 231, it takes about 2.34
seconds on a single core to generate the key. In comparison,
it takes about 1.2 seconds to generate a 3072-bit RSA key on
the same hardware using OpenSSL. According to NIST [2] a
3072-bit RSA key provides about the same level of security
as the 128-bit AES key used by our implementation. It’s
important to note that the cache generation only needs to
be done once and the cache can then be stored along with
the key for future use.

6.2 Comparison to Previous Work
As explained in Section 1.3 and Table 1, the only previ-

ous work that achieves as strong security guarantees (with-
standing N queries and provable security) as FastPRP is a
construction by Granboulan and Pornin [10]. We contacted
the authors and they kindly provided us with the implemen-
tation that they used in [10]. To achieve a fair comparison,
we modified their code to use the same hardware AES in-
structions as FastPRP (described in Section 5.1).

Figure 8: Speed comparison between our algorithm
and the best previously known algorithm [10] with
the same level of security. The “speedup” measured
is how many times faster our construction is than the
algorithm in [10]. We used cache stride of s = 2

√
N

for our algorithm.

For domains of size N = 211 to N = 231, we measured the
amount of time it takes FastPRP to perform 217 Permute
and Unpermute operations with uniform random inputs. We
timed the same operations for [10], but because that algo-
rithm is much slower, we used 1000 measurements per data
point.

As the results show in Figure 8, our construction is 1,000
to 8,000 times faster than the best existing construction
with the same level of security. Because our algorithm has a
higher asymptotic complexity than [10], as N keeps increas-
ing eventually their construction will become faster. Unfor-
tunately, we do not know the exact value of N because de-
termining it will require a significant change to their code to
handle values with more than 31 bits. However, the graph
clearly shows that for N ≤ 231, our construction is much
faster in practice.

6.3 Cache Size vs. Speed
In Figure 9, we demonstrate the tradeoff between cache

size and speed of our algorithm. As the cache stride s is
decreased for a fixed value domain size (N = 225 in this
graph), the cache size increases and so does the speed of the
Permute and Unpermute operations. The reason behind this
is that a smaller stide between the cached counters reduces
the linear scanning work performed by the C0, C1, C

−1
0 , C−1

1

functions.

7. ASYMPTOTIC ANALYSIS
As mentioned in Section 1, asymptotics is not the most

important metric to optimize with small-domain problems.
For completeness, in this section, we formally prove that
with high probability, the depth of the permute algorithm is
bounded by O(logN).

Theorem 2. Let c ≥ 4 log 4
3
N . With probability at least

1−N · exp(−c/8), the depth of the Permute (or Unpermute)
algorithm is bounded by c.

Proof. First, we show that for each input i ∈ D :=
{0, 1, . . . , N − 1} to the pseudo-random permutation, the



Figure 9: The tradeoff between cache size and speed
of FastPRP.

depth for element i is bounded by c except with failure prob-
ability exp(−c/8). Next, we apply union bound over the set
of all elements in D.

Suppose an element i ∈ D is in some partition S in the
k-th iteration. This element i ∈ D is called lucky in the k-
th iteration, if this iteration divides S into two parts, where
both parts contain at most d 3

4
|S|e elements. Clearly, element

i can participate in at most log 4
3
N lucky rounds.

It is not hard to see that any round is a lucky round with
probability at least 1

2
, for the following reason.

Due to Chernoff bound, in a sequence of M coin flips, the
probability that the number of ones is smaller than M

4
is

at most exp(−M/8). Therefore, for rounds where M ≥ 8,
clearly the probabilty of a lucky round is at least 1

2
. For

M < 8, it is not hard to verify that the probabilty of a
lucky round is at least 1

2
as well.

Due to the Chernoff bound again, in a sequence of c
rounds,

Pr[number of lucky rounds in c rounds <
1

2
c− ∆] ≤ exp(

−2∆2

c
)

Let ∆ = 1
2
c− log 4

3
N , we have for c ≥ 4 log 4

3
N ,

Pr[number of lucky rounds in c rounds < log 4
3
N ]

≤ exp(
−2( 1

2
c− log 4

3
N)2

c
) ≤ exp(−c/8)

Now apply union bound for all elements in the universe D,
it follows that with probability at least 1−N exp(−c/8), the
depth of the Permute (or Unpermute) algorthm is bounded
by c, for c ≥ log 4

3
N .

Corollary 2. With probability at least 1− 1
Nk , the Permute

(or Unpermute) algorithm completes in at most 8(k+1) lnN
rounds, where k ≥ 1.

Proof. Let c = 8(k + 1) lnN in the above theorem, we

get that

Pr[algorithm completes in more than 8(k + 1) lnN rounds]

≤N exp(−8(k + 1) lnN/8) ≤ 1

Nk

8. CONCLUSION AND FUTURE WORK

8.1 Conclusion
We propose a novel construction for a small-domain pseudo-

random permutation. As asymptotics is the wrong metric
to optimize for small-domain problems, we instead aim for
optimal practical performance. Our construction achieves
strong security, i.e., can withstand up to N queries from an
adversary, and is by far the most efficient construction for
32-bit integers or smaller domains, i.e., (N < 232). In par-
ticular, our construction is 1, 000 to 8, 000 times faster than
the best known construction achieving a comparable level of
security.

8.2 Discussions on Timing Channel and Fu-
ture Work

Just like many other cryptographic algorithms, timing at-
tacks can be a serious concern depending on how the algo-
rithm is used. An algorithm can withstand timing attacks
if every pair of operation that the adversary wishes to dis-
tinguish between take the same amount of time to execute.

In our algorithm, the bitstring scanning operations domi-
nate the execution time of the Permute and Unpermute algo-
rithms. Therefore, in order to defend against timing at-
tacks we need to scan the same number of bits regard-
less of the inputs. This can easily be done by performing
additional dummy scans so the expected number of bits
scanned equals the maximum number. If we don’t per-
form counter alignment and we use bidirectional scanning,
the expected amount of scanning for each invocation of C1

doubles from s/2 to s, introducing a 2X slowdown in the
Permute and Unpermute algorithms. With counter align-
ment present, the maximum number of bits scanned becomes
2s, but it can be reduced to s by introducing an additional
cached counter for the possible input ranges of C1 at depths
d = 0, 1, . . . , log2(N/s). When s ∈ O(

√
N), this increases

the key size by a small factor of O(1/ logN).
Timing difference can also be observed due to the varia-

tion in the depth of the Permute and Unpermute algorithms.
Similarly, a padding idea can be applied to hide such vari-
ation. In future work, we plan to investigate exactly how
much performance penalty will be incurred to perfectly de-
fend against timing channel attacks.

Note that in many cases, it may not be necessary to mod-
ify the algorithm to defend against timing attacks. The
running times of Permute and Unpermute are many orders
of magnitude lower than typical network latency, so often
times the fluctuations in execution time will be dominated
by fluctuations in network latency.

9. REFERENCES
[1] Bit Twiddling Hacks. http:

//graphics.stanford.edu/~seander/bithacks.html.



[2] The Case for Elliptic Curve Cryptography.
http://www.nsa.gov/business/programs/elliptic_

curve.shtml.

[3] Tiny encryption algorithm. http://en.wikipedia.
org/wiki/Tiny_Encryption_Algorithm.

[4] Xtea. http://en.wikipedia.org/wiki/Tiny_
Encryption_Algorithm.

[5] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers.
Format-preserving encryption. In Selected Areas in
Cryptography, pages 295–312, 2009.

[6] M. Bellare, P. Rogaway, and T. Spies. The ffx mode of
operation for format-preserving encryption.
http://csrc.nist.gov/groups/ST/toolkit/BCM/

documents/proposedmodes/ffx/ffx-spec.pdf.

[7] J. Black and P. Rogaway. Ciphers with arbitrary finite
domains. In CT-RSA, pages 114–130, 2002.

[8] M. Brightwell and H. E. Smith. Using
datatype-preserving encryption to enhance data
warehouse security. In National Information Systems
Security Conference (NISSC), 1997.

[9] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious rams. J. ACM, 1996.

[10] L. Granboulan and T. Pornin. Perfect block ciphers
with small blocks. In FSE, pages 452–465, 2007.

[11] M. Luby and C. Rackoff. How to construct
pseudorandom permutations from pseudorandom
functions. SIAM J. Comput., 17(2):373–386, Apr.
1988.

[12] U. Maurer and K. Pietrzak. The security of
many-round luby-rackoff pseudo-random
permutations. In Proceedings of the 22nd international
conference on Theory and applications of
cryptographic techniques, EUROCRYPT’03, pages
544–561, Berlin, Heidelberg, 2003. Springer-Verlag.

[13] B. Morris, P. Rogaway, and T. Stegers. How to
encipher messages on a small domain. In Proceedings
of the 29th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’09,
pages 286–302. Springer-Verlag, 2009.

[14] J. Patarin. Luby-rackoff: 7 rounds are enough for

2n(1-epsilon)security. In CRYPTO, pages 513–529,
2003.

[15] J. Patarin. Security of random feistel schemes with 5
or more rounds. In CRYPTO, pages 106–122, 2004.

[16] V. Pryamikov. Enciphering with arbitrary small finite
domains. In INDOCRYPT, pages 251–265, 2006.

[17] R. Schroeppel. Hasty pudding cipher specification.
http://richard.schroeppel.name:

8015/hpc/hpc-spec.

[18] E. Stefanov, E. Shi, and D. Song. Towards practical
oblivious ram. In NDSS, 2012.


