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Abstract. The Rainbow Signature Scheme is a non-trivial generaliza-
tion of the well known Unbalanced Oil and Vinegar (UOV) signature
scheme (Eurocrypt '99) minimizing the length of the signatures. By now
the Rainbow Band Separation attack is the best key recovery attack
known. For some sets of parameters it is even faster than a direct attack
on the public key. Unfortunately the available description of the attack
does not provide deep insights.
In this article we provide another view on the Rainbow Band Separa-
tion attack using the theory of equivalent keys and a new generalization
called good keys. Thereby we generalize the attack into a framework
that also includes Reconciliation attacks. We further formally prove the
correctness of the attack and show that it also performs well on all mul-
tivariate quadratic (MQ) schemes that su�er from missing cross-terms.
We apply our attack to break the MFE encryption scheme based on
Diophantine equations, the Enhanced STS signature scheme and all its
variants, as well as the MQQ Encryption and Signature schemes. In the
case of Rainbow and Enhanced TTS we show that parameters have to
be chosen carefully and that the remaining e�ciency gain over UOV is
small.

Key words: Multivariate Cryptography, Algebraic Cryptanalysis, Band
Separation, Key Recovery Attack, Rainbow, Enhanced STS, Enhanced
TTS, MFE, Diophantine Equations, MQQ-Enc, MQQ-Sig

1 Introduction

The main idea of our algebraic key recovery attack is the same as for the so-called
Reconciliation attack on UOV [BBD09], but involves some new techniques like
good keys, which are a generalization of equivalent keys. In section 3 we will see
that the Rainbow Band Separation attack described in [DYC+08] is a special
case of our framework. In addition to the brief description of the Rainbow Band
Separation attack in [DYC+08], we are able to prove correctness. We revisit
the attack on Rainbow (28, 18, 12, 12) with complexity 267. As it is hard to use
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the additional bihomogeneous structure in a theoretical complexity analysis, we
performed various experiments that suggests a real attack complexity of 264.
Also other multivariate signature schemes like Enhanced STS, Enhanced TTS,
MFE and MQQ su�er even more from missing cross-terms and thus could be
attacked the same way. In section 4 we brie�y introduce the STS signature
scheme and its variants [TGTF10]. We give an attack, which is better than
the best know HighRank attack on the scheme, and also break all variants of
Enhanced STS proposed so far. A cryptanalysis of the latest proposal is given in
section 5. We strongly disbelieve that there is a way to �x STS without ending
up at the Rainbow or Oil, Vinegar and Salt signature scheme. In section 6
we apply our attack to Enhanced TTS [YC05] and show that, in contrast to
Rainbow, it slightly bene�ts from the additional structure. Our attack reduce
the claimed security of 288 to 247. In section 7 we apply our attack to the MFE
signature scheme based on Diophantine equations [GH11] and give a key recovery
in 257 instead of 2113, as claimed by the authors. In section 8 we apply our
attack to MQQ-Enc [GS12] and MQQ-Sig [FGJ+11] and obtain a key recovery
attack which is as e�cient as the original decryption algorithm for some sets
of parameters. For all readers not familiar with multivariate schemes, we brie�y
introduce the general idea and basic notations in section 2.

2 Basic Facts

In this section we introduce the necessary notation and explain the most famous
of all MQ-schemes, namely the Unbalanced Oil and Vinegar signature scheme
(UOV). It was proposed by Patarin et al. [KPG99] at Eurocrypt 1999 and is one
of the oldestMQ-schemes still unbroken. Understanding this simple and smart
scheme is fundamental to understand the whole zoo of signatures that arose in
the sequel.

The general idea ofMQ-signature schemes is to use a public multivariate quadratic
map P : Fnq → Fmq with

P =

 p(1)(x1, . . . , xn)
...

p(m)(x1, . . . , xn)


and

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj = xᵀP(k)x,

where P(k) is the (n × n) matrix describing the quadratic form of p(k) and
x = (x1, . . . , xn)

ᵀ. Note that we can neglect linear and constant terms as they
never mix with quadratic terms and thus have no positive e�ect on security. In
the case of Enhanced TTS those linear terms will even decrease security as we
will see later.
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The trapdoor is given by a structured central map F : Fnq → Fmq with

F =

 f (1)(u1, . . . , un)
...

f (m)(u1, . . . , un)


and

f (k)(u1, . . . , un) :=
∑

1≤i≤j≤n

γ
(k)
ij uiuj = uᵀF(k)u.

In order to hide this trapdoor we choose two secret linear transformations S, T
and de�ne P := T ◦ F ◦ S. See �gure 1 for illustration.

Fn
q Fm

q

Fn
q Fm

q

P

S T

F

Fig. 1.MQ-Scheme.

For the UOV signature scheme the variables ui with i ∈ V := {1, . . . , v}
are called vinegar variables and the remaining variables ui with i ∈ O :=
{v + 1, . . . , n} are called oil variables. The central map f (k) is given by

f (k)(u1, . . . , un) :=
∑

i∈V,j∈V
γ
(k)
ij uiuj +

∑
i∈V,j∈O

γ
(k)
ij uiuj .

The corresponding matrix F(k) is depicted in �gure 2.

F(k) =

x1 . . . xv . . . xn

0

x1

...

xv

...

xn

︷︸︸︷︷︸︸︷

vinegar variables

oil variables

Fig. 2. Central map F of UOV. White parts denote zero entries while gray parts denote
arbitrary entries.

As we have m equations in m+v variables, �xing v variables will yield a solution
with high probability. Due to the structure of F(k), i.e. there are no quadratic
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terms of two oil variables, we can randomly �x the vinegar variables to obtain
a system of linear equations in the oil variables, which is easy to solve. This
procedure is not possible for the public key, as the transformation S of variables
fully mixes the variables (like oil and vinegar in a salad). Note that for UOV we
can discard the transformation T , as the trapdoor is invariant under this linear
transformation of equations.
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3 Cryptanalysis of Rainbow

Rainbow was proposed in 2005 [DS05] and is a layer-based variant of the well
known multivariate quadratic (MQ) signature scheme Unbalanced Oil and Vine-
gar (UOV). The downside of UOV is a comparably large signature expansion
by a factor of 3 for current parameters (m = 28, n = 84) [TW12b]. Rainbow
improves this to signatures of length n = 42 for messages of length m = 24, also
for current parameters (28, 18, 12, 12) [DYC+08]. In the original paper [DS05]
this improvement was even larger, but Billet and Gilbert [BG06] broke the pa-
rameter set (28, 6, 6, 5, 5, 11) in 2006 using a MinRank -Attack. The idea used by
Billet and Gilbert was known since 2000 and �rst proposed in [GC00] and later
improved by Yang and Chen [YC05]. At Crypto 2008 Faugère et al. [FdVP08]
re�ned the technique of Billet and Gilbert using Gröbner Bases. Ding et al. took
this attack into account and proposed new parameters of Rainbow [DYC+08]
claimed to be secure against all known attacks. In Algorithm 3 of [DYC+08] the
authors also described the Rainbow Band Separation attack, which they discov-
ered in cooperation with Yu-Hua Hu.

Up to now the parameter set (28, 18, 12, 12) still is considered secure, even due
to two recent developments.
First, in 2004 Bo-Yin Yang et al. published the FF5 approach [YCC04] and in
2009 Bettale et al. published the HybridF5 approach [BFP09] and thus reduced
the complexity of a direct attack on the public key of Rainbow (28, 18, 12, 12)

to at least 28
(
23+13

13

)2 ≈ 270 (see below for an explanation of this formula). The
idea of �nding a good trade-o� between guessing some variables beforehand and
solving the remaining system, was �rst mentioned referred to the XL algorithm
by Courtois et al. [CKPS00].
Second, in 2011 Faugère et al. [FDS11] analyzed systems of bihomogeneous equa-
tions and gave an upper bound on the degree of regularity for F5. This imme-
diately reduced the complexity of MinRank-Attacks on Rainbow (28, 18, 12, 12)

to
(
42+13

13

)2 ≈ 281. But anyway, neither of these techniques drastically reduced
the security of Rainbow. We refer to Petzold et al. [PBB10] for a comprehensive
comparison of all known attacks on Rainbow and proposals for secure parame-
ters.

Rainbow uses the same idea as UOV but in di�erent layers. A current choice
of parameters is given by (q, v1, o1, o2) = (28, 18, 12, 12). In particular the �eld
size q = 28 and the number of layers is two. Note, two layers seems to be the
best choice in order to prevent MinRank attacks and preserve short signatures
at the same time. The central map F of Rainbow is divided into two layers
F(1), . . . ,F(12) and F(13), . . . ,F(24) of form given in �g. 3. A formal description is
given by the following formula.
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f (k)(u1, . . . , un) :=
∑

i∈V1,j∈V1

γ
(k)
ij uiuj +

∑
i∈V1,j∈O1

γ
(k)
ij uiuj

for k = 1, . . . , o1

f (k)(u1, . . . , un) :=
∑

i∈V1∪O1,j∈V1∪O1

γ
(k)
ij uiuj +

∑
i∈V1∪O1,j∈O2

γ
(k)
ij uiuj

for k = o1 + 1, . . . , o1 + o2

0

0

0

0

00

18 12 12

for F(1), . . . ,F(12)

and

0

18 12 12

for F(13), . . . ,F(24)

Fig. 3. Central map of Rainbow (28, 18, 12, 12). White parts denote zero entries while
gray parts denote arbitrary entries.

To use the trapdoor we �rst solve the small UOV system F(1), . . . ,F(12) by ran-
domly �xing the 18 vinegar variables. The solution u1, . . . , u30 is now used as
vinegar variables of the second layer. Solving the obtained linear system yields
u31, . . . , u42.

Algebraic Cryptanalysis of Rainbow. Now we investigate what the special
structure of F tells us about the secret keys S and T . More precisely an algebraic
key recovery attack exploits the special structure of F, i.e. zero entries at certain
known places, to obtain equations in T̃ := T−1 =: (t̃ij) and S̃ := S−1 through
the following equality, which we obtain from F = T−1 ◦ P ◦ S−1.

F(i) = S̃ᵀ

 m∑
j=1

t̃ijP
(j)

 S̃ (1)

As P is publicly known and we further know that some speci�ed entries of F
have to be zero, we obtain cubic equations in the elements of S̃ and T̃ . The key
observation is that the equations obtained by the fact that the coe�cient of uiuj
in f (k) is zero are of the form

0 =

n∑
x=1

n∑
y=1

n∑
z=1

αxyz t̃kxs̃yis̃zj (2)
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for some coe�cients αxyz ∈ Fq that depend on P(j) (cf. [PTBW11, Sec. 3] or
[TW12b] for an explicit formula). In particular every monomial contains one

variable of the i-th column and one variable of the j-th column of S̃. We will
later make heavily use of this fact. But �rst let us calculate the complexity
of a key recovery attack up to this point. Let us de�ne V1 := {u1, . . . , uv1},
O1 := {uv1+1, . . . , uv1+o1}, O2 := {uv1+o1+1, . . . , uv1+o1+o2} and O × V :=
{{u, v} |u ∈ O, v ∈ V }. The number of equations obtained by (1) equals the
number of systematic zeros in all the f (k) and thus is

(o1 + o2) · |(O2 ×O2)|+ o1 · (|(O2 × (O1 ∪ V1))|+ |(O1 ×O1)|) = 7128.

The number of variables in S̃ and T̃ is given by (v1+o1+o2)
2+(o1+o2)

2 = 2340.
The complexity of solving such a system of equations using some Gröbner Basis
algorithm like F5 is 2

3608 (cf. [BFSY05]). In a nutshell, we �rst have to calculate
the degree of regularity dreg. For semi-regular sequences, which generic systems
are assumed to be, the degree of regularity is the index of the �rst non-positive
coe�cient in the Hilbert series Sm,n with

Sm,n =

∏m
i=1(1− zdi)
(1− z)n

, (3)

where di is the degree of the i-th equation, m is the number of equations and
n the number of variables. The complexity of solving a zero-dimensional (semi-
regular) system using F5 is

O
((

n+ dreg
dreg

)α)
,

with 2 ≤ α ≤ 3 the linear algebra constant. The internal equations used by F5

are very sparse and thus α = 2 can be used to obtain a lower bound on the
complexity. Well, if we really want to break a scheme, we either calculate the
correct α or use α = 2.8 as upper bound. Note that (3) changes for small �elds,
i.e. if the degree of regularity is larger than the number of elements in the �eld.
Note further that as soon as the equations contain some structure, e.g. they are
bihomogeneous, the complexity of solving them decrease [FDS11]. As our equa-
tions are partly bihomogeneous, the complexity 23608 is just an upper bound.
Unfortunately a theoretical complexity analysis of structuredMQ-systems is a
very important open problem.

A �rst improvement of this upper bound complexity can be achieved by using
equivalent keys, a notion introduced by Wolf and Preneel [WP05].
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De�nition 1 (Equivalent keys for Rainbow (v1, o1, o2)). Let S = (sij)n,n
and T = (tij)m,m be two regular matrices. We label the equations given in (2) by
(k, i, j) and de�ne

S := {(k, i, j) | (1 ≤ k ≤ o1 ∧ 1 ≤ i ≤ n ∧max{v1 + o1 + 1, i} ≤ j ≤ n)
∨ (1 ≤ k ≤ o1 ∧ v1 < i ≤ v1 + o1 ∧ i ≤ j ≤ v1 + o1)
∨ (o1 < k ≤ o1 + o2 ∧ o1 + o2 < i ≤ n ∧ i ≤ j ≤ n)

the set of all equations obtained by systematic zero coe�cients in the central map
F . Let S and T be valid solutions of S. We call two regular matrices S′n,n and
T ′m,m equivalent keys, if they also ful�ll all equations in S.

Or in other words, if S and T are secret keys for the corresponding central map
F then we call S′ and T ′ equivalent keys, if T ◦F ◦S = P = T ′◦F ′◦S′ for a valid
trapdoor F ′. That means S′ and T ′ preserve the structure of F , i.e. preserve
all systematic zero coe�cients. Each equivalent key is su�cient for an attacker
to use the trapdoor. Choosing a special representative of the class of equivalent
keys will now allow us to reduce the number of variables in S and T . Lets denote
S̃ := S−1 and T̃ := T−1.
We �rst consider all transformations Ω−1u = Ω−1Sx, such that

xᵀSᵀFSx = xᵀSᵀ(Ω−1)ᵀΩᵀFΩΩ−1Sx

and ΩᵀFΩ preserves the special structure of F .

Obviously we are allowed to map V1 7→ V1 as these monomials exist anyway.
What we are not allowed is to map O1 ∪ O2 7→ V1 as this would destroy the
zero coe�cients of monomials in (O1 × O1) and (O2 × O2) in the �rst layer
equations. With the same argument we are allowed to map V1 ∪ O1 7→ O1 and
V1 ∪O1 ∪O2 7→ O2, i.e. Ω

−1S = S̃Ω needs to be of the following form.

S′ = S̃Ω =


S̃
(1)
(v1×v1) S̃

(2)
(v1×o1) S̃

(3)
(v1×o2)

S̃
(4)
(o1×v1) S̃

(5)
(o1×o1) S̃

(6)
(o1×o2)

S̃
(7)
(o2×v1) S̃

(8)
(o2×o1) S̃

(9)
(o2×o2)



Ω

(1)
(v1×v1) 0 0

Ω
(2)
(o1×v1) Ω

(3)
(o1×o1) 0

Ω
(4)
(o2×v1) Ω

(5)
(o2×o1) Ω

(6)
(o2×o2)


If S̃(9) is regular, which is true with high probability (0.996 for o2 = 12) then

there exists Ω(6) such that S′(9) = S̃(9)Ω(6) = I. If S̃(9) and S̃(5) are regular,

which is true with high probability (0.992 for o1 = 12), then

(
S̃(5) S̃(6)

S̃(8) S̃(9)

)
is

regular, too. Thus there exist Ω(3) and Ω(5), such that S′(5) = I and S′(8) = 0.
As we know that S̃ is regular, it always exist Ω(1), Ω(2) and Ω(3), such that
S′(1) = I, S′(4) = 0 and S′(7) = 0. To conclude, with high probability (0.992)
there exist an equivalent key S′ of the form given in �gure 4. Note that we
can randomize the algorithm by permuting columns and rows and thus start
again, if �nding S′ fails. The same holds for the transformation of equations
T , as we always can add equations within the same layer, as well as equations
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of the �rst to the second layer, without destroying the zero coe�cients. Thus
with overwhelming probability it exists an equivalent key T ′ of the form given
in �gure 4.

0

0 0

18 12 12

S′ = and T ′ =
0

12 12

Fig. 4. Equivalent keys for Rainbow (28, 18, 12, 12). White parts denote zero entries,
gray parts denote arbitrary entries and there are ones at the diagonal.

The total number of variables is now reduced to v1(o1 + o2) + 2o1o2 = 720.
The number of equations stays the same, but as the �rst v1 columns of S′

does no longer contain any variables, the corresponding o1 · |(O2×V1)| equations
transform from cubic to quadratic and furthermore are bihomogeneous in s′ij and
t′ij . In our case we have 2592 quadratic and 4536 cubic equations. The complexity

of solving this system by F5 is 2
374 which still is infeasible. To further decrease

this complexity we now introduce the notion of good keys.
The overall idea is to decrease the number of variables in S′ and T ′ as far as
possible while preserving a reasonable amount of equations at the same time.
Therefore we generalize the notion of equivalent keys to keys that do not preserve
the whole structure of F but just some of it. We call those keys good keys if they
also reveal some parts of the keys S′ and T ′, respectively.

De�nition 2 (Good keys for Rainbow (v1, o1, o2)). Let S be the set de�ned

in de�nition 1, S′ ⊆ S and S, T equivalent keys. We call two regular matrices Ŝ
and T̂ good keys, if they ful�ll all equations in S′ and the sets

{(i, j) | sij = ŝij and (1 ≤ i ≤ v1∧v1 < j ≤ n)∨(v1 < i ≤ v1+o1∧v1+o1 < j ≤ n)}

and
{(i, j) | tij = t̂ij for (1 ≤ i ≤ o1 ∧ o1 < j ≤ o1 + o2)}

are both not empty.

At a �rst glance it is not clear that good keys even exists. The following lemma
proves the existence of good keys and give a special class of them.
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Lemma 1. Let S′ and T ′ be equivalent keys for Rainbow of the form given in
�gure 4. Then there exist good keys Ŝ and T̂ , of the following form.

0

0

0

0

18 12 12

Ŝ = and T̂ =

12 12

0

Only the last column of Ŝ contains arbitrary values in the �rst two blocks, which
are equal to the corresponding values in S′. Respectively, only the second block of
the o1-th row of T̂ contains arbitrary values, which are equal to the corresponding
values in T ′.

Proof. We �rst show that there exists a unique transformation S′Ω = Ŝ, if we
assume Ωn1 = . . . = Ωn(v1+o1) = 0. We need those zeros later, to preserve a
minimal amount of structure in F .

S′Ω :=

I S
′(1)
(v1×o1) S

′(2)
(v1×o2)

0 I S
′(3)
(o1×o2)

0 0 I



Ω

(1)
(v1×v1) Ω

(2)
(v1×o1) Ω

(3)
(v1×o2−1)||0

Ω
(4)
(o1×v1) Ω

(5)
(o1×o1) Ω

(6)
(o1×o2−1)||0

Ω
(7)
(o2×v1) Ω

(8)
(o2×o1) Ω

(9)
(o2×o2)

 !
= Ŝ

Using linear algebra, we uniquely obtain Ω(4) = Ω(7) = Ω(8) = 0, Ω(1) =

Ω(5) = Ω(9) = I, Ω(2) = −S′(1) and Ω
(6)
(o1×o2−1) = −S′(3)(o1×o2−1) as well as

Ω
(3)
(v1×o2−1) = (S′(1)S′(3)−S′(2))(v1×o2−1). Obviously the last column of S′(2) and

S′(3) are not a�ected by this transformation. Furthermore omitting the zeros in
the last column of Ω would destroy all the structure in F (cf. �gure 5).
As soon as we would allow to map un to any of the variables in V1 or O1 all
the zero coe�cients in F would vanish and thus no equations would be left to
perform an algebraic attack with.
Showing that T̂ is a good key is trivial: If we just want to preserve the structure
of F(o1), we can forget everything but the o1-th row of T ′. ut

The secret map F′ = ΩᵀFΩ is of the from given in �gure 5.

The total number of variables obtained by good keys chosen as above is v1 +
o1 + o2 = 42. To count the number of equations, we denote n := v1 + o1 + o2
and label every equation obtained by a zero coe�cient of uiuj in F(k) by (i, j, k)
(cf. equation (2)). First, (n, n, o1) provides a cubic equation. Second, (n, n, i) for
i = 1, . . . , o1−1, o1+1, . . . , o1+o2 provides quadratic equations in the variables
sij . Third and most important, (i, n, o1) for i = 1, . . . , n− 1 provides quadratic,
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18 12 12

for F′(12)

and

18 12 12

for F′(1), . . . ,F′(11),

F′(13), . . . ,F′(24)

Fig. 5. Central map of Rainbow (28, 18, 12, 12) after applying the transformation Ω
given by lemma 1. White parts denote zero entries and gray parts denote arbitrary
entries.

bihomogeneous equations in sij and tij . Those equations are the main weak-
ness of all layer based MQ-primitives. Their existence is due to the missing
cross-terms V1 × O2 and O1 × O2 in the �rst layer of Rainbow. Note that in
the case of UOV these equations do not exist. Applying the same approach to
UOV, provides m quadratic equations in 2m variables, which is infeasible for
current parameters of m = 28 [TW12b]. For Rainbow (28, 18, 12, 12) we end up
with 1 cubic, 23 quadratic and, due to the missing cross-terms, 41 bihomoge-
neous equations. Note that the solution of the cubic equation is independent
of tij as this equation still holds if we use T̂ = I. So we actually deal with 24
quadratic equations. Solving this system of equations has a complexity of at least(
42+10

10

)2 ≈ 267.7. Again this complexity estimation assumes generic equations.
As our equations contain some special structure, e.g. some of them are bihomo-
geneous, we can hope for a lower complexity in practice. We implemented our
attack and compared its running time to those of random systems (cf. table 2).
This way we obtained an empirical complexity that is at least 264.
After we obtained one column of S′ and one row of T ′, all the other parts of S′

and T ′ are revealed by linear equations. More precisely, by equations (i, n, j) for
i = 1, . . . , n and j = 1, . . . , o1−1, o1+1, . . . , o1+o2 we obtain n(o1+o2−1) linear
equations in the remaining (o1 − 1)o2 variables of T

′. After we recovered T ′ all
the equations (i, j, k) for i = 1, . . . , v1, j = v1 + 1, . . . , n and k = 1, . . . , o1 + o2,
and even some more, become linear. Solving this system of v1(o1 + o2)

2 linear
equations in (v1+o1−1)o2+v1o1 variables easily reveals the unique solution of S′.

To recap, we reduced a structured system of many equations and variables, which
we could not theoretically analyze, to a less structured small system of few equa-
tions and variables, using good keys. Solving this small system somehow contains
the hard core di�culty of solving the overall system, as all the other solutions
follow by linear equations.
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Table 1 gives the theoretical complexity of our attack for several parameters
given in [PBB10] which are considered to be secure.

Table 1. Attack complexity for several parameter sets believed to be secure. Note, the
parameters for small �elds are still valid.

parameter set �eld attack [log2]

(18,13,14) F28 69.5

(20,14,14) F28 76.1

(17,18,17) F31 78.3

(21,20,20) F24 88.1

Experimental Results. We have implemented our attack using the software
system Magma V2.16-1 [MAG]. All experiments were performed on a Intel Xeon
X33502.66GHz (Quadcore) with 8 GB of RAM using only one core. Table 2 gives
the results for various parameter sets (v1, o1, o2) of Rainbow.

Table 2. Running times in seconds of our attack for di�erent sets of parameters, over
di�erent �elds. In comparison the running time in seconds for random systems is given
in the last column, as well as a theoretical complexity in operations in column six.

v1 o1 o2 #eq. #var. theoretical attack [s] attack [s] attack [s] random [s]

m n [log2] GF(28) GF(24) GF(31) GF(28)

5 4 4 20 13 26 0.5 0.7 0.4 6

6 4 4 21 14 26 0.7 1.1 0.6 23

7 4 4 22 15 31 1.4 2.1 1.1 194

8 4 4 23 16 32 4.3 6.9 3.6 641

9 4 4 24 17 33 35 64 29 3328

6 5 5 25 16 28 17 29 15 87

7 5 5 26 17 32 33 58 25 1270

8 5 5 27 18 34 87 159 73 4475

9 5 5 28 19 34 630 1185 527 -

7 6 6 30 19 35 443 821 370 -

8 6 6 31 20 35 877 1765 743 -

9 6 6 32 21 36 3034 6052 2578 -

8 7 7 35 22 41 12567 25311 10730 -
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Column 4 and 5 give the number of equations and variables obtained through
our attack. Column 6 gives the log2 value of the theoretical complexity assuming
random equations (cf. [BFSY05]). The following three columns show the time in
seconds that our attack required over di�erent �elds. We guess that F28 is im-
plemented more e�ciently in Magma and thus it needs longer to solve instances
over F24 than over F28 . The last column describes the time it took us to solve
a random instance with the same number of variables and equations, assuming
that a solution exists. Comparing these complexities to the ones of our attack, we
observe a factor of 32 for (6, 4, 4) which we are faster over F28 than theoretically
expected. As this set of parameters is a scaled variant of (18, 12, 12) and the
di�erence only increases, we conclude that the attack is at least 32 times faster
than theoretically evaluated. Thus we end up with an empirical complexity of
at least 262.7 to break Rainbow (28, 18, 12, 12).

Conclusion. A immediate consequence of our attack is that we should use at
least parameters (22, 16, 16) over F28 . Further we did not use all the structure
for the theoretical analysis of our attack, i.e. we neglected that a large portion of
the obtained equations is bihomogeneous. Thus we should ask ourselves a very
important question: Is the gain in e�ciency by transforming UOV to Rainbow
larger than the loss of security? If not, Rainbow is super�uous as UOV will
always be both, more secure and e�cient. This question especially arise because
our attack on Rainbow use the missing cross-terms and thus is not applicable to
UOV. Unfortunately, a fair comparison of the e�ciency/security ratio of UOV
and Rainbow is out of the scope of this paper. To even de�ne e�ciency in this
context is an involved task. Do we only measure the extension factor of the
signature or do we take the complexity of the signing algorithm into account,
too? Our intuition is that we roughly lose as much security as we gain e�ciency
in terms of the signature length while transforming UOV to Rainbow. Let us
explain this at the following example over F28 . Using Rainbow (28, 22, 16, 16),
for which our key recovery attack has complexity 284, we map messages of length
32 to signatures of length 54. For comparison, UOV with parameters o = 28 and
v = 56 is considered to have a security level of 284 against message recovery
attacks [BFP09,TW12b]. Thus UOV maps a message of length 28 to a signature
of length 84. Further we can use that UOV is well parametrized, while Rainbow
is built on the edge, i.e. in order to prevent key recovery attacks like the one of
Kipnis and Shamir [KS98,KPG99] on UOV, we only have to ensure v−o−1 ≥ 8.
So choosing v = 2o is a little conservative. More precisely o = 28 and v = 37 is
su�cient to prevent this type of key recovery attack. In this case UOV maps a
message of length 28 to a signature of length 65. To put security concerns in a
nutshell, UOV is based on theMQ- and IP-problem and Rainbow additionally
use the di�culty of the MinRank-problem. So everyone have to decide on his
own, if obtaining signatures of length 54 instead of 65 is worthwhile to take
another class of problems into account.
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4 Cryptanalysis of Enhanced STS and all its Variants

Another way to achieve a secret map F =
(
f (1), . . . , f (m)

)ᵀ
was given by the Se-

quential Solution Method of Tsujii [STH89,TKI+86]. The idea was somehow simi-
lar to the independently proposed schemes of Shamir [Sha93] and Moh [Moh99].
In 2004 Kasahara and Sakai extended this idea to the so-called RSE system
[KS04], which later was generalized to the Stepwise Triangular System (STS)
by Wolf et al. [WBP04]. Here the central polynomials f (k) are some random
quadratic polynomials in a restricted number of variables. See �gure 6 for the
stepped structure of the resultingMQ-system. Inverting this map is possible as
long as solving r quadratic equations in r variables is practical. Consequently,
we need to restrict r to rather small values, e.g. r = 4 . . . 9.

f (1)(u1, . . . , ur)

...
f (r)(u1, . . . , ur)

...

f ((i−1)r+1)(u1, . . . , uir)

...
f (ir)(u1, . . . , uir)

...

f ((L−1)r+1)(u1, . . . , um)

...
f (m)(u1, . . . , um)

︷︸
︸︷

︷︸
︸︷

︷︸
︸︷

Step 1

Step i

Step LStep L

resp.

r

r

...

r

p
o
ly
n
o
m
ia
ls

u1· · ·ur · · · um

variables

Fig. 6. Central map of STS based signature schemes like RSSE(2)PKC or RSE(2)PKC.
The gray parts of the matrix indicate that those variables occur in the corresponding
polynomial and white parts indicate that they do not.

In the same year Wolf et al. [WBP04] showed how to e�ciently break the pro-
posed parameters of the STS schemes RSSE(2)PKC and RSE(2)PKC using a
HighRank attack. At PQCrypto 2010 Tsujii et al. [TGTF10] tried to �x the
scheme by proposing a new variant called Enhanced STS, which uses a com-
plementary STS structure (cf. �gure 7). Only a few months later they noticed
themselves that the scheme is obviously not immune to HighRank attacks, al-
though this was originally a design goal. To �x this problem, they proposed
several new variants [GT11,TG10]. We will now shortly repeat the HighRank
attack and then give a more e�cient algebraic key recovery attack which makes
use of good keys and missing cross-terms. The latter are quadratic monomials
of two variables from di�erent sets, which do not exist in the central map F



Generalization of the Rainbow Band Separation Attack 15

by construction. We conclude that it is impossible to �nd a secure and e�cient
parameter set of Enhanced STS. We will also break the new variants of STS. To
conclude, we discuss (im)possible improvements and show that we either end up
with the Rainbow or Oil, Vinegar and Salt signature scheme.

Cryptanalysis of Enhanced STS. To exploit di�erent ranks in plain STS,
we use the quadratic form of the polynomials f (k), i.e. f (k) = uᵀF(i)u for
u = (u1, . . . , um)ᵀ and some (m×m) matrix F(i). Note that we have n = m = Lr
here. Obviously the rank of these matrices in the i-th step is ir. Now we use that
the rank is invariant under the bijective transformation S−1u = x of variables,
i.e. rank(SᵀF(i)S) = rank(F(i)) for all i. In addition, the public polynomials
p(i) = xᵀP(i)x are given by some linear combination P(i) =

∑m
j=1 tijS

ᵀF(j)S =

Sᵀ
(∑m

j=1 tijF
(j)
)
S. As the rank is changed by the transformation of equations

T , we can use the rank property of the underlying central equations f (k) as a
distinguisher to obtain the full transformation T .

Enhanced STS was thought to resist rank attacks. Tsujii et al. introduced two
sets U = {u1, . . . , um} and V = {v1, . . . , vm−r} of variables and constructed
central polynomials f (k) which all have the same rank m. The construction is
very similar to �gure 6, but every polynomial f (k) depends on m variables. See
�gure 7 for details.

r

r

...

r

p
o
ly
n
o
m
ia
ls

u1..ur · · · umv1..vr · · · vm−r

variables

Fig. 7. Central map of Enhanced STS. The gray parts of the matrix indicate that those
variables occur in the corresponding polynomial and white parts indicate that they do
not.

As the correspondingMQ-system F has m quadratic equations but n = 2m− r
variables, we could �x all variables of V to random values and obtain anMQ-
system of r equations and r variables in the �rst step. Solving thisMQ-system,
substituting the solution in the next step and so on, allows for a reasonable ef-
�cient inversion of F .
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Tsujii et al. themselves noticed [TG10] that having the same rank m for the
central polynomials f (k) does not prevent rank attacks in any way, as the rank
of the public polynomials is 2m − r. The following simple HighRank attack is
still applicable. Note that due to the additional variables vi the minimal rank of
the central polynomials is m, for m ≥ 26 in practice to prevent direct attacks.
Thus Enhanced STS is at least secure against MinRank attacks [FdVP08,BG06].

HighRank Attack. In order to reconstruct T we have to search for linear com-
binations of the public polynomials P(i), such that the rank decrease from 2m−r
to m. Let σ ∈ Sm be a random permutation, which we need for randomization.
Then there exist λi ∈ Fq such that the following linear combination has rank
2m− 2r and thus the rank drops by r.

P(σ(r+1)) +

r∑
i=1

λiP
(σ(i)) =: P̃

There are 2 di�erent solutions, as we can eliminate the r matrices F(1), . . . ,F(r)

or F(m−r+1), . . . ,F(m) such that P̃ has rank 2m − 2r. In the �rst case P̃ is a
linear combination of secret polynomials, who do not contain variables v1, . . . , vr
respectively um−r+1, . . . , um in the latter case. Thus brute forcing all λi has
complexity qr/2. Once we have eliminated all the F(i) of one block (e.g. 1 ≤ i ≤ r)
in one polynomial P̃ we easily eliminate those F(i) in all the other m− r public
polynomials by just determining ker(P̃). The linear system

∑m
i=1 λiP

(i)ω = 0

with ω ∈ ker(P̃) provides all m−r polynomials of rank 2m−2r. The complexity
of this step is 2(2m − r)3. Repeating this whole procedure L times yields r

matrices P̃(i) of rank m. At this point we know the kernel of one of the central
blocks of F and could use this to separate the matrices in the steps before, which
are still linear combinations of some SᵀF(i)S. Choosing a vector that lies in the
kernel of the matrices obtained in the i-th step, but not in the kernel of matrices
recovered in step i + 1, . . . , L easily provides T . The overall complexity of this
HighRank attack is given by

L

2
qr + 2L(2m− r)3 +

L−1∑
i=1

(ir)3 = O(qr).

Algebraic Key Recovery Attack. We saw that the complexity of the High-
Rank attack strongly depends on the �eld size q and the parameter r. Even
if r is restricted to small values due to e�ciency constraints, it is possible to
choose q large enough to obtain a scheme secure against the previously men-
tioned attack. For example, let r = 9 and q = 29. Now we describe a new key
recovery attack that is almost independent of the �eld size q and thus makes
it impossible to �nd a parameter set that is both e�cient and secure. To ease
explanation we �x a parameter set of Enhanced STS to illustrate the attack. As
there are no parameters given in [TG10], what is by the way not very courteous



Generalization of the Rainbow Band Separation Attack 17

for cryptanalysis, we choose m = 27, r = 9 and q = 29 as this prevents message
recovery attacks via Gröbner Bases on the public key as well as HighRank at-
tacks. The number of steps is given by L = m/r = 3. The number of variables
is n = 2m − r = |U | + |V | = 27 + 18 = 45. Note that a legitimate user would
need to solve three genericMQ-system with 9 equations and variables over F29

to compute a signature. While possible in theory, it is ine�cient for practical
use. Solving a genericMQ-system with 9 equations and variables over F29 using
the fastest known method, i.e. guessing one variable [YCC04,BFP09], as well
as the very fast F4 implementation of Magma V2.16-1 [MAG] on a Intel Xeon
X33502.66GHz (Quadcore) with 4 GB of RAM using only one core, took us 0.3
seconds. Note that we equivalently could use the MutantXL or XL2 algorithm
with �xing some variables [YCC04,ACFP12]. Thus the worst case signing time
is 3 · 29 · 0.3 ≈ 461 seconds. But despite of choosing such a large r, we now show
that the resulting scheme still is not secure.

F : ,

U︷ ︸︸ ︷ V︷ ︸︸ ︷

U1 U2 U3 V1 V2

U1 U2 U3 V1 V2

U︷ ︸︸ ︷ V︷ ︸︸ ︷
0

0

0

0

0

0

S̃ : and T̃ :

9 9 9

9

9

9

Fig. 8. Central map F of Enhanced STS and the minimal representative S and T of
the class of equivalent keys.

Figure 8 shows the structure of the central map F . The picture describing F has
to be read like �gure 7. Every little square denotes a (9 × 9) array. Moreover,

we give the structure of the secret key S̃ := S−1, which is a (45 × 45) matrix
with ones at the diagonal, zeros at the white parts and unknown values at the
gray parts. Note that there are many di�erent secret keys S respectively S−1

that preserve the structure of F , i.e. preserve systematical zero coe�cients in
the polynomials f (i). We call all them equivalent keys and can assume that in
every class there is one representative with the structure given in �gure 8 with
overwhelming probability (cf. de�nition1). The same holds for T̃ := T−1. We

skip the derivation of S̃ and T̃ given in �gure 8 as it was already known and is
very similar to the proof of lemma 1.

An algebraic key recovery attack uses the special structure of F to obtain
equations in S̃ and T̃ through the following equality (cf. (1)) derived from



18 Enrico Thomae

F = T−1 ◦ P ◦ S−1 with T̃ := T−1 =: (t̃ij) and S̃ := S−1.

F(i) = S̃ᵀ

 m∑
j=1

t̃ijP
(j)

 S̃

As P is publicly known and we further know that some of the entries of F are
systematically zero, we obtain cubic equations in the elements of S̃ and T̃ . To
ease notation we use uj+m := vj for j = 1, . . . ,m− r. It is interesting to observe
that the equations obtained from the coe�cients uiuj in f

(k) are of the form

0 =

n∑
x=1

n∑
y=1

n∑
z=1

αxyz t̃kxs̃yis̃zj

for some coe�cients αxyz ∈ Fq that depend on the public key matrices P(j)

(cf. [PTBW11, Sec. 3] or [TW12b] for an explicit formula). Due to the special

form of S̃ this immediately implies that all equations obtained by zero mono-
mials uiuj with ui ∈ U1 := {u1, . . . , u9} and uj ∈ U2 ∪ U3 := {u10, . . . , u18} ∪
{u19, . . . , u27}, as well as uivj with ui ∈ U1 and vj ∈ V1 ∪ V2 := {v1, . . . , v9} ∪
{v10, . . . , v18} become quadratic instead of cubic. This change hence greatly im-
proves the overall attack complexity. De�ning U × V := {{u, v} |u ∈ U, v ∈ V }
the total amount of equations obtained by systematical zeros in F is

9 · (|(U2 ∪ U3)× (U2 ∪ U3)|+ |(U2 ∪ U3)× (V1 ∪ V2)|)
+ 9 · (|(U3 ∪ V1)× (U3 ∪ V1)|+ |(U3 ∪ V1)× (U2 ∪ V2)|)
+ 9 · (|(V1 ∪ V2)× (V1 ∪ V2)|+ |(V1 ∪ V2)× (U2 ∪ U3)|)
= 9 · 3 · ((18 · 19)/2 + 18 · 18)
= 27 · (171 + 324) = 13, 365 cubic equations and

9 · |(U2 ∪ U3)× U1|+ 9 · |(U3 ∪ V1)× U1|+ 9 · |(V1 ∪ V2)× U1|
= 27 · 162 = 4374 quadratic equations.

Solving this system of equations in 486 variables t̃ij and 1134 variables s̃ij
with a common Gröbner basis algorithm like F5 has a total complexity of 2877

(cf. [BFS04,BFSY05]). This huge complexity is due to the large number of vari-
ables and the fact that the complexity estimation assumes generic equations and
thus does not take the structure of the equations into account. In order to de-
crease the complexity, we have to break down the problem into smaller pieces.
This can be done if we further decrease the number of variables in S̃ and T̃ . To
achieve this goal we use good keys again (cf. de�nition 2).

Lemma 2. Let S̃ and T̃ be equivalent keys for Enhanced STS of the form given
in �gure 8. Then there exist good keys S′ and T ′, of the following form.
S′ is all zero except the gray parts, which are equal to the corresponding values
in S̃ and the diagonal, which contains only ones. Similarly, the gray parts of T ′

equals the corresponding values in T̃ .
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F : ,

U︷ ︸︸ ︷ V︷ ︸︸ ︷

U1 U2 U3 V1 V2

U1 U2 U3 V1 V2

U︷ ︸︸ ︷ V︷ ︸︸ ︷
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

S′ : and T ′ :

9 9 9

0

0

0 0

0

9

9

9

Proof. To preserve the structure of F given in lemma 2 we are allowed to map
variables U1 ∪ U2 ∪ U3 ∪ V2 7→ U1 ∪ U2 ∪ U3 ∪ V2 as well as V1 7→ V1. As soon as
we were to map variables from V1 to any other set of variables, all polynomials
would contain variables from V1 and thus the whole structure of F would be
destroyed. Now we show that using such a transformation Ω of variables, we can
uniquely map S̃ to S′ by S̃Ω = S′.

S̃Ω :=


I S̃(1) S̃(2) S̃(3) S̃(4)

0 I S̃(5) S̃(6) S̃(7)

0 0 I S̃(8) S̃(9)

0 S̃(10) S̃(11) I 0

0 S̃(12) S̃(13) S̃(14) I



Ω(1) Ω(2) Ω(3) 0 Ω(4)

Ω(5) Ω(6) Ω(7) 0 Ω(8)

Ω(9) Ω(10) Ω(11) 0 Ω(12)

Ω(13) Ω(14) Ω(15) Ω(16) Ω(17)

Ω(18) Ω(19) Ω(20) 0 Ω(21)

 !
= S′

Obviously Ω(16) = I and thus S̃(3), S̃(6), S̃(8) and S̃(14) remain unchanged. As S̃
is regular, all other Ω(i) are uniquely determined by S̃−1S′. Showing that T ′ is a
good key is trivial: If we only want to f2r+1, . . . , f3r to contain no V1 variables,
we are allowed to map all polynomials except f1, . . . , fr to one another. ut

Using the good keys of lemma 2 we end up with 405 cubic equations, 2916
quadratic equations and 405 variables. The complexity of solving such a system
using F5 is still 2

151. To bring this game to an end, we only need to assure that
f30 do not contain the variable v1. Analogous to lemma 2 we obtain |(U ∪ V2 ∪
V1\{v1})× {v1}| = 44 quadratic equations and one cubic equation. Using good
keys analogous to lemma 2 we obtain 9 variables t27j for 1 ≤ j ≤ 9 as well
as 36 variables si28 for 1 ≤ i ≤ 36. Applying the generic complexity analysis
as before still provides the same, and hence infeasible complexity of 2151. The
reason is that now the number of equations equals the number of variables, so
the overall complexity does not decrease. To obtain a better attack complexity
we somehow have to use the fact that all quadratic equations are bihomogeneous,
i.e. of the form

∑36
i=1

∑9
j=1 αijt27jsi28 for some αij ∈ Fq. In [FDS11] Faugère

et al. analyzed systems of such a special structure and gave an upper bound on
the degree of regularity for F5. To use their results we �rst have to guess one
variable tij such that we obtain a system of 44 bihomogeneous equations in 44
variables. According to their results we now obtain a degree of regularity of 9
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and a complexity of 29
(
44+9

9

)2 ≈ 273. In general the degree of regularity is r, as
we have r − 1 variables tij after guessing and thus the complexity of our attack
for arbitrary parameters is given by

q

(
2m− 1

r

)2

.

Once we obtained a single row/column of S̃ and T̃ , the whole system breaks down
as all other elements are now determined through linear equations. Therefore let
us label every equation obtained by a zero coe�cient of uiuj in f

(k) by (ui, uj , k)
(cf. (2)). Now, (ui, v1, k) and (vj , v1, k) with i = 1, . . . , 27, j = 1, . . . , 18 and
k = 19, . . . , 26 provide linear equations in tij with i = 19, . . . , 26 and j = 1, . . . , 9.
Next we can apply the same approach using good keys as above for v1 to vi,
i = 2, . . . , 9. As we already know the coe�cients tij of the appropriate good key,
all bihomogeneous equations become linear in sij . We now can determine the
next blocks in T through linear equations only. We repeat the process until all
secret coe�cients are recovered.

To summarize our new attack, we �rst used the fact that cross-terms from
(U ∪V2)×V1 do not exist and thus obtained quadratic instead of cubic equations
in the key recovery attack. Second, we reduced the number of variables through
good keys. And third, we used the special bihomogeneous structure of the equa-
tions to lower the attack complexity. In order to protect the scheme against this
attack we either have to increase m or r. But as the complexity of the signing

algorithm is 3q
(
r−1+dreg

r−1
)2
, i.e. in the same order of magnitude of our attack,

Enhanced STS cannot be e�cient and secure at the same time. In general it do
not seem to be a good idea to use an exponential time signing algorithm.

Cryptanalysis of Check Equation Enhanced STS. The original Enhanced
STS scheme contains m quadratic equations in 2m − r variables in the public
key and thus have qm−r possible valid signatures to one message. Even if cur-
rent algorithms cannot take much advantage of underdetermined MQ-systems
[TW12b], Tsujii et al. [TG10] suggested to strength their signature by adding
m − r check equations and thus �x one unique signature. From a message re-
covery point of view, the attacker now would have to solve a MQ-system of
2m− r (public key) equations and variables. Before he had to solve a system of
m equations and variables after just guessing the additional m− r variables.

However, the check equations do not a�ect the algebraic key recover attack we
just described. Moreover, if the check equations are not chosen purely random
and thus introducing new structure, the attack may even bene�t.

Cryptanalysis of Hidden Pair of Bijection. The overall idea of this variant
is very general. Take a pair F (1), F (2) : Fmq → Fmq of bijections with a disjoint set
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of variables, i.e. u = (u1, . . . , um) and v = (v1, . . . , vm) and connect them with
a function H containing all the cross-terms of u and v. The central polynomial
f (k) is given by

f (k)(u, v) := F1(u) + F2(v) +H(u, v) for some H(u, v) :=

m∑
j=1

m∑
i=1

αijuivj .

If F (1) and F (2) contain some trapdoor and we assign u or v zero, we can invert
the central map. An instantiation of this scheme using the STS trapdoor is
depicted in �gure 9.
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f (k)(u, v) = +
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...
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V︷ ︸︸ ︷
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...

r

U×V︷ ︸︸ ︷

Fig. 9. Secret map F of Hidden Pair of Bijection using STS trapdoor.

The �rst observation is that due to the cross-terms in H all the secret matrices
F(i) have full rank 2m and thus rank attacks are not trivially applicable. But
there is a smart way in applying rank attacks to the scheme. The weak point is
the signing algorithm proposed by Tsujii et al., which �rst chooses u or v to be
zero. They claimed that this would not help an attacker, as his chance to guess
the right choice is 1

2 . Well, if we collect 4m − 1 valid signatures x1, . . . , x4m−1
to arbitrary massages, which are all signed using the same secret S, we can
built an e�cient distinguisher. We know X := (xᵀ1 , . . . , x

ᵀ
2m−1) is (up to column

permutations) of the following form

X = S·
0

0

The probability of matrix X to have rank 2m− 1 is (1/2)2m−12
(
2m−1
m

)
which is

su�ciently large�for example choosing m = 30 this equals 0.205. We want to
thank Masahito Gotaishi, who pointed out that this probability also depends on
the �eld size q and thus the exact formula is(

m−2∏
i=0

(qm − qi)

)2

· 2(qm − qm−1)
(
2m− 1

m

)
· (2qm)−(2m−1).
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Note that both formulas equal for large q�for example choosing m = 30 and
q = 256 we obtain 0.204. Once we found a collection of signatures x1, . . . , x2m−1,
such that rank(X) = 2m− 1 we obtained an e�cient distinguisher. If X||xj for
j ≥ 2m still has rank 2m − 1 we add xj to the set A. If the rank increase by
one we add xj to the set B. Masahito Gotaishi noticed that with probability
1/q a signature is added to the set A even if it is of kind B. That means A only

contains signatures of the same kind with probability
(
1− 1

2q

)m
. If so, we easily

can recover the part of S which separates the U or the V space, by linear algebra.
Once we achieved this we can easily distinguish both kinds of signatures, collect
m linear independent signatures of kind B and recover the rest of S. Masahito
Gotaishi even proposed a more e�cient way to get rid of wrong signatures in
A. For every of those signatures he saved the vectors of our distinguisher used
in the linear combination of the zero vector. At the end he did a majority vote
and only used those signatures assigned to vectors which occurred in most of the
linear combinations.
After �xing one of the both sets of variables we obtain a plain STS scheme and
can apply the HighRank or the Key Recovery attack from above.

In order to prevent this attack we would have to assign arbitrary values to u
respectively v instead of all zeros. This immediately invalidate the trapdoor and
makes the scheme unusable. In every step we would have to solve a quadratic un-
derdetermined system of equations without destroying possible solutions through
guessing variables.

Conclusions or: Where do we take it from here? In summary, we have
introduced a new attack on Enhanced STS that makes use of the heavily struc-
tured central map in terms of missing cross-terms. We rate it very unlikely that
Enhanced STS or its variants can be repaired while providing an e�cient signing
algorithm. So the question at hand is if non-linearity could help in any way to
improve UOV or Rainbow.

One answer was already given by Kipnis et al. in the paper that proposed UOV
[KPG03]. One of their possible variants to repair the balanced Oil and Vinegar
scheme and thus to avoid the attack of Kipnis and Shamir [KS98] was called Oil,
Vinegar and Salt signature scheme. Here the variables are divided into three sets
O, V and S. The central map F is constructed such that there are no monomials
uiuj with ui ∈ O and uj ∈ V ∪ S. After �xing the vinegar variables we obtain a
system linear in the O variables and quadratic in the S variables. The best known
way to solve such a system is to brute-force the S variables and then solve the
remaining linear system. This way we loose a factor of q|S| in terms of e�ciency.
As it turned out later, a modi�ed version of the Kipnis and Shamir attack actu-
ally can be applied to the Oil, Vinegar and Salt scheme. Ironically, the factor we
gain in terms of security compared to the original scheme is exactly the factor
we loose in terms of e�ciency. But as the (positive) e�ect of non-linearity to the
public key size is negligible compared to the (negative) e�ect to the e�ciency of
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the scheme, the best trade-o� is to just skip the salt variables and hence use the
original UOV scheme.
STS can be seen as a layer-based version of Oil, Vinegar and Salt. So we can
rephrase the question between UOV and UOV+S in this setting. In particular,
we have to ask ourselves if the layered structure of STS allows for a better trade-
o� between e�ciency and security than UOV. Unfortunately, we have to leave
the �nal answer as an open question. However, we incline to the negative. To
illustrate this, we want to elaborate some thoughts on this matter. One the one
hand, it is not clear even for UOV if the ratio between e�ciency and security
increases for the layer-based scheme Rainbow. Especially the attack of section 3,
which is not applicable to UOV, challenges this hope. On the other hand, the
attack of Kipnis and Shamir [KS98] is not practical for layer-based schemes like
Rainbow. So the question remains, if and how much security we can gain at all
by introducing some non-linearity in each layer. Our intuition is that the loss
of e�ciency is always greater or equal than the gain of security in these cases
and hence of no avail in practice. The reason is that on the one hand the signing
algorithm becomes exponential instead of polynomial, as soon as we introduce
non-linear parts. In comparison, the attack stays exponential in both cases, i.e.
there is no gap between the legitimate user and the attacker.

The only exception from this rule seem to be Gröbner bases that are used as
a trapdoor. Clearly we have to use Vinegar variables in that case, as otherwise
MinRank attacks are applicable. But we found no way to fuse this into a working
scheme�but got the impression that this is not possible at all. Hence, we leave it
as an open problem, how to embed a Gröbner Basis into a scheme using Vinegar
variables and to derive a both secure and e�cient scheme.
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5 Cryptanalysis of STS based on Prime Factorization

In section 4 we showed, how to exploit the di�erent rank properties of several
variants of the STS signature scheme, to recover the secret keys S and T . At SCC
2012 Tsujii et al. proposed yet another variant of STS [TTGF12a,TTGF12b],
which relies on the di�culty of prime factorization. At a �rst glance rank attacks
are not applicable, as all the secret polynomials are of full rank. Nevertheless we
will now show how to apply a MinRank attack and thus recover the factorization
in polynomial time.

The new variant of STS uses the common construction of MQ-schemes, i.e. a
multivariate quadratic public map P, two secret linear transformations S and
T and a secret multivariate quadratic map F (cf. section 2). In order to invert
F e�ciently, we have to embed some special structure. Therefore the authors
of [TTGF12b] de�ned N = pq the product of two secret primes p and q and
F : ZnN → ZnN : (x1, . . . , xn)

ᵀ 7→ (f1(x), . . . , fn(x))
ᵀ as follows.

f1(x1, . . . , xn) := p · g1(x1) + q · h1(x1, . . . , xn)
f2(x1, . . . , xn) := p · g2(x1, x2) + q · h2(x2, . . . , xn)
...

...
...

fn(x1, . . . , xn) := p · gn(x1, . . . , xn) + q · hn(xn)

Where gi and hi are random quadratic polynomials in the according set of vari-
ables. Inverting this map is e�cient, because we e�ciently �nd solutions mod q
and mod p by solving equation by equation and substituting the solution in the
next equation. Using the Chinese Reminder Theorem we easily obtain a valid
solution mod N .
If we write fi(x) = xᵀF(i)x in its quadratic form, obviously F(i) is of full rank
and thus rank attacks did not seem to work. Well, thanks to a smart idea of
Gottfried Herold (Bochum) we will now show how to �nd a linear transforma-
tion of equations and thus an equivalent key for T such that the structure of the
central map F is given as follows.

f1(x1, . . . , xn) := p · g1(x1) + q · hn(xn)
f2(x1, . . . , xn) := p · g2(x1, x2) + q · h2(xn−1, xn)
...

...
...

fn(x1, . . . , xn) := p · gn(x1, . . . , xn) + q · h1(x1, . . . , xn)

Obviously I ◦F mod q, with I the identity mapping, provides the required form
of F mod q. Furthermore Π ◦ F mod p provides the required form of F mod p,
for Π a permutation of the following form.

1

1

1

1

Π =
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Now we easily obtain the searched transformation X by solving

X ≡ I mod q

X ≡ Π mod p

using the Chinese Reminder Theorem. In fact, the solution is given through
X = Ipp−1q +Πqq−1p mod N , with q−1p the multiplicative inverse of q mod p and
vice versa.
With X ·T there exist a linear transformation of equations, such that one central
polynomial is of rank 2. Recovering this polynomial by a MinRank attack using

Gröbner Bases has complexity
(
n+3
3

)2
(cf. [FDS11,FdVP08]). Note that we never

have to determine X to run our attack, it is su�cient that X ·T exists. To �nally
obtain the factorization of N , we �rst have to partly recover the transformation
of variables S. We again use equivalent keys to achieve this goal. More precisely,
to preserve the zero coe�cients in p · g1(x1) + q · hn(xn) we are allowed to map
all variables, except x1 and xn to sums of all variables. Further we are allowed
to map x1 to multiples of x1 and xn to multiples of xn. The according equivalent
key has the following form.

S =

1

1

Fig. 10. Equivalent key S with ones at the diagonal, arbitrary values at the gray parts
and zeros at the white parts.

In order to recover the �rst 3 columns of S, i.e. the dashed area in �gure 10 or
more precisely s12, s13, sn1, sn2 and sn3, we have to solve the quadratic equations
obtained by the zero coe�cients of x1x2, x1x3, x

2
2, x2x3 and x

2
3. Solving this sys-

tem of 5 quadratic equations in 5 variables with some Gröbner Basis algorithm

like F5 has complexity
(
5+6
6

)2 ≈ 218 as the degree of regularity will be 6 (cf.
[BFS04]). Note that ZN is not a �eld and thus the Gröbner Basis computation
might fail. But as soon as an error occur, we immediately learn the factorization
of N .
After learning the �rst column of S and applying the transformation, the coef-
�cient γ11 of x

2
1 in the public polynomial is a pure multiple of p. This is due to

the fact that xn is no longer mapped to x1. This way we can easily factor N by
calculating gcd(γ11, N).

For a reasonable choice of parameters, i.e. n = 30, our attack has complexity at

most
(
33
3

)2 ≈ 225.
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6 Cryptanalysis of Enhanced TTS

Enhanced TTS was proposed by Yang and Chen in 2005 [YC05]. The overall
idea of the scheme was to use several layers of UOV trapdoors and to make
them as sparse as possible. In contrast to UOV this would prevent the Kipnis
and Shamir attack [KS98] without increasing the number of vinegar variables. In
fact, while we have a signature extension of factor 3 for UOV, enTTS improves
this �gure to 1.3. As enTTS was designed for high speed implementation it uses
as few monomials as possible.
There are two di�erent scalable central maps given in [YC05], one is called even
sequence and the other odd sequence. The following equations show the even
sequence.

f (i) = ui +

2`−5∑
j=1

γijuju2`−4+(i+j+1 mod 2`−2) for 2`− 4 ≤ i ≤ 4`− 7,

f (i) = ui +

`−4∑
j=1

γijui+j−(4`−6)ui−j−2`−1 +

2`−5∑
j=`−3

γijui+j−3`+5ui−j+`−4

for 4`− 6 ≤ i ≤ 4`− 3,

f (i) = ui + γi0ui−2`+2ui−2`−2 +

6`−5∑
j=i+1

γi,j−(4`−3)u4`−3+i−juj

+γi,i−4`+3u0ui +

i−1∑
j=4`−2

γi,j−(4`−3)u2(i−j)−(i mod 2)uj + γi,i−4`+2u0ui

for 4`− 2 ≤ i ≤ 6`− 5.

The number of equations and variables ism = 4` and n = 6`−4, respectively, for
some parameter `. The �rst observation is that the number of equations obtained
by (2) is very large, as only 2` − 3 monomials per equation are non-zero. The
second observation is that the linear terms provide an enormous amount of new
equations, as their coe�cients are not chosen at random but �xed. Considering
only the linear parts of the public polynomials p(j) we obtain the following
equation analogously to (1)

ei+2`−5 = S̃

 m∑
j=1

t̃ij(γ
(j)
1 , . . . , γ(j)n )ᵀ

 for 1 ≤ i ≤ m, (4)

where ei denote the all-zero vector with a single 1 in the i-th entry and γ
(j)
i is the

coe�cient of xi in p
(j). We obtain a total amount of 4`(6` − 4) bihomogeneous

equations in the (4`)2 variables of T̃ and in the (6` − 4)2 variables of S̃. Note
that the number of variables would increase if we choose S to be a�ne instead
of linear. But despite of this large amount of equations a theoretical complexity
analysis of solving those equations provide infeasible large results, due to the
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large amount of variables. Note that in practice the solving algorithm may seri-
ously bene�t of the equations internal structure. We leave it as an open problem
to implement this attack and run experiments to determine the real complexity
of attacking enTTS this way.
In the sequel we once again focus on reducing the number of variables. Note
that most of the equations (4) vanish as soon as we use equivalent keys. This is
also true for a large amount of zero-coe�cients in the quadratic part. Thus we
generalize the scheme by adding more monomials. In particular, we adapt the
de�nition of enTTS as follows: As soon as a monomial xixj with xi ∈ U and
xj ∈ V occurs in the original enTTS polynomial f (k), we just assume that all
monomials xixj with xi ∈ U and xj ∈ V occur as well. This way we easily see
that enTTS is a very special case of the Rainbow signature scheme, neglecting
the linear parts. We chose the parameter set (n,m) = (32, 24) and thus ` = 6
given in [YC05], as this provides a security level of 288. See �gure 11 for an
illustration.

F(1), . . . ,F(10) F(11), . . . ,F(14) F(15), . . . ,F(24)

8 10 4 10 8 10 4 10 8 10 4 10

0

0 0

T = 0

0 0

0 00

S =

Fig. 11. Secret map F of TTS (32, 24) and equivalent keys T and S.

The attack is similar to the one described in section 4. Suppose we just want do
preserve zero coe�cients of x32xi in polynomial u

ᵀF(14)u. This leads to the good
keys given in �gure 12 and thus to 31 bihomogeneous equations in 10 variables
t14i with i = 15, . . . , 24 and 22 variables sj32 with j = 1, . . . , 22. Analogous to
section 4 we �rst have to guess one variable tij . Solving the remaining system

of 31 bihomogeneous equations in 31 variables has complexity 28
(
31+10

10

)2 ≈ 268

(cf. [FDS11]).

Remark 1. Using the good key T ′ of �gure 12 gives arbitrary values for the �rst
4` − 2 entries in ei of (4). Only the last 2` − 2 entries are invariant under the
transformation Ω. But due to the good key S′ these entries become arbitrary as
well, except the last one. Thus we obtain one more bihomogeneous equation from
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0

0 0

0 0

T ′ = 0

0 0

0 00

0 0

0S′ =

Fig. 12. Good Keys T ′ and S′ for enTTS (32, 24).

(4) using good keys. Now we can apply [FDS11] without guessing one variable

beforehand and obtain an overall complexity of
(
32+11

11

)2 ≈ 265.

But due to the special structure of enTTS we can do even better. Applying the
transformation of variables Ω analogous to lemma 1, we see that the monomial
u32u32 do not occur in any of the secret polynomials. This way we additionally
obtain 23 quadratic equations in sij . The complexity of solving a generic system
of 23+ 32 quadratic and 1 cubic equation in 32 variables is 247.7. Note that this
complexity is just an upper bound as we assumed generic equations and thus
did not use the special bihomogeneous structure.
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7 Cryptanalysis of MFE Based on Diophantine Equations

The MFE encryption scheme was published at CT-RSA 2006 [WYHL06] and
broken at PKC 2007 by Ding et Al. [DHN+07]. The variant using Diophantine
equations was published at Designs, Codes and Cryptography in 2011 [GH11].
Clearly the security goals of MFE are out of date, as even a direct attack on
the public key using F5 or MutantXL is e�cient due to the small number of
equations and variables. Therefore we will not give another attack on MFE, but
concentrate on the more secure variant proposed in [GH11]. Note that our attack
also applies to the original MFE scheme and very likely would be as e�cient as
the high order linearization attack of [DHN+07].

MFE Encryption Scheme. We brie�y describe the main idea of MFE. For a
detailed description please refer to [WYHL06].

The central map F : F12
2k → F15

2k : (x1, . . . , x12) 7→ (y1, . . . , y15) is de�ned by

y1 = x1 + φ(x1) + ψ1

y2 = x2 + φ(x1, x2) + ψ2

y3 = x3 + φ(x1, x2, x3) + ψ3

y4 = x1x5 + x2x7 y10 = x3x9 + x4x11
y5 = x1x6 + x2x8 y11 = x3x10 + x4x12
y6 = x3x5 + x4x7 y12 = x5x9 + x7x11
y7 = x3x6 + x4x8 y13 = x5x10 + x7x12
y8 = x1x9 + x2x11 y14 = x6x9 + x8x11
y9 = x1x10 + x2x12 y15 = x6x10 + x8x12

where φ1, φ2 and φ2 are random quadratic polynomials and ψ1, ψ2 and ψ3 are
polynomials in y4, . . . , y15 obtained by a special determinant relation. On a high
level view the central map is a mix of two di�erent principles. First y1, y2 and
y3 are composed of a stepwise triangular structure (cf. STS in section 4) and a
masking ψ1, ψ2, ψ3 which hides this structure. To decrypt, we can easily calculate
the values of ψi, as they only depend on y4, . . . , y15 and unmask y1, y2 and y3.
Consecutively solving these equations yields x1, x2 and x3. Second y4, . . . , y15
are partitioned in 3 blocks of oil and vinegar structure (cf. UOV section 2), i.e.
plugging in x1, x2 and x3 provide linear equations and so on. The public map P
is obtained as usual by P = T ◦ F ◦ S.

MFE Encryption Scheme Based on Diophantine Equations. The variant
of [GH11] generalize the idea of MFE to another class of Diophantine equations.
In particular they use a Diophantine equation of the form

ψ1ψ2 = f1f2 + f3f4 + f5f6 + f7f8 + f9f10

where f1, . . . , f10 are quadratic polynomials with oil and vinegar structure and
ψ1, ψ2 are the polynomials used for masking later on. To �nd an instantiation
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of ψi and fi the authors used the polynomial ring

R = F2k [z1, z2, z3, z4, w1, w2, w3, w4, u1, u2, u3, u4, v1, v2, v3, v4] (5)

and Plücker coordinates (cf. de�nition 3), which are know to satisfy the following
identity

0 = (p12zw + p12uv)p
34(z, w, u, v) + (p13zw + p13uv)p

24(z, w, u, v) +

(p14zw + p14uv)p
23(z, w, u, v) + (p23zw + p23uv)p

14(z, w, u, v) +

(p24zw + p24uv)p
13(z, w, u, v) + (p34zw + p34uv)p

12(z, w, u, v). (6)

De�nition 3 (Plücker coordinates). Given the polynomial ring de�ned in (5),
the Plücker coordinates are de�ned by

pijzw := ziwj − zjwi = ziyj + wjyi,

pij(z, w, u, v) := pijzu + pijwu + pijwv.

To transform the 5 last terms of the sum (6) in oil and vinegar form, the authors
used the isomorphism

ρ : R→ F2k [x1, x2, x3, x4, x5, x6, x7, x8, y1, y2, y3, y4, y5, y6, y7, y8]

: (z1, z2, z3, z4, w1, w2, w3, w4, u1, u2, u3, u4, v1, v2, v3, v4) 7→
(x1, x3, y1 + y5, y3 + y7, x4, x2, y5, y7, x5, x7, y4, y2, x8, x6, y8, y6)

Note that there were two typos in the de�nition of ρ in [GH11] (con�rmed by
[Gao12]).

The central map F : F56
2k → F74

2k : (x1, . . . , x24, y1, . . . , y32) 7→ (z1, . . . , z74) is
de�ned by

z1 = x1 + φ1(x1) + ψ1,1(x1, . . . , x8)
z2 = x2 + φ2(x1, x2) + ψ1,2(y1, . . . , y8)
z3 = x3 + φ3(x1, . . . , x3) + ψ2,2(y9, . . . , y16)
z4 = x4 + φ4(x1, . . . , x4) + ψ3,2(y17, . . . , y24)
z5 = x5 + φ5(x1, . . . , x5) + ψ1,1(x9, . . . , x16)
z6 = x6 + φ6(x1, . . . , x6) + ψ1,1(x17, . . . , x24)
z7 = x7 + φ7(x1, . . . , x7) + ψ4,2(y25, . . . , y32)
z7+i = f1,i(x1, . . . , x8, y1, . . . , y8) 1 ≤ i ≤ 10
z17+i = f2,i(x1, . . . , x8, y9, . . . , y16) 1 ≤ i ≤ 10
z27+i = f2,i(y1, . . . , y8, y9, . . . , y16) 1 ≤ i ≤ 8
z36 = f2,10(y1, . . . , y8, y9, . . . , y16)
z36+i = f3,i(x1, . . . , x8, y17, . . . , y24) 1 ≤ i ≤ 10
z46+i = f2,i(x9, . . . , x16, y9, . . . , y16) 1 ≤ i ≤ 8
z55 = f2,10(x9, . . . , x16, y9, . . . , y16)
z56+i = f3,i(x17, . . . , x24, y17, . . . , y24) 1 ≤ i ≤ 8
z64 = f3,10(x17, . . . , x24, y17, . . . , y24) 1 ≤ i ≤ 8
z56+i = f3,i(x17, . . . , x24, y17, . . . , y24)
z64+i = f4,i(x9, . . . , x16, y25, . . . , y32) 1 ≤ i ≤ 10
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where φ1, . . . , φ7 are random quadratic polynomials and fi,j := f1,j for i = 2, 3, 4
and j = 1, 3, 5, 7, 9. Further we de�ne

ψ2,2 := ρ(p34(z, w, v, u)) ψ3,2 := ρ(p34(w, z, u, v)) ψ4,2 := ρ(p34(w, z, v, u))
f2,2 := ρ(p24(z, w, v, u)) f3,2 := ρ(p24(w, z, u, v)) f4,2 := ρ(p24(w, z, v, u))
f2,4 := ρ(p23(z, w, v, u)) f3,4 := ρ(p23(w, z, u, v)) f4,4 := ρ(p23(w, z, v, u))
f2,6 := ρ(p14(z, w, v, u)) f3,6 := ρ(p14(w, z, u, v)) f4,6 := ρ(p14(w, z, v, u))
f2,8 := ρ(p13(z, w, v, u)) f3,8 := ρ(p13(w, z, u, v)) f4,8 := ρ(p13(w, z, v, u))
f2,10 := ρ(p12(z, w, v, u)) f3,10 := ρ(p12(w, z, u, v)) f4,10 := ρ(p12(w, z, v, u))

To use the structure of F for an algebraic key recovery attack, e.g. missing
cross-terms, we need to look at the equations explicitly:

z1 = x1 + φ1(x1) + x1x2 + x3x4 + x5x6 + x7x8

z2 = x2 + φ2(x1, x2) + y1y2 + y3y4 + y5y6 + y7y8

z3 = x3 + φ3(x1, . . . , x3) + y9y14 + y10y13 + y11y16 + y12y15

z4 = x4 + φ4(x1, . . . , x4) + y17y18 + y17y22 + y19y20 + y19y24 + y21y22 + y23y24

z5 = x5 + φ5(x1, . . . , x5) + x9x10 + x11x12 + x13x14 + x15x16

z6 = x6 + φ6(x1, . . . , x6) + x17x18 + x19x20 + x21x22 + x23x24

z7 = x7 + φ7(x1, . . . , x7) + y25y26 + y25y30 + y26y29 + y27y28 + y27y32 + y28y31

z8 = (x1 + x4)y5 + x4y1 + x5y8 + x8y4

z9 = (x2 + x3)y2 + x2y6 + x6y7 + x7y3

z10 = (x1 + x4)y7 + x4y3 + x5y6 + x8y2

z11 = (x2 + x3)y4 + x2y8 + x6y5 + x7y1

z12 = (x2 + x3)y5 + x2y1 + x6y4 + x7y8

z13 = (x1 + x4)y2 + x4y6 + x5y3 + x8y7

z14 = (x2 + x3)y7 + x2y3 + x6y2 + x7y6

z15 = (x1 + x4)y4 + x4y8 + x5y1 + x8y5

z16 = y1y7 + y2y8 + y3y5 + y4y6

z17 = (x1 + x4)x7 + (x2 + x3)x5 + x2x8 + x4x6

z18 = (x1 + x4)y13 + x4y9 + x5y16 + x8y12

z19 = (x2 + x3)y14 + x2y10 + x6y11 + x7y15

z20 = (x1 + x4)y15 + x4y11 + x5y14 + x8y10

z21 = (x2 + x3)y16 + x2y12 + x6y9 + x7y13

z22 = (x2 + x3)y13 + x2y9 + x6y12 + x7y16

z23 = (x1 + x4)y14 + x4y10 + x5y15 + x8y11

z24 = (x2 + x3)y15 + x2y11 + x6y10 + x7y14

z25 = (x1 + x4)y16 + x4y12 + x5y13 + x8y9

z26 = y9y15 + y10y16 + y11y13 + y12y14

z27 = (x1 + x4)x6 + x2x5 + (x2 + x3)x8 + x4x7

z28 = (y1 + y4)y13 + y4y9 + y5y16 + y8y12
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z29 = (y2 + y3)y14 + y2y10 + y6y11 + y7y15

z30 = (y1 + y4)y15 + y4y11 + y5y14 + y8y10

z31 = (y2 + y3)y16 + y2y12 + y6y9 + y7y13

z32 = (y2 + y3)y13 + y2y9 + y6y12 + y7y16

z33 = (y1 + y4)y14 + y4y10 + y5y15 + y8y11

z34 = (y2 + y3)y15 + y2y11 + y6y10 + y7y14

z35 = (y1 + y4)y16 + y4y12 + y5y13 + y8y9

z36 = (y1 + y4)y6 + y2y5 + (y2 + y3)y8 + y4y7

z37 = (x1 + x4)y21 + x4y17 + x5y24 + x8y20

z38 = (x2 + x3)y18 + x3y22 + (x6 + x7)y19 + x6y23

z39 = (x1 + x4)y23 + x4y19 + x5y22 + x8y18

z40 = (x2 + x3)y20 + x3y24 + (x6 + x7)y17 + x6y21

z41 = (x2 + x3)y21 + x2y17 + x6y20 + x7y24

z42 = (x1 + x4)y18 + x1y22 + (x5 + x8)y19 + x8y23

z43 = (x2 + x3)y23 + x2y19 + x6y18 + x7y22

z44 = (x1 + x4)y20 + x1y24 + (x5 + x8)y17 + x8y21

z45 = y17y23 + y18y24 + y19y21 + y20y22

z46 = (x1 + x4)x7 + x1x6 + (x2 + x3)x5 + x3x8

z47 = (x9 + x12)y13 + x12y9 + x13y16 + x16y12

z48 = (x10 + x11)y14 + x10y10 + x14y11 + x15y15

z49 = (x9 + x12)y15 + x12y11 + x13y14 + x16y10

z50 = (x10 + x11)y16 + x10y12 + x14y9 + x15y13

z51 = (x10 + x11)y13 + x10y9 + x14y12 + x15y16

z52 = (x9 + x12)y14 + x12y10 + x13y15 + x16y11

z53 = (x10 + x11)y15 + x10y11 + x14y10 + x15y14

z54 = (x9 + x12)y16 + x12y12 + x13y13 + x16y9

z55 = (x9 + x12)x14 + x10x13 + (x10 + x11)x16 + x12x15

z56 = (x17 + x20)y21 + x20y17 + x21y24 + x24y20

z57 = (x18 + x19)y18 + x19y22 + (x22 + x23)y19 + x22y23

z58 = (x17 + x20)y23 + x20y19 + x21y22 + x24y18

z59 = (x18 + x19)y20 + x19y24 + (x22 + x23)y17 + x22y21

z60 = (x18 + x19)y21 + x18y17 + x22y20 + x23y24

z61 = (x17 + x20)y18 + x17y22 + (x21 + x24)y19 + x24y23

z62 = (x18 + x19)y23 + x18y19 + x22y18 + x23y22

z63 = (x17 + x20)y20 + x17y24 + (x21 + x24)y17 + x24y21

z64 = x17x22 + (x17 + x20)x23 + (x18 + x19)x21 + x19x24

z65 = (x9 + x12)y29 + x12y25 + x13y32 + x16y28
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z66 = (x10 + x11)y30 + x11y26 + (x14 + x15)y27 + x15y31

z67 = (x9 + x12)y31 + x12y27 + x13y30 + x16y26

z68 = (x10 + x11)y32 + x11y28 + (x14 + x15)y25 + x15y29

z69 = (x10 + x11)y29 + x10y25 + x14y28 + x15y32

z70 = (x9 + x12)y30 + x9y26 + (x13 + x16)y27 + x13y31

z71 = (x10 + x11)y31 + x10y27 + x14y26 + x15y30

z72 = (x9 + x12)y32 + x9y28 + (x13 + x16)y25 + x13y29

z73 = y25y31 + y26y32 + y27y29 + y28y30

z74 = (x9 + x12)x14 + x9x15 + (x10 + x11)x16 + x11x13

Let Z(i) be the matrix describing the quadratic form of the central polynomial
zi, i.e. zi(x) = xᵀZ(i)x with x := (x1, . . . , x24, y1, . . . , y32). Due to P = T ◦F ◦S,
we know that every public polynomial p(i) is of the form

P(i) = Sᵀ

 74∑
j=1

tijZ
(j)


︸ ︷︷ ︸

=:Z̃

S.

For arbitrary chosen T the matrix Z̃ is of form given in �gure 13. All the white
values denote coe�cients that are systematical zero and thus can be used to
recover S without recovering T at the same time.

8 8 8 8 8 8 8

xi︷ ︸︸ ︷ yi︷ ︸︸ ︷

resp.

Fig. 13. Matrix Z̃, where gray parts denote arbitrary values of the corresponding co-
e�cients and white parts denote zeros, respectively. The left matrix is a generalized
version of the detailed right matrix.

At this stage an algebraic key recovery attack fails due to the large number of
variables sij . To be precise, we derive 74 · 15 · 82 = 71040 quadratic equations
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in 6 · 7 · 82 = 2688 variables sij . The complexity of solving a generic system of
this size using F5 or MutantXL would be 2320 and thus infeasible. To reduce
this complexity we have to use the special structure of the central polynomials
zi and �nd good keys minimizing the number of variables while maximizing the
preserved structure of the central map. The �rst observation is that variables
y25, y28, y29, y32 only occur in the six polynomials z7, z65, z68, z69, z72, z73. Thus,
with high probability, there exist a linear combination

P(7) +

6∑
i=1

t̃iP
(i) = Sᵀ

∑
j∈I

tjZ
(j)

S

with I := {1, . . . , 74}\{7, 65, 68, 69, 72, 73}. Now we can use a linear transfor-
mation Ω that maps every variable except y32 to every of the other variables.
We obtain the good key S′ shown in �gure 14. Furthermore Ω preserves all zero
coe�cients of monomials xiy32 and yiy32.

S′ =

Fig. 14. Good Key S′ for MFE based on Diophantine equations, where white parts
denote zeros, gray parts denote arbitrary values and ones at the diagonal.

We end up with 55 bihomogeneous quadratic (from xiy32 and yiy32 with i 6= 32)
and one cubic equation (from y32y32) in 52 variables sij and 6 variables ti. Un-
fortunately the number of bihomogeneous equations is less than the number of
variables and thus we cannot directly apply the results of [FDS11]. But after
guessing 3 variables ti we can use their formula and obtain an attack complexity

of q3
(
59+4

4

)2 ≈ 286. Well this already beats the claimed security of 2113, but we
can do even better.

A �rst simple optimization is to use 4 instead of 1 rows of T and thus ob-
tain 4 central polynomials with the structure described above. We end up with
4 · 55 = 220 bihomogeneous quadratic and 4 cubic equations in 52 + 4 · 6 = 76
variables. As it is an oben problem to determine the complexity of solving such
block-wise bihomogeneous equations we only can assume generic equations and
thus obtain a very bad upper bound of 271 to solve the system using F5.

But we can do even better by ignoring the transformation T and just using the
structure given in �gure 13.
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Let J := {x14, x16, x21, x23, y6, y13, y14, y15, y16, y18, y20, y21, y23, y29, y30, y31, y32}
and K := {x1, . . . , x24, y1, . . . , y36}\J . The crucial observation is that non of the
central polynomials zi contains monomials J × J . In order to preserve the zero
coe�cient of y232 we are thus allowed to map every variable to variables of J and
every variable except y32 to variables of K. Let us label columns and rows of S
by (x1, . . . , x24, y1, . . . , y32), i.e. sx2,y32 is the element of S in the 2nd row and
56th column. The good key S, which only preserves the zero coe�cients of y232
only consists of 56 − 17 = 39 variables si,y32 for i ∈ K in the last column. We
omit a formal proof, as it is the same like for lemma 1 and 2. In total we ob-
tain 74 quadratic equations (the coe�cient of y232 has to be zero in every public
polynomial independently of T ) in 39 variables si,y32 . Solving this system has
complexity 256.

Now we can repeat this progress for y231 and obtain si,y31 for i ∈ K with com-
plexity 256 again. At this point we can determine si,y32 for i ∈ J using that the
coe�cients of y31y32 has to be zero. Solving those 74 equations in 17 variables
has complexity 220. Next we obtain 3 · 74 equations through y230, y30y31, y30y32
and can determine variables si,y30 for i ∈ K and si,y31 for i ∈ J at once. Solv-
ing this system of 222 equations in 56 variables has complexity 245. Note that
from now on more and more equations become available in every step, until we
obtained all columns of S labeled by J . To determine the remaining columns of
S, we use that non of the elements of K is connected to more than 9 out of 17
elements of J in all the central equations zi. Thus we obtain at least 8 · 74 equa-
tions to determine the 56 variables of column j ∈ K of S. This has complexity
230. Note that if we proceed sequential we can also use zero coe�cients of K×K
and thus obtain much more equations. As soon as all the columns of S labeled
with all the monomials occurring in zi are determined we obtain the i-th row of
the secret key T through linear equations.
To summarize, a key recovery attack on MFE based on Diophantine equations
has complexity at least 2 · 256 = 257.
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8 Cryptanalysis of the MQQ Encryption Scheme

The original variant of the multivariate quadratic quasigroup (MQQ) scheme
was proposed by Gligoroski et al. in 2008 [GMK08]. The underlying idea was
to use the bijective operation of a quasigroup, e.g. the left parastrophe, which
can be described through a quadratic map over the underlying �eld, as trapdoor
to build aMQ-scheme. Unfortunately this trapdoor provided a lot of structure
such that the MQQ scheme was broken by a direct attack on the public key.
Faugère et al. showed in [FØPG10] that the degree of regularity, and thus the
complexity of a direct attack, can be bounded from above by a small constant.
In [FGJ+11] Faugère et al. proposed a signature scheme, called MQQ-Sig, which
is based on the same idea. They made heavily use of the minus modi�er, known
from HFE-, to built a scheme which is considered secure up to now. At SCC
2012 Gligoroski and Samardjiska [GS12] proposed an enhanced variant of the
MQQ encryption scheme, called MQQ-Enc.
Up to now, almost all unbroken MQ-schemes are signature schemes (cf. UOV
and Rainbow in section 2 and 3). Moreover at Crypto 2011 Sakumoto et al.
[SSH11] proposed the �rstMQ identi�cation scheme that is proven to be secure.
Via the Fiat-Shamir construction this provides the �rst MQ signature scheme
that is reasonable e�cient and secure in the random oracle model.
On the other hand, constructing e�cient and secure MQ encryption schemes
failed (cf. section 7 or [Her12,KS99,DH11]). We will now show that this rule also
applies to MQQ-Enc: Moreover our attack also applies to MQQ-Sig and thus
breaks both schemes very e�ciently.

MQQ Encryption Scheme. Let P : Fnpk → Fnpk be the public key and S and
T two secret a�ne transformations (cf. section 2). In the sequel we neglect linear
terms, as we do not use them for our attack and they also never interfere with
the coe�cients of quadratic monomials. Thus we assume S and T to be linear
transformations. Note that using coe�cients of linear terms could only speed up
the attack, as soon as they are not all chosen uniformly at random.
The main idea of constructing the trapdoor map F is to make use of the quadratic
map q (cf. de�nition 4), which is derived by the left parastrophe operation in
the quasigroup Fdpk . This way we obtain a bijective map if we �xing the �rst
d variables, which assures correct decryption later on. Furthermore the authors
used a stepwise triangular structure in order to scale the scheme in the number
of variables.

De�nition 4. The map q = (q(1), . . . , q(d)) : F2d
pk → Fdpk is de�ned by

q(s)(x1, . . . , xd, y1, . . . , yd) = f (s)(ys) +
∑

1≤i,j≤d

α
(s)
ij xixj +

∑
s<i,j≤d

β
(s)
ij yiyj +

+
∑

1≤i≤d
s<j≤d

γ
(s)
ij xiyj +

∑
1≤i≤d

δ
(s)
i xi +

∑
s<i≤d

ε
(s)
i yi + η(s),



Generalization of the Rainbow Band Separation Attack 37

for 1 ≤ s ≤ d and f (s)(ys) = ays, a 6= 0 over �elds of odd characteristic and
f (s)(ys) = ay2s , a 6= 0 over �elds of even characteristic.

Writing the quadratic part of q(s) in its quadratic form XᵀQX with X =
(x1, . . . , xd, y1, . . . , yd)

ᵀ, we can illustrate the matrix Q by �gure 15. Note that
in the sequel we always assume f (s)(ys) = ay2s , as this will yield the worst case
attack complexity.

ay2s

x y︷ ︸︸ ︷ ︷ ︸︸ ︷

d d− s

Fig. 15. Quadratic form Q of q(s). Gray parts denote arbitrary values, whereas white
parts denote systematic zeros.

The authors of [GS12] �xed the degree of the quasigroup to d = 8. Let x1, . . . , xn
8

and y1, . . . , y n
8
be elements of the quasigroup Fdpk . Now the central map F :

(x1, . . . , xn) 7→ (y1, . . . , yn) is de�ned as follows.

y1 = (y1, . . . , y8) := x1 = (x1, . . . , x8)
y2 = (y9, . . . , y16) := q(x1, x2) = q(x1, . . . , x16)
... =

... :=
... =

...
y n

8
= (yn−7, . . . , yn) := q(xn

8−1, x
n
8
) = q(xn−15, . . . , xn)

Remark 2. The central map F pictured in �gure 16 is a slight simpli�cation of
the original central map. More precisely the authors did not use q(x1, x2) but
q̃(x1, x2) := D1 · q(x1, D2 · x2 + c2) + c1 for some random regular d× d matrices
D1, D2 and random vectors c1, c2 of dimension d. As we are only considering
quadratic coe�cients later on, we can safely ignore c1 and c2. Further the linear
transformation of equations D1 can be absorbed by T , i.e. instead of using q̃
and recovering the original T , we work with q and recover T · (In

d
⊗D1), with

⊗ the matrix tensor product of the n
d dimensional identity matrix and D1. The

same holds for the transformation of variables S. Instead of working with q̃ and
recovering the original transformation S, we recover (In

d
⊗ D−12 ) · S and thus

work with q̂(x1, x2) := q(D−12 x1, x2). As there is no structure hidden in the �rst
component of q, all the systematical zeros in q̂ and q are equal and thus we can
assume a central map as de�ned by F .
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· · ·

· · ·

· · ·

· · ·

...
...

...

y1 y2 y8

y9 y10 y16

y17 y18 y24

yn−7 yn−6 yn

Fig. 16. Matrices of the quadratic form of the central map F of MQQ-Enc. Gray parts
denote some arbitrary values, whereas white parts denote systematical zeros.
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Remark 3. In [GS12] the authors did not choose S and T purely at random but
as a combination of two circulant matrices. This structure was meant to reduce
the key size and speed up the decryption process. We did not use this special
structure to speed up our attack yet. As we are recovering (In

d
⊗D−12 ) ·S instead

of S and T · (In
d
⊗D1) instead of T , for some randomly chosen D1 and D2, we

lost most of the structure anyway. Therefore we assume to recover some random
matrix in the sequel. Note that this gives a worst case complexity of our attack
again.

MinRank Attack. Looking out for weaknesses of MQQ-Enc, we are �rst at-
tracted by the maps y1, . . . , y8, as they are not even quadratic and thus can
easily be recovery by a MinRank attack [BG06,FdVP08,TW11]. In a nutshell we
have to �nd a linear combination of public polynomials p(i) = xᵀP(i)x with rank
zero. This can be done by solving

n∑
i=1

λiP
(i)ω = 0 (7)

for some ω ∈ ker(SᵀF(i)S), 1 ≤ i ≤ 8 (cf. [FdVP08]). As the rank of F(1), . . . ,F(8)

is zero, every element ω lies in the kernel and thus (7) is easily solvable by Gaus-
sian elimination. This way we can �nd a total of 8 linearly independent linear
combinations of the public key polynomials with rank zero. Next we exploit that
the linear terms of those polynomials only consist of x1, . . . , x8. The remaining
n−8 coe�cients are systematical zero. Mapping the public coe�cients of the lin-
ear terms to those zeros, we obtain 8(n−8) linear equations in the elements of S.

At that point this attack does not give us further information, as the quadratic
coe�cients are also zero in the linear combination of the public key polynomials.
So we are not able to learn more about S. Well, the authors of [GS12] prevented
this attack by removing r polynomials in the public key anyway. So, they applied
the minus modi�er known from HFE- to enhance security against direct attacks.
This immediately destroys the bijectivity of P and thus the decryption process is
slowed down by the factor of pkr brute-force steps. Therefore kr must be chosen
small in practice. A parameter set chosen by the authors is k = 4, r = 2, p = 2,
d = 8 and n = 64. Note that r ≥ d must hold in order to prevent the MinRank
attack above.

Note that all the central maps have ranks between 9 and 16 (cf. �gure 16). To
extend the MinRank attack above and recover the full transformation S, we
would have to �nd a linear combination of public polynomials with rank 9. This
is also possible, if we remove r ≤ d polynomials in the public key. If we remove
d+ ` polynomials, we are only able to �nd a matrix with rank 9+ `. Due to the
results of [FDS11,FdVP08] the complexity of solving this MinRank problem is(
n+10
10

)2
, which is 279 for the parameter set given above.
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HighRank Attack. As the complexities of MinRank attacks are quite high,
we now investigate HighRank attacks and show that they are as e�cient as the
original decryption algorithm. The crucial point to start our HighRank attack is
that the variable xn−7 only occurs in exactly one central map yn−7 (cf. �gure 16).
Remember that every public polynomial can be written as

P(i) = Sᵀ

 n∑
j=1

tijF
(j)

S.

Thus with probability 1/pk, with pk the number of �eld elements, we can �nd
a linear combination of two public polynomials P(i) + λP(j), i 6= j such that
F(n−7) vanishes. We even can check if we found the right linear combination
by the rank property. This approach is also known as HighRank attack, i.e. we
brute force all linear combinations until we found one with rank n− 1. This has
complexity pk at most. Now no term xixn−7 occurs in the sum of underlying
central maps F, i.e. due to the missing cross-terms we can apply equivalent keys
for S. More precisely we are allowed to map every variable to an arbitrary sum of
all variables except xn−7 in order to preserve all the zero coe�cients of xixn−7.
As xn−7 does not occur at all, we are also allowed to map xn−7 to xn−7. This
way we obtain the equivalent key illustrated in �gure 17, i.e. it is su�cient to
recover column n− 7 of S.

n− 7

S =

Fig. 17. Equivalent key S with ones at the diagonal, arbitrary values at the gray parts
and zeros at the white parts.

We obtain n − 1 linear equations due to the coe�cients xixn−7, i = 1, . . . , n −
8, n−6, . . . , n and one quadratic equation due to x2n−7 in n−1 variables si(n−7).
Solving the �rst n− 1 linear equations by Gaussian elimination has complexity
(n − 1)3. We can check the correctness of the result by the quadratic equa-
tion, which we did not use so far. The overall complexity of this �rst step is
pk + (n− 1)3. Now that we know the (n− 7)-th column of S we can apply this
transformation to the public key. This way the coe�cients of xn−7 are plain,
i.e. a sum of the coe�cients of the according central maps without any trans-
formation of variables. This way we can add P(1) to all the other polynomials,
such that x2n−7 vanishes. This also deletes F(n−7) in all P(i), 2 ≤ i ≤ n. Now
we can repeat this process, as x2n−6 only occurs in one of the remaining central
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polynomials. Note that the rank di�erence is always one and thus the brute
force complexity is bounded by pk. Due to the minus modi�er on the public key,
this process stops after recovering columns 9, . . . , n of S and ending up with
one public polynomial, which is a linear combination of F(1), . . . ,F(9). Note that
up to this point we did not recover T , i.e. all the intermediate polynomials are
still linear combinations of some central polynomials. But with the knowledge of
large parts of S we can easily calculate backwards and thus separate the original
transformation T . We are now in the position of the legitimate user, i.e. in order
to decrypt a message we have to brute force variables x1, . . . , x8.

Our HighRank attack has complexity (n − r)(pk + (n − 1)3) whereas the orig-
inal decryption algorithm has complexity roughly pkrnd2. For the parameters
proposed in [GS12] this leads to the complexities given in table 3.

Table 3. Complexities of MQQ-Enc.

pk k n r d Decryption Key Recovery

2 1 256 8 8 222 232

4 2 128 4 8 221 228

16 4 64 2 8 220 224

32 8 32 1 8 219 219

We want to thank Simona Samardjiska for implementing the attack and pointing
out some subtleties. So an actual implementation need some re-randomization
steps, as equivalent keys of some special form only exists with high probability.
Further we want to notice that the attack analogously applies to MQQ-Sig
[FGJ+11], as the only di�erence is a more extensive use of the minus modi�er
(half of the public polynomials are discarded). This does not a�ect the HighRank
attack at all.
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