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Abstract. We implement asymmetric pairings derived from Kachisa-
Schaefer-Scott (KSS), Barreto-Naehrig (BN), and Barreto-Lynn-Scott
(BLS) elliptic curves at the 192-bit security level. Somewhat surprisingly,
we find pairings derived from BLS curves with embedding degree 12
to be the fastest for our serial as well as our parallel implementations.
Our serial implementations provide a factor-3 speedup over the previous
state-of-the-art, demonstrating that pairing computation at the 192-bit
security level is not as expensive as previously thought. We also present
a general framework for deriving a Weil-type pairing that is well-suited
for computing a single pairing on a multi-processor machine.

1 Introduction

Since the advent of pairing-based cryptography, researchers have been devising
methods for constructing and efficiently implementing bilinear pairings. Initial
work [5,12] was focused on implementing pairings at (roughly) the 80-bit se-
curity level. Koblitz and Menezes [19] highlighted the performance drawbacks
of pairings at very high security levels. The subsequent discovery of Barreto-
Naehrig (BN) elliptic curves [7], ideally suited for implementing pairings at the
128-bit security level, spurred a lot of research culminating in the implemen-
tation of Aranha et al. [2] that achieved speeds of under 2 million cycles for a
128-bit pairing computation on a single core of Phenom II, Core i5 and Opteron
machines.

More recently, researchers have considered implementing pairings at even
higher security levels. Costello, Lauter and Naehrig [9] argued that a certain fam-
ily of embedding degree k = 24 Barreto-Lynn-Scott elliptic curves [6], henceforth
called BLS24 curves, are well-suited for implementing pairings at the 192, 224,
256, 288, and 320-bit security levels. Scott [28] implemented several pairing-based
protocols using BN curves at the 128-bit security level, Kachisa-Schaefer-Scott
(KSS) curves [17] with embedding degree k = 18 at the 192-bit security level,
and BLS24 curves at the 256-bit security level. Scott concludes that the best



choice of pairing to implement a particular protocol can depend on a variety of
factors including the number and complexity of non-pairing operations in the
protocol, the number of pairing computations that are required, and the appli-
cability of several optimizations including fixed-argument pairings and products
of pairings [27].

In this paper, we focus on fast implementations of a single pairing at the
192-bit security level. We chose the 192-bit level because it is the higher security
level (the other is 128-bit) for public-key operations in the National Security
Agency’s Suite B Cryptography standard [23]. Moreover, as mentioned by Scott
[28], the optimum choice of pairing-friendly curve for the 192-bit security level
from the many available candidates [10] is not straightforward.

We examine a family of embedding degree k = 12 elliptic curves, henceforth
called BLS12 curves, first proposed by Barreto, Lynn and Scott [6] (see also [8]).
Unlike BN curves, the BLS12 curves are not ideal for the 128-bit security level
since the group order #E(Fp) is not prime. Nevertheless, our careful estimates
and implementation results demonstrate that they outperform KSS, BN and
BLS24 curves at the 192-bit security level. We also present a general framework
for deriving analogues of the β Weil pairing, first presented in [3] for BN curves.
This pairing is well-suited for computing a single pairing on a multi-processor
machine since it avoids the relatively-costly final exponentiation that cannot be
effectively parallelized and is present in all Tate-type pairings.

The remainder of the paper is organized as follows. The salient parameters
of KSS, BN, BLS12 and BLS24 curves are presented in §2. In §3, we review Ver-
cauteren’s notion of an optimal pairing and present the β Weil pairing. The cost
of the BLS12, KSS, BN and BLS24 pairings are estimated in §4, §5, §6 and §7,
respectively. Finally, §8 compares the estimated speeds of the four pairings and
reports on our implementation. Our results show a significant performance im-
provement over the previous state-of-the-art for serial pairing implementation of
the optimal ate pairing at the 192-bit security level, and an increased scalability
of the β Weil pairing in relation to the optimal ate pairing.

2 Pairing-friendly elliptic curves

Let p be a prime, and let E be an elliptic curve defined over the finite field Fp. Let
r be a prime with r | #E(Fp) and gcd(r, p) = 1. The cofactor is ρ = log p/ log r.
The embedding degree k is the smallest positive integer with r | (pk−1). We will
assume that k is even, whence k > 1 and E[r] ⊆ E(Fpk).

Let π : (x, y) 7→ (xp, yp) be the p-th power Frobenius endomorphism. The
trace of the Frobenius is t = p + 1 − #E(Fp). Let G1 = {P ∈ E[r] : π(P ) =
P} = E(Fp)[r]; G1 is the 1-eigenspace of π acting on E[r]. Let d be the order of
the automorphism group of E, and suppose that d | k. Let e = k/d and q = pe.
Then there is a unique degree-d twist Ẽ of E over Fq with r | #Ẽ(Fq) [16]; let

Ψ : Ẽ → E be the associated twisting isomorphism. Let Q̃ ∈ Ẽ(Fq) be a point

of order r; then Q = Ψ(Q̃) ̸∈ E(Fp). The group G2 = ⟨Q⟩ is the p-eigenspace of
π acting on E[r]. Let GT denote the order-r subgroup of F∗

pk . The pairings we



study in this paper are non-degenerate bilinear maps from G1 × G2 to GT and
are called Type 3 pairings in the literature [13].

Table 1 summarizes the salient parameters of the KSS [17], BN [7], BLS12 [6]
and BLS24 [6] families of elliptic curves. All these curves are parameterized by a
positive integer z, are defined by an equation of the form Y 2 = X3+ b, and have
a twist of order d = 6. Table 2 lists the important parameters of the particular
KSS, BN, BLS12 and BLS24 curves that are suitable for implementing pairing-
based protocols at the 192-bit security level. The requirements for this security
level are that the bitlength of r be at least 384 (in order to resist Pollard’s rho
attack [25] on the discrete logarithm problem in G1), and that the bitlength of
pk should be at least 7680 (in order to resist the number field sieve attack [26]
on the discrete logarithm problem in F∗

pk).

KSS curves: k = 18, ρ ≈ 4/3
p(z) = (z8 + 5z7 + 7z6 + 37z5 + 188z4 + 259z3 + 343z2 + 1763z + 2401)/21
r(z) = (z6 + 37z3 + 343)/343, t(z) = (z4 + 16z + 7)/7

BN curves: k = 12, ρ ≈ 1
p(z) = 36z4 + 36z3 + 24z2 + 6z + 1
r(z) = 36z4 + 36z3 + 18z2 + 6z + 1, t(z) = 6z2 + 1

BLS12 curves: k = 12, ρ ≈ 1.5
p(z) = (z − 1)2(z4 − z2 + 1)/3 + z, r(z) = z4 − z2 + 1, t(z) = z + 1

BLS24 curves: k = 24, ρ ≈ 1.25
p(z) = (z − 1)2(z8 − z4 + 1)/3 + z, r(z) = z8 − z4 + 1, t(z) = z + 1

Table 1. Important parameters for the KSS, BN, BLS12 and BLS24 families.

Curve b k z ⌈log2 p⌉ ⌈log2 r⌉ ρ ⌈log2 q⌉ ⌈log2 pk⌉

KSS 2 18 −264 − 251 + 246 + 212 508 376 1.35 1523 9137
BN 5 12 2158 − 2128 − 268 + 1 638 638 1 1275 7647

BLS12 4 12 −2107 + 2105 + 293 + 25 638 427 1.49 1276 7656
BLS24 4 24 −248 + 245 + 231 − 27 477 383 1.25 1914 11482

Table 2. Important parameters for the chosen KSS, BN, BLS12, BLS24 curves.

3 Optimal pairings

Let R ∈ E(Fpk) and let s be a non-negative integer. A Miller function fs,R [22]
of length s is a function in Fpk(E) with divisor (fs,R) = s(R)−(sR)−(s−1)(∞).
Note that fs,R is uniquely defined up to multiplication by nonzero constants in
Fpk . The length s of a Miller function determines the number ⌊log2 s⌋ of doubling
steps, and the Hamming weight of s determines the number of addition steps in
Miller’s algorithm for computing fs,R [22]. We will always assume that Miller



functions are minimally defined; that is, if R ∈ E(Fpℓ), then fs,R is selected from
the function field Fpℓ(E).

The optimal ate pairing. Vercauteren’s optimal pairing framework [30] allows
one to compute a pairing using Miller functions each of length approximately
(1/φ(k)) log r.

For a point R ∈ E[r] and polynomial h =
∑
hix

i ∈ Z[x] such that h(s) ≡ 0
(mod r), define the extended Miller function fs,h,R to be the normalized rational
function with divisor

deg h∑
i=0

hi[(s
iR)− (∞)].

The length of the extended Miller function fs,h,R is the maximum of the absolute
values of the hi’s. Observing that fs,h1,R · fs,h2,R = fs,h1+h2,R and the polyno-
mials h(x) = r, h(x) = xi − pi satisfy the congruence condition with s = p, we
desire elements in the following lattice which have small coefficients:[

r(z) 0
v Iφ(k)−1

]
,

where v is the column vector with i-th entry −p(z)i. This leads to the following
result of Vercauteren’s.

Theorem 1 ([30]). There exists h such that |hi| ≤ r1/φ(k) and (P,Q) 7→
fp,h,Q(P )

(pk−1)/r is a pairing.

For parameterized curves, the function fp,h,Q where |hi| ≤ r1/φ(k) can be
computed as a product of Miller functions each having length approximately
(1/φ(k)) log r. Optimal ate pairings for KSS [30], BN [30], BLS12 [16] and BLS24
[16] curves are given in Table 3. In the table, ℓS,T denotes the line through points
S and T .

Curve Optimal ate pairing: (P,Q) 7→ h(x)

KSS
(
fz,Q · fp

3,Q · ℓz[Q],[3p]Q(P )
)(p18−1)/r

z + 3x− x4

BN
(
f6z+2,Q · ℓ[6z+2]Q,[p]Q · ℓ[6z+2+p]Q,[−p2]Q(P )

)(p12−1)/r
6z + 2 + x− x2 + x3

BLS12 (fz,Q(P ))(p
12−1)/r z − x

BLS24 (fz,Q(P ))(p
24−1)/r z − x

Table 3. Optimal ate pairings.

The β Weil pairing. Set k = ed, where d is the order of the automorphism
group of E. Define ws and ws,h as

ws(P,Q) =

(
fs,Q(P )

fs,P (Q)

)pk/2−1

and ws,h(P,Q) =

(
fs,h,Q(P )

fs,h,P (Q)

)pk/2−1

. (1)



Hess [15] gave a framework for computing optimal Weil pairings, building on
the methods of Vercauteren as expressed in Theorem 1.

Theorem 2 (Theorem 1 in [15]). There exists h such that |hi| ≤ r1/2 and
wpe,h is a pairing.

The pairing wpe,h with |hi| ≤ r1/2 can be computed using two extended
Miller functions of length approximately 1

2 log r. We present a framework for
constructing Weil-type pairings, called β pairings, which can be computed us-
ing 2e extended Miller functions each of length approximately (1/φ(k)) log r. In
particular, we prove that for a polynomial h for which h(p) ≡ 0 (mod r), the
following is a pairing:

β : G1 ×G2 → GT : (P,Q) 7→
e−1∏
i=0

wp,h([p
i]P,Q)p

e−1−i

. (2)

To establish that (2) is a pairing, we require a few technical lemmas, building
on the work of Hess and Vercauteren. Lemma 1 gives a pairing which is the
product of Weil pairings consisting of Miller functions having ate-like lengths.

Lemma 1. For all positive integers s, the following map from G1 × G2 to GT

is a pairing:

(P,Q) 7→

(
e−1∏
i=0

(
fps,[pi]Q(P )

fps,[pi]P (Q)

)pe−1−i)pk/2−1

.

Proof. It follows from Theorem 1 of [15] that the map

(P,Q) 7→
(
fpe,Q(P )

fpe,P (Q)

)pk/2−1

is a pairing. Using Lemma 3(ii), one can see that

fpe,P =

e−1∏
i=0

(fp,[pi]P )
pe−1−i

.

Hence, the result holds for s = 1.

Since

fps,P =

s−1∏
j=0

(fp,[pj ]P )
ps−1−j

,



we have that

e−1∏
i=0

(fps,[pi]P )
pe−1−i

=

e−1∏
i=0

s−1∏
j=0

(fp,[pi][pj ]P )
ps−1−j

pe−1−i

=
s−1∏
j=0

(
e−1∏
i=0

(fp,[pi]([pj ]P ))
pe−1−i

)ps−1−j

=
s−1∏
j=0

(
fpe,[pj ]P

)ps−1−j

.

From this, we can observe that

(
e−1∏
i=0

(
fps,[pi]Q(P )

fps,[pi]P (Q)

)pe−1−i)pk/2−1

=

(
s−1∏
i=0

(
fpe,[pi]Q(P )

fpe,[pi]P (Q)

)ps−1−i)pk/2−1

. (3)

By Lemma 6 of [14], the map (P,Q) 7→ fpe,Q(P ) is a pairing. Thus, the right
hand side of (3) is a product of pairings. □

The next lemma relates the previous pairing to the Weil pairing notation
defined in (1).

Lemma 2. The following identity holds for all positive integers s:

(
e−1∏
i=0

(
fps,[pi]Q(P )

fps,[pi]P (Q)

)pe−1−i)pk/2−1

=
e−1∏
i=0

wps([pi]P,Q)p
e−1−i

.

Proof. By Lemma 6 of [14], the map (P,Q) 7→ fps,Q(P ) is a pairing and so

(
e−1∏
i=0

(
fps,[pi]Q(P )

fps,[pi]P (Q)

)pe−1−i)pk/2−1

=

(
e−1∏
i=0

(
fps,Q([p

i]P )

fps,[pi]P (Q)

)pe−1−i)pk/2−1

=
e−1∏
i=0

wps([pi]P,Q)p
e−1−i

. □

Finally, using the pairing relation from Lemma 2, we can obtain a pairing
composed of Miller functions each with Vercauteren-style bound on the length.

Theorem 3. There exists h such that |hi| ≤ r1/φ(k) and the following is a
pairing:

β : G1 ×G2 → GT : (P,Q) 7→
e−1∏
i=0

wp,h([p
i]P,Q)p

e−1−i

.



Proof. Let h(x) =
∑c

i=0 hix
i be given by Vercauteren’s theorem and let h(p) =

rm. Since

fmr,P = fp,h,P ·
c∏

j=0

f
hj

pj ,P ,

we have that

wr(P,Q)m = wp,h(P,Q) ·
c∏

j=0

wpj (P,Q)hj .

Hence

e−1∏
i=0

wp,h([p
i]P,Q)p

e−1−i

=
e−1∏
i=0

wr([p
i]P,Q)m ·

c∏
j=0

wpj ([pi]P,Q)−hj

pe−1−i

=
e−1∏
i=0

wr([p
i]P,Q)mpe−1−i

·
c∏

j=0

(
e−1∏
i=0

wpj ([pi]P,Q)p
e−1−i

)−hj

,

which by Lemmas 1 and 2 is a product of pairings. □

Using Theorem 3 and the polynomials h from Table 3, we found that the β
Weil pairings for BN, BLS12, KSS and BLS24 curves can be defined as follows:

KSS : (P,Q) 7→

[(
fp,h,P (Q)

fp,h,Q(P )

)p2 (
fp,h,[p]P (Q)

fp,h,Q([p]P )

)p
fp,h,[p2]P (Q)

fp,h,Q([p2]P )

](p9−1)(p3+1)

,

(4)

BN : (P,Q) 7→
[(

fp,h,P (Q)

fp,h,Q(P )

)p fp,h,[p]P (Q)

fp,h,Q([p]P )

](p6−1)(p2+1)

, (5)

BLS12 : (P,Q) 7→
[(

fz,P (Q)

fz,Q(P )

)p fz,[p]P (Q)

fz,Q([p]P )

](p6−1)(p2+1)

, (6)

BLS24 : (P,Q) 7→

 fp
3

z,P (Q) · fp
2

z,[p]P (Q) · fpz,[p2]P (Q) · fz,[p3]P (Q)

fp
3

z,Q(P ) · f
p2

z,Q([p]P ) · f
p
z,Q([p

2]P ) · fz,Q([p3]P )

(p12−1)(p4+1)

.

(7)
For all four β Weil pairings, computing [p]P has approximately the same cost

as computing [z]P .

Parallelization of pairings. Given two processors, the Weil pairing can be
trivially parallelized since the numerator and denominator of the Weil pairing are
independent operations. The ate pairing requires two serial operations, the Miller
loop and the final exponentiation. The next lemma can be used to parallelize
the computation of the Miller loop. We know of no way to parallelize the final
exponentiation.



Lemma 3. Let a and b be non-negative integers, and let R ∈ E(Fqk). Then
(i) fa+b,R = fa,R · fb,R · ℓ[a]R,[b]R/v[a+b]R, where vP denotes the vertical line
through P ; and (ii) fab,R = fab,R · fa,[b]R.

The method of Aranha et al. [4] for parallelizing the computation of a Miller
function fs,R is the following. We first write s = 2ws1+s0 with s0 < 2w. Applying
Lemma 3, we obtain

fs,R = f2
w

s1,R · f2w,[s1]R · fs0,R · ℓ[2ws1]R,[s0]R/v[s]R. (8)

If s0 is small, then the Miller function fs0,R can be computed relatively cheaply.
Thus the computation of fs,R can be parallelized by computing f2

w

s1,R
on one

processor and f2w,[s1]R on a second processor. The parameter w should be care-
fully selected in order to balance the time of the two function computations.
The relevant criteria for selecting w include the Hamming weight of s1 (which
determines the number of additions in the Miller loop for the first function),
and the cost of the w-fold squaring in the first function relative to the cost of
computing s1R in the second function. This idea can be extended to c processors
by writing s = 2wc−1sc−1 + · · ·+ 2w1s1 + s0.

Remark 1. (unsuitability of composite-order BN curves) Consider a BN curve at
the 192-bit security level. For such a curve, we desire a (sparse) BN parameter
z of approximately 160 bits. From the optimal pairing framework, we choose a
suitable vector [2z, z+1,−z, z] corresponding to the following pairing (with the
final exponentiation omitted):

(P,Q) 7→ f2z,Q · fpz+1,Q · f−p2

z,Q · fp
3

z,Q · ℓ[−zp2]Q,[zp3]Q · ℓ[p(z+1)]Q,[−zp2+zp3]Q(P ).

Computation of the lines is relatively inexpensive. However, at first, it ap-
pears one must evaluate multiple Miller functions. Fortunately, for parameterized
curves, one can (usually) rearrange terms such that the computational bottle-
neck is fz,Q with only a few lines comprising the remaining computation. In the
above case, we obtain

(P,Q) 7→ f2+p−p2+p3

z,Q ·ℓ[z]Q,[z]Q·ℓ[zp]Q,[p]Q·ℓ[−zp2]Q,[zp3]Q·ℓ[p(z+1)]Q,[−zp2+zp3]Q(P ).

At the 192-bit security level, we require that r have a prime divisor of at least
384 bits. We can easily choose r to be (a 640-bit) prime. However, given that the
optimal pairing framework gives a maximum Miller length of around (logn)/4
for BN curves where n is a large prime divisor of r, we should be tempted to
choose r with a 384-bit prime divisor. The fact that the coordinates of the vector
[2z, z+1,−z, z] have small coefficients when written in base z allowed us to write
the pairings as a power of fz,Q multiplied by a few lines. However, for composite
values of r, the vector with 96-bit elements which we obtain from the optimal
pairing framework does not, in general, have coordinates which we can relate
to each other. We would therefore require approximately 4 independent Miller
functions, negating most of the benefit of computing an optimal pairing, rather



than the Tate pairing. The possibility of choosing a vector whose elements are
part of a short addition chain may still exist but the vectors produced by the LLL
algorithm [21] do not appear to maintain such structure. Thus, composite-order
BN curves would appear to yield inferior performance compared to prime-order
BN curves.

4 BLS12 pairings

In this section, we consider the BLS12 curve Y 2 = X3 + 4 defined with the
parameter selection z = −2107 + 2105 + 293 + 25 which yields a 638-bit prime p
and a 427-bit prime r.

Extension field arithmetic for pairings with k = 12. A tower extension
for Fp12 can be constructed as follows:

Fp2 = Fp[u]/(u
2 − β), where β ∈ Fp,

Fp6 = Fp2 [v]/(v3 − ξ), where ξ ∈ Fp2 , and

Fp12 = Fp6 [w]/(w2 − γ), where γ ∈ Fp6 .

For our choice of parameters, we have the optimal β = −1, ξ = u + 1, γ = v.
Table 4 gives the computational costs of the tower extension field arithmetic for
curves with k = 12 in terms of a 640-bit multiplication (m640) and inversion
(i640) in Fp, with p a 638-bit prime.1 The cost of additions is ignored because of
their lower overall performance impact due to the larger field size in comparison
with [2,24]. Moreover, m̃, s̃, ı̃ denote the cost of multiplication, squaring and
inversion in Fp2 respectively.2 GΦ6(p2) denotes the order-Φ6(p

2) subgroup of F∗
p12 ,

where Φk denotes the k-th cyclotomic polynomial.

Miller loop. For the parameter selection z = −2107 + 2105 + 293 + 25, the
Miller loop computation of fz,Q requires 107 point doublings and associated line
evaluations, 3 point additions with line evaluations, 109 sparse multiplications,
and 106 squarings in Fp12 . The computational costs of these operations can
be found in [2, Table 1]. We obtain a BLS12 Miller loop cost of 107(3m̃+ 6s̃+
4m640)+3(11m̃+2s̃+4m640)+109(13m̃)+106(12m̃) = 3043m̃+648s̃+440m640 =
10865m640.

Final exponentiation. The final exponentiation consists of raising the Miller
loop result f ∈ Fpk to the e = (pk − 1)/r-th power. This task can be broken into
two parts since

e = (pk − 1)/r = [(pk − 1)/Φk(p)] · [Φk(p)/r].

Computing f (p
k−1)/Φk(p) is considered easy, costing only a few multiplications,

inversions, and inexpensive p-th powerings in Fpk . Raising to the power d =

1 In the case of software implementation, this selection of the size of p facilitates the
usage of lazy reduction techniques as recommended in [2,24].

2 For further details on how these costs were deduced, the reader is referred to [2,24].



Field Mult. Squaring Inversion

Fp2 m̃ = 3m640 s̃ = 2m640 ı̃ = 4m640 + i640
Fp6 6m̃ m̃+ 4s̃ 9m̃+ 3s̃+ ı̃

Fp12 18m̃ 12m̃ 23m̃+ 11s̃+ ı̃

GΦ6(p2) 18m̃ 9s̃ Conjugation

Operation Cost

Sparse Mult. 13m̃

Sparser Mult. 7m̃

Compressed Squaring 6s̃

Simult. decompression n(3m̃+ 3s̃)+
of n field elements (n− 1)3m̃+ ı̃

p/p2/p3-Frobenius 10m/15m/15m

Table 4. Costs of arithmetic operations in a tower extension field Fp12 .

Φk(p)/r is a more challenging task. Observing that p-th powering is much less
expensive than multiplication, Scott et al. [29] give a systematic method for
reducing the expense of exponentiating by d. In the case of BLS12 curves, it can
be shown that the exponent d can be written as d = λ0 + λ1p + λ2p

2 + λ3p
3

where λ0 = z5−2z4+2z2− z+3, λ1 = z4−2z3+2z−1, λ2 = z3−2z2+ z, and
λ3 = z2 − 2z + 1. The exponentiation fd can be computed using the following
addition-subtraction chain:

f → f−2 → fz → f2z → fz−2 → fz
2−2z → fz

3−2z2

→ fz
4−2z3

→ fz
4−2z3+2z → fz

5−2z4+2z2

,

which requires 5 exponentiations by z, 2 multiplications in Fp12 , and 2 cyclotomic
squarings. This allows fd to be computed as

fd = fz
5−2z4+2z2

·(fz−2)−1 ·f ·(fz
4−2z3+2z ·f−1)p ·(fz

3−2z2

·fz)p
2

·(fz
2−2z ·f)p

3

,

which requires an additional 8 multiplications in Fp12 and 3 Frobenius maps.
This implies that the hard part of the final exponentiation requires 2 cyclotomic
squarings, 5 exponentiations by z, 10 multiplications in Fp12 , and 3 Frobenius
maps.

In total, the cost of computing the final exponentiation is 1 inversion in
Fp12 , 2 cyclotomic squarings, 12 multiplications in Fp12 , 4 Frobenius maps, and
5 exponentiations by z. It can be shown that exponentiation by our choice of the
z parameter requires 107 compressed squarings, simultaneous decompression of
4 field elements, and 3 multiplications in Fp12 when Karabina’s exponentiation
technique [18] is employed. The cost of an exponentiation by z is 107(6s̃)+4(3m̃+
3s̃) + 3(3m̃) + ı̃ + 3(18m̃) = 75m̃ + 654s̃ + ı̃, whence the total cost of the final
exponentiation is (23m̃+11s̃+ ı̃)+2(9s̃)+12(18m̃)+60m640+5(75m̃+654s̃+ ı̃)
= 614m̃+ 3299s̃+ 6ı̃ = 8464m640 + 6i640.



Optimal pairing cost. From the above, we conclude that the estimated cost of
the optimal ate pairing for our chosen BLS12 curve is 10865m640 + 8464m640 +
6i640 = 19329m640 + 6i640.

Parallelization. Figure 1 illustrates the execution path for the β Weil pairing
(6) when the four Miller functions are computed in parallel using 4 processors.
As with the optimal ate pairing, Lemma 3 was repeatedly applied to each Miller
function in the β Weil pairing in order to obtain a parallel implementation using
8 processors.
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Fig. 1. Execution path for computing the β Weil pairing for BLS12 curves on 4
processors.

5 KSS pairings

In this section, we consider the KSS curve Y 2 = X3+2 defined with the param-
eter selection z = −264 − 261 + 246 + 212.

Extension field arithmetic for pairings with k = 18. An element in Fp18

can be represented using the following towering scheme:

Fp3 = Fp[u]/(u
3 + 2),

Fp6 = Fp3 [v]/(v2 − u),

Fp18 = Fp6 [w]/(w3 − v).

Table 5 gives the computational costs of the tower extensions field arithmetic
for curves with k = 18, where m512, i512 denote the cost of multiplication and
inversion in Fp, with p a 512-bit prime. Moreover, m̂, ŝ, ı̂ denote the cost of
multiplication, squaring and inversion in Fp3 respectively.

Computation of the optimal ate pairing. For the parameter selection z =
−264−251+246+212, the Miller loop executes 64 point doublings with line eval-
uations, 4 point additions with line evaluations, 67 sparse multiplications and 63
squarings in Fp18 . We obtain a KSS Miller loop cost of 64(3m̂ + 6ŝ + 6m512) +
4(11m̂+2ŝ+6m512)+67(13m̂)+63(11m̂) = 1800m̂+392ŝ+408m512 = 13168m512.
Furthermore, the final step executes 1 squaring in Fp18 , one p-power Frobe-
nius, 1 multiplication in Fp18 , 2 point additions with line evaluation, one point
doubling with line evaluation, 1 sparse multiplication, 1 sparser multiplication,



Field Mult. Squaring Inversion

Fp3 m̂ = 6m512 ŝ = 5m512 ı̂ = 12m512 + i512
Fp6 3m̂ 2m̂ 2m̂+ 2ŝ+ ı̂

Fp18 18m̂ 11m̂ 20m̂+ 8ŝ+ ı̂

Gφ6(Fp3) 18m̂ 6m̂ Conjugation

Operation Cost

Sparse Mult. 13m̂

Sparser Mult. 7m̂

Compressed Squaring 4m̂

Simult. decompression n(3m̂+ 3ŝ)+
of n field elements (n− 1)3m̂+ ı̂

p-th Frobenius 15m

Table 5. Costs of arithmetic operations in a tower extension field Fp18 .

and the computation of the isomorphism ψ(Q). Thus the KSS final step cost
is 11m̂ + 18m̂ + 2(11m̂ + 2ŝ + 6m512) + 3m̂ + 6ŝ + 6m512 + 20m̂ + 28m512

= 74m̂ + 10ŝ + 40m512 = 534m512. The final exponentiation executes in to-
tal one inversion in Fp18 , 8 cyclotomic squarings, 54 multiplications in Fp18 , 29
p-power Frobenius, and 7 exponentiations by z [11]. The computational cost of
an exponentiation by z is 64 compressed squarings, decompression of 4 field el-
ements and 3 multiplications in Fp18 , for a total cost of 64(6ŝ) + 4(3ŝ + 3m̂) +
9m̂ + ı̂ + 3(18m̂) = 75m̂ + 396ŝ + ı̂. Hence, the total cost of the final expo-
nentiation is 20m̂ + 8ŝ + ı̂ + 8(6m̂) + 54(18m̂) + 435m512 + 7(75m̂ + 396ŝ + ı̂)
= 1565m̂+2780ŝ+8ı̂+435m512 = 23821m512+8i512 Finally, the total cost of com-
puting the KSS optimal ate pairing is 13168m512+534m512+23821m512+8i512 =
37523m512 + 8i512.

Computation of the β Weil pairing. The most expensive part of the β
Weil pairing for KSS curves (4) are the six Miller functions fz,R. For parallel
implementation using 4 cores, repeated applications of Lemma 3 can be used to
write z = 2wz1 + z0 such that fz,R can be computed in the following way:

fz,R = f2
w

z1,R · f2w,[z1]R · fz0,R · (ℓ2w · [z1]R, [z0]R)/v[z]R.

For the KSS parameter z = −264 − 251 + 246 + 212, we chose w = 36, z1 =
−228 + 215 + 210, z0 = 212 and split the two most expensive Miller functions
fpz,Q([p]P ) and fz,Q([p

2]P ). Figure 2 illustrates an execution path. At the end, it

is necessary for each core to compute the additional functions (fp3,R ·ℓ[z]R,[3p]R)
pi

and the exponentiation by (p9 − 1) · (p3 + 1).

For the case of an 8-core implementation, we simply reschedule these func-
tions so that each core takes approximately the same time.
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Fig. 2. Execution path for computing the β Weil pairing for KSS curves on 4
processors.

6 BN pairings

In this section, we consider the BN curve Y 2 = X3+5 defined with the parameter
selection z = 2158−2128−268+1. The extension fields are Fp2 = Fp[u]/(u

2+1),
Fp6 = Fp2 [v]/(v3 − ξ) with ξ = u+ 2, and Fp12 = Fp6 [w]/(w2 − v).

Computation of the optimal ate pairing. The Miller loop executes 160
point doublings with line evaluations, 6 point additions with line evaluations,
164 sparse multiplications, 1 sparser multiplication and 159 squarings in Fp12 .
We obtain a BN Miller loop cost of 160(3m̃+6s̃+4m640)+6(11m̃+2s̃+4m640)+
164(13m̃) + 7m̃+ 159(12m̃) = 4593m̃+ 972s̃+ 664m640 = 16387m640.

Furthermore, the final step executes ψ(Q), ψ2(Q), 2 point additions with
line evaluation, 1 sparser multiplication and 1 multiplication in Fp12 . The p-th
power Frobenius can be computed at a cost of about 5m640 and the p2-th power
Frobenius can be computed at a cost of about 4m640. Thus the BN final step cost
is 2(11m̃+2s̃+4m640)+7m̃+18m̃+9m640 = 47m̃+4s̃+17m640 = 166m640. The
final exponentiation executes in total 1 inversion in Fp12 , 3 cyclotomic squarings,
12 multiplications in Fp12 , 2 p-th power Frobenius, 1 p2-th power Frobenius, 1
p3-th power Frobenius, and 3 exponentiations by z [11]. The computational cost
of an exponentiation by z is: 158 compressed squarings, decompression of 3
field elements and 3 multiplications in Fp12 , for a total cost of 158(6s̃) + 3(3s̃+
3m̃) + 6m̃ + ı̃ + 3(18m̃) = 69m̃ + 957s̃ + ı̃. Hence, the total cost of the final
exponentiation is 23m̃+11s̃+ ı̃+3(9s̃)+ 12(18m̃)+50m640+3(69m̃+957s̃+ ı̃)
= 446m̃+ 2909s̃+ 62m640 + 4i640 = 7218m640 + 4i640. Finally, the total cost of
computing the BN optimal ate pairing is 16387m640 + 166m640 + 7218m640 +
4i640 = 23771m640 + 4i640.

Computation of the β Weil pairing. For BN curves, we consider the β
pairing presented by Aranha et al. [3]. Lemma 3 was repeatedly applied in order
to estimate the cost of a parallel implementation using 8 processors.



7 BLS24 pairings

In this section, we consider the BLS24 curve Y 2 = X3 + 1 defined with the
parameter selection z = −248 + 245 + 231 − 27.

Extension field arithmetic for pairings with k = 24. An element in Fp24

can be represented using the following towering scheme:

Fp2 = Fp[i]/(i
2 + 1),

Fp4 = Fp2 [u]/(u2 − ξ), with ξ = i+ 1,

Fp12 = Fp4 [v]/(v3 − u),

Fp24 = Fp12 [w]/(w2 − v).

Table 6 gives the computational costs of the tower extension field arithmetic for
curves with k = 24, where m480 and i480 denote the cost of multiplication and
inversion in Fp, with p a 479-bit prime. Moreover, m̃, s̃, ı̃ denote the cost of
multiplication, squaring and inversion in Fp2 respectively.

Field Mult. Squaring Inversion

Fp2 m̃ = 3m480 s̃ = 2m480 ı̃ = 4m480 + i480
Fp4 3m̃ 2m̃ 2m̃+ 2s̃+ ı̃

Fp12 18m̃ 12m̃ 23m̃+ 11s̃+ ı̃

Fp24 54m̃ 36m̃ 83m̃+ 11s̃+ ı̃

Gφ6(Fp4) 54m̃ 18m̃ Conjugation

Operation Count

Sparse Mult. 39m̃

Sparser Mult. 21m̃

Compressed Squaring 12m̃

Simult. decompression (2n− 1)(9m̃) + n(6m̃)
of n field elements +2m̃+ 2s̃+ ı̃

p-th Frobenius 45m

Table 6. Costs of arithmetic operations in a tower extension field Fp24 .

Computation of the optimal ate pairing. The Miller loop executes 48 point
doublings with line evaluations, 4 point additions with line evaluations, 51 sparse
multiplications and 47 squarings in Fp24 . We obtain a BLS24 Miller loop cost of
48(21m̃+8m480)+4(37m̃+8m480)+51(39m̃)+47(36m̃) = 4837m̃+416m480 =
14927m480. The computation of the final exponentiation requires 1 inversion, 9
exponentiations by z, 14 multiplications in Fp24 , 2 cyclotomic squarings, and 8 p-
th power Frobenius operations. Moreover, the cost of an exponentiation by z is 48
compressed squarings, decompression of 4 field elements and 3 multiplications
in Fp24 , for a total cost of 48(12m̃) + 87m̃ + ı̃ + 3(54m̃) = 827m̃ + 2s̃ + ı̃.



Hence, the total cost of the final exponentiation is (83m̃+ 11s̃+ ı̃) + 9(827m̃+
2s̃ + ı̃) + 14(54m̃) + 2(18m̃) + 360m480 = 8318m̃ + 29s̃ + 400m480 + 10i480 =
25412m480 + 10i480. Finally, the total cost of computing the BLS24 optimal ate
pairing is 14927m480 + 25412m480 + 10i480 = 40339m480 + 10i480.

Computation of the β Weil pairing. Since 8 | e where e = k/d, the paral-
lelization procedure for the β Weil pairing (7) on 2, 4 and 8 cores is straight-
forward: with 2 cores, each core computes 4 Miller functions; with 4 cores, each
core computes 2 Miller functions; and with 8 cores: each core computes 1 Miller
function.

8 Comparisons

Estimates for serial implementations of the optimal ate pairings. The
customary way to estimate the cost of a pairing is to count multiplications in
the underlying finite fields. Notice that in the case of software implementations
in modern desktop platforms, field elements a ∈ Fp can be represented with
ℓ = 1 + ⌊log2(p)⌋ binary coefficients ai packed in n64 = ⌈ ℓ

64⌉ 64-bit processor
words. If Montgomery representation is used to implement field multiplication in
Fp640 and Fp512 with complexity O(2n264 +n64), then it is reasonable to estimate
that we have m640 ≈ (210/136) ·m512 ≈ 1.544 ·m512.

Table 7 summarizes the costs in terms of finite field multiplications for com-
puting the optimal ate pairing over our choice of KSS, BN, BLS12 and BLS24
curves at the 192-bit security level.3 As can be seen, our estimates predict that
the optimal ate pairing over BLS12 curves is the most efficient choice at the 192-
bit security level, with KSS, BN and BLS24 curves being significantly slower.
The main computational bottleneck for BLS24 curves is their very expensive
final exponentiation.

Estimates for multi-core implementations of the optimal ate and β
Weil pairings. Table 8 (see also Figure 3) shows estimated speedups for the
parallel version of the optimal ate pairing using the partitions in Table 9 and
all the β Weil pairing variants considered here. All speedup factors are with
respect to the serial version of the KSS optimal ate pairing. It can be seen that
the estimated performance for BLS12 curves when using 8 cores is of a factor-
3.29 acceleration, which is the highest speedup we obtain. Perhaps the most
notable observation from Table 8 is that, for eight-core implementations, the β
Weil pairing becomes more efficient than the optimal ate pairing for all the four
curves considered.

Timings. We implemented the KSS, BN, BLS12 and BLS24 pairings following
the techniques described in [2] on two different 64-bit 32nm platforms, an Intel
Core i5 540M Nehalem and an Intel Core i7 2630QM Sandy Bridge. Field arith-
metic was implemented in Assembly for maximum efficiency and high-level code

3 In the case of BN and KSS curves it is necessary to compute several extra lines and
Frobenius maps. We refer to these steps as the “Final step”. We stress that there is
no analogous final step in the case of BLS12 and BLS24 curves.



Curve Phase Mult. in Fp Mult. in Fp512

Miller Loop 13168m512 13168m512

KSS Final Step 534m512 534m512

Final Exp. 23821m512 23821m512

ML + FS + FE 37523m512 37523m512

Miller Loop 16387m640 25301m512

BN Final Step 166m640 256m512

Final Exp. 7218m640 11145m512

ML + FS + FE 23771m640 36702m512

Miller Loop 10865m640 16775m512

BLS12 Final Exp. 8464m640 13068m512

ML + FE 19329m640 29843m512

Miller Loop 14927m480 14927m512

BLS24 Final Exp. 25412m480 25412m512

ML + FE 40339m480 40339m512

Table 7. Cost estimates of the optimal ate pairing for KSS, BN, BLS12 and
BLS24 curves at the 192-bit security level. Note that m480 = m512 in a 64-bit
processor.

Number of threads

Estimated speedup KSS 1 2 4 8

Optimal ate 1.00 1.17 1.28 1.33

β Weil 0.47 0.91 1.54 2.51

Estimated speedup BN 1 2 4 8

Optimal ate 1.02 1.36 1.61 1.76

β Weil 0.41 0.81 1.42 2.16

Estimated speedup BLS12 1 2 4 8

Optimal ate 1.26 1.56 1.76 1.88

β Weil 0.64 1.25 2.20 3.29

Estimated speedup BLS24 1 2 4 8

Optimal ate 0.93 1.05 1.12 1.14

β Weil 0.40 0.78 1.49 2.39

Table 8. Estimated speedups for the parallel version of the optimal ate pairing
versus the β Weil pairing. All speedup factors are with respect to the serial
version of the KSS optimal ate pairing.
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Fig. 3. Expected speedups for KSS, BN, BLS12 and BLS24 optimal ate pairings
at the 192-bit security level. All speedup factors are with respect to the serial
version of the KSS optimal ate pairing.

Number of threads (c)

Curve 2 4 8

KSS 36 54, 39, 21 63, 58, 52, 45, 36, 26, 14
BN 86 129, 93, 50 149, 137, 122, 105, 85, 61, 33

BLS12 57 85, 61, 33 98, 90, 81, 70, 56, 40, 21
BLS24 26 38, 28, 15 44, 41, 37, 32, 26, 19, 10

Table 9. Parameters wi, 0 < i < c, which define the partition of the form s =
2wc−1sc−1+· · ·+2w1s1+s0 for splitting the Miller loop according to Equation (8)
when computing a multi-thread optimal ate pairing among c processing units.



was implemented in the C programming language. The GCC 4.7.0 compiler suite
was used with compilation flags for loop unrolling, inlining of small functions to
reduce function call overheads, and optimization level -O3. The implementation
was done on top of the RELIC cryptographic toolkit [1]. The code will eventually
be incorporated into the library.

The m640 ≈ 1.544 ·m512 estimate used above was experimentally confirmed
with carefully crafted Assembly code for multiplication and Montgomery reduc-
tion. Implementing the double-precision arithmetic needed for efficient applica-
tion of lazy reduction proved to be slightly cumbersome due to the exhaustion of
the 16 general-purpose registers available in the target platform (one of the regis-
ters is mostly reserved for keeping track of stack memory, aggravating the effect).
Naturally, this issue had a bigger performance impact on the larger 638-bit field,
introducing higher penalties for reading and writing values stored into memory.
By using a very efficient implementation of the Extended Euclidean Algorithm
imported from the GMP4 library, we obtained inversion-to-multiplication ratios
in Fp of around 16, suggesting the use of the projective coordinate system instead
of the affine coordinates recommended in [28] and [20], even after considering the
action of the norm map to simplify the inversion operation in extension fields.
Affine coordinates were only competitive for the BLS24 curve.

The resulting timings for the two platforms are presented in Table 10 (mea-
sured with the Turbo Boost feature disabled). Timings for the parallel imple-
mentation of pairings which were estimated to be slower than the reference
performance of the KSS pairing are omitted. We obtained results confirming our
performance estimates, i.e., the BLS12 curve is the most efficient choice for pair-
ing computation at the 192-bit security level across all the considered scenarios.
In particular, our fastest serial implementation on the Intel Core i5 Nehalem
machine can compute a pairing in approximately 19 million cycles, more than
3 times faster than the current state-of-the-art. The previous speed record for
a single pairing computation without precomputation at this security level was
presented in [28, Table 2, column 4 halved] and achieves a latency of 60 million
cycles on a very similar machine when a factor of 1.22 is applied to the timings to
adjust for the effect of Turbo Boost.5 Additionally, the β Weil pairing presents
itself as the most efficient and scalable choice of pairing in a multiprocessor
machine with more than 4 processing units.
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