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SUMMARY:  
I propose the new key distribution system and attribute-based encryption scheme on non-

commutative ring where the complexity required for enciphering and deciphering is small. As in 
this system encryption keys and decryption keys involve the attributes of each user, the system 
is adaptive for cloud computing systems. The security of this system is based on the complexity 
for solving the multivariate algebraic equations of high degree over finite field, that is, one of NP 
complete problems. So this system is immune from the Gröbner basis attacks. The key size of 
this system becomes to be small enough to handle. 
key words: key distribution, attribute-based encryption ,multivariate polynomial, Gröbner basis, 
NP complete problems 
 

1. Introduction 

Since Diffie and Hellman proposed the concept of the public key cryptosystem (PKC) and key 
agreement protocol (KAP) in 1976[1], various PKC and KAP were proposed [2],[3],[4].  
  Another new concept, attribute-based encryption (ABE) system was proposed in 2000’s. As in 
ABE system encryption keys and decryption keys involve the attributes of each user, the system 
is adaptive for cloud computing systems. As almost all ABE systems proposed until now are 
based on the bilinear pairing, the complexity required for enciphering or deciphering is not small 
enough [5].  
   I propose the new key distribution system and attribute-based encryption system over non-
commutative ring where the complexity required for enciphering and deciphering is small.  
   The security of our systems is based on the computational difficulty to solve the multivariate 
algebraic equations of high degree while the almost all multivariate public key 
cryptosystems[7],[8],[9],[10],[11] proposed until now are based on the quadratic equations 
avoiding the explosion of the coefficients. Because this system is based on multivariate algebraic 
equations of high degree, our scheme is against the Gröbner basis[6] attack, the differential 
attack, rank attack and so on.  
    Though I can construct this system over many non-commutative rings, I will adopt the ABE 
system based on the quaternion ring as the typical example for showing how this system is 
constructed. 

   In the next section, we begin with defining the multiplication and addition on quaternion 
ring H over finite field. In section 3, we describe the inverse of the element in H. In section 4, we 
classify users in cloud computing system. In section 5, we describe n-dimensional vector. In 
section 6, we describe the list of the n quaternions on the centre of cloud computing system. In 
section 7, we describe AND operation of enciphering keys. In section 8, we describe AND, OR and 
NOT operations of enciphering keys. In section 9, we describe the concrete method for 
enciphering/deciphering. In section 10, we describe cryptanalysis of the proposed system. In 
section 11, we show the numerical example for proposed system. In section 12, we describe the 
sizes of the keys and the complexity for enciphering/deciphering.  
 In the last section, we provide concluding remarks.  

2. Multiplication and addition of A,B∈H 

Let q be a prime. Let n, c, r and s be positive integers. Let SP be system parameters[q, n, c, 

r, s].The centre (trusted third party, TTP) chooses arbitrary parameters Q(i)=(qi1,qi2,qi3,qi4)∈

H*, (i=1,..,n), qij ∈Fq (j=1,2,3,4) where H* is the set on the quaternion ring over finite field, 

Fq such that 
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Let A=(a1,a2,a3,a4)∈H,B=(b1,b2,b3,b4)∈H, 

We define AB mod q such that 

AB mod q=(a1b1-a2b2-a3b3-a4b4 mod q, 

           a1b2+a2b1+a3b4-a4b3 mod q, 

           a1b3-a2b4+a3b1+a4b2 mod q, 

           a1b4+a2b3-a3b2+a4b1 mod q) 

 

A+B mod q=(a1+b1 mod q, a2+b2 mod q, a3+b3 mod q, a4+b4 mod q ). 

 

3.  Inverse of Q(i) 

From (1) Q(i) -1 , the inverse of any Q(i) ∈H* exists such that 

.qmodqqqq|iQ|h

where

qmodqh,qmodqh,qmodqh,qmodqhiQ
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4. Classification of users in cloud computing system  

We assign the class and rank to the user according to his/her attribute. 
For example, when user A belongs to the class a and rank 3, use A is given three n-dimensional 
vectors mentioned in §5.  
 

5. n-dimensional vector V(a,j)  

We define the n-dimensional vector V(a,j) as the encryption/decryption parameters such that  
 
V(a,j)=(vaj1,vaj2,…,vajn) ∈ Fqn , vajk∈ Fq   (a=1,..,c;j=1,..,r;k=1,..,n)    (3) 
where 
        c is the number of the class of users in this system,  
        r is the number of the rank of users in this system. 
User A is given V(a,j), V(a,j-1),..,V(a,1)  relating with his/her attribute i.e. class and rank. 
Let (a,j) be the attribute where a is the name of class and j is the name of rank. 
When user A belongs to the class a and rank 3,user A is given V(a,1),V(a,2) and V(a,3) from the 

supplier of information (SI). 
  

6. List of n quaternions (LQ) to be non-commutative each other 

 The SI selects n quaternions such that 
 
                             (4)   
where 
 
 
 
The SI publishes LQ, the list of the n quaternions, Q(i)(i=1,..,n) on the centre of cloud computing 
system. 
  
7. Basic method for enciphering/deciphering by only AND operation  
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SI distributes V(a,j) ∈ Fqn to user A who belongs to the class a and rank j through the secure 
communication line beforehand. 

SI publishes cipher-text C corresponding to the message M ∈ H on the centre of cloud 
computing system such that 

 
,qmodVaiQ...VaiQVaiQi,aE n )()()()( 21=                        (5) 

  (i=1,…,j) 
 
 C=E(a,j)・・・E(a,1)ME(a,1)-1・・・E(a,j)-1 mod q ∈ H 
where 

M=(M1,M2,M3,M4)   ∈ H                                    (6) 
Mk∈Fq, (k=1,2,3,4) 

 
We consider that plaintext M is enciphered by using “AND” of enciphering keys E(a,i) (i=1,…,j). 
 
The user A downloads LQ and C from the centre of cloud computing system through the insecure 
communication line and deciphers C to obtain M’ by calculating the decryption key D(a,1),..,D(a,j) 
using V(a,1),..,V(a,j) such that 
 

,qmodVaiQ...Vai(QVaiQi,aD n)())()( 21=                 (7) 
(i=1,..,j) 
 

.qmod,aDj,aCDj,aD...,aD'M )1()...(1-)(1-)1(=             (8) 
 
Since E(a,i)=D(a,i) (i=1,..j), we obtain M’=M’. 
LQ is replaced at the every set of cipher-texts C or LQ is replaced periodically. 
 

8. AND, OR, NOT operations  

Here we define the AND, OR, NOT operations of encryption/decryption keys as follows. 

8.1 AND operation of encryption keys 

  Let E(a,j) and E(b,k) be the encryption keys. 

AND operation of E(a,j) and E(b,k), AND[E(a,j),E(b,k)] is defined such that 

AND[E(a,j),E(b,k)]=E(a,j)E(b,k) mod q. 

Note that in general, 

AND[E(a,j),E(b,k)]≠ AND[E(b,k),E(a,j)]. 
 

8.2 OR operation of 2 encryption keys, (2-OR) 

Let s be the positive integer to be published. 

2-OR operation of E(a,j) and E(b,k), OR[E(a,j),E(b,k),X] is defined such that 

OR[E(a,j),E(b,k),X]=E(b,k)(1-E(a,j)sE(b,k)-s)-1(1-E(a,j)sX) + 

 E(a,j)(1-E(b,k)sE(a,j)-s)-1(1-E(b,k)sX) mod q. 

If and only if (Iff) X=E(a,j)-s,  

OR[E(a,j),E(b,k),E(a,j)-s]= 0 + E(a,j)(1-E(b,k)sE(a,j)-s)-1(1-E(b,k)sE(a,j)-s) =E(a,j)mod q 

where X∈H*, 0=(0,0,0,0)∈H. 

Iff X=E(b,k)-s,  

OR[E(a,j),E(b,k),E(b,k)-s]=E(b,k)(1-E(a,j)sE(b,k)-s)-1(1-E(a,j)sE(b,k)-s) + 0 =E(b,k)mod q. 

(See <appendix> theorem 1) 

 

8.3  OR operation of 3 encryption keys, (3-OR) 

3-OR operation of E(a,j),E(b,k) and E(c,l), OR[E(a,j),E(b,k),E(c,l),X] is given such that 

OR[E(a,j),E(b,k),E(c,l),X]=E(c,l)(1-E(a,j)sE(c,l)-s)-1(1-E(a,j)sX)(1-E(b,k)sE(c,l)-s)-1(1-E(b,k)sX)   

                       + E(a,j)(1-E(b,k)sE(a,j)-s)-1(1-E(b,k)sX)(1-E(c,l)sE(a,j)-s)-1(1-E(c,l)sX) 

+ E(b,k)(1-E(c,l)sE(b,l)-s)-1(1-E(c,l)sX)(1-E(a,j)sE(b,k)-s)-1(1-E(a,j)sX) mod q 
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where X∈H*. 

If X=E(a,j)-s,  

OR[E(a,j),E(b,k),E(c,l),E(a,j)-s] 

=0+E(a,j)(1-E(b,k)sE(a,j)-s)-1(1-E(b,k)sE(a,j)-s)(1-E(c,l)sE(a,j)-s)-1(1-E(c,l)sE(a,j)-s)+0 =E(a,j)mod q. 

If X=E(b,k)-s,  

OR[E(a,j),E(b,k),E(c,l),E(b,k)-s] 

=0+0+E(b,k)(1-E(c,l)sE(b,k)-s)-1(1-E(c,l)sE(b,k)-s)(1-E(a,j)sE(b,k)-s)-1(1-E(a,j)sE(b,k)-s)=E(b,k)mod q. 

If X=E(c,l)-s,  

OR[E(a,j),E(b,k),E(c,l),E(c,l)-s] 

=E(c,l)(1-E(a,j)sE(c,l)-s)-1(1-E(a,j)sE(c,l)-s)(1-E(b,k)sE(c,l)-s)-1(1-E(b,k)sE(c,l)-s)+0+0 =E(c,l)mod q. 

 

As 3-OR operation has the second order polynomial of X, some values of X exist that satisfy the 

equation such that 

OR[E(a,j),E(b,k),E(c,l),X]=E(a,j) mod q. 

But the probability is very small that the value of X selected randomly satisfies the above 

equation because the value of modulus q is selected larger than O(220) as described in section 12. 

 

t-OR operation is given by t-1 degree polynomials of X on H. 

 

8.4 NOT operation of encryption key 

NOT operation of E(a,j), NOT(E(a,j),X) is defined such that 

NOT[E(a,j),X]=(1-E(a,j)sX)-1(1-E(a,j)sX) mod q, 

where we define 

 (0 mod q)-1=0 mod q. 

Then  let X=(0,0,0,0) ∈ H, 

X-1=(h-10modq,-h-10modq,-h-10modq,-h-10modq) =(0,0,0,0) ∈ H. 

where  

h=02+02+02+02=0 mod q, 

from definition 

h-1=0 mod q. 

If X=E(a,j)-s, 

NOT(E(a,j),X)=(1-E(a,j)sE(a,j)-s)-1(1-E(a,j)sE(a,j)-s) mod q=0-10 mod q=0. 

If X=E(b,k)-s, 

NOT(E(a,j),X)=(1-E(a,j)sE(b,k)-s)-1(1-E(a,j)sE(b,k)-s) mod q=1 mod q=1. 
 

8.5 Complicated operations of AND and OR of encryption keys 

Now we can calculate the logical expression of encryption keys as follows. 

R(X,Y)=AND[OR[E(c,l),E(d,m),X],OR[E(a,j),E(b,k),Y]] 

=OR[E(c,l),E(d,m),X] OR[E(a,j),E(b,k),Y]= {E(d,m)(1-E(c,l)sE(d,m)-s)-1(1-E(c,l)sX) +  

E(c,l)(1-E(d,m)sE(c,l)-s)-1(1-E(d,m)sX)} {E(b,k)(1-E(a,j)sE(b,k)-s)-1(1-E(a,j)sY) + 

 E(a,j)(1-E(b,k)sE(a,j)-s)-1(1-E(b,k)sY)} mod q. 

If X=E(c,l)-s and Y= E(a,j)-s , 

R(X,Y)=E(c,l)E(a,j). 
 
We can also calculate the logical expressions of decryption keys, D(a,j), D(b,k) etc. 

9. Proposed method of enciphering/deciphering 

9.1 Key distribution system  
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1) The centre selects the system parameters SP=[q,n,c,r,s], and publishes them on the cloud 
computing system, where let q be the prime, n be the number of Q(i), c be the number of 
the class, r be the number of the rank, s be the positive integer.  

2) All users (including the supplier of information) download SP. 
3) The supplier of information (SI) selects n-dimensional vector V(a,i) (a=1,..,c;i=1,..,r ) where 

SI is the centre or one of users in the cloud computing system. 
4) SI classifies the users according to his/her attributes i.e. class and rank.  
5) SI distributes the n-dimensional vector V(a,d),V(a,d-1),..,V(a,1) to the users whose attribute 

is class a and rank d through the secure communication line beforehand, where 
V(a,i)=(vai1,vai2,…,vain) ∈ Fqn , vaik∈{1,2,…,n},  (i=1,..,d;k=1,..,n) . 

6) SI selects Q(i)(i=1,..,n)  and publishes the list of Q(i), LQ on the center of cloud computing 
system. 

    SI changes the LQ frequently. 
7) The users with attribute (a,d) who received the n-dimensional vector V(a,d),V(a,d-

1),..,V(a,1) calculates the encryption keys E(a,d),..,E(a,1) by using (5). 
 

9.2 Attribute-based encryption (ABE) 
     For example, in case of c=2 and r=3 we show the enciphering/deciphering procedure. 

8) SI who wants to send the massage M to the users with the attribute (a,3) or the attribute 

(b,2), enciphers the message M to cipher-text C(X) as follows. 

    K(X)=OR[AND[E(a,3),E(a2),E(a,1)],AND[E(b,2)E(b,1)],X] 

=OR[E(a,3)E(a,2)E(a,1),E(b,2)E(b,1),X], 

    C(X)=|K(X)|K(X)M(K(X))-1 mod q, 

   where   

let K(X)=(k1,k2,k3,k4) and |K(X)|=k12+k22+k32+k42 mod q. 

Then C(X)= (k1,k2,k3,k4)M(k1,-k2,-k3,-k4) 

9) SI publishes C(X) on the center of cloud computing system.  
  The user A with the attribute (a,3) or the user B with attribute (b,2) who want to obtain the 

message M accesses to the cloud computing system and download C(X), LQ and decipher 
C(X) to message M as follows. 

       
10-1) The user A with the attribute (a,3) calculates E(a,1),..,E(a,3) from V(a,1),..,V(a,3) and LQ. 
10-2) The user B with the attribute (b,2) calculates E(b,1),E(b,2) from V(b,1),V(b,2) and LQ. 
11-1) The user A with the attribute (a,3) deciphers C(X) to obtain M as follows. 
The following expression is obtained by substituting (E(a,1)E(a,2)E(a,3))-s to X of C(X). 

  CM=C((E(a,1)E(a,2)E(a,3))-s) 

=|K((E(a,1)E(a,2)E(a,3))-s)| K((E(a,1)E(a,2)E(a,3))-s)M{K((E(a,1)E(a,2)E(a,3))-s ) }-1 

=|E(a,1)E(a,2)E(a,3)| OR[E(a,3)E(b,2)E(a,1), E(b,2),E(b,1), (E(a,1)E(a,2)E(a,3))-s] M 

{OR[E(a,3)E(b,2)E(a,1), E(b,2),E(b,1), (E(a,1)E(a,2)E(a,3))-s]}-1 

=|E(a,1)E(a,2)E(a,3)| E(a,3)E(a,2)E(a,1)M{E(a,3)E(a,2)E(a,1)}-1. 

Then  

|D(a,1)D(a,2)D(a,3)|-1D(a,1)-1D(a,2)-1D(a,3)-1CMD(a,3)D(a,2)D(a,1)= M 

is obtained because that 

|D(a,1)D(a,2)D(a,3)|= |E(a,1)E(a,2)E(a,3)|. 

11-2) The user B with the attribute (b,2) deciphers C(X) to obtain M as follows. 

The following expression is obtained by substituting (E(b,2)E(b,1))-s to X of C(X). 

  CM=C((E(b,1)E(b,2))-s)=|K((E(b,1)E(b,2))-s)| K((E(b,1)E(b,2))-s)M{K((E(b,1)E(b,2))-s)}-1 

= |E(b,1)E(b,2)|OR[E(a,3)E(a,2)E(a,1), E(b,2)E(b,1), (E(b,1)E(b,2))-s]M 

 {OR[E(a,3)E(a,2)E(a,1), E(b,2)E(b,1), (E(b,1)E(b,2))-s]}-1 

=|E(b,1)E(b,2)| E(b,2)E(b,1)M{E(b,2)E(b,1)}-1. 

Then  

|D(b,1)D(b,2)|-1D(b,1)-1D(b,2)-1CMD(b,2)D(b,1)=M 

is obtained because that 
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|D(b,1)D(b,2)|= |E(b,1)E(b,2)|. 
 
10.Cryptanalysis of the current system 
 
10.1 Solving M and E(a,1) from C=|E(a,1)|E(a,1)M{E(a,1)}-1 
Cryptanalyst who tries to obtain M=(m1,m2,m3,m4) and E(a,1) from the value of C does not 
have the separate information on M or E(a,1).  

C=|E(a,1)|E(a,1)M{E(a,1)}-1  
is able to be transformed to  

C=|E(a,1)g|E(a,1)g(g-1Mg){E(a,1)g}-1  where  g∈H* and |g|=1. 
Then cryptanalyst cannot determine the value of M or E(a,1) because many pairs of M and 
E(a,1)  exist.   
                        
10.2 Gröbner basis attacks for the proposed scheme 

It is said that the Gröbner basis attacks is efficient for solving multivariate algebraic 
equations.  

We calculate the complexity G to obtain the Gröbner basis for our multivariate algebraic 
equations over Fq so that we confirm immunity of our system to the Gröbner basis attack . 
1) Method for obtaining R(X,Y) from the expression of C(X,Y)     

C(X,Y)=|R(X,Y)|R(X,Y)M(R(X,Y))-1 is given  

where R(X,Y)=AND[OR[E(c,l),E(d,m),X],OR[E(a,j),E(b,k),Y]]. 
Then, we calculate the complexity required to obtain R(X,Y) in case that n=32 and s= 

O(220). 
R(X,Y) has 100 coefficients because the i-th element of R(X,Y), ri has the form such that  

ri =ei0+ei11x1+..+ei14x4+ei21y1+..+ei24y4+ei311x1y1+..+ei344x4y4 ,(i=1,..,4), 
 where X=(x1,..,x4), Y=(y1,..,y4) and ei0,eij,eijk∈Fq. 

(R(X,Y))-1 is given such that 

(R(X,Y))-1=(h-1r1,- h-1r2,- h-1r3,- h-1r4) 

where  

h=r12+r22+r32+r42 mod q, 

|R(X,Y)| =r12+r22+r32+r42 mod q =h. 
 
Then C(X,Y)=(c1,c2,c3,c4)  has the form such that 

ci =ci0+ci11x1+..+ci14x4+ci21y1+..+ci24y4+ci311x1y1+..+ci344x4y4+C3(X,Y)+C4(X,Y), 

 (i=1,..,4), 
where C3(X,Y) is polynomial of x1,..,x4,y1,..,y4 of 3 degree and C4(X,Y) is polynomial of 
x1,..,x4,y1,..,y4  of 4 degree. 

 
We try to obtain the coefficients, ei,eij,eijk  of R(X,Y) from C(X,Y) by using  Gröbner basis. 
The number of variables is 104. 
The number of equations is 900(=(1+8+36+80+100)*4). 
The degree of equation is 4. 
G=(104C5)w=263,(w=2.39) is not enough large. 
But R(X,Y) and M is able to substitute for R(X,Y)g and g-1Mg where |g|=1. Then 
cryptanalyst cannot determine the value of M or R(X,Y) because O(q3) pairs of M and R(X,Y) 
exist.  

 
It is said that it is not efficient to obtain the coefficients, ei,eij,eijk of R(X,Y) from C(X,Y) by 

using  Gröbner basis. 
2) Method for obtaining E(a,j),E(b,k),E(c,l) and E(d,m) from the expression of C(X,Y) 

C(X,Y)=|R(X,Y)|R(X,Y)M(R(X,Y))-1 is given where  

R(X,Y)=AND[OR[E(c,l),E(d,m),X],OR[E(a,j),E(b,k),Y]]. 

Then, we calculate the complexity required to obtain E(a,j),E(b,k),E(c,l) and E(d,m) in case 
that n=32 and s=O(220). 

Considering that OR[E(a,j),E(b,k),Y] is polynomial of E(a,j) and E(b,k) of more than 3s-
degree, we are not able to adopt Gröbner basis attack. 
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It is shown that this scheme is immune from the Gröbner basis attacks. Then it is said 
that the polynomial time algorithm to break our scheme does not exist probably. 

 
11. Numerical example of key distribution and attribute-based encryption 

We show the simple example of key distribution and attribute-based encryption in this 
section. 

Centre of cloud computing system publishes the system parameters. 
SI publishes ciphertext C(X) on the center of cloud computing system which only user A with 

attribute (a,1) or user B with attribute (b,1) can deciphers.  
User A or B download C(X) from on the centre of cloud computing system and deciphers 

plaintext M by using his attribute (a,1) or (b,1) independently. 
The procedure is shown as follows. 

1.Centre selects system parameters such that  
q=5, n=5, c=2, r=1, s=1. 
Center publishes them on the centre of cloud computing system. 

2.SI selects LQ={Q(1),Q(2),Q(3),Q(4),Q(5)} such that  

Q(1)=(4,1,2,4), Q(2)=(2,2,1,3), Q(3)=(2,3,4,0), Q(4)=(4,2,4,0), Q(5)=(0,3,2,2). 
SI publishes LQ on the center of cloud computing system. 

3.SI selects V(a,1)=(1,2,3,1,4) and V(b,1)=(4,3,1,2,5). 
SI sends V(a,1), V(b,1) to user A and user B through security communication line, 
respectively. 

4.SI calculates E(a,1) from LQ and V(a,1) such that  

E(a,1)=Q(1)Q(2)Q(3)Q(1)Q(4) mod q=(1,2,3,3). 
5.User A downloads LQ from the center of cloud computing system. 

User A calculates E(a,1) from LQ and V(a,1) such that  

E(a,1)=Q(1)Q(2)Q(3)Q(1)Q(4) mod q=(1,2,3,3). 
6.SI calculate E(b,1) from LQ and V(b,1) such that  

E(b,1)=Q(4)Q(3)Q(1)Q(2)Q(5) mod q=(3,2,1,2). 
7. User B downloads LQ from the center of cloud computing system. 

User B calculates E(b,1) from LQ and V(b,1) such that  

E(b,1)=Q(4)Q(3)Q(1)Q(2)Q(5) mod q=(3,2,1,2). 
8. SI publishes ciphertext C(X) for plaintext M on the centre of cloud computing system as 

follows.  

   K(X)=OR[E(a,1),E(b,1)] 

=E(b,1)[1-E(a,1)E(b,1)-1]-1(1-E(a,1)X)+E(a,1)[1-E(b,1)E(a,1)-1]-1(1-E(b,1)X). 

  =(3,2,1,2)[1-(1,2,3,3)(3,2,1,2)-1]-1(1-(1,2,3,3)(x1,x2,x3,x4))+ 

   (1,2,3,3)[1-(3,2,1,2)(1,2,3,3) -1]-1(1-(3,2,1,2) (x1,x2,x3,x4)) 

=(4+3x1+0x2+x3+3x4,1+0x1+3x2+3x3+4x4,1+4x1+2x2+3x3+0x4,1+2x1+x2+0x3+3x4) 

=(k1,k2,k3,k4), 

  Let M the plaintext (4,3,1,1). 

  C(X)=|K(X)|K(X)M(K(X))-1 

   =(k1,k2,k3,k4)M(k1,-k2,-k3,-k4) 

      =(4+3x1+0x2+x3+3x4,1+0x1+3x2+3x3+4x4,1+4x1+2x2+3x3+0x4,1+2x1+x2+0x3+3x4)(4,3,1,1) 

       ((4+3x1+0x2+x3+3x4),-(1+0x1+3x2+3x3+4x4),-(1+4x1+2x2+3x3+0x4),-(1+2x1+x2+0x3+3x4)) 

      =(1+4x1+3x2+0x3+2x4+x12+x22+x32+x42+0x1x2+0x1x3+0x1x4+0x2x3+0x2x4+0x3x4, 

        4+4x1+1x2+1x3+1x4+4x12+0x22+2x32+4x42+2x1x2+4x1x3+0x1x4+1x2x3+2x2x4+4x3x4, 

        4+4x1+2x2+0x3+2x4+3x12+4x22+4x32+4x42+0x1x2+3x1x3+2x1x4+0x2x3+0x2x4+4x3x4, 

        2+1x1+3x2+3x3+0x4+1x12+0x22+x32+3x42+2x1x2+0x1x3+4x1x4+3x2x3+4x2x4+1x3x4). 

9. User A downloads C(X) from the centre of cloud computing system. 
User A calculates E(a,1)-1 and C(E(a,1)-1) such that 

     E(a,1)-1=(1,2,3,3)-1=(1+4+4+4)-1(1,-2,-3,-3)=(2,1,4,4). 

     C(E(a,1)-1)=C((2,1,4,4))=(2,0,0,2). 
   User A deciphers M such that 
    |E(a,1)|-1E(a,1)-1C(E(a,1)-1)E(a,1)= |(1,2,3,3)|-1 (2,1,4,4) (2,0,0,2) (1,2,3,3)=(4,3,1,1)=M. 
   User A obtains plaintext M. 
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10. User B downloads C(X) from the center of cloud computing system. 
User B calculates E(b,1)-1 and C(E(b,1)-1) such that 

     E(b,1)-1=(3,2,1,2)-1=(4+4+1+4)-1(3,-2,-1,-2)=(1,1,3,1). 

     C(E(b,1)-1)=C((1,1,3,1))=(2,0,2,0). 
   User B deciphers M such that 

    |E(b,1)|-1E(b,1)-1C(E(b,1)-1)E(b,1)= |(3,2,1,2)|-1 (1,1,3,1) (2,0,2,0) (3,2,1,2)=(4,3,1,1)=M. 
User B obtains plaintext M. 

 
12. The size of the keys and the complexity for enciphering/deciphering  

We consider the size of the system parameter q. We select the size of q such that the size of 
the order of H, O(q4) is larger than O(280 ). And we select the size of n such that (nn) is larger 
than O(280). Then we need to select modulus q ≧ O(220) and n≧19. 

In case of n=32, c=128, r=8, O(s)=O(220) and O(q)= O(220), the size of LQ,SV={V(1,1),..,V(c,r)}, 
SE={E(1,1),…,E(c,r)}, SD={D(1,1),..,D(c,r)},SP are about 2.56kbits, 164kbits, 82kbits, 82kbits,  
55bits respectively.  

The complexity to obtain SE and SD is O(228) bit-operations each. The complexity to obtain 
the cipher-text C=|K|KMK-1 where K= AND[E(a,1),..,E(a,32)] is O(218) bit-operations.  

The complexity to obtain the plaintext M=|K|-1K-1CK where K= AND[D(a,1),..,D(a,32)] is 
O(218) bit-operations.  

The complexity to obtain the cipher-text C(X)=|K(X)|K(X)MK(X)-1 where  
K(X)= OR[E(a,1),..,E(a,16),E(a,17),..,E(a,32),X] is O(221) bit-operations.  

On the other hand the complexity of the enciphering and deciphering in RSA scheme is 
O(2(logn)3)=O(234) where the size of modulus n is 2048bits. 

  Then our invention requires small memory space and complexity to encipher and decipher 
so that we are able to implement our scheme to the mobile devices. 

 
13.Conclusion 

We proposed the key distribution system and attribute based encryption. It was shown that 
our system is immune from the Gröbner basis attacks by calculating the complexity to obtain the 
Gröbner basis for solving the multivariate algebraic equations.  
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<Appendix> 
Theorem 1 
Let OR[E(a,j),E(b,k),X] be  

E(b,k)(1-E(a,j)sE(b,k)-s)-1(1-E(a,j)sX) + E(a,j)(1-E(b,k)sE(a,j)-s)-1(1-E(b,k)sX) mod q. 

 
 If and only if (Iff) X=E(a,j)-s,  

OR[E(a,j),E(b,k),E(a,j)-s]=E(a,j)mod q 

where  E(a,j)≠E(b,k),  X∈H*, 0=(0,0,0,0)∈H. 
 
Proof: 
If X=E(a,j)-s,  

OR[E(a,j),E(b,k),E(a,j)-s]= 0 + E(a,j)(1-E(b,k)sE(a,j)-s)-1(1-E(b,k)sE(a,j)-s) =E(a,j)mod q 

where 0=(0,0,0,0)∈H. 
 
If  

E(b,k)(1-E(a,j)sE(b,k)-s)-1(1-E(a,j)sX) + E(a,j)(1-E(b,k)sE(a,j)-s)-1(1-E(b,k)sX)=E(a,j)・・・①, 

E(b,k)(1-E(a,j)sE(b,k)-s)-1(1-E(a,j)sX’ ) + E(a,j)(1-E(b,k)sE(a,j)-s)-1(1-E(b,k)sX’ ) =E(a,j)・・・②, 

Calculating ①－② , 

E(b,k)(1-E(a,j)sE(b,k)-s)-1(-E(a,j)s(X-X’ )) + E(a,j)(1-E(b,k)sE(a,j)-s)-1(-E(b,k)s(X-X ’))=0 

E(b,k)( E(a,j)-s-E(b,k)-s)-1(-(X-X’ )) + E(a,j)( E(b,k)-s -E(a,j)-s)-1(-(X-X’ ))=0 

(E(b,k)- E(a,j))( E(a,j)-s-E(b,k)-s)-1(-(X-X’ )) =0 

(E(b,k)- E(a,j))( E(a,j)-s-E(b,k)-s)-1(X-X’ ) =0 

From E(a,j)≠E(b,k), then E(a,j) -s≠E(b,k) -s. 

We obtain  

X=X’.                                 q.e.d. 

 


