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Abstract. Collision resistance is a fundamental property required for
cryptographic hash functions. One way to ensure collision resistance is
to use hash functions based on public key cryptography (PKC) which re-
duces collision resistance to a hard mathematical problem, but such prim-
itives are usually slow. A more practical approach is to use symmetric-key
design techniques which lead to faster schemes, but collision resistance
can only be heuristically inferred from the best probability of a single
differential characteristic path. We propose a new hash function design
with variable hash output sizes of 128, 256, and 512 bits, that reduces
this gap. Due to its inherent Substitution-Permutation Network (SPN)
structure and JH mode of operation, we are able to compute its differ-
ential collision probability using the concept of differentials. Namely, for
each possible input differences, we take into account all the differential
paths leading to a collision and this enables us to prove that our hash
function is secure against a differential collision attack using a single in-
put difference. None of the SHA-3 finalists could prove such a resistance.
At the same time, our hash function design is secure against pre-image,
second pre-image and rebound attacks, and is faster than PKC-based
hashes. Part of our design includes a generalization of the optimal diffu-
sion used in the classical wide-trail SPN construction from Daemen and
Rijmen, which leads to near-optimal differential bounds when applied to
non-square byte arrays. We also found a novel way to use parallel copies
of a serial matrix over the finite field GF (24), so as to create lightweight
and secure byte-based diffusion for our design. Overall, we obtain hash
functions that are fast in software, very lightweight in hardware (about
4625 GE for the 256-bit hash output) and that provide much stronger
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security proofs regarding collision resistance than any of the SHA-3 final-
ists.

Keywords. SPN, wide-trail strategy, Hash Functions, collision resis-
tance.

1 Introduction

For current hash function designs, there are mainly two approaches to obtain
provable security. The first approach is to prove collision and/or preimage resis-
tance in relation to hard problems. For instance, Contini et al.’s very smooth hash
(VSH) [15] is a number-theoretic hash for which finding a collision can be proven
to be equivalent to solving the VSSH problem of the same order of magnitude
as integer factorization. Concerning preimage, an example is MQ-HASH [9] for
which finding a preimage is proven to be as hard as solving a multivariate system
of equations. For the SHA-3 candidate FSB [1], finding collisions or preimages
imply solving syndrome decoding. The second approach is more practical and
less rigorous, and aims at proving a good differential probability bound for a sin-
gle characteristic path. However, collision resistance is only heuristically inferred
from this bound.

The first approach accomplishes more than a proof of resistance to differ-
ential cryptanalyis. However, hash function schemes based on this design strat-
egy often suffer significantly in terms of speed and performance. On the other
hand, schemes using the second approach enjoy faster speeds but suffer from
incomplete proof of collision resistance. In this paper, we seek to reduce the gap
between these two approaches by providing a more powerful proof for collision
resistance while maintaining similar speed as compared to the symmetric-key
design hashes.

Here, we recall that a differential characteristic over a composed mapping
consists of a sequence of difference patterns such that the output difference from
one round corresponds to the input difference in the next round. On the other
hand, a differential is the set of all differential characteristics with the same
first-round input and last-round output differences. Most hash function designs
only aim at showing that any single differential characteristic has sufficiently low
probability and heuristically infer collision resistance from this. Examples of hash
functions which adopt this approach include hashes such as WHIRLPOOL [26] and
some SHA-3 finalists like GRØSTL [20] and JH [35]. In addition, this differential
characteristic bound is hard to determine for Addition-Rotation-XOR (ARX)
designs such as BLAKE [3] and SKEIN [19]. Therefore, the next step in collision
resistance proof, as already done by the second-round SHA-3 candidate ECHO [5],
is to give a bound on the best differential probability instead of only the best
differential characteristic probability. However, note that this security argument
only takes into account attackers that limit themselves to a fixed colliding dif-
ferential (i.e. with a fixed output difference of the internal permutation), while
many exist.
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Our proposal for a new hash function design is able to achieve a stronger dif-
ferential collision resistance proof. For example, for our proposed 512-bit hash,
we prove that the differential probability of 4 rounds of its internal permutation
function, which has a 1024-bit state size, is upper bounded by 2−816. We sum
this upper bound over all output differences that lead to a collision (2512

candidates) in order to find that the differential collision probability of our pro-
posed hash is then upper bounded by 2−304 < 2−256 after the final truncation.
In contrast, for the SHA-3 semi-finalist ECHO [5], the maximal expected differ-
ential probability for four rounds of their 2048-bit AES extension, ECHO.AES, is
1.055×2−452, but summing over all possible colliding output difference masks (at
least 21536 candidates) completely prevents such a collision-resistance argument.
For SHA-3 finalist, GRØSTL, it is easy to compute the internal collision probabil-
ity of its compression function f . However, its output transformation, involving
a permutation P followed by a truncation, makes such a derivation much less
straightforward for the external collision probability of the full GRØSTL hash
function.

In addition, we have to consider that for some hash function constructions, it
is necessary to prove low related-key differential probability instead of just low
fixed-key differential probability. For example, consider the Davies-Meyer com-
pression function instantiated with AES. The main AES cipher has very low differ-
ential characteristic probability which is bounded by 2−150 for every four rounds.
However, in the Davies-Meyer mode, each input message block to the hash corre-
sponds to the cipher key of the AES-based compression function. This makes the
compression function vulnerable to the multicollision attack by Biryukov et al.
[10], because AES does not have good resistance against related-key differential
attack.

1.1 Our Contributions

In this paper, we propose a new hash function design, SPN-Hash, with variable
output sizes of 128, 256, and 512 bits. It is specially constructed to circumvent
the weaknesses in the proofs of differential collision resistance as well as to resist
common attacks against hash functions.

Concerning the internal permutations, we use the Substitution-Permutation
Network (SPN) structure as the building block for SPN-Hash to ensure that the
maximum probability taken over all differentials (not only differential character-
istics) will be low enough. In [30], Park et al. presented an upper bound for the
maximum differential probability for two rounds of an SPN structure, where the
linear transformation can have any value as its branch number. This bound is
found to be low for SPN structures. For instance, the maximum differential prob-
ability for four rounds of AES is bounded by 1.144×2−111. Based on Park’s result,
we deduce an upper bound for the differential collision probability of SPN-Hash.
We use this bound to show that our hash functions are secure against a dif-
ferential collision attack. Furthermore for our internal permutations, we need to
consider non-square byte-arrays of sizem×n wherem 6= n. The designers of AES
[17] gave a construction for m × n arrays where m < n using optimal diffusion
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maps, but the differential bound is the same as that of an m ×m array, which
is sub-optimal for mn-byte block size. By their method, a 256-bit permutation
would be constructed by a 4× 8 byte-array that has the same differential bound
1.144×2−111 as a 4×4 byte-array. This is not close enough to 2−blocksize = 2−256

for our security proof. We generalize the optimal diffusion map of [17]
to construct m × n byte-arrays where m > n, which can achieve near
optimal differential bound close to 2−blocksize.

We also analyzed the security of our internal permutations against the latest
rebound-like attacks [32]. More precisely, we present distinguishing attacks on
three versions of the internal permutation P for 8 out of 10 rounds. For the 256-
bit permutation P , the 8-round attack requires time 256 and memory 216. For
the 512-bit permutation P , the 8-round attack requires time 248 and memory
28, while for the 1024-bit permutation P , the 8-round attack requires time 288

and memory 216.

Concerning the operating mode, we use the JH mode of operation [35], a
variant of the Sponge construction [6]. In this design, assuming a block size of
2x bits, each x-bit input message block is XORed with the first half of the state.
A permutation function P is applied, and the same message block is XORed
with the second half of P ’s output. For this construction, the message blocks are
mapped directly into the main permutation block structure instead of via a key
schedule. This eliminates the need to consider related-key differentials
when analyzing protection against collision attacks. Furthermore, the JH
mode of operation is able to provide second preimage resistance of up to 2x bits
for an x-bit hash as compared to only 2x/2 for the Sponge construction with the
same capacity.

To summarize, our SPN-Hash functions use AES-based internal permutations
with fixed-key and a generalized optimal diffusion to ensure low and provable
maximum differential probability. Then our JH-based operating mode allows us
to apply directly our security reasoning and obtain a bound on the maximum
probability of an attacker looking for collisions using a fixed input difference.
To the best of our knowledge, this is the only known function so far that
provides such a security argument.

The performances of SPN-Hash are good since the internal permutation is
very similar to the one used in the SHA-3 finalist GRØSTL. We propose a novel
construction to use parallel copies of the PHOTON 8× 8 serialized MDS
matrix over GF (24) from [22], to create a secure and very lightweight
byte-based diffusion for our design in hardware.5 Moreover, the area of
SPN-Hash is also lowered by the relatively small internal memory required by
the JH mode of operation. Hardware implementations require 4625 GE for 256-
bit hash output, while current best results for the SHA-3 competition finalists
require 10000 GE or more. Overall, our proposal achieves both excellent
software speed and compact lightweight implementations.

5 Note that the approach of [22] to do an exhaustive search for serialized MDS matrix
over GF (28) by MAGMA is only feasible for n×n matrix up to size n = 6. Therefore
we need our current approach to construct serailized 8× 8 matrix over GF (28).
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Our paper is organized as follows: We state some necessary preliminaries
concerning differential cryptanalysis in Section 2. Then we describe our proposed
SPN-Hash design and give instantiations of 128-, 256-, and 512-bit SPN-Hash in
Section 3 before proceeding to provable security against differential collision
attacks in Section 4. Section 5 is devoted to analysing the security of our hash
function against preimage, second preimage, and rebound attacks and finally in
Section 6, we show some performance comparisons.

2 Preliminaries

Substitution Permutation Network. One round of an SPN structure con-
sists of three layers: key addition, substitution, and linear transformation. In the
key addition layer, a round subkey is XORed with the input state. The substi-
tution layer is made up of small non-linear substitutions called S-boxes imple-
mented in parallel. The linear transformation layer is used to provide a good
spreading effect of the cryptographic characteristics in the substitution layer. As
such, the SPN structure has good confusion and diffusion properties [33]. One
round of the SPN structure is shown in Figure 1 in Appendix A.

Maximum differential probability of an S-Box. In this paper, we fol-
low the standard definitions related to differential cryptanalysis, such as those
in [17]. We take all S-boxes to be bijections from GF (2s) to itself. Consider an
SPN structure with an st-bit round function. Let each S-box Si be an s-bit to
s-bit bijective function Si : GF (2s) → GF (2s), (1 ≤ i ≤ t). So the S-box layer
consists of t s-bit S-boxes in parallel.

Definition 1. For any given ∆x,∆y ∈ GF (2s), the differential probability of
each Si is defined as

DPSi(∆x,∆y) =
#{x ∈ GF (2s) | Si(x)⊕ Si(x⊕∆x) = ∆y}

2s
,

where we consider ∆x to be the input difference and ∆y the output difference.

Definition 2. The maximal differential probability of Si is defined as

DP ((Si)max) =
max

∆x 6=0,∆y DPSi(∆x,∆y).

Definition 3. The maximal value of DP ((Si)max) for 1 ≤ i ≤ t is defined as

p =
max
1≤i≤t (DP (Si)max).

An S-Box Si is strong against differential cryptanalysis if DP ((Si)max) is low
enough, while a substitution layer is strong if p is low enough.

A differentially active S-box is an S-box having a non-zero input difference.
A differentially active S-box always has a non-zero output difference and vice
versa. In order to evaluate security against differential cryptanalysis, other than
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the differential probabilities of the S-box or S-box layer, one also has to consider
the number of active S-boxes whose value is determined by the linear transfor-
mation layer.

Substitution-Diffusion-Substitution function. In order to ease the analy-
sis of the SPN structure, we define an SDS (Substitution-Diffusion-Substitution)
function as shown in Figure 2. Let the linear transformation layer of the SDS
function be defined by L, its input difference by ∆x = x⊕ x∗, its output differ-
ence by ∆y = y ⊕ y∗ = L(x)⊕ L(x∗). If L is linear, we have ∆y = L(∆x). The
number of differentially active S-boxes on the input/output of the SDS function
is given by the branch number of the linear transformation layer.

Definition 4. The branch number of a linear transformation layer L is defined
as

βd = min
v 6=0
{wt(v) + wt(L(v))},

where the wt(x) is the number of non-zero s-bit characters in x.

If we want to find the number of active S-boxes in two consective rounds of
the SPN structure, we only need to consider the SDS function. βd gives a lower
bound on the number of active S-boxes in two consecutive rounds of a differential
characteristic approximation.

Definition 5. A linear transformation layer on t elements is maximal distance
separable (MDS) if βd = t+ 1.

Maximum differential probability of an SPN. The differential probability,
which is the sum of all differential characteristic probabilities with the same
input and output difference, gives a more accurate estimate of resistance against
differential cryptanalysis (than that of a single characteristic path). In [30], Park
et al. proved an upper bound for the maximum differential probability for 2
rounds of the SPN structure.

Theorem 1 [30, Theorem 1] Let L be the linear transformation of an SPN
structure and βd be the branch number of L from the viewpoint of differential
cryptanalysis. Then the maximum differential probability for 2 rounds of the SPN
structure is bounded by

max

{

max
1≤i≤t

max
1≤u≤2s−1

2s−1
∑

j=1

{DPSi(u, j)}βd , max
1≤i≤t

max
1≤u≤2s−1

2s−1
∑

j=1

{DPSi(j, u)}βd

}

.

As a consequence, we get the following theorem.

Theorem 2 [30, Corollary 1] Let L be the linear transformation of an SPN
structure and βd be the branch number of L from the viewpoint of differential
cryptanalysis. Then the maximum differential probability for 2 rounds of the SPN
structure is bounded by pβd−1, where p is the maximal value of DP ((Si)max) for
1 ≤ i ≤ t.
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3 The SPN-Hash functions

In this section we describe our proposed hash function design, SPN-Hash , with
variable hash output sizes of 128, 256, and 512 bits. We adopt the JH mode of
operation [35], a variant of the Sponge construction [6], operating on a state of
b = r + c bits. b is called the width, r the rate, and c the capacity. Our design
is a simple iterated construction based on a fixed-length unkeyed permutation
P , where r = c. The internal state of P can be represented by an n×m matrix
of 8-bit cells, where n is the number of bytes in a bundle, and m is the number
of bundles. Thus, P operates on a width of b = 8nm bits, the rate and capacity
are 4nm-bit each, and the output is a 4nm-bit hash value.

Firstly, the input message x of lengthN bits is padded and divided into blocks
of r = 4nm bits each. The padding function produces the padded message, x′,
of length a multiple of 4nm. It follows “Padding Method 2” in [29, Algorithm
9.30]: first append the bit ‘1’ to x, followed by a sequence of z = (−N −2nm−1
mod 4nm) ‘0’ bits. Finally, append the 2nm-bit representation of l = (N + z +
2nm + 1)/4nm. The integer l represents the number of message blocks in the
padded message x′. The maximum message length for 4nm-bit SPN-Hash is thus
set as 4nm · (22nm − 1)− 2nm− 1.

Then, all the bits of the state are initialized to the value of an Initialization
Vector (IV). The IV of 4nm-bit SPN-Hash is taken to be the 8nm-bit binary
representation of 4nm. That is, in big-endian notation, the IVs are 0x00 . . . 0080
for 128-bit SPN-Hash , 0x00 . . . 0100 for 256-bit SPN-Hash, and 0x00 . . . 0200 for
512-bit SPN-Hash .

For each padded message block, the JH mode of operation iteratively XORs
the incoming 4nm-bit input message block Mi into the left half of the state,
applies the permutation P : GF (2)8nm → GF (2)8nm to the internal state and
XORsMi into its right half. After all the message blocks have been processed, the
right half of the last internal state value is the final message digest and therefore
our construction produces a 4nm-bit hash. It is summarized as follows:

Padded Input = M0,M1, . . . ,MN−1

(H0,L, H0,R) = IV

For i = 0 to N − 1:

(Hi+1,L, Hi+1,R) = P ((Mi ⊕Hi,L, Hi,R))⊕ (0,Mi)

Hash = HN,R

where Mi ∈ GF (2)4nm, (Hi,L, Hi,R) ∈ GF (2)8nm and N is the total number
of padded message blocks. A diagram of our JH mode of operation is shown in
Figure 3 in Appendix A.

Using appropriate parameters m and n such that m is even and m divides n,
we will be able to construct a wide range of hash functions of different output
sizes:

128-bit SPN-Hash : m = 4, n = 8
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256-bit SPN-Hash : m = 8, n = 8
512-bit SPN-Hash : m = 8, n = 16

3.1 The Internal Permutation P

The 8nm-bit permutation P iterates a round function for 10 rounds. Its internal
state can be represented by an n×m matrix of 8-bit cells, where n is the number
of bytes in a bundle, and m is the number of bundles. Here, each column can be
viewed as a bundle consisting of n bytes. In each round, there is a substitution
layer, followed by an MDS layer, a generalized optimal diffusion layer, and lastly,
an XOR with a round constant. Thus, the linear transformation layer of the
SPN structure introduced in Section 2 is actually a composition of the MDS
layer and the generalized optimal diffusion layer while the “round keys” of the
SPN structure are taken to be the round dependant constants. A diagram of the
permutation function P is shown in Figure 4 in Appendix A.

The substitution layer σ takes in a 8nm-bit input and splits it into nm
bytes. It then applies the AES 8-bit S-box [17] to each of these bytes in parallel.
This is chosen due to its low maximum differential and linear approximation
probabilities of 2−6, which strengthens resistance against differential and linear
attacks. In hardware, it is possible to achieve a very compact implementation of
the AES S-box using “tower-field” arithmetic, as proposed in [13]. In software,
one could use the Intel AES-NI instruction set [16] for efficient implementation.

The MDS layer θ combines consecutive n bytes into bundles and applies on
each of these m bundles an MDS transformation described in Section 3.3.

The generalized optimal diffusion layer π is a permutation of bytes that
achieves good spreading effect. It is an instantiation of the generalized optimal
diffusion which we define in Section 3.2. We write this layer π as (π1, π2, . . . , πn),
where 0 ≤ πi ≤ m− 1. This notation indicates that row i is rotated by πi posi-
tions to the left:

128-bit SPN-Hash: π = (0, 0, 1, 1, 2, 2, 3, 3)
256-bit SPN-Hash: π = (0, 1, 2, 3, 4, 5, 6, 7)
512-bit SPN-Hash: π = (0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7)

These byte permutations are indeed generalized optimal diffusions since ex-
actly n/m bytes from each column is sent to each of the m columns.

The round constant RConi that is XOR-ed with the state is different for
every round i. This is to defend against slide attacks [11, 12] and to prevent
fixed points present over reduced rounds from being propagated to the entire
permutation P . Each RConi can be viewed as an n ×m matrix A, where Ax,y
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(0 ≤ x < n, 0 ≤ y < m) denotes the entry in row x and column y. Then for
RConi used in round i,

Ax,y =

{

y ⊕ i if x = 0
0 otherwise,

where i is the round number viewed as an 8-bit value. These values of round
constants are chosen as they are light in hardware.

3.2 Generalized Optimal Diffusion

Definition 6. Generalized Optimal Diffusion: Let m divide n. We consider a
concatenation of n bytes as a bundle and we consider a concatenation of m
bundles as a block. A linear transform, π, mapping a block of m bundles to m
bundles is called a (m,n)-generalized optimal diffusion if for each input bundle
of a block, n/m bytes of that input bundle is mapped to each of the m output
bundles.

Our (m,n)-generalized optimal diffusion is a generalization of the optimal
diffusion layer used in the wide-trail strategy of Rijmen and Daemen [17]. The
latter corresponds to the case m = n and the ShiftRows function in AES is a
particular instantiation of it. For our hash function design, m must be even and
m must divide n.

The following two results compute the maximum differential probability of
SPN-Hash. Their proofs can be found in Appendix B.

Theorem 3 Let θ : [GF (28)n]m → [GF (28)n]m be an MDS layer formed by
concatenating m n × n MDS transforms over GF (28). Let π : [GF (28)n]m →
[GF (28)n]m be a (m,n)-generalized optimal diffusion mapping m bundles to m
bundles. Then π ◦ θ ◦ π is a m×m MDS transform over GF (28n).

Theorem 4 The probability of any non-zero input-output differential for the in-
ternal permutation P described in Section 3.1 is upper bounded by

(

126× (2−7)n+1 + (2−6)n+1
)m

.

3.3 MDS Layer

The MDS layer provides an independent linear mixing of each column. In the
following, we describe the mixing function of each column and show that it is
indeed an MDS transform.

128- and 256-bit SPN-Hash. In [22], the authors proposed a method for gener-
ating the 8×8 MDS transform over GF (24) in a serial way that is very compact.
However, it is difficult to find an 8×8 serialized MDS matrix over GF (28) using
the exhaustive search method of [22]. Thus, we show here a way to construct
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such a matrix using two parallel copies of the PHOTON 8× 8 serialized MDS ma-
trix6 over GF (24) [22, Appendix C]. This method of construction, similar to
the one used for the MDS layer of ECHO [5], produces an MDS transform that is
very lightweight as compared to, for example, the 8 × 8 matrices7 over GF (28)
used in WHIRLPOOL [4] or GRØSTL [20].

In what follows, we describe this MDS transform for 128- and 256-bit SPN-Hash.
Label the 8 bytes in each column as a1, a2, . . . , a8. We may write each byte as a
concatenation of two 4-bit values, ai = aLi ‖ a

R
i . Let a

L = (aL1 , a
L
2 , . . . , a

L
8 ) and

aR = (aR1 , a
R
2 , . . . , a

R
8 ). Let Q be the 8× 8 MDS matrix over GF (24) used in the

PHOTON [22, Appendix C] hash function, i.e.

Q = (A256)
8 =

























0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
2 4 2 11 2 8 5 6

























8

=

























2 4 2 11 2 8 5 6
12 9 8 13 7 7 5 2
4 4 13 13 9 4 13 9
1 6 5 1 12 13 15 14
15 12 9 13 14 5 14 13
9 14 5 15 4 12 9 6
12 2 2 10 3 1 1 14
15 1 13 10 5 10 2 3

























The matrix Q is chosen as it can be implemented with a very low area footprint
in hardware. This is due to the shifting property of A which simply updates
the last cell of the column vector with a linear combination of all the vector
components, and then rotates the vector by one position towards the top. The
MDS layer is thus composed of 8 applications of A to the input column vector.
This allows reuse of existing memory without need for temporary storage or
additional control logic. Furthermore, the hash function using Q can be imple-
mented efficiently in software using precomputed tables that combine the S-box
and matrix coefficients.

We compute bL = Q·aL = (bL1 , b
L
2 , . . . , b

L
8 ) and bR = Q·aR = (bR1 , b

R
2 , . . . , b

R
8 ).

For field multiplication over GF (24), the irreducible polynomial x4 + x + 1 is
chosen with compactness as the main criterion. Then the output of the local
diffusion layer is taken to be (b1, b2, . . . , b8), where each bi is a concatenation of
the two 4-bit values, bi = bLi ‖ b

R
i .

It can be shown that this transform is indeed MDS over GF (28). Suppose the
input a is non-zero. Then at least one of aL or aR is non-zero. Without loss of
generality, suppose aL is non-zero. Since Q is MDS, this means that the number
of non-zero 4-bit values in (aL, bL) is at least 9. Hence, the number of non-zero
bytes in (a, b) is at least 9.

512-bit SPN-Hash. The choice of matrix for the 16×16 MDS is left open to the
reader. One possibility is to use the matrix proposed by Nakahara et al. in [25].

6 We use PHOTON ’s serialized matrix as we verified that it has the lowest binary weight
over GF (24).

7 A comparison of their hardware estimations can be found in Section 6.2.
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Note that Nakahara et al.’s matrix may not be lightweight due to its large size
necessitating a large number of primitive operations. However, this is not an
issue since it is unlikely that a 512-bit hash function will be used for lightweight
purposes.

4 Provable Security of SPN-Hash Against Differential

Collision Attack

Suppose an adversary wants a nonlinear component such as an S-box to have a
specified input-output differential, (∆input, ∆output), in a differential attack on
a block cipher. He can always choose a pair of input messages, (x, x′), which
satisfies the input difference x ⊕ x′ = ∆input. However, he cannot ensure this
will result in the output difference S(x⊕ k)⊕ S(x′ ⊕ k) = ∆output since he does
not know the secret key k. Therefore the differential path is satisfied only with
a certain probability.

However, there is no key in a hash function. Thus the adversary can choose a
pair of input (x, x′) corresponding to the message bits such that x⊕x′ = ∆input

and S(x)⊕ S(x′) = ∆output with probability 1 (as long as a solution exists). He
can easily perform this process to bypass as many S-boxes as he can, all with
probability 1, as long as the message bits corresponding to the input differentials
of these S-boxes are independent of each other. Usually, this simple freedom
degrees fixing method can be carried on to only a few rounds of the hash function
(the controlled rounds), depending on the quality of diffusion of the internal
components. Indeed, this process to bypass S-boxes for free becomes harder or
impossible to execute in later rounds of the hash function since it is not easy
to control message bits to satisfy several nonlinear equations simultaneously. As
a consequence, after a few controlled rounds, the attacker has to let the S-box
differentials happen probabilistically as in a block cipher differential attack for
the remaining rounds of the function (the uncontrolled rounds).

Therefore, the optimal setting for a classical collision attack against a hash
function is to consider differential characteristics for the controlled rounds and
differentials for the uncontrolled rounds. As explained above, the differential
characteristic is usually satisfied with low complexity in the controlled rounds
where the attacker will be able to exploit freedom degrees (i.e. the number of in-
dependent binary variables he has to determine). On the other hand, he considers
differentials in the uncontrolled rounds which are fulfilled only probabilistically
since the freedom degrees have already been fixed in the controlled rounds.

While some hash functions such as ECHO [5] do provide upper bounds on the
maximum differential probability for a certain number of rounds, one has to note
that an attacker could leverage the fact that several output differences may lead
to a collision. The attacker then maximizes its probability to find a collision by
considering differential characteristics for the controlled rounds and all differen-
tials that lead to a collision for the uncontrolled rounds. As a consequence, for
a sharper estimation of the collision resistance of a hash function, one has to
sum the maximum differential probability bound over all the possible colliding
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output differences. To the best of our knowledge, no known hash function has
yet provided such a collision resistance proof.

Looking at the SHA-3 competition candidates, such a proof seems hard to
get. First, for most of the ARX (Addition-Rotation-XOR) functions submitted
such as BLAKE [3] and SKEIN [19], obtaining a good maximum differential proba-
bility upper bound is really hard and remains an open problem. Even some SPN
functions such as JH [35] could not provide any interesting bound regarding this
criteria, due to its highly nested structure. On the other hand, ECHO [5] design-
ers could prove that the maximum differential probability for four rounds of its
internal permutation is upper bounded by 1.055 × 2−452. However, for any of
the ECHO variants, the number of colliding output differences is at least 21536,
rendering such a proof impossible to apply.

The GRØSTL [20] hash function processes l-bit message blocks, m1, . . . ,mt, as
hi ← f(hi−1,mi) for i = 1, . . . , t, where h0 = IV . The compression function f
is given by f(h,m) = P (h ⊕m) ⊕ Q(m) ⊕ h, where P and Q are two different
l-bit permutations. Thus, f maps two l-bit inputs to an l-bit output. After the
last message block has been processed, an output transformation Ω is applied,
where Ω is given by Ω(x) = truncn(P (x) ⊕ x) for an n-bit hash. Note that l,
the size of the chaining value, shall always be at least twice the size of the hash
output. It is easy to check that the internal differential collision probability of f
is less than the birthday bound. However, the output transformation, involving
a permutation followed by truncation of the last block, makes such a deriva-
tion much less straightforward for the external collision probability of the full
hash function. Till now, there have been no published results on the differential
collision probability of GRØSTL.

We show in the following that SPN-Hash can provide good maximum differ-
ential probability upper bounds for 4 rounds of its internal permutation and that
its operating mode allows us to go further to prove that the sum of all collid-
ing differential probabilities is still much lower than what an attacker would get
with a generic birthday collision attack. We note that among the PHOTON [22]
family of ciphers, our proof can only apply to the variant which uses the 288-bit
internal permutation P288 involving 8-bit S-boxes. The other 4 members of the
family use 4-bit S-boxes in their internal permutations which do not give low
enough differential bounds after truncation.

4.1 Collision Resistance Analysis of the General SPN-Hash

Construction

For our SPN-Hash construction, we make the extremely conservative estimate
that the number of uncontrolled rounds is at least 4, which means that the
adversary will run out of freedom degrees after six rounds or less, and he will
not be able to control intermediate differentials in subsequent rounds. Note that
the currently best known freedom degree utilizations for AES-like primitives, the
rebound attack [28] and its variants [27, 21, 32] allow us to control three rounds
only.



13

Let ∆Input denote the input differential and ∆Output be the output dif-
ferential of the 4 last rounds of the SPN-Hash internal permutation. A collision
for the hash function can occur either by an internal collision (a collision on the
full 8nm-bit internal state) or by an external collision during the last iteration
(a collision on the right side of the 8nm-bit internal state, the left side being
truncated before outputing the hash value).

In the case of an external collision, this corresponds to P having an output
differential of the form (∆x,∆M) ∈ GF (2)4nm × GF (2)4nm, where XOR with
the message difference ∆M in the right half will give a zero difference. The left
half is truncated, so it can take any difference ∆x. Thus the differential external
collision probability in the last 4 rounds is given by:

Pr(∆Output = (∆x,∆M)) =
∑

∆x∈GF (2)4nm

Pr(∆Input
4R
−→ (∆x,∆M)).

We apply Theorem 4 to bound Pr(∆Input
4R
−→ (∆x,∆M)) in the following

computation:

Pr(External Collision) =
∑

∆x∈GF (2)4nm

Pr(∆Input
4R
−→ (∆x,∆M))

≤ 24nm × max
∆x 6=0

Pr(∆Input
4R
−→ (∆x,∆M))

< 24nm ×
(

126× (2−7)n+1 + (2−6)n+1
)m

< 24nm ×
(

(2−7)n + (2−6)n+1
)m

= 24nm ×
[

(2−6n)(2−n + 2−6)
]m

< 24nm × 2−6nm = 2−2nm

where the complexity of a generic birthday attack is 24nm/2 = 22nm.
In the case of an internal collision on the 8nm-bit permutation P , since

there is no truncation, the differential probability is given by Pr(∆Input
4R
−→

(0, ∆Mi)) for all possible message differences ∆Mi. By Theorem 4 and in the
same way as the computation above, we can show that this is lower than 2−2nm,
the complexity of a generic birthday attack for the hash function.

Assuming the adversary can bypass half of the rounds by exploiting free-
dom degrees (which is far from being possible with currently known cryptanal-
ysis techniques), the above computations show that the adversary cannot gain
any advantage by a differential collision attack (internal or external) since the
SPN-Hash internal permutation has 10 rounds. Even if the adversary can find
some clever way to extend the differential attack, we still have several rounds as
buffer for protection.

Therefore, to summarize, the probability of success of a differential collision
attack on 4nm-bit SPN-Hash is less than 2−2nm when the attacker can control
at most all but 4 rounds, and this attack has worse complexity than a generic
birthday technique.
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4.2 Application to 128-, 256-, and 512-bit SPN-Hash

In this section, we give bounds for the differential collision probability of the
128-, 256-, and 512-bit SPN-Hash described in Section 3.3. In Section 5, we
go on further to analyze the security of these hashes against preimage, second
preimage, rebound attacks and its latest variants.

128-bit SPN hash. For 4 uncontrolled rounds, the maximum differential
probability is upper bounded by:

(

126× (2−7)9 + (2−6)9
)4

= 2−214.730.

We sum this upper bound over all differential ∆x ∈ GF (2)128 (external colli-
sion) or ∆Mi ∈ GF (2)128 (internal collision) to bound the differential collision
probability by

2128 × 2−214.730 = 2−86.730 < 2−64.

and this shows that a differential collision attack with at least 4 uncontrolled
rounds will not perform better than a generic birthday attack.

256-bit SPN hash. For 4 uncontrolled rounds, the maximum differential
probability is upper bounded by:

(

126× (2−7)9 + (2−6)9
)8

= 2−429.461.

We sum this upper bound over all differential ∆x ∈ GF (2)256 (external colli-
sion) or ∆Mi ∈ GF (2)256 (internal collision) to bound the differential collision
probability by

2256 × 2−429.461 = 2−173.461 < 2−128.

and this shows that a differential collision attack with at least 4 uncontrolled
rounds will not perform better than a generic birthday attack.

512-bit SPN hash. Similarily, we show that for 4 uncontrolled rounds, the
maximum differential probability is upper bounded by:

(

126× (2−7)17 + (2−6)17
)8

= 2−815.989.

We sum this upper bound over all differential ∆x ∈ GF (2)512 (external colli-
sion) or ∆Mi ∈ GF (2)512 (internal collision) to bound the differential collision
probability by

2512 × 2−815.989 = 2−303.989 < 2−256.

and this shows that a differential collision attack with at least 4 uncontrolled
rounds will not perform better than a generic birthday attack.

The JH mode of operation is very handy for this type of proof as the amount
of colliding differentials always remains acceptable compared to the internal
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permutation size. This is true even in the case of internal collisions because of
the partial feedforward of the message block. The proof would be even easier to
apply if we reduced the amount of message bits inserted during each iterations,
but we maximize the bit-rate by incorporating message blocks of half the size
of the internal permutation (for bigger message blocks, one could not guarantee
ideal collision resistance anymore).

5 Analysis of Other Attacks on SPN-Hash

5.1 (Second)-Preimage Attack

The JH mode of operation has a similar structure to the Sponge construction [7],
which can ensure differential collision resistance by proving good differential
bounds for the underlying permutation. However, the Sponge construction pro-
vides preimage resistance up to 2c/2 = 22nm, which is much lower than the
expected 24nm. This is due to the fact that the permutation can be inverted
easily, and one can compute a preimage in a MITM way. I.e., given a message
with two blocks M0||M1, one can try 22nm different M ′

0 and 22nm truncations
H2,L, to meet at the state H1. Note the left half of the state can be matched
immediately once a proper M ′

1 is chosen, hence the time complexity is essentially
a meet-in-the-middle for 4nm bits. In the JH mode of operation, there is an XOR
of the message in the right half at the end of the permutation to make the meet-
in-the-middle (MITM) attacks invalid. With the XOR, this MITM attack does
not work since once M ′

1 varies, the state value H2 changes as well and one cannot
fix H2 and vary M ′

1 simultaneously. This attack on the Sponge construction can
easily be modified into a second pre-image attack, which is also defeated by the
feedforward XOR in the JH mode of operation.

In [8], Bhattacharyya et al. provide the indifferentiability proof and a preim-
age attack against the JH-512 hash function with both time and memory com-
plexity 2507, using multi-collision techniques. This attack is a theoretical im-
provement because the complexity is still of the same magnitude as brute force
search. Moreover, a generic time-memory trade-off (TMTO) attack with trade-
off curve T · M2 = N2 (attack complexity T , memory M and search space
N), will perform much better. After a pre-computation with 2512 complexity
(which is equivalent to performing Bhattacharyya’s attack 32 times). Using 2507

memory to store the result will allow each subsequent online attack to take just
T = N2/M2 = 210 time complexity.

5.2 Rebound Attack - Distinguishing Attack on Permutation P

In this section, we describe an attack on the permutation P to distinguish the
permutation P from an ideal primitive on the same domain. Our overall strategy
is to use the non-full-active Super S-box cryptanalysis technique as detailed
in [32]. The technique in [32] is an enhancement of the original Super-Sbox
analysis in [21, 26].
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Central to the previous rebound [28] or start-from-the-middle [27] attacks, we
attempt to find a pair of internal state values in the middle of an optimally chosen
truncated differential path such that the path is verified for as many rounds as
possible in both the backward and forward directions. This part is called the
controlled rounds or inbound and the rest of the path fulfilled probabilistically are
called the uncontrolled rounds or outbound. The main idea of the non-full-active
Super S-box analysis is to use a differential path in which its Super S-boxes in the
controlled rounds comprise only non-full-active states. For non-active bytes, the
differential transition 0 to 0 always holds. Thus attackers can freely choose the
value without breaking the path. This gives the attackers the freedom degrees
to adjust other bytes inside the Super-Sbox to be connected efficiently. In the
remaining of this section, we consider the 256-, 512- and 1024-bit permutations
P of the 128-, 256-, and 512-bit SPN-Hash respectively.

8-round differential paths. We view the 256-bit, 512-bit and 1024-bit inter-
nal state of the permutation P as a 8×4 matrix of bytes, a 8×8 matrix of bytes
and a 16×8 matrix of bytes respectively. Figures 5, 6 and 7 of Appendix A depict
8-round differential paths for 256-bit P , 512-bit P and 1024-bit P respectively.
A gray cell denotes an active byte while a white cell denotes a passive byte.

The controlled rounds. With reference to Figures 5, 6 and 7, the beginning
of round 3 until the end of round 5 are the controlled rounds, indicated by dashed
arrows in the figures. In round 4, we interchange the generalized optimal diffusion
layer with the XOR operation followed by the substitution layer. This enables
us to view the composition of substitution layer, MDS layer, XOR with round
constant in round 4 and substitution layer of round 5 as an overall application
of eight Super-Sboxes in parallel. Then by applying non-full-active Super S-box
technique in [32],

– 256-bit P : we can obtain 216 starting points, which are solutions of the
controlled rounds with time 216 and memory 216;

– 512-bit P : we can obtain 28 starting points, which are solutions of the con-
trolled rounds with time 28 and memory 28;

– 1024-bit P : we can obtain 216 starting points, which are solutions of the
controlled rounds with time 216 and memory 216.

Hence we obtain a starting point with time 1 on average. As the computation
procedure of the Super-Sboxes involves much technicalities, we refer interested
readers to Section 4.2 of [32] for a detailed explanation.

The uncontrolled rounds. We obtained valid candidates from the beginning
of round 3 until the end of round 5 but we have no control on the difference
values prior to round 3 and beyond round 5. That is, the rest of the path is
fulfilled probabilistically, denoted by solid arrows in Figures 5, 6 and 7.
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– 256-bit P : The path is fulfilled with probability approximately 2−24 in round
2 and approximately 2−32 in round 6. For the rest of the rounds in the
uncontrolled rounds, the path fulfilled with probability approximately 1.
Therefore the differential characteristic probability of the 8-round differential
path depicted in Figure 5 is approximately 2−56.

– 512-bit P : The path is fulfilled with probability approximately 2−24 in round
2, approximately 2−24 in round 6 and approximately 1 in round 8. For the
remaining of the uncontrolled rounds, the path is deterministic. Therefore the
differential characteristic probability of the 8-round differential path depicted
in Figure 6 is approximately 2−48.

– 1024-bit P : Similarly, the differential characteristic probability of the 8-round
differential path depicted in Figure 7 is approximately 2−24 × 2−64 = 2−88.

The amount of freedom degrees. Before analyzing the complexity of the
distinguishing attack, we first clarify the amount of freedom degrees available to
the attacker. We want to ensure that there are enough solutions for the controlled
rounds such that it is highly probable that at least one of them will fulfill the
entire differential characteristic.

– 256-bit P : As calculated, we need 256 starting points. Since we can choose
280 differences at the start of the controlled rounds (4-byte difference at the
beginning of round 3 and 6-byte difference at the end of round 5), we have
enough freedom degrees to find a pair of values following the path.

– 512-bit P : As calculated, we need 248 starting points. Since we can choose
272 differences at the start of the controlled rounds (5-byte difference at the
beginning of round 3 and 4-byte difference at the end of round 5), we have
enough freedom degrees to find a pair of values following the path.

– 1024-bit P : Since we need 288 starting points and we can choose 28×4×28×9 =
2104 differences at the start of the controlled rounds, we have enough freedom
degrees to find a pair of values following the path.

Distinguishers for P . We consider the attack complexity in the ideal case.
More generally, we study the problem of mapping a i-bit zero difference mask
to a j-bit zero difference mask through a t-bit ideal permutation. Following the

argument of [21], if j ≤ 2(t−i), then 2
j
2 input values from one single structure are

sufficient to achieve a collision on the j target positions. The attack complexity

is about 2
j
2 .

– 256-bit P : By substituting t = 256, i = 64 and j = 128, the attack complexity
in the ideal case is 264.

– 512-bit P : By substituting t = 512, i = 192 and j = 192, the attack com-
plexity in the ideal case is 296.

– 1024-bit P : By substituting t = 1024, i = 128 and j = 512, the attack
complexity in the ideal case is 2256.

In contrast, the complexity of finding a valid pair for the whole 8-round
differential path using the non-full-active Super S-box technique is as follows:
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– 256-bit P : 256 operations and 216 memory,
– 512-bit P : 248 operations and 28 memory, and
– 1024-bit P : 288 computations and 216 memory.

We thus obtain a distinguisher for the 8-round reduced 256/512/1024-bit
permutation P . To the best of our knowledge, the differential paths presented
are among the longest paths with the least complexities. Since P comprises ten
round functions, the distinguishing attacks do not threaten the security of the
hash function.

5.3 Exploiting the MDS layer structure for 128- and 256-bit
SPN-Hash

An attacker could try to exploit the special structure used to build the MDS
layer. Indeed, in the case of 128- and 256-bit SPN-Hash, instead of using a diffu-
sion matrix over GF (28) (like for AES, WHIRLPOOL or GRØSTL), the layer is built
by applying two times independently a diffusion matrix over GF (24). Note that
since the process is still equivalent to a MDS matrix, the proof on the number
of active S-boxes is not impacted. However, in the case of truncated differential
paths, an attacker could try to make some differential transitions to happen with
better probability than expected by forcing at some stage that the differences
remain on the left or on the right side of the bytes processed.

For example, a truncated differential transition verified probabilistically from
8 active bytes to 1 active byte should cost 27×8 = 256 tries, but if the all truncated
differences are forced to be on the left or on the right side, then the complexity
becomes 27×4 = 228 tries. This observation was one of the main properties used
for the first attacks [31] on the ECHO hash function.

However, we believe such a strategy would very likely fail because this right/left
property would be destroyed by the application of the AES S-box. Alternatively,
forcing this property to be maintained for each active byte through the S-box
layer would imply a big cost for the attacker, bigger than the gain from the
truncated differential transitions. This has been confirmed by experiments, as
there is no strong bias through the AES S-box in order to reach an all-right or
an all-left difference (forward or backward). Note that in the case of ECHO this
is not true since the 128-bit ECHO S-box is implemented by two AES rounds, for
which forcing good truncated differential paths at no cost is easy.

6 Implementation

6.1 Software Performance

Due to its similarity with GRØSTL concerning the construction of the internal
permutation, it is interesting to analyze SPN-Hash’s software speed in the light
of this SHA-3 candidate. The internal permutation of 256-bit SPN-Hash is com-
parable with GRØSTL-256 since their (individual) internal permutation are of the
same size, and their amount of message bits per call to the internal permutation
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is the same (256-bit SPN-Hash compression function processes 256 bits message
in 10 round operations, compared to 512-bit message in 20 very similar round op-
erations by GRØSTL-256). The round function of these two hash functions should
take about similar amount of time due to: 1) The equal number of substitution
operations using the same AES sbox; 2) The speed of MDS multiplication is in-
dependent of the MDS coefficients in most table-based implementations; 3) The
ShiftByte in GRØSTL is done together with step 2 in table-based implementations;
4) The round constants are a bit simpler than those in GRØSTL; and 5) There
are three times ⊕ for 512 bits in GRØSTL and twice 256-bit ⊕ in 256-bit SPN
hash. We did a simple and unoptimized implementation based on table lookups,
which turns to be 34 cycles per byte on a Intel(R) Xeon(R) CPU E5640 clocked
at 2.67GHz. We believe that there remains an important room for improvements
by implementing SPN-Hash with optimized assembly instructions. Similar com-
parison argument applies when one considers implementations with the AES
new instruction set, while GRØSTL-256 runs at 12 cycles per byte with internal
parallelization of the two permutations P and Q, we expect SPN-Hash-256 to run
at 12 to 24 cycles per byte mostly due to the fact that similiar parallelization is
not possible. Note that the 128-bit SPN-Hash shall run as fast as the 256-bit ver-
sion, since its compression function takes half the message bits, and uses roughly
half the amount of operations. Test vectors are provided in Appendix Table 2.

6.2 Hardware Performance

We have implemented 128-bit and 256-bit SPN hash in VHDL and used Synopsys
DesignCompiler A-2007.12-SP1 to synthesize it to the Virtual Silicon (VST)
standard cell library UMCL18G212T3, which is based on the UMC L180 0.18µm
1P6M logic process with a typical voltage of 1.8 V. We used Synopsys Power
Compiler version A-2007.12-SP1 to estimate the power consumption of our
ASIC implementations. For synthesis and for power estimation we advised the
compiler to keep the hierarchy and use a clock frequency of 100 KHz.

Figure 8 in Appendix A shows the datapath of the hardware architecture. As
can be seen, our serialized design is very similar to the design proposed in [22]
and consists of six modules: MDS, State, IO, AC, SC, and Controller.

IO allows to 1) initialize our implementation with an all ‘0’ vector; 2) input
the IV, 3) absorb message chunks; 4) store the whole message block Mi until
the end of the permutation; and 5) forward the output of the AC module to the
SC module without further modification. It requires 638 GE and 1 236 GE, the
vast majority of which is used for storing Mi.

State comprises a nm array of flip-flop cells storing 8 bits each. Every row
constitutes a shift-register using the output of the last stage, i.e. column 0, as
the input to the first stage (column m − 1) of the same row and the next row.
Using this feedback functionality Generalized Optimal Diffusion (GOD) can be
performed in m−1 clock cycles with no additional hardware costs. Further, since
GOD is performed on column 0, also a vertical shifting direction is required for
this column. Consequently, columns 0 and m − 1 consist of flip-flop cells with
two inputs (6 GE), while columns 1 to m − 2 consist of flip-flop cells with
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only one input (4.67 GE). Also the final addition of the message block to the
right half is included in this module. The overall gate count for this module is
8 · 2.67 + 8 · n · ((m − 2) · 4.67 + 2 · 6) GE, that is 1 365 GE and 2 588 GE for
128-bit and 256-bit SPN-hash respectively.

MDS uses two instances of of A256 and calculates their last row in one clock
cycle. The result is stored in the State module, that is in the last row of column
0, which has been shifted upwards at the same time. Consequently, after n clock
cycles the MixColumnsSerial operation is applied to an entire column. Then the
whole state array is rotated by one position to the left and the next column is
processed. In total m · (n+ 1) clock cycles and 290 GE are required to perform
MDS. In comparison, back-of-the-envelope estimations of the implementation of
a single row of the 8 × 8 MDS matrices of WHIRLPOOL and GRØSTL using our
technology indicate area requirements of around 256 GE and 350 GE, respec-
tively. Adding minimal storage requirements of around 260 GE to store seven
temporary bytes,8 one can see that our MDS layer is indeed very light.

AC XORs RConi to the output of the State module when a control signal
indicates that the first row is processed. It requires 24 GE.

SC performs the S-box layer and comprises a single instantiation of Canright’s
representation of the AES S-box [13] which requires 233 GE. It takes nm clock
cycles to perform AddConstant and SubCells on the whole state.

Controller uses a Finite State Machine (FSM) to generate all control signals
required. Furthermore, also the round constants and the internal constants are
generated within this module, as their values are used for the transition condi-
tions of the FSM. The FSM consists of one idle state, one state for the combined
execution of AC and SC, m − 1 states for GOD and two states for MDS (one
for processing one column and another one to rotate the whole state to the left).
Naturally, its gate count varies depending on m: 200 GE for m = 4 and 254 GE
for m = 8 respectively.

Table 1 in Appendix A compares our implementations of SPN hash with
the remaining five SHA-3 candidates with regards to area, latency and a FOM
proposed by [2]. In order to have a fair comparison, we only include figures for
fully-autonomous low-area ASIC implementations and omit figures for imple-
mentations that are optimized for high throughput. Among the SHA-3 candi-
dates BLAKE, GRØSTL, and SKEIN, 256-bit SPN-Hash is by far the most compact
proposal. Though it has only the second highest FOM, our estimates for a 64-bit
datapath implementation indicate that it can achieve the highest FOM, while
still being 35% smaller than the most compact SHA-3 candidate.
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A Tables and Figures
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Table 1. Comparison of Low-Area Hardware implementations of SPN hash and a
selection of SHA-3 finalists.

Digest Alg. Ref. Msg. Technology Area Latency T’put@100KHz FOM
size size [GE] [clk] [kbps] [nbps/GE2]

128
SPN-Hash-128 256 UMC 0.18 2 777 710 36.1 2 338
SPN-Hash-128 256 estimate 4 600 230 55.7 2 627

256

SPN-Hash-256 512 UMC 0.18 4 625 1 430 35.8 837
SPN-Hash-256 512 estimate 8 500 230 111.3 1 541
BLAKE-32 [23] 512 UMC 0.18 13 575 816 62.8 340

GRØSTL-224/256 [34] 512 AMS 0.35 14 622 196 261.2 1 222
SKEIN-256-256 [34] 256 AMS 0.35 12 890 1 034 24.8 149

Fig. 1. One round of a SPN structure Fig. 2. The SDS function



24

Fig. 3. The JH mode of operation

Fig. 4. The round function in permutation P
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Fig. 5. 8-round differential path for a 256-bit permutation P

Fig. 6. 8-round differential path for a 512-bit permutation P
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Fig. 7. 8-round differential path for a 1024-bit permutation P
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Fig. 8. Serial hardware architecture of 128-bit and 256-bit SPN hash. 512-bit SPN
hash can use the very same architecture, except for the MDS component.
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B Proofs

B.1 Proof of Theorem 3

Proof. Firstly, note that since π is a (m,n)-generalized optimal diffusion, by
definition, so is π−1. Suppose we have one active bundle in the layer θ. Since
the transforms in that layer are all MDS, there are n + 1 differentially active
input/output bytes in that bundle. These originate from or get distributed to at
least ⌈(n+1)/(n/m)⌉ = m+1 bundles. Clearly, the remaining case where more
than one bundle in θ is active will result in at least m + 1 active input/output
bundles to π ◦ θ ◦ π, making it a m×m MDS transform over GF (28n).

B.2 Proof of Theorem 4

Proof. Here we base much of the proof on the wide trail strategy (see [18, The-
orem 3], [17, Theorem 9.5.1]). Since σ and π are byte-based operations, we may
interchange their order. After this admissible re-arrangement of operations, we
can view four rounds of permutation P as a successive alternation between σ◦θ◦σ
and π ◦ θ ◦ π.

Each bundle over a σ◦θ◦σ transformation is a 8n-bit SDS structure consisting
of the linear map θ sandwiched between two layers of n 8-bit S-boxes. Since the
MDS layer θ has branch number n+ 1 and the S-boxes are all affine equivalent
to the inversion function over GF (28), we can apply Theorem 1 with s = 8 and
βd = n+ 1 for the AES S-Box. The maximum differential probability of σ ◦ θ ◦ σ
is thus bounded by DPσ◦θ◦σ which is at most

max







max
1≤u≤255

255
∑

j=1

{DPS(u, j)}n+1, max
1≤u≤255

255
∑

j=1

{DPS(j, u)}n+1







.

We need to find the difference distribution DPS(u, j) where u ∈ GF (28) is
fixed and j varies over all of GF (28). This is given by the difference distribution
for each row of the difference table. Similarly, we need to find the difference
distribution of the columns. Since all the S-boxes used are affine transforms of
the inversion function, they have the same difference distribution. Furthermore,
as explained in [14, Section 4], the difference distribution of the columns of the
inversion function is the same as that for the rows. Thus, we only need to consider
the rows in the difference table. This simplifies the upper bound in Theorem 1
to

∑255
j=1{DPS(u, j)}n+1, u 6= 0.

The difference distribution for each row of the inversion mapping is the follow-
ing: 129 differences with no occurence, 126 differences with two occurences and
1 difference with four occurences. Hence, DPσ◦θ◦σ ≤ 126× (2−7)n+1+(2−6)n+1.

By Theorem 3, π ◦ θ ◦ π is a m × m MDS transform over GF (28n), i.e. it
has a branch number m + 1 acting on bundles of n bytes. Thus, we can view 4
rounds of P as π ◦θ ◦π sandwiched between two layers of m bundles, where each
bundle has differential probability at most 126× (2−7)n+1 + (2−6)n+1. Then by
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Theorem 2, the maximum differential probability of 4 rounds of P is bounded
by

(DPσ◦θ◦σ)
m <

(

126× (2−7)n+1 + (2−6)n+1
)m

.

C Test Vector

We hash the message “SPN-Hash: Improving the Provable Resistance Against
Differential Collision Attacks” with three variants of the SPN-Hash family, and
the following are digests generated by our reference implementation.

SPN-Hash-128 2b021df78220afd2a41fa3592dc7d284

SPN-Hash-256 eabd18110d48e81d0663a7034b265462bf93f8019ca292e58ec1d830f90d67c5

SPN-Hash-512
f3e4a3dcc44acb2cf4d6f5f67bd8ce50ef030f55e0189a322136b5fc46af3cf5

e071f1ee9bf1851bbd854540da1ccc496d679b43090f8e24f486d6866092ac02

Table 2. Test vectors for three variants of SPN-Hash family


